

1 **Hymenoptera associated eukaryotic virome lacks host**

2 **specificity**

3

4 Ward Deboutte^{*1}, Leen Beller¹, Claude Kwe Yinda^{1,2}, Chenyan Shi¹, Lena Smets¹,
5 Bert Vanmechelen¹, Nadia Conceição-Neto¹, Kai Dallmeier³, Piet Maes¹, Dirk C de
6 Graaf⁴, Jelle Matthijnssens^{*1}

7 **Author Affiliations**

8 ¹*KU Leuven - University of Leuven, Department of Microbiology, Immunology and Transplantation,
9 Rega Institute for Medical Research, Division of Clinical and Epidemiological Virology, 3000, Leuven,
10 Belgium*

11 ²*NIAID/NIH, Rocky Mountain Laboratories, Laboratory of Virology, Virus Ecology Unit, 59840, Montana,
12 USA*

13 ³*KU Leuven - University of Leuven, Department of Microbiology, Immunology and Transplantation,
14 Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium*

15 ⁴*UGent – Ghent University, Department of Biochemistry and Microbiology, Laboratory of Molecular
16 Entomology and Bee Pathology (L-MEB), 9000, Ghent, Belgium*

17

*Correspondence: ward.deboutte@kuleuven.be; jelle.matthijnssens@kuleuven.be

18 **Abstract**

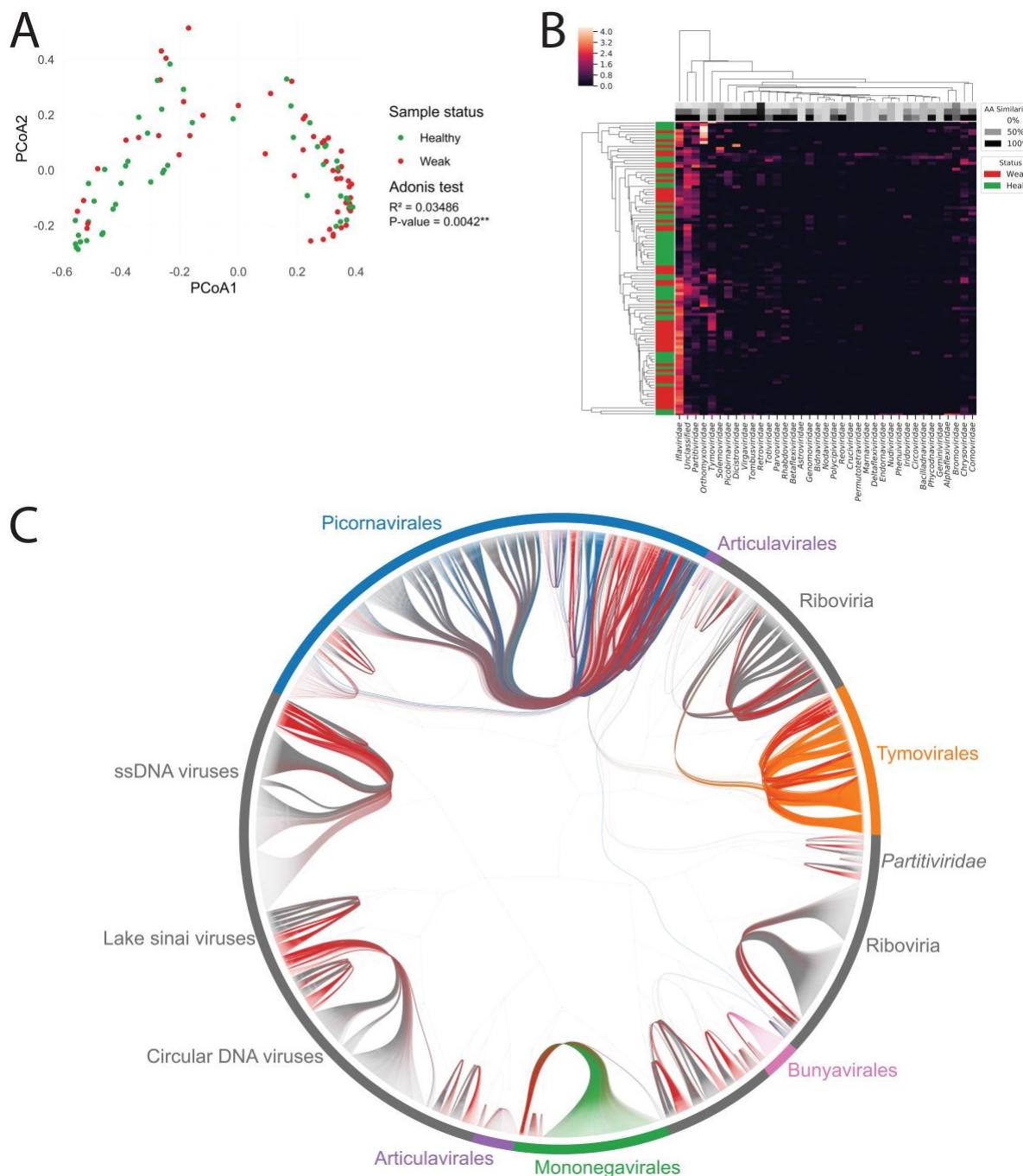
19 Recent advancements in sequencing technologies and metagenomic studies have
20 increased the knowledge of the virosphere associated with honey bees tremendously.
21 In this study, viral-like particle enrichment and deep sequencing was deployed to
22 detect viral communities in managed Belgian honey bees. A substantial number of
23 previously undescribed divergent virus genomes was detected, including a
24 rhabdovirus and a recombinant virus possessing a divergent *Lake Sinai Virus* capsid
25 and a Hepe-like polymerase. Furthermore, screening > 5,000 public sequencing
26 datasets for the retrieved set of viral genomes revealed an additional plethora of
27 undetected, divergent viruses present in a wide range of Hymenoptera species. The
28 unexpected high number of shared viral genomes within the Apidae family and across
29 different families within the order Hymenoptera suggests that many of these viruses
30 are highly promiscuous, that virus sharing within and between Hymenoptera families
31 occurs frequently, and that the concept of species-specific viral taxa inside the
32 Hymenoptera should be revisited. In particular, this estimation implies that sharing of
33 several viral species, thought to be specific for bees, across other eukaryotic taxa is
34 rampant. This study provides important insights on the host taxonomical breadth of
35 some of the known “bee viruses” and might have important implications on strategies
36 to combat viruses that are relevant to pollinators.

37

38 **Introduction**

39 The European honey bee (*Apis Mellifera*) forms a central hub in ecosystem
40 maintenance, resilience and diversity. Aside from the economically valuable products,
41 such as honey and nectar (1,2), managed bee colonies together with other insects

42 contribute tremendously to pollination (3) and play a key role in global agricultural
43 production (4). In the past decades, pressures on both managed and wild bees have
44 increased vastly and there is evidence for declining trends in pollinator populations
45 globally (5,6). These pressures encompass ecological factors such as habitat loss (7),
46 pollution (8), pesticide use (9,10) and adverse agricultural practices (11), but biological
47 factors including bacterial, parasitic, and viral infections (12–15), also play a pivotal
48 role. Recently, more attention is being given to the microbiota and their influence on
49 bee health, development and homeostasis (16–18), and it has been shown that the
50 microbiota can be exploited to protect bees from other pathogens (19). The influence
51 these factors have can be cumulative or even synergistic. For example, it has been
52 shown that pesticide use can perturb the expression of essential immunocompetence
53 genes, increasing the probability of microbial infections (20). Perhaps the best
54 example for mutual synergistic factors detrimental for bee health confine parasitic and
55 viral infections. The worldwide spread of the *Varroa destructor* parasite facilitated
56 *Deformed wing virus* (DWV) infections by acting as an active vector (where the virus
57 can replicate in both the vector and the host) (21). Parallel to its role as viral vector, it
58 has been shown that the *V. destructor* parasite can also influence the immune status
59 of its host (22). Globalization of *V. destructor* and concomitant DWV infections raised
60 the question what influence DWV plays in colony health. Recent studies have revealed
61 an association between DWV infections and colony health status (23–25). Despite the
62 worldwide dominance of DWV, other RNA viruses have been shown to be highly
63 virulent, resulting in a strong phenotype in infected bees. Acute bee paralysis virus
64 (ABPV), Black queen cell virus (BQCV) and Sacbrood virus (SBV) are all members of
65 the order *Picornavirales* that have a detrimental effect on colony health once they
66 infect a hive (26). Scattered information suggests that some of these viruses are not


67 to be restricted to honey bees, but also infect and replicate in other members of the
68 Apidae family. Spill-over events from managed honey bees into bumblebee species
69 have been described for DWV, BQCV, ABPV, SBV and Lake Sinai viruses (LSV) (27–
70 30), whereas honey bee viruses have also been described in ants (Formicidae) (31)
71 and wasps (Vespidae) (32). Recent advancements in sequencing technologies and
72 metagenomics have accelerated virus discovery in bees and a number of studies have
73 attempted to describe the viral diversity associated with bees. These studies were able
74 to expand the range of known honey bee viruses significantly and aside from
75 numerous viruses belonging to the order *Picornavirales*, numerous other RNA viruses
76 have been discovered belonging to the orders *Bunyavirales*, *Mononegavirales*
77 (containing the family *Rhabdoviridae*) and *Articulavirales* (containing the family
78 *Orthomyxoviridae*), and several unclassified RNA viruses such as LSV (33–37). DNA
79 viruses have also been described, such as *Apis mellifera* Filamentous virus (AmFV)
80 (38), and numerous single-stranded DNA viruses (39). While these sequencing efforts
81 have vastly increased the number of known honey bee related viruses, the relevance
82 of most of these viruses remains enigmatic. In this study, we first describe the
83 eukaryotic viruses present in > 300 Belgian bee colonies collected in the framework
84 of the EpiloBEE study (40) in 2012 and 2013. We place these results in the context of
85 other known insect viruses. Finally, by screening more than 5,000 public RNA
86 sequencing datasets, we shed light on the sharing of (bee) viruses between different
87 members of the order Hymenoptera and within the Apidae lineage.

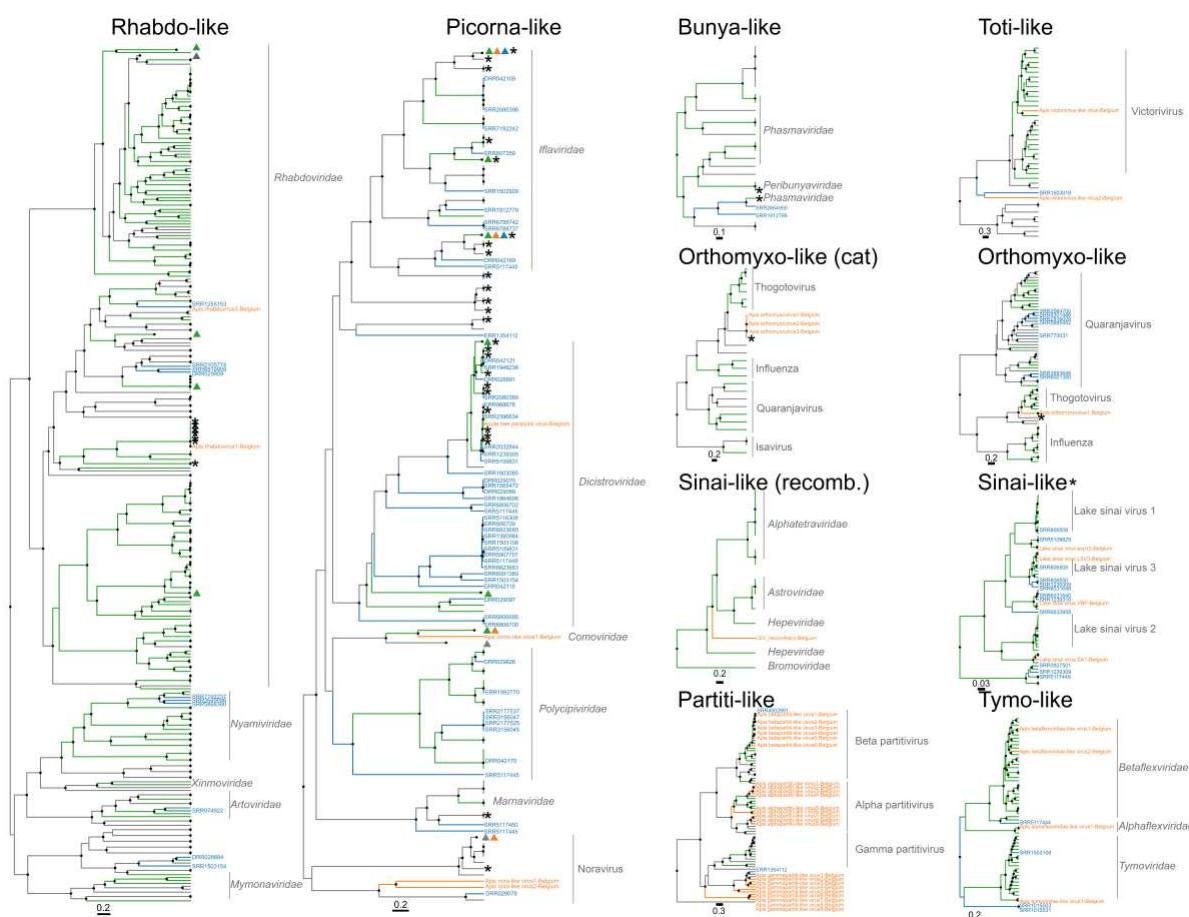
88 **Results**

89 **Eukaryotic virus identification yields previously known and unknown honey** 90 **bee viruses**

91 Viral-like particle enrichment (41) and Illumina sequencing was performed on pooled
92 samples derived from 300 weak and healthy (as defined by the EpiloBEE study (40))
93 managed honey bee colonies in Flanders, Belgium as described before (42). After
94 sequencing and *de novo* assembly of the individual libraries, redundancy of the
95 retrieved contigs was removed by collapsing sequences with 97% nucleotide identity
96 over 80% of their length. Subsequently, the non-redundant contig set was annotated
97 using DIAMOND (43) against NCBI's NR database. Viruses were taxonomically
98 classified using the lowest-common ancestor algorithm implemented in Kronatools
99 (44). Sequences showing similarity to bacteriophages were omitted from this analysis.
100 Genome coverage values were obtained by mapping the sequencing reads per
101 sample back to the non-redundant contig set. Clustering analysis on the viral coverage
102 matrix revealed a distinct clustering pattern between samples derived from weak and
103 healthy colonies, although with a very small biological relevance (adonis test, $R^2 =$
104 0.035, p-value = 0.0042) (Fig. 1A). The log-transformed coverage matrix showed that
105 the vast majority of viral reads could be attributed to the family *Iflaviridae*, of which
106 DWV is a member (Fig. 1B). The second most prevalent viral family was the family
107 *Orthomyxoviridae*. Several families containing plant and fungal viruses, such as
108 *Partitiviridae*, *Chrysoviridae*, and *Tymoviridae*, were also recovered. The clustering
109 pattern of the coverage matrix reflected the adonis test results, showing most of the
110 samples being dispersed by health status and although one healthy cluster containing
111 mainly unclassified reads exists, the lack of monophyly implies no clear differences in
112 composition with respect to the health status. In terms of absolute contig count, the

113 most prevalent orders were (apart from unclassified sequences) *Picornavirales*,
114 *Tymovirales* and *Mononegavirales* (supplemental fig. S1A) and the most prevalent
115 families were (next to unclassified sequences) *Partitiviridae*, *Comoviridae*, and
116 *Parvoviridae* (supplemental fig. S1B). There was no significant difference between the
117 number of non-redundant contigs present in healthy and weak samples (Mann-
118 Whitney U test, p-value = 0.32) (supplemental fig. S2). Only 30% of the non-redundant
119 contigs had an amino acid similarity percentage with the best hit in the NR database
120 higher than 90%, reflecting the divergent nature of the retrieved sequences
121 (supplemental fig. S3). Species accumulation curves revealed a near horizontal
122 asymptote, implying that viral sequence space was probed sufficiently (supplemental
123 fig. S4). The relatively short length of the majority of retrieved viral sequences
124 hampered a complete phylogenetic analysis (supplemental fig. S3). Therefore, an all-
125 by-all TBLASTX search was conducted using the retrieved non-redundant contig set
126 complemented with a filtered viral Refseq set (see methods) as both query and bait.
127 The resulting blast output was converted into a network using sequences as vertices,
128 and hits as edges. A minimized-nested block network was constructed and visualized
129 using the taxonomical information of the reference sequences (Fig. 1C). The vast
130 majority of retrieved sequences clustered together in blocks with the order
131 *Picornavirales*, although the orders *Bunyavirales*, *Mononegavirales* and *Tymovirales*
132 were also represented substantially. Several contigs could not be assigned to any
133 known order and represented unclassified (ds)RNA viruses or unclassified (circular)
134 DNA viruses.

135


136 **Fig. 1. Belgian honey bees harbor a diverse range of known and novel viruses.**

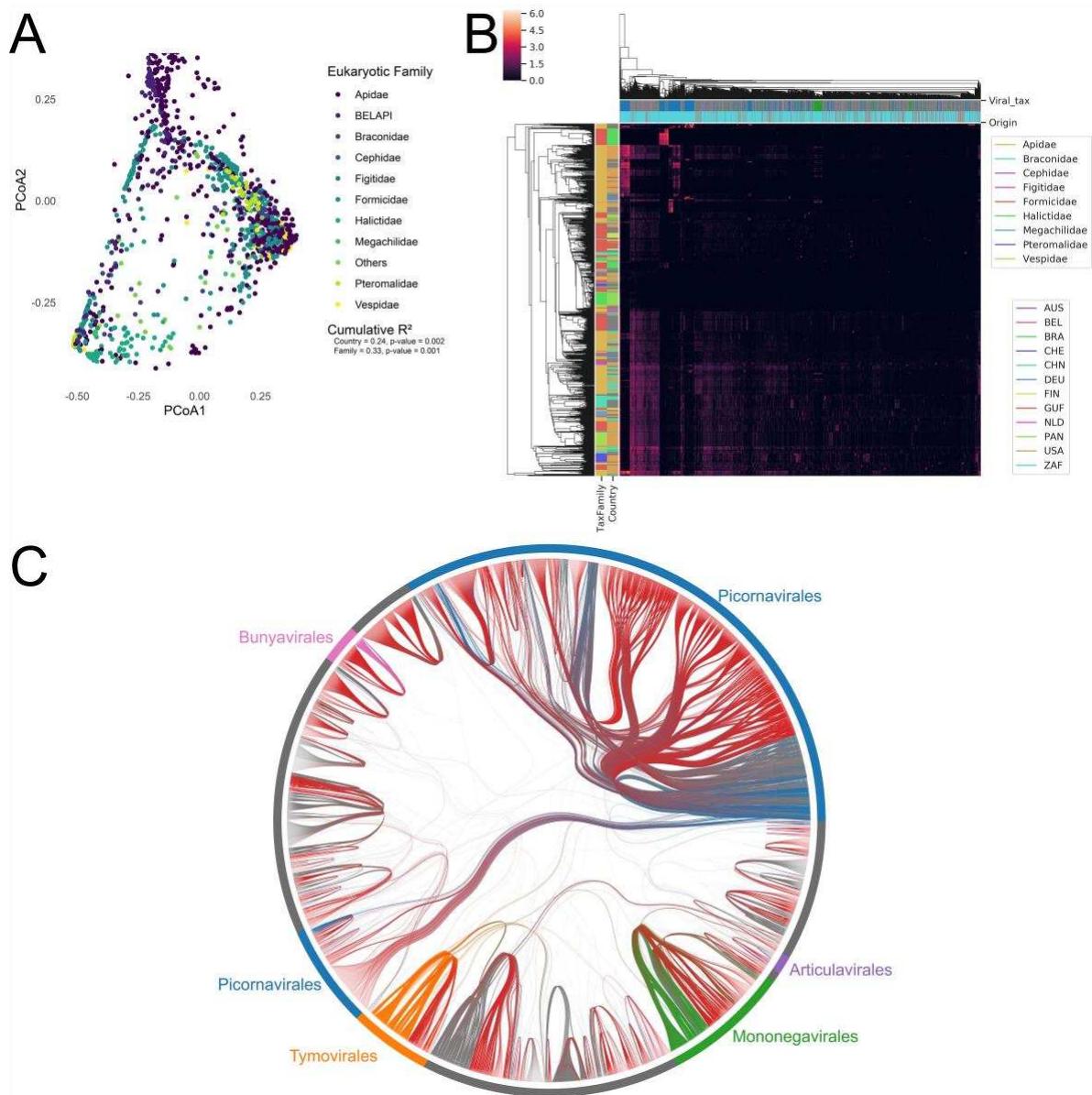
137 (A) PCoA clustering using Bray-Curtis distances calculated on the viral coverage matrix derived from
 138 the Belgian samples ($n = 102$). Green dots reflect samples derived from healthy colonies; red dots
 139 reflect samples derived from weak colonies. The R^2 and p -value obtained from the Adonis test
 140 are indicated on the right. (B) Average values per viral family of the log-transformed viral coverage
 141 matrix are depicted in a heatmap, clustered using Euclidian distances. The left column depicts samples
 142 derived from healthy (green) and weak (red) samples. The first three rows indicate the minimum (top),
 143 the average (middle) and the maximum (bottom) percentage of amino acid similarity of the contigs per
 144 viral family. (C) Minimized nested block network using retrieved sequences in this study (red) and known
 145 Refseq viruses (all other colors). Known orders are indicated in colors and unclassified reference
 146 sequences are indicated in gray.

147 **Phylogenetic analysis confirms the presence of known and divergent**
148 **eukaryotic viruses in Belgium**

149 To investigate the phylogenetic placement of a subset of the retrieved near-complete
150 viral genomes, maximum clade credibility trees (MCC) were created using BEAST (45)
151 (Fig. 2). Retrieved genomes from this study (orange tip labels, and listed in
152 supplemental table 1) and from the short-read sequencing archive (SRA, NCBI)
153 search (blue tip labels, see below), as well as reference sequences (green tips), were
154 included based on sequence length and based on a BlastP search (see methods).
155 Phylogenies were created for Rhabdo-like, Picorna-like, Bunya-like, Orthomyxo-like,
156 Sinai-like, Partiti-like, Toti-like and Tymo-like viruses. One of the retrieved rhabdo-like
157 viruses (*Apis rhabdovirus1-Belgium*) was nearly identical to the recently identified *Apis*
158 rhabdovirus 1 (34), while the other Rhabdo-like virus (*Apis rhabdovirus3-Belgium*) has
159 *Diachasmimorpha longicaudata* rhabdovirus as closest relative (but only had 38%
160 amino acid identity for the L protein). The retrieved Picorna-like viruses reflect known
161 bee pathogens clading in the families *Itlaviridae* and *Dicistroviridae*, such as DWV,
162 SBV and ABPV, but also include more divergent sequences related to Nora-like
163 viruses. A number of sequences clading together with plant infecting picornaviruses,
164 such as several comoviruses were also retrieved. The retrieved Orthomyxo-like
165 viruses are three closely related viruses (*Apis orthomyxovirus 1, 2 and 3-Belgium*),
166 clustering together with other known thogotoviruses. These three viruses are nearly
167 identical to the recently discovered Varroa Orthomyxovirus, with the exception of the
168 nucleoprotein (35). Furthermore, five LSV-like viruses were retrieved, out of which four
169 were very similar to other known Lake Sinai viruses (between 94% and 97% nucleotide
170 similarity). Interestingly, the fifth identified *Lake Sinai virus* was initially identified as an
171 Astro-like virus, but was shown to be a divergent recombinant virus with a 'Hepe-like'

172 polymerase region (31% amino acid similarity with the non-structural protein of *Culex*
173 *Bastrovirus*-like virus), and a *Lake Sinai* virus-like capsid (*Lake Sinai* virus, 35% amino
174 acid similarity) (supplemental fig. S5). Sequence depth profiling indicated that this
175 sequence was a true recombinant rather than an assembly artefact. The other
176 retrieved (near-) complete viral genomes were most likely plant derived eukaryotic
177 viruses, including *Partiti*-like viruses (24 sequences), *Toti*-like viruses (two sequences)
178 and *Tymo*-like viruses (four sequences).

180 **Fig. 2. Phylogenetic analysis highlights the vast diversity of viruses identified in the Belgian**
181 **samples.**


182 Maximum clade credibility trees for the best-represented groups of viruses retrieved in this study. Black
183 circles on the nodes indicate posterior support values > 0.9 . Viruses identified in the Belgian samples
184 are indicated with orange tip labels, those identified through SRA searches are indicated with blue tip
185 labels. Reference sequences that belong to a classified viral family or genus are indicated with green
186 branches. Known honey bee viruses are indicated with an asterisk. One or more triangles indicate
187 collapsed clades, and the colors are equivalent to the tip and branch colors. Clades that belong to the
188 same family or genus are indicated with a gray line and in text. The 'Rhabdo-like' tree is built using the
189 putative L protein. The 'Picorna-like' tree is built using the putative polyprotein (monocistronic viruses),
190 the putative ORF1 (dicistronic viruses) or the putative replication polyprotein (Nora-like viruses). The
191 'Bunya-like' tree is built using the putative L protein. The 'Toti-like' tree and the 'Partiti-like' tree are built

192 using the putative RdRP gene. The 'Orthomyxo-like (cat)' tree is built using a concatenated protein
193 alignment of the putative PB2 – PB1 – PA – NP genes, while the 'Orthomyxo-like' tree is built using
194 only the PB2 segment. The 'Sinai-like (recomb.)' tree is built using the putative polymerase gene of the
195 astrovirus-LSV recombinant virus, while the 'Sinai-like' tree is built using the putative polymerase region
196 of all the known LSV viruses (not including the recombinant). The 'Tymo-like' tree is built using the
197 putative polyprotein gene.
198

199 **Re-screening of existing RNA sequencing datasets reveals untapped viral
200 diversity within the Hymenoptera lineage**

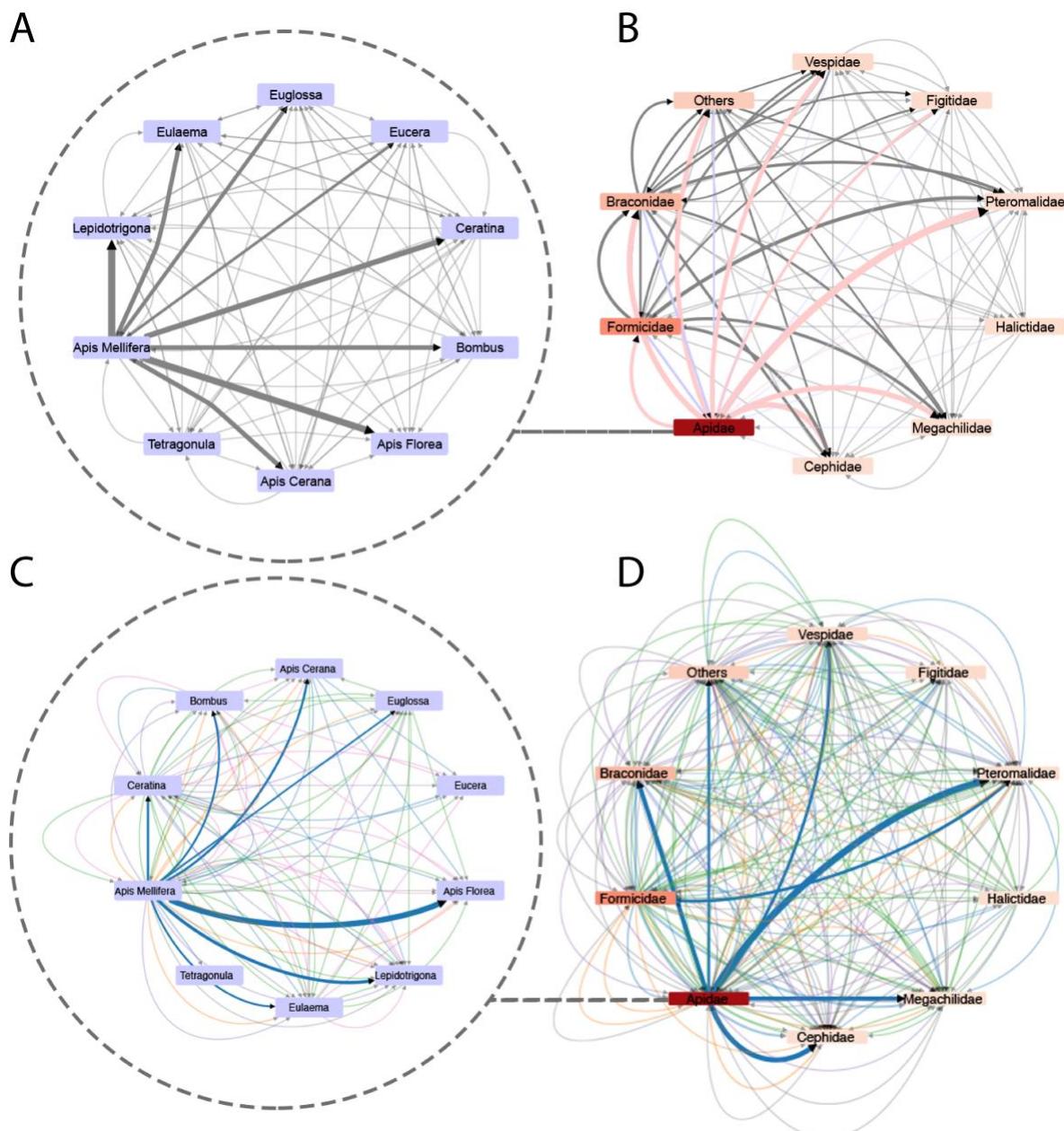
201 Since the recovered viral sequences included most of the known honey bee viral
202 sequence space (Fig. 1C), the assumption was made that the non-redundant viral
203 dataset we recovered was a good reflection of all known honey bee viruses. This
204 dataset was used as bait to map a total of 5,246 RNA sequencing datasets found in
205 the SRA database when using the query 'Hymenoptera + RNA'. A dataset was
206 considered to be 'virus enriched' when at least 100,000 reads mapped to the bait set.
207 All datasets that met this criterium (1,331) were individually *de novo* assembled using
208 SKESA (46) and viral sequences were identified and clustered as was described for
209 the Belgian samples. An additional clustering step was performed, collapsing the non-
210 redundant SRA-derived sequences together with the non-redundant Belgian
211 sequence dataset. This resulted in the recovery of nearly 10,000 non-redundant
212 putative viral contigs, out of which only 42.8% had an amino acid similarity with
213 proteins in Genbank higher than 90% (supplemental fig. S6). Forward model selection
214 analysis revealed that together, putative host taxonomy and location of the dataset
215 could explain 33% of the variability observed within the coverage matrix (Fig. 3A). This
216 result was further validated by the observation that hierarchical clustering on Euclidian
217 distances revealed clusters of both eukaryotic host families and location within the
218 coverage matrix (Fig. 3B). Viral taxonomy analysis revealed that the majority of the
219 recovered viruses could be assigned to the orders *Picornavirales* and
220 *Mononegavirales* (Fig. 3C). The retrieved viral contigs that fell below the

221 abovementioned threshold of 90% amino acid similarity were included in the
222 phylogenetic analysis and revealed ten previously undescribed Rhabdo-like viruses,
223 and more than 50 previously undescribed Picorna-like viruses (Fig. 2, blue tip labels).
224 Both these groups span multiple viral families. Another striking finding was the fact
225 that seven previously undescribed PB2 segments of *Orthomyxoviridae*-like sequences
226 were recovered (most closely related to the *Quaranjavirus* genus), indicating that this
227 viral family is more strongly represented within the Hymenoptera lineage than was
228 previously known. Furthermore, also Bunya-like, Toti-like, Sinai-like, Partiti-like and
229 Tymo-like viruses were recovered (Fig. 2, blue tip labels).

230

231 **Fig. 3. SRA searches shed light on the hymenoptera virosphere and reveal the wealth of**
 232 **undescribed viral sequences present in public datasets.**

233 (A) PCoA clustering using Bray-Curtis distances calculated on the viral coverage matrix derived from
 234 the Belgian samples clustered with the SRA screening results. Dots are colored per hymenoptera
 235 family. The cumulative R^2 values reported are calculated by forward model selection using the
 236 *OrdiR2step* function after distance-based redundancy analysis. (B) Heatmap depiction of the log
 237 transformed viral coverage matrix, clustered using euclidian distances. Leftmost columns indicate the
 238 hymenoptera families and the geographical location of the samples. The top two rows indicate the viral
 239 taxonomical classification (with the same color per viral order as Fig. 3C) and the origin of the viral
 240 sequence (light blue indicates an SRA sample as origin, red indicates viral sequences found in the
 241 Belgian samples). (C) Minimized nested block network using the non-redundant sequences retrieved
 242 from the SRA searches (red) and known Refseq viruses (all other colors).


243

244 **Virus-sharing networks show a large number of virus sharing within the order**
245 **of Hymenoptera**

246 Although the discrimination between samples based on their location and eukaryotic
247 taxonomy was significant (p-value 0.002 and 0.001, respectively) (Fig. 3A). The
248 cumulative R^2 value (0.33) indicates that a large majority of the variances within the
249 datasets cannot be explained by aforementioned variables. This observation could
250 imply that a large number of viruses are shared across hymenoptera families, that the
251 variance within eukaryotic families in a specific country is large relative to the variance
252 between these parameters, or a combination of both. To investigate the first possibility,
253 the assumption was made that the host of a specific virus sequence was that of the
254 sample of which the sequence cluster representative was derived. Hymenoptera
255 families of which less than ten samples were obtained were grouped together into an
256 'Others' group and virus sharing was calculated in a pair-wise manner for all the
257 possible combinations within the eukaryotic host families, and within the Apidae
258 lineage. A substantial number of viruses were found to be present not only within the
259 Apidae lineage but also shared over multiple eukaryotic host families (Fig. 4 A, B).
260 Within the family Apidae, most viral sequences were shared between *Apis Mellifera*
261 and *Lepidotrigona* species (1,050 viral sequences shared), between *Apis Mellifera* and
262 *Apis florea* (938 sequences shared), and between *Apis Mellifera* and *Ceratina* species
263 (729 sequences shared) (Fig. 4A). The majority of these shared sequences could be
264 traced back to the order *Picornavirales*, with a total of 224 (21.3%), 497 (53.0%) and
265 130 Picorna-like sequences (17.8%) shared between these groups, respectively (Fig.
266 4C, blue edges). Beyond the family Apidae, substantial virus sharing was detected
267 between the families Apidae and Pteromalidae (1,066 viral sequenced shared), the
268 families Apidae and Cephidae (742 sequences shared), and the families Apidae and

269 Braconidae (737 sequences shared). Concomitant with the situation between different
270 Apidae species, the majority of shared viral sequences could be assigned to the order
271 *Picornavirales*, with 201 (18.8%), 137 (18.4%) and 111 Picorna-like sequences
272 (15.0%) shared between these groups, respectively (Fig. 4D, blue edges). Aside from
273 Picorna-like sequences, evidence could also be found for sharing of viruses predicted
274 to belong to the orders *Mononegavirales* (Fig. 4C,D, green edges) and *Tymovirales*
275 (Fig. 4C,D, orange lines), although the number of shared viral sequences was on
276 general an order of magnitude lower than those of the *Picornavirales* (39 Mononega-
277 like viral sequences shared between Formicidae and Pteromalidae, and 27 Tymo-like
278 viral sequences shared between *Apis Mellifera* and *Lepidotrogonia*). Since a fraction
279 of the recovered viruses are most likely infecting plants or reflect viruses not relevant
280 for bees (Fig. 2), an additional analysis was ran with a number of the retrieved, near-
281 complete, known bee viruses (AMFV, ABPV, BQCV, Kashmir Bee virus (KBV), DWV,
282 LSV, *Apis Rhabdovirus* and *Apis Orthomyxovirus*), as well as the retrieved Nora-like
283 viruses and other Orthomyxo-like viruses. Calculation of the fraction of positive
284 samples revealed that most of the previously thought bee-specific viruses occur in
285 multiple Apidae species but are also found within other Hymenopteran families
286 (supplemental fig. S7). An attempt was made to quantify the host specificity of these
287 viruses by calculating an Apidae specificity index (ASI), and an *Apis Mellifera*
288 specificity index (AMSI) (Table 1). These indices revealed that some of the established
289 bee viruses (ABPV, AMFV, BQCV and Quaranga-like orthomyxoviruses) show a low
290 specificity for *Apis Mellifera* within the Apidae family (characterized by a low AMSI),
291 and (with the exception of BQCV) were not restricted within the family Apidae
292 (characterized by a low ASI). Other “established honey bee species” were shown to
293 be highly specific for *Apis Mellifera*, and revealed a high AMSI (KBV, DWV and LSV).

294 The recently discovered *Apis* rhabdoviruses and Nora-like viruses are found
295 exclusively in *Apis Mellifera* within the family Apidae. The *Apis* rhabdoviruses are
296 restricted within the family Apidae, but the retrieved Nora-like viruses are also highly
297 prevalent in other Hymenoptera families (ASI 0.01, Table 1). Finally, the retrieved
298 Quaranja orthomyxo-like viruses were highly prevalent in other Hymenoptera families
299 and only to a limited extent in *Apis Mellifera* and the family Apidae (ASI of 0.04 and
300 AMSI of 0.05, respectively). On the other hand, *Apis Orthomyxovirus 1* was slightly
301 more honey bee specific, with an ASI and AMSI of 0.31 and 0.21, respectively.

302

303 **Fig. 4. Cumulative viral sequence sharing network reflect the aspecificity of hymenoptera**
304 **associated viruses.**

305 Networks reflecting the cumulative sharing of viral contigs between eukaryotic lineages. The networks
306 inside the dashed circle (A,C) reflect viral sequence sharing within the family Apidae. The networks on
307 the right (B,D) reflect sharing over different families within the order hymenoptera. Panels A and C and
308 panels B and D both reflect the same networks, but both panels C and D reflect cumulative shared viral
309 sequences broken up per assigned viral order (using the same color code as fig. 3C). Nodes in panels
310 B and D are colored by number of representative virus contigs per eukaryotic lineage (ranging from 18
311 contigs (Cephidae) to 5,662 contigs (Apidae)). Edge thickness reflects the total shared contig count,
312 ranging from 1 to 1,050 contigs (panel A), from 1 to 1,066 contigs (panel B), from 1 to 497 contigs (panel
313 C), and from 1 to 201 contigs (panel D). Edge arrows indicate directionality, of which the root is the
314 predicted host (the taxonomical group of which the virus sequence representative was derived from).
315

316

317 **Table 1. Host (a)specificity of a selection of known bee viruses.**

318 The values reflecting how specific a known bee virus is for *Apis mellifera* (AMSI) and for Apidae (ASI).
319 A value of 1 reflects complete lineage restriction. The number of viral contigs included per viral species
320 is indicated with Contig number.
321

Virus	Virus Abbreviation	Contig number	ASI	AMSI
Acute Bee Paralysis virus	ABPV	7	0.13	0.04
Apis Mellifera Filamentous virus	AMFV	8	0.06	0.05
Kashmir Bee virus	KBV	2	0.01	1.00
Deformed Wing virus	DWV	11	0.84	0.71
Black Queen Cell virus	BQCV	7	0.88	0.09
Lake Sinai viruses	Sinaiviruses	20	0.07	1.00
Apis Rhabdovirus (1 and 2)	Rhabdo	4	1.00	1.00
Quaranja-like Orthomyxoviruses	Quaranja	15	0.05	0.04
Apis Orthomyxovirus 1	Thogoto	3	0.31	0.21
Nora-like viruses	Nora	3	0.01	1.00

322

323 **Discussion**

324 This study, combined with other recent sequencing efforts, provides new insights into
325 known and previously undescribed viruses associated with *Apis Mellifera*. Variance
326 analysis revealed a significant, but biologically limited difference in the viral
327 composition between weak and healthy colonies, and no significant difference in the
328 total number of viral sequences derived from healthy and weak colonies could be
329 detected. Genomes from a large number of viral families could be retrieved, of which
330 a substantial part most likely includes plant viruses. While it cannot be excluded that
331 some of the recovered divergent plant viruses constitute viruses actually infecting the
332 bee, it is likely that the majority of these viruses reflect environmental contaminants.
333 The host of the most closely related viral sequence can give an indication if these
334 sequences are environmental contamination. The fact that numerous viral sequences

335 belonging to families solely infecting plants were recovered in a large scale viral
336 discovery study in insects indicates that this assumption does not necessarily hold
337 true (47). The recent detection of viruses belonging to plant-specific viral families in
338 mosquitoes reinforces this observation (48). Some of the retrieved viral sequences
339 were very similar to recently discovered viruses (*Apis Rhabdovirus 1*, *Apis*
340 *Orthomyxovirus 1*), increasing the likelihood that these are true honey bee viruses,
341 and further confirming their presence in Belgium. Interestingly, a divergent
342 recombinant Lake Sinai virus was found, comprised of a Hepe-like polymerase region,
343 and a divergent Lake Sinai virus capsid. A novel divergent rhabdovirus (*Apis*
344 *Rhabdovirus 3*) was also described. Additionally, full genomes for an orthomyxovirus
345 (*Apis Orthomyxovirus 1*), very similar to a virus from a previous study from Levin *et al.*
346 (35), was found in multiple individual libraries, and evidence for the presence of this
347 virus was found in other Hymenoptera families (Table 1). Multiple sequence
348 alignment-free network analysis implied that, despite the species accumulation curves
349 reaching a plateau, many of the putative viral sequences retrieved were too
350 fragmented to be included in a phylogenetic analysis (the number of sequences that
351 made the threshold to be included in phylogenies was 188, while the network reflected
352 5,224 retrieved sequences). Furthermore, this analysis implies that the actual viral
353 diversity exceeds what can be captured by regular phylogenetic analysis. Larger
354 sample sizes and especially deeper sequencing efforts could help to fully elucidate
355 the viral diversity associated with honey bees. Since the retrieved non-redundant viral
356 sequence set encapsulates nearly all of the known and even more recently described
357 viruses, this set was used to probe pre-existing Hymenopteran sequencing datasets
358 for any bee-related viral signal. A total of 1,331 virus-rich RNA sequencing datasets
359 were *de novo* assembled and screened for viruses. This approach revealed that these

360 datasets harbor a substantial number of viruses that have been previously described
361 (roughly 40%), but also that the amount of undescribed, divergent viruses is rampant.
362 In concordance with the previous results, the viral sequences retrieved from the SRA
363 search also suffer from fragmentation and incomplete sequencing. This observation is
364 most likely the result of the fact that most RNA sequencing datasets included in the
365 SRA search are transcriptome studies rather than metagenomic analyses, and that for
366 most of them no wet-lab procedures for microbial or viral enrichment were performed.
367 Despite this setback, multiple-sequence alignment free network analysis implied a
368 massive hidden viral diversity within the Hymenoptera lineage (roughly 60% of the
369 retrieved contigs were less than 90% similar to any other known virus in Genbank).
370 Constrained ordination analysis showed that both the geographical origin and the
371 taxonomical lineage of the host organism sequenced could explain a biologically
372 relevant proportion (cumulative $R^2 = 0.33$) of the variance within the viral coverage
373 matrix. Since the included samples constitute a wide range of taxonomical host
374 lineages, this proportion was below expectations and implies a substantial amount of
375 viral sequences to be shared over eukaryotic Apidae species and Hymenoptera
376 families. This hypothesis was confirmed by cumulative counting of the viral sequences
377 over the different lineages included, based on a rather rigorous coverage threshold for
378 presence/absence. This analysis revealed a non-trivial number of viral sequences,
379 spanning all of the viral orders previously associated with honey bees, being shared
380 across different lineages within the Apidae, but also over other families belonging to
381 the Hymenoptera. Of all the sequences present in the total non-redundant viral
382 dataset, 53% were shared with another taxonomical lineage (5139 shared sequences,
383 9655 in total). Since the included SRA dataset suffers strongly from sampling bias,
384 this percentage is most likely an underestimation. Given this strikingly high number of

385 virus sharing, the dataset was revisited with a subset of previously described honey
386 bee specific viruses. Surprisingly, none of the tested viruses were lineage restricted to
387 *Apis Mellifera*, with the exception of *Apis* rhabdovirus. Other viruses, such as Nora-
388 like viruses, KBV and LSV were restricted to *Apis Mellifera* within the Apidae lineage
389 (AMSI = 1.00) but were underrepresented relative to non-Apidae Hymenopteran
390 families. The only viruses that were bee specific, *i.e.* having both a high AMSI and
391 ASI, were DWV and *Apis* rhabdoviruses. These results imply that despite the recent
392 sequencing efforts, many unknowns remain on viral diversity within the Hymenoptera
393 lineage. Finally, the concept of “honey bee specific viruses” should be revisited, since
394 most of the previously described viruses are not bee specific, neither are they
395 restricted to the Apidae lineage.

396

397 **Methods**

398 **Data and code availability**

399 All relevant (intermediate) output files, metadata tables, fasta sequences, R code,
400 Python code and jupyter notebooks are available on Github through the URL
401 https://github.com/Matthijnsenslab/Bee_euvir. Intermediary output files too large to
402 be hosted on Github are available through Zenodo (10.5281/zenodo.3979324). The
403 raw sequencing data is available through the SRA database under project accession
404 PRJNA579886. Accession numbers of the viral sequences included in the phylogenies
405 will be made available in supplemental table S1. Accession information for the public
406 datasets screened in this study are available in supplemental table S2.

407

408 **Sample preparation, pooling, VLP-sequencing and read processing**

409 Samples were pooled and prepared for Illumina sequencing as described before, and
410 the prokaryotic viruses in these pools were described previously (42). Briefly, samples
411 were taken from the Flanders EpiloBEE study (40), from both sampling years (2012
412 and 2013), and 102 pools were constructed based on health status (defined
413 retrospectively within the EpiloBEE study, with “strong” hives surviving winter and
414 “weak” hives not surviving winter), subspecies and geographical location. Pooling
415 information and SRA accession numbers were described before (42). After
416 sequencing, reads were quality controlled using Trimmomatic (49), version 0.38.
417 Subsequently, *de novo* assemblies were made for the individual libraries using
418 SPAdes (50), version 3.12.0, with kmer sizes 21, 33, 55 and 77 in the metagenomic
419 mode. To remove redundancy, the resulting contigs larger than 500 bp were collapsed
420 if they showed 97% nucleotide identity over at least 80% of the contig lengths, using
421 ClusterGenomes (<https://bitbucket.org/MAVERICLab/docker-clustergenomes>).
422 Putative eukaryotic viruses were identified using the BlastX method implemented in
423 DIAMOND (43) version 0.9.22, using the ‘c 1’ and ‘sensitive’ flags, against the NR
424 database (NCBI), downloaded on 30 september 2018. Taxonomical paths were
425 parsed with the KtClassifyBLAST algorithm implemented in Kronatools (44). All
426 contigs that fell under taxID ‘10239’ (Viruses) were included in the analysis. Contigs
427 that could be annotated as bacteriophages (as described before (42)) were excluded.
428 Coverage values per sample were obtained by mapping the reads per sample back to
429 the viral dataset, using BWA-mem version 0.7.16a (51), filtering the obtained
430 alignments for an identity of 97% over a coverage of 70% using BAMM
431 (<https://github.com/Ecogenomics/BamM>). Coverage values were calculated by
432 dividing the readcounts per contig by the contig length.

433

434 **SRA searches**

435 The SRA database was searched by using the query 'Hymenoptera + RNA', and the
436 resulting 5,246 fastQ files were retrieved by using the prefetch and fastq-dump tools
437 implemented in the SRA toolkit (NCBI). The previously obtained viral dataset was used
438 as an index and retrieved fastQ files were mapped back using BWA-mem (51), version
439 0.7.16a. Only samples that had a cumulative read count of at least 100,000 reads
440 (1,331 samples) were included downstream. Samples were then *de novo* assembled
441 using SKESA (46) and annotated and clustered as described above. Information on
442 the included samples is provided in supplemental table 2.

443 **Phylogenetic analysis**

444 Viral sequences were included based on an *ad hoc* determined length cut-off
445 depending on the expected genome length of each virus (supplemental table S3).
446 Reference sequences were included by using the retrieved viral sequences as query
447 and performing a TBlastX search (52) with an e-value cutoff of 1E-10 against the nt
448 database (NCBI), downloaded on 1 october 2019. For the Partiti-like, Tymo-like and
449 Toti-like trees only Refseq sequences were included. Significant hits were also filtered
450 on the abovementioned alignment length cut-off specific for a viral group
451 (supplemental table 3). Next, proteins were predicted from both the queries and the
452 significant hits, using prodigal (53), version 2.6.3. Predicted proteins were submitted
453 to an all-to-all BlastP search, with an e-value cut-off of 1E-10. The output was then
454 transformed into a network and the largest connected component was extracted using
455 the networkx library (54) implemented in Python. Proteins within the largest connected
456 component were subsequently aligned with MAFFT (55), version 7.313, using the L-
457 INS-I setting and trimmed using trimAL (56), version 1.4.1, using the gappyout setting.

458 Model selection was performed using Prottest (57), version 3.4.2. Bayesian
459 phylogenetic analysis was performed using BEAST (45), version 1.10.4, using the
460 predicted protein models (supplemental table 3) under a strict clock and constant
461 population size prior. The respective analysis was ran until all the effective samples
462 sizes were above 200, and maximum clade credibility trees were calculated using
463 TreeAnnotator, implemented in the BEAST package. Final trees were plotted in R
464 using the ggtree package (58).

465 **Network and contig sharing analysis**

466 Networks were created from the retrieved viral sequence data by using tBlastX
467 against the Refseq nt database, downloaded on 1 october 2019. The Refseq database
468 was filtered by removing entries containing the keyword 'phage' (for bacteriophages)
469 or 'herpes' in the header, and by removing sequences longer than 15000 nt and
470 shorter than 500 nt. These cut-offs were implemented to reduce 'noisy' hits, where for
471 example herpes polymerases have significant hits to other viral polymerases. The
472 remaining sequences were clustered on 80% nucleotide identity over 80% of the
473 length, by using CDhit, version 4.8.1 (59). The tBlastX search was performed with an
474 E-value cutoff of 1E-10 and an alignment length cut-off of 300 positions, and was ran
475 in two iterations to include reference sequences that only made the cut-off when
476 aligning to other reference sequences. The resulting blast output was then converted
477 into a minimized nested block network, using the graph-tool package (60),
478 implemented in Python. Virus sharing over the eukaryotic families belonging to the
479 Hymenoptera and within the Apidae was determined by using the coverage matrix. A
480 viral sequence was assumed to originate from the taxonomical lineage of the sample
481 of which the cluster representative (the longest contig inside a cluster) was derived, in
482 order to determine directionality. A viral representative sequence was assumed to be

483 present in a sample when the coverage was above 0.1. For the cumulative virus
484 sharing, an additional threshold was imposed were at least 10% of the included
485 samples of a specific taxonomical host lineage had to be positive before the viral
486 sequence was assumed to be present within that lineage. Resulting networks were
487 visualized in Cytoscape (61), version 3.7.1. Percentages of positive samples were
488 calculated using the same relative count cutoff as mentioned before and the ASI and
489 AMSI were calculated by taking the ratio of the fraction of positive samples for a
490 specific bee virus within Apidae or *Apis Mellifera* samples, divided by the fraction of
491 positive samples in other eukaryotic families or other *Apidae* species, respectively.

492 QUANTIFICATION AND STATISTICAL ANALYSIS

493 PCoA analysis was performed in R (62) version 3.5.3, with the pcoa function
494 implemented in the 'ape' library (63). Variance analysis and distance-based
495 redundancy analysis was performed on the coverage matrix using Bray-Curtis
496 distances, using the adonis test and capscale function implemented in vegan (64).
497 Cumulative explanation power of the location (country of origin) and eukaryotic
498 taxonomy (on family level) covariates was calculated using the ordiR2 function
499 (vegan). The difference in absolute numbers of contigs was calculated using the
500 Mann-Whitney U test implemented in scipy (65), in Python.

501 502 References

- 503 1. vanEngelsdorp D, Meixner MD. A historical review of managed honey bee populations
504 in Europe and the United States and the factors that may affect them. *J Invertebr
505 Pathol.* 2010 Jan;103:S80–95.
- 506 2. Gallai N, Salles J-M, Settele J, Vaissière BE. Economic valuation of the vulnerability of
507 world agriculture confronted with pollinator decline. *Ecol Econ.* 2009 Jan;68(3):810–21.
- 508 3. Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA,
509 et al. Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance.
510 *Science.* 2013 Mar 29;339(6127):1608–11.

511 4. Aizen MA, Garibaldi LA, Cunningham SA, Klein AM. How much does agriculture depend
512 on pollinators? Lessons from long-term trends in crop production. *Ann Bot.* 2009
513 Jun;103(9):1579–88.

514 5. Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, et al. More than 75
515 percent decline over 27 years in total flying insect biomass in protected areas. Lamb
516 EG, editor. *PLOS ONE.* 2017 Oct 18;12(10):e0185809.

517 6. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. Global
518 pollinator declines: trends, impacts and drivers. *Trends Ecol Evol.* 2010 Jun;25(6):345–
519 53.

520 7. Foley JA. Global Consequences of Land Use. *Science.* 2005 Jul 22;309(5734):570–4.

521 8. Lusebrink I, Girling RD, Farthing E, Newman TA, Jackson CW, Poppy GM. The Effects of
522 Diesel Exhaust Pollution on Floral Volatiles and the Consequences for Honey Bee
523 Olfaction. *J Chem Ecol.* 2015 Oct;41(10):904–12.

524 9. Henry M, Beguin M, Requier F, Rollin O, Odoux J-F, Aupinel P, et al. A Common
525 Pesticide Decreases Foraging Success and Survival in Honey Bees. *Science.* 2012 Apr
526 20;336(6079):348–50.

527 10. Decourtye A, Devillers J, Genecque E, Le Menach K, Budzinski H, Cluzeau S, et al.
528 Comparative sublethal toxicity of nine pesticides on olfactory learning performances of
529 the honeybee *Apis mellifera*. *Arch Environ Contam Toxicol.* 2005 Feb;48(2):242–50.

530 11. Nicholls CI, Altieri MA. Plant biodiversity enhances bees and other insect pollinators in
531 agroecosystems. A review. *Agron Sustain Dev.* 2013 Apr;33(2):257–74.

532 12. Fünfhaus A, Ebeling J, Genersch E. Bacterial pathogens of bees. *Curr Opin Insect Sci.*
533 2018 Apr;26:89–96.

534 13. Forfert N, Natsopoulou ME, Frey E, Rosenkranz P, Paxton RJ, Moritz RFA. Parasites and
535 Pathogens of the Honeybee (*Apis mellifera*) and Their Influence on Inter-Colonial
536 Transmission. Rueppell O, editor. *PLOS ONE.* 2015 Oct 9;10(10):e0140337.

537 14. Grozinger CM, Flenniken ML. Bee Viruses: Ecology, Pathogenicity, and Impacts. *Annu
538 Rev Entomol.* 2019 Jan 7;64(1):205–26.

539 15. McMenamin AJ, Flenniken ML. Recently identified bee viruses and their impact on bee
540 pollinators. *Curr Opin Insect Sci.* 2018 Apr;26:120–9.

541 16. Engel P, Kwong WK, McFrederick Q, Anderson KE, Baribeau SM, Chandler JA, et al. The
542 Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-
543 Microbe Interactions. *mBio [Internet].* 2016 May 4 [cited 2019 Mar 15];7(2). Available
544 from: <http://mbio.asm.org/lookup/doi/10.1128/mBio.02164-15>

545 17. Kešnerová L, Emery O, Troilo M, Liberti J, Erkosar B, Engel P. Gut microbiota structure
546 differs between honeybees in winter and summer. *ISME J.* 2020 Mar;14(3):801–14.

547 18. Raymann K, Moran NA. The role of the gut microbiome in health and disease of adult
548 honey bee workers. *Curr Opin Insect Sci.* 2018 Apr;26:97–104.

549 19. Leonard SP, Powell JE, Perutka J, Geng P, Heckmann LC, Horak RD, et al. Engineered
550 symbionts activate honey bee immunity and limit pathogens. *Science.* 2020 Jan
551 31;367(6477):573–6.

552 20. Grassl J, Holt S, Cremen N, Peso M, Hahne D, Baer B. Synergistic effects of pathogen
553 and pesticide exposure on honey bee (*Apis mellifera*) survival and immunity. *J
554 Invertebr Pathol.* 2018 Nov;159:78–86.

555 21. Villalobos EM. The mite that jumped, the bee that traveled, the disease that followed.
556 *Science.* 2016 Feb 5;351(6273):554–6.

557 22. Annoscia D, Brown SP, Di Prisco G, De Paoli E, Del Fabbro S, Frizzera D, et al.
558 Haemolymph removal by *Varroa* mite destabilizes the dynamical interaction between
559 immune effectors and virus in bees, as predicted by Volterra's model. *Proc R Soc B Biol
560 Sci.* 2019 Apr 24;286(1901):20190331.

561 23. Benaets K, Van Geystelen A, Cardoen D, De Smet L, de Graaf DC, Schoofs L, et al. Covert
562 deformed wing virus infections have long-term deleterious effects on honeybee
563 foraging and survival. *Proc R Soc B Biol Sci.* 2017 Feb 8;284(1848):20162149.

564 24. Natsopoulou ME, McMahon DP, Doublet V, Frey E, Rosenkranz P, Paxton RJ. The
565 virulent, emerging genotype B of Deformed wing virus is closely linked to overwinter
566 honeybee worker loss. *Sci Rep.* 2017 Dec;7(1):5242.

567 25. Tehel A, Vu Q, Bigot D, Gogol-Döring A, Koch P, Jenkins C, et al. The Two Prevalent
568 Genotypes of an Emerging Infectious Disease, Deformed Wing Virus, Cause Equally Low
569 Pupal Mortality and Equally High Wing Deformities in Host Honey Bees. *Viruses.* 2019
570 Jan 29;11(2):114.

571 26. McMenamin AJ, Genersch E. Honey bee colony losses and associated viruses. *Curr Opin
572 Insect Sci.* 2015 Apr;8:121–9.

573 27. Alger SA, Burnham PA, Boncristiani HF, Brody AK. RNA virus spillover from managed
574 honeybees (*Apis mellifera*) to wild bumblebees (*Bombus* spp.). Rueppell O, editor.
575 *PLOS ONE.* 2019 Jun 26;14(6):e0217822.

576 28. Fürst MA, McMahon DP, Osborne JL, Paxton RJ, Brown MJF. Disease associations
577 between honeybees and bumblebees as a threat to wild pollinators. *Nature.* 2014
578 Feb;506(7488):364–6.

579 29. Genersch E, Yue C, Fries I, de Miranda JR. Detection of Deformed wing virus, a honey
580 bee viral pathogen, in bumble bees (*Bombus terrestris* and *Bombus pascuorum*) with
581 wing deformities. *J Invertebr Pathol.* 2006 Jan;91(1):61–3.

582 30. Dolezal AG, Hendrix SD, Scavo NA, Carrillo-Tripp J, Harris MA, Wheelock MJ, et al.
583 Honey Bee Viruses in Wild Bees: Viral Prevalence, Loads, and Experimental Inoculation.
584 Rueppell O, editor. PLOS ONE. 2016 Nov 10;11(11):e0166190.

585 31. Sébastien A, Lester PJ, Hall RJ, Wang J, Moore NE, Gruber MAM. Invasive ants carry
586 novel viruses in their new range and form reservoirs for a honeybee pathogen. Biol
587 Lett. 2015 Sep 30;11(9):20150610.

588 32. Mordecai GJ, Brettell LE, Pachori P, Villalobos EM, Martin SJ, Jones IM, et al. Moku
589 virus; a new Iflavirus found in wasps, honey bees and Varroa. Sci Rep. 2016
590 Dec;6(1):34983.

591 33. Galbraith DA, Fuller ZL, Ray AM, Brockmann A, Frazier M, Gikungu MW, et al.
592 Investigating the viral ecology of global bee communities with high-throughput
593 metagenomics. Sci Rep [Internet]. 2018 Dec [cited 2019 Mar 15];8(1). Available from:
594 <http://www.nature.com/articles/s41598-018-27164-z>

595 34. Remnant EJ, Shi M, Buchmann G, Blacquière T, Holmes EC, Beekman M, et al. A Diverse
596 Range of Novel RNA Viruses in Geographically Distinct Honey Bee Populations. Ross SR,
597 editor. J Virol [Internet]. 2017 Aug 15 [cited 2019 Mar 15];91(16). Available from:
598 <http://jvi.asm.org/lookup/doi/10.1128/JVI.00158-17>

599 35. Levin S, Sela N, Erez T, Nestel D, Pettis J, Neumann P, et al. New Viruses from the
600 Ectoparasite Mite Varroa destructor Infesting *Apis mellifera* and *Apis cerana*. Viruses.
601 2019 Jan 24;11(2):94.

602 36. Daughenbaugh K, Martin M, Brutscher L, Cavigli I, Garcia E, Lavin M, et al. Honey Bee
603 Infecting Lake Sinai Viruses. Viruses. 2015 Jun 23;7(6):3285–309.

604 37. Schoonvaere K, Smaghe G, Francis F, de Graaf DC. Study of the Metatranscriptome of
605 Eight Social and Solitary Wild Bee Species Reveals Novel Viruses and Bee Parasites.
606 Front Microbiol. 2018 Feb 14;9:177.

607 38. Gauthier L, Cornman S, Hartmann U, Cousserans F, Evans J, de Miranda J, et al. The
608 *Apis mellifera* Filamentous Virus Genome. Viruses. 2015 Jul 9;7(7):3798–815.

609 39. Kraberger S, Cook CN, Schmidlin K, Fontenele RS, Bautista J, Smith B, et al. Diverse
610 single-stranded DNA viruses associated with honey bees (*Apis mellifera*). Infect Genet
611 Evol. 2019 Jul;71:179–88.

612 40. Jacques A, Laurent M, EPILOBEE Consortium, Ribière-Chabert M, Saussac M, Bougeard
613 S, et al. A pan-European epidemiological study reveals honey bee colony survival
614 depends on beekeeper education and disease control. Chaline N, editor. PLOS ONE.
615 2017 Mar 9;12(3):e0172591.

616 41. Conceição-Neto N, Zeller M, Lefrère H, De Bruyn P, Beller L, Deboutte W, et al. Modular
617 approach to customise sample preparation procedures for viral metagenomics: a
618 reproducible protocol for virome analysis. Sci Rep [Internet]. 2015 Dec [cited 2018 Oct
619 4];5(1). Available from: <http://www.nature.com/articles/srep16532>

620 42. Deboutte W, Beller L, Yinda CK, Maes P, de Graaf DC, Matthijnssens J. Honey-bee–
621 associated prokaryotic viral communities reveal wide viral diversity and a profound
622 metabolic coding potential. *Proc Natl Acad Sci.* 2020 Apr 27;201921859.

623 43. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. *Nat*
624 *Methods.* 2015 Jan;12(1):59–60.

625 44. Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a Web
626 browser. *BMC Bioinformatics.* 2011 Dec;12(1):385.

627 45. Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian
628 phylogenetic and phylodynamic data integration using BEAST 1.10. *Virus Evol*
629 [Internet]. 2018 Jan 1 [cited 2020 Feb 21];4(1). Available from:
630 <https://academic.oup.com/ve/article/doi/10.1093/ve/vey016/5035211>

631 46. Souvorov A, Agarwala R, Lipman DJ. SKESA: strategic k-mer extension for scrupulous
632 assemblies. *Genome Biol.* 2018 Dec;19(1):153.

633 47. Shi M, Lin X-D, Tian J-H, Chen L-J, Chen X, Li C-X, et al. Redefining the invertebrate RNA
634 virosphere. *Nature.* 2016 Dec;540(7634):539–43.

635 48. Shi C, Beller L, Deboutte W, Yinda KC, Delang L, Vega-Rúa A, et al. Stable distinct core
636 eukaryotic viromes in different mosquito species from Guadeloupe, using single
637 mosquito viral metagenomics. *Microbiome.* 2019 Dec;7(1):121.

638 49. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
639 data. *Bioinformatics.* 2014 Aug 1;30(15):2114–20.

640 50. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A
641 New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. *J*
642 *Comput Biol.* 2012 May;19(5):455–77.

643 51. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
644 transform. *Bioinformatics.* 2009 Jul 15;25(14):1754–60.

645 52. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+:
646 architecture and applications. *BMC Bioinformatics.* 2009;10(1):421.

647 53. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic
648 gene recognition and translation initiation site identification. *BMC Bioinformatics.* 2010
649 Dec;11(1):119.

650 54. Hagberg AA, Schult DA, Swart PJ. Exploring Network Structure, Dynamics, and Function
651 using NetworkX. In: Varoquaux G, Vaught T, Millman J, editors. *Proceedings of the 7th*
652 *Python in Science Conference.* Pasadena, CA USA; 2008. p. 11–5.

653 55. Katoh K. MAFFT: a novel method for rapid multiple sequence alignment based on fast
654 Fourier transform. *Nucleic Acids Res.* 2002 Jul 15;30(14):3059–66.

655 56. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated
656 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics*. 2009 Aug
657 1;25(15):1972–3.

658 57. Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models
659 of protein evolution. *Bioinformatics*. 2011 Apr 15;27(8):1164–5.

660 58. Yu G, Lam TT-Y, Zhu H, Guan Y. Two Methods for Mapping and Visualizing Associated
661 Data on Phylogeny Using *Ggtree*. Battistuzzi FU, editor. *Mol Biol Evol*. 2018 Dec
662 1;35(12):3041–3.

663 59. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation
664 sequencing data. *Bioinformatics*. 2012 Dec;28(23):3150–2.

665 60. Peixoto TP. The graph-tool python library [Internet]. Figshare; 2017 [cited 2019 Oct 8].
666 Available from: https://figshare.com/articles/graph_tool/1164194

667 61. Shannon P. Cytoscape: A Software Environment for Integrated Models of Biomolecular
668 Interaction Networks. *Genome Res*. 2003 Nov 1;13(11):2498–504.

669 62. R Core Team. R: A Language and Environment for Statistical Computing [Internet].
670 Vienna, Austria: R Foundation for Statistical Computing; 2013. Available from:
671 <http://www.R-project.org/>

672 63. Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and
673 evolutionary analyses in R. Schwartz R, editor. *Bioinformatics*. 2019 Feb 1;35(3):526–8.

674 64. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan:
675 Community Ecology Package [Internet]. 2019. Available from: <https://CRAN.R-project.org/package=vegan>

677 65. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy
678 1.0: Fundamental Algorithms for Scientific Computing in Python. *Nat Methods*. 2020;
679