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The SNP heritability ����
�  has become a central concept in the study of complex traits. 

Estimation of ����
�  based on genomic variance components in a linear mixed model 

using restricted maximum likelihood has been widely adopted as the method of 

choice were individual level data are available. Empirical results have suggested that 

this approach is not robust if the population of interest departs from the assumed 

statistical model. Prolonged debate of the appropriate model choice has yielded a 

number of approaches to account for frequency- and linkage disequilibrium-

dependent genetic architectures. Here we analytically resolve the question of how 

these estimates relate to ����
�  of the population from which samples are drawn. In 

particular, we show that the correct model for the purpose of inference about ����
�  

does not require knowledge of the true genetic architecture of a trait. More generally, 

our results provide a complete perspective of these class of estimators of ����
� , 

highlighting practical shortcomings of current practise. We illustrate our theoretical 

results using simulations and data from UK Biobank.    

The SNP heritability is defined as the fraction of the phenotypic variance explained by 

additive effects of a given set of genetic variants1,2. It forms a bound on the ability to predict 

a phenotype using linear models of the chosen variants and has been important in the 

debate about the so-called missing heritability3–5. It has also been used to draw conclusions 

about the genetic architecture of phenotypes by contrasting the heritabilities of different 

categories of genetic variants6. Variance components, based on genomic relationship 

matrices, fitted using restricted maximum likelihood estimation, the so called G-REML 

method3, have been proposed, implemented in various tools7–10, and widely adopted as an 

approach to estimate ����
� . However, typically the quantity of interest is ����

�  for the wider 

population from which samples were obtained. This population is not sampled from the 

statistical model underlying variance component estimation. It is therefore unclear to what 

extent the parameters estimated using the assumed model can be related to the quantity of 

interest, namely parameters of the wider population from which samples were obtained. This 
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is primarily the case because the estimates are not directly available in analytical form, but 

are obtained using a numerical optimization procedure. Moreover it is known that G-REML 

cannot estimate ����
�  in general, as the estimates are, unlike ����

� , not invariant under 

general linear transformations of the genotypes1.     

Based on empirical observations, it has been suggested that G-REML estimates are biased 

under departure of the population from the model4,8,11,12. This has led to a number of 

variations on the G-REML approach based on various assumptions about the genetic 

architecture of the phenotype8,11–13. These different models yield different estimates14,15. 

However, the correct choice of model remains unclear, as does the question what aspects of 

the population need to be incorporated into the model. We show that these questions can be 

resolved analytically, by directly relating the estimates of model parameters to parameters of 

the population. Our results highlight the central role of the linkage disequilibrium (LD) 

structure of the population, in particular between variants with non-zero additive effect. We 

show that incorporating this structure, which can be estimated from data, into the genomic 

relationship matrix (GRM)  leads to an statistically consistent estimator of ����
� . Conversely, 

the choice of alternative GRMs leads to a bias. This bias depends on the departure of the 

GRM’s assumptions from the LD structure of the population. It furthermore changes 

depending on the relative number of individuals and genetic variants in the analysis. The G-

REML model with the standard GRM corresponds to the assumption of perfect linkage 

equilibrium amongst all modeled genetic variants. In practice populations are expected to 

depart from this assumption. On the one hand, natural processes like assortative mating or 

selection act directly on the LD structure in the population16. On the other hand, sampling 

strategies like, for example, case-control sampling will induce LD between causal variants in 

the sample17. Finally, we show that these effects are relevant even if causal variants are in 

linkage equilibrium. Typically, the set of modeled variants will not include all causal variants. 

We show, that this is sufficient to necessitate accounting for the LD structure of the modeled 

variants in order to avoid complex biases.   

Results 

Relating G-REML estimates to population parameters  

The G-REML estimate of ����
� , is given by ��� � ��	

� ���	
� �  ��


�
�  where ��	
�, ��


� are the restricted 

maximum likelihood estimates of genetic and environmental variance components 

(Methods). Here we will concentrate on the more interesting estimate of ��	
�. Furthermore, we 

will restrict our discussion to the form of the results in a setting which allows easier 

interpretation. Amongst others, we will assume that no fixed effects beyond the mean are 

fitted in the model and sufficiently large sample sizes. These and other implicit assumptions 
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made here can however be relaxed, yielding a more generally applicable form of the main 

result (Methods). The genetic variance component is modeled using a GRM computed from 

the genotypes at the modeled genetic variants. Commonly employed GRMs are of the form 

� � 
�
�, where 
 is the � � � matrix of standardized, i.e., centered and unit variance 

scaled, genotypes for � genetic variants of � individuals and � is a matrix which differs 

between GRMs (Methods). We show that ��	
� satisfies 

��	
� � β���� �



R��� � �Σ
��β�      (1) 

where � � ��

� ��	

��  and β� and R� are unbiased estimates of two statistics of the population from 

which samples were drawn (Methods). Specifically, they are estimates of β the multiple 

regression coefficients of standardized genotypes, i.e., the additive genetic effects, and R 

the matrix of correlations between genotypes at different genetic variants, i.e., a linkage 

disequilibrium matrix. They are unbiased estimates under the common assumption of i.i.d. 

sampling from the population, and do not rely on any further assumptions about, for 

example, the genetic architecture of a phenotype. It is worth re-emphasising, that they are 

estimates of these parameters of the sampling population even if this population does not 

follow the assumed variance component model. This means ��	
� can be directly contrasted 

with the true additive genetic variance captured by the chosen set of genetic variants, which 

can be expressed in terms of β and R as 

�	
� � β�Rβ �  ∑ ��

�
� � ∑ ��,������,�;���     (2) 

(Methods). Here, the explicit decomposition highlights the two terms contributing to �	
� which 

are the genic variance, which is always positive, and the contribution due to LD between 

genetic variants, which can be either positive or negative. 

While the presence of � in (1) means that the provided expression does not yield an explicit 

solution for ��	
�, it is interpretable and provides information about the asymptotic value of ��	

� 

as well as it’s qualitative behavior in the finite sample setting.   

Expression (1) can in general be used to qualitatively analyse the behavior of ��	
� for different 

choices GRM and their relation to population parameters. To illustrate this point, we will in 

the following answer two questions. The first is, what is the expected behavior of the 

estimate when the standard GRM is used? The second is, what is the correct form of GRM 

to estimate �	
�?  

To answer both questions we first observe by comparing (1) and (2), that �� �



R��� � �Σ
��  

represents the effective LD structure implicitly assumed by G-REML. It depends on the 

choice Σ, and as such the GRM, and furthermore changes with the ratio of � and �. This 

effective LD structure does incorporate an estimate of R, the population’s true LD structure. 

However, as the sample size increases, the contribution of this term diminishes due to the 
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presence of the ��� factor. In particular, asymptotically as � increases relative to �, the 

implicit LD structure only depends, through Σ, on the choice of GRM.  

Estimates under the standard GRM 

We can now consider the consequences of the widely used standard choice of GRM, 

proposed by van Raden18, and used as a default in popular implementations of G-REML, 

like GCTA7, BOLT-REML9 or DISSECT10. This GRM is given by � � �

�
�. This choice will 

asymptotically estimate ∑ ��
�

� , the genic variance (Methods). However, for smaller sample 

sizes we expect the estimate to be closer to �	
� due to the stronger contribution of R�. This 

means, that while � �⁄  is large, if linkage disequilibrium contributes positively or negatively 

to �	
�, ��	

� will respectively over- or under-estimate the genic variance of the chosen set of 

genetic variants. These conclusions are borne out by simulations (Fig. 1a, Supplementary 

Fig. 1, and Methods). These effects transfer to estimates of the heritability (Supplementary 

Fig. 2). 

The described effects manifest in available real data and, as we illustrate, can lead to 

misleading inference. Using height data from the UK Biobank19 we evaluate the behavior of 

the estimate of ����
�  of common genetic variants for increasing sample sizes (Methods). This 

is consistent with a positive contribution from LD to the captured additive genetic variance 

(Fig. 2a). As such, we would expect estimates of heritability at a given sample size to 

increase when the number of genetic variants in the model increases, i.e., the ratio � �⁄  

decreases. However, addition of variants to the model could also increase SNP heritability 

estimates by capturing additional genetic variance through better tagging of causal variants. 

In order to disentangle these two effects, we increase the number of variants by adding 

genotypes permuted amongst individuals, which by their very nature should not capture 

genetic variance (Methods). As predicted, the estimates of heritability for a fixed sample size 

increase when the number of genetic variants modeled is doubled or quadrupled (Fig. 2b). 

These increases are consistent with our expectations, as becomes apparent when the 

results are plotted as a function of the ratio � �⁄  (Fig. 2c). As can be seen on this scale, the 

added permuted genetic variants do not capture meaningful additional variance.       

In order to further illustrate how the described effects can lead to misleading conclusions, we 

consider the question how much additional heritability of height is captured by rarer variants 

(Methods). Using 100,000 individuals the estimate of ����
�  for common variants (MAF > 5%) 

is 0.53 (s.e. 0.005). Including rarer variants (MAF > 1%) increases this estimate to 0.66 (s.e. 

0.006). However, the latter model contains almost twice the number of genetic variants 

significantly altering the ratio � �⁄ . Including the genotypes for the same rarer genetic 

variants, but permuted amongst individuals should not increase the captured heritability. 

However, the estimate with permuted variants is 0.64 (s.e. 0.006). That is, a vast majority of 
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the increase in heritability supposedly captured by rarer variants can be attributed to the 

change in � �⁄ . These observations replicate across three disjoint samples of individuals 

and, with reduced effect, if an equivalent number of permuted common, rather than rarer, 

genetic variants is used (Methods and Supplementary Table 1). 

Consistent estimation of ��
�  

As the standard choice of GRM does not lead to a consistent estimate of �	
�, is there a GRM 

that does? As asymptotically ��	
� � �

�
β�Σ��β (Methods), we see by reference to (2) that the 

only generally correct choice of GRM is given by � � �

�
���, considering that a priori we do 

not know which elements of β have non-zero values. Although we do not know �, it can be 

consistently estimated from genotype data. An important consequence is, that the required 

GRM does not depend on knowledge of the underlying genetic architecture of the 

phenotype. This result is again borne out in simulations (Fig. 1c). This corresponds to the LD 

corrected GRM, recently independently proposed as an alternative to the standard GRM 

based on empirical observations13.         

Consequences of the nonrandom distribution of causal variants with respect to LD 

Understanding the relationship of ��	
� and the actual population parameters allows us to 

formally address questions which previously could only be considered using 

simulations. This is important as simulations by necessity only consider a finite set of 

conditions. This may lead to false conclusions if the set of considered conditions is too 

narrow. To illustrate this point, we turn to the question of the consequences of biases in the 

distribution of causal genetic variants. It has been observed that causal variants are not 

expected to consist of a random sample from all genetic variants20. Furthermore, the non-

random distribution of causal variants with respect to LD in particular has been repeatedly 

suggested as a cause of bias in G-REML4,8,12. This has given rise to a number of variants on 

the original method, in particular LDAK8 and GREML-LDMS4, aimed at correcting this bias. 

Here, we re-evaluate these claims through the perspective of (1).  

We will denote by ��
� the total genetic variance of causal variants and by �������

�  the 

associated SNP-heritability. We now consider estimation using a set of genetic variants 

which does not include the causal variants. The additive genetic variance captured by these 

variants, denoted by  �	
�, will be smaller than ��

�, and thus ����
�  for these variants will be 

lower than �������
� .  

Using the LD corrected GRM, i.e., a GRM with � � �

�
���, will yield estimates of ����

� . This 

means estimates will be smaller than �������
� . The magnitude of this difference will depend 

on the strength of LD between the causal variants and those in the model; increasing as LD 

weakens. We refer to this measure of LD as the tagging of the causal variants. In contrast to 
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the LD corrected GRM, the behavior of estimates under other GRMs will not only depend on 

����
� , but also on the architecture of ����

� . If ����
�  contains a positive or negative contribution 

of LD, estimates may change with sample size. In this context ����
�  is expected to contain 

contributions from LD, even if the causal variants themselves are in linkage equilibrium. This 

is the case as multiple genetic variants which are in LD with a single causal variant will have 

non-zero additive effects, i.e., �’s, and may be expected to also be in LD with each other.   

We illustrate these points in the context of a previously proposed simulation study8. We 

simulate phenotypes with a constant �������
� � 0.5, but based on casual variants which differ 

in how well they are tagged by the modeled genetic variants (Methods). As expected, the 

captured genetic variance, �	
�, increases for phenotypes with the strength of tagging of 

causal variants, but always remains lower than ��
�, the total genetic variance of the causal 

variants (Fig. 3a). Crucially, the composition of �	
� changes depending on the strength of 

tagging (Fig. 3a). For very weakly tagged causal variants we observe a large negative 

contribution from LD to  �	
�. On the other hand, for very strongly tagged variants we observe 

a positive contribution of LD. At the same time, the genic component of �	
� diminishes as the 

strength of tagging increases. The contributions of LD to ��
� for all sets of causal variants are 

negligible (Supplementary Fig. 3). This means, that we do not need to resort to processes 

like assortative mating, that induce LD between causal variants. Even in the absence of any 

such process, in a typical analysis contribution of LD may be expected to play an important 

role. 

Use of the LD corrected GRM yields estimates which are stable across sample sizes and 

consistent with ����
�  (Supplementary Fig. 4c). Estimates obtained using G-REML with the 

standard GRM show the expected behavior based on the observed architecture of �	
� (Fig. 

3b). Specifically, for small sample sizes we qualitatively replicate the original results of the 

simulations. That is, estimates increase with strength of tagging, and for very strongly 

tagged causal variants not only over-estimate ����
� , but even the full heritability �������

� . 

However, the results change dramatically as we increase the sample size, no longer 

supporting conclusions drawn based on results in smaller samples. In particular, all 

estimates under-estimate �������
�  independent of the strength of tagging with biases being 

comparable.  

In simulations, both LDAK and GREML-LDMS have been observed to reduce the bias 

relative to �������
�  when � �⁄  is large, i.e., comparable to the presented simulations for small 

sample sizes8,14. Using our results, we can evaluate the robustness of these empirical 

observations with respect to changes in � �⁄  by considering the asymptotic behavior of 

these methods (Fig. 3c). The asymptotic behavior of GREML-LDMS is particularly 
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interesting. As this approach is based on stratification of genetic variants into multiple 

variance components, equation (1) is not directly applicable. However, extending (1) to a 

multiple variance component setting, we show that asymptotically, when the standard GRM 

is used, the estimates of any stratified model are the same as that of the single component 

model containing all variants (Methods). That is to say for large sample sizes, relative to the 

number of genetic variants in the model, GREML-LDMS will yield the same estimates as G-

REML with one standard GRM. Overall the asymptotic results for both methods, lead us to 

conclude that they do not represent robust approaches to estimation of either ����
�  or �������

� . 

We do not question that both methods may yield good results for a specific range of � �⁄ , 

but do not see a practical way to ensure a particular analysis falls within this regime. This 

conclusion is borne out in practice when applying LDAK for increasing sample sizes 

(Supplementary Fig. 4b).  

Discussion 

We provide a qualitative understanding of the behavior of G-REML estimates obtained using 

different GRMs. We resolve any questions about the relationship of the G-REML estimates 

and parameters of the sampling population. Crucially, we do so without requiring any 

assumptions about the genetic architecture or other properties of the population. We use 

these insights to illustrate conditions under which G-REML estimates can be misleading. An 

important implication of our results is, that comparison of G-REML estimates for the same 

trait across analyses which differ in sample size or the numbers of genetic markers used is 

arguably not meaningful. Such comparisons are often made inadvertently within a single 

analysis. For example, modelling categories of genetic variants using multiple variance 

components, will involve comparisons of estimates for components potential comprising very 

different numbers of genetic variants6. 

While we have centered our discussion primarily on the most widely used GRM, the 

standard GRM, similar analyses can be performed and confirmed in simulations for other 

GRMs that have been proposed in the literature. One may be inclined to argue in favor of a 

particular GRM based on its asymptotic behavior. We caution against this for two reasons. 

For one, the majority of analyses to date have been performed far from the asymptotic 

regime, i.e., � �⁄ � 1. In particular, use of imputed or whole genome sequencing genotype 

data likely entails very low � �⁄  ratios. Based on such data it has been recently proposed 

that application of G-REML-LDMS can capture the entire narrow sense heritability of human 

height5. Based on the results presented here we would predict that this conclusion will 

change as sample sizes increase consistent with Fig. 2a. We would further predict that, as 

sample sizes increase, the observed differences between G-REML-LDMS and G-REML with 

one variance component, which has been observed to severely overestimate the SNP 
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heritability for dense genotype data14, will disappear. The second reason is that care has to 

be taken with the interpretation of the asymptotic estimate. It is tempting to interpret the 

estimate as the SNP heritability in a population with a LD structure given by �. For example 

one might suggest that the genic variance, as estimated asymptotically under the standard 

GRM, leads to the SNP heritability in a hypothetical founder population which is in linkage 

equilibrium. This view is in general not coherent as the estimate is based on additive effects 

� in a population which exhibits a different LD structure. To illustrate this point, we may 

consider estimates in the setting when causal variants are not included in the model. Here 

the asymptotic estimates are non-zero, because the modeled variants capture part of the 

effects of causal variants through LD, as can be seen in the analysis of tagging (Fig. 3c). In 

contrast the corresponding SNP heritability in a population which is in complete linkage 

equilibrium is zero, due to the lack of LD between modeled and causal variants.              

As we demonstrate no complex processes acting on LD like, for example, assortative mating 

or selection, are necessary to give rise to complex behavior of the estimator. It is sufficient 

for the causal variants to not be included in the model, and most analyses may be expected 

to fall within this setting. Our simulations suggest that the consequences are particularly 

severe if causal variants are weakly tagged, which again constitutes the expected norm 

rather than exception. In general we may expect that the overall contribution from LD is the 

result of the confluence of several independent processes. Some of these processes may 

depend on the specific set of model variants chosen, as is for example the case for the 

tagging structure.  

We only present an overview of some of the implications of our theoretical results. However, 

we think that the presented results are sufficient to warrant a critical evaluation of previous 

conclusions based on G-REML estimates and of claims about the efficiency of various 

variants of G-REML based methods. On a final note, taking a broader perspective, we 

anticipate that estimating the additive genetic variance directly from estimates of β and R will 

prove to be a more successful approach than G-REML1,15, by virtue of providing more 

flexibility to incorporate prior knowledge.  
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Methods  

Derivation of Theoretical Result 

Definition of �	
� and ����

�  

The narrow sense heritability of a phenotype in the population, ��, is defined as the ratio of 

��
�, the additive genetic variance, and the phenotypic variance, ��

� 16,21. In the context of 

individuals genotyped at a fixed set of genetic variants, the SNP heritability, ����
� , is given by 

the ratio of the captured additive genetic variance, �	
�, to ��

� 2.  

The additive genetic variance is defined as the variance of additive genetic values, also 

referred to as breeding values in the context of animal breeding, in a population of interest. It 

plays an important role in quantitative genetics, arising as a parameter in expressions for 

various quantities of interest16. 

Formally the additive genetic value is defined by means of linear regression of genetic 

values on the genotype, where genetic values are given by the expected phenotype 

conditional on a fixed genotype21. Specifically, we consider a set of � genetic variants in the 

population, which, for simplicity, we shall assume are none redundant and bi-allelic. We then 

denote by ! the vector of counts of one of the two alleles, chosen arbitrarily, for each of the 

� variants. The additive genetic value of a phenotype " with respect to the set of chosen 

genetic variants for an individual # is then defined as 

$� � !�
��     where � � $%&'#(�,��)� *+)�|�,"- . �/ � !��0
1�2 

where ) ,·- denotes the expectation w.r.t. 4. It is worth emphasising that the formulation of $ 

does not suppose a causal mechanism, in particular � are not the causal effects of a genetic 

variant, rather $ represents expected differences between individuals from the population of 

interest carrying different alleles. The additive genetic variance captured by the � chosen 

variants is then defined as the variance of $ in the population of interest21. Consequently it 

takes the form  

��
� � 5ar,$- � 8%�9���
 

where � � :ov�!
 is the covariance matrix of the genetic variants in the population of 

interest.  

 

Genomic Linear Mixed Models and G-REML 

The basic Genomic Linear Mixed Model (GLMM) underlying G-REML takes the form 

=	�!! �>, �	
�, �


�
  � @�A, B>, �	
�� �  �


��
 
where A is a vector of phenotypes, B is a matrix of covariates with associated effect vector 

>, � is a relationship matrix which is assumed to be positive semi-definite, and �	
� , �


� are the 

variance parameters of interest3.  
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Restricted maximum likelihood estimation (REML) provides an approach for unbiased 

inference on �	
�, �


�. It has been classically formulated as maximum likelihood inference 

utilising a set of error contrasts rather than the observations themselves21,22. Specifically, 

note that C" � � . B�B�B
��B� is normal and has � . D nonzero eigenvalues, where D is 

the column rank of B. Hence the eigen decomposition of C" can be written as E�E, and 

E�EB � 0 and EE� � �. The error contrast are defined by A# � EA with likelihood function 

=$
!���	
� , �


�
  � @�A0, F, �	
�E�E% �  �


��
 

maximization of which yields the the G-REML estimates, ��	
�, ��


�. 

 

General form of σH&
�  

The G-REML problem, i.e., maximization of =$
!� , is equivalent to 

argmax'�
�,'�

� L @�A#; N�#, �

��
@��#; 0, �	

��(
��   

where N O P
�)*� and �( O P�*� are a matrix with full column rank and a positive definite 

matrix respectively, such that E�E� � N�N� . We note that the latter decomposition is not 

unique, but does always exists as � was assumed to be positive semi-definite. We now 

observe that, up to factors independent of �#,  

@�A#; N�#, �

��
 Q  @ R�#; +N+N1��N�A#STTTUTTTV

,-

, �

� +N+N1��STTUTTV

,.

W 

and hence, 

X @�A#; Y�#, �

�Z


��

�+�#; 0, �	
�[1

 � \��

�
det �2a��


�b � �	
���

�

�
� exp d. 12 e�+�


�b � �	
���1��ef

        

for an appropriate \�·
. While maximization of this form with respect to �	
� as a function of �


� 

is not any more tractable than that of =$
!�, we may consider the equivalent constrained 

maximisation problem,   

argmax'�
�,'�

�,/ \��

�
gh8 �2a��	

��i � �	
�[�

��

� h4jk. �

�
l�+�	

��i � �	
�[�1��lm  

               subject to  �

� � ��	

� 

This transformation is well defined provided  ��	
�, ��


� do not lie on the boundary of the 

parameter space, i.e., both are finite and non zero. Furthermore, �s is asymptotically bounded 

provided both ��	
� and ��


� are asymptotically bounded. Considered as a function of �	
�, the 

objective is of a form proportional to the density function of a scale inverse chi squared 

distribution with parameters  

t � � . 2      u� � 1� . 2 e�+�b � ��1��e 
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and, as a function of �, ��	
� is given by the mode of said distribution. Specifically,  

��	
� � tu�

t � 2 � 1� e�+�b � ��1��e 

 

Form of ��	
� for common GRMs     

We now turn to the specific case � �  
�
, where 
 is a matrix of genotypes at � genetic 

variants under some encoding and � is some given symmetric positive definite matrix, 

discussed in the Results section.  

We note that, Y �  E
, �� � �

�
� represents a suitable decomposition for the previously 

discussed result of the general cases to be obtained, provided E
 has full column rank, 

which may be expected to be the case once for sufficiently large sample sizes (we require at 

least � � D v �). Therefore in this setting, 

��	
� �  β���� �� R��� � �Σ
��β�  

where, with 
" � C"
 the genotypes with covariates regressed out, β� is the solution of the 

ordinary least squares multiple regression of " on 
" and R� �  �



 
"

�
", i.e., is the empirical 

estimate of the 2nd moments of the covariate adjusted genotypes. 

When furthermore, B � w and 
 contains standardized genotypes we recover equation in the 

Results section. Specifically, in this case 
" � C"
 � 
 and β�, R� are empirical estimates of 

the additive genetic effects, and the matrix of correlations between genotypes at different 

genetic variants, i.e., a linkage disequilibrium matrix. 

Considering the asymptotic setting when � � ∞, we observe that y� � y, where, we recall, y 

are the population additive genetic effects. Furthermore, as R� � � and � is bounded, 

�� �



R��� � �Σ
�� � �

�
Σ��, so that    

��	
�


01
{||} 1� y�Σ��y 

Asymptotic equivalence of single variance component and stratified models 

The general behavior of models with multiple genomic variance components is more 

complicated due to dependencies between the parameters, similar to the dependency 

between �	
� and �


� in the single genomic variance component model. However, the situation 

simplifies in the asymptotic regime as � � ∞ for constant numbers of genetic variants. In 

this setting we outline the argument why stratifying genetic variants into multiple variance 

components does asymptotically not differ from fitting a single genomic variance component, 

when standard GRMs are used. 

We consider the case of ~ genomic variance components, where each component � is given 

by a standard GRM computed from a set of genetic variants �2, such that all �2  are disjoint. 
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Following similar steps as for the single component model, we observe that the G-REML 

estimate such a model is given by  

 argmax'�
�,'�

� ,… '�
�,'�� L @�A#; ∑  E
5��6�

#
2 , �


��
 ∏ @��6�
# ; 0, �2

� �

76�7
�
2��   

where 
6� denotes the subset of genotypes at variants �2. We may now note that the first 

term under the integral is unchanged from the single genomic component setting and in 

particular   

@ �A#; �  E
5��6�
#

2
, �


��� Q  @ R�#;  �
8C"

��
�C"�STTTTTUTTTTTV
9

, �

� 1� �1� 
�C"

��W 

where � is the vector of population coefficient in the regression of genotypes on phenotypes 

adjusted for covariates. This means, in the asymptotic setting,     

���
�, ���

� , … , ��:
� � $%&'$4';�

�,';�
�,…,';�

�  � @��6	 ;  0, ��
� 1

��2� �

�

 

where �6� is the subvector of � at variants in �2. As all factors only depend on a single �2
�, 

the problem decomposes into ~ independent maximizations. In particular the solution is 

given by  ��2
� � �6�

% �6�. Summing over the variance components, this is the genic variance, 

the same quantity obtained asymptotically in a model with a single variance component 

including all genetic variants, i.e., the union of all �2. 

 

Data 

UK Biobank Data  

All simulations and primary data analyses were performed using data from the UK 

Biobank19, in particular the same set of genotype data was used throughout. These were 

genotypes of 343,884 unrelated (Kinship Coefficient < 0.0442) White-British individuals. We 

only considered bi-allelic autosomal variants which were assayed by both genotyping arrays 

employed by UK Biobank, passed UK Biobank quality control procedures and, in the 

unrelated White-British sample, had a minor allele frequency >1% and did not depart from 

Hardy-Weinberg equilibrium (P < 10-50). The unrelated White-British subset of individuals 

was obtained by excluding individuals who were identified by the UK Biobank as outliers 

based on either genotyping missingness rate or heterogeneity, or whose sex inferred from 

the genotypes did not match their self-reported sex. We then identified a subset of 

individuals such that for no two individuals the Kinship Coefficient was larger than 0.0442. 

The White-British subset of these was obtained by retaining all individuals for whom 

the projection on the 20 leading genomic principal components was within three standard 

deviations from the mean of all individuals who self identified as White-British. Finally, we 
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removed individuals with a genotype call missing-ness rate >5% across variants which 

passed our quality control procedure.  

 

Computation of Genomic Relationship Matrices 

We make use of three types of GRMs, referred to as the standard, LDAK, and LD structured 

GRM. Denoting by 
 the � � � matrix of standardized genotypes all three GRMs take the 

form � � 
�
� for an appropriate �. Specifically, for the standard GRM � � �

�
�. In particular, 

we note that as in BOLT-REML we normlise by �, unlike the GRM computed by GCTA 

which accounts for missing genotype variants in each pair of individuals. For LDAK, � is a 

diagonal matrix with g#$&��
 � � ∑ �!!⁄  where � is a vector of weights as described by 

Speed et al.8. Rather than computing weights for each sample, we computed weights once 

for each set of genetic variants employed in an analysis using all 343,884 available 

individuals. The weights were computed using the LDAK5 software. For the LD structured 

GRM, � � �

�
��



���
��, that is the empirical LD matrix. As in the case of LDAK, we 

computed this matrix only once for each required set of variants using all available 

individuals. 

  

Simulations 

We implemented two simulation studies to illustrate aspects of the analytical results. All 

simulations utilized the genotype data from the UK Biobank as described above. However, 

we only used a restricted set of genetic variants, specifically only those on chromosome 18, 

in order to be able to achieve a wider range of ratios between numbers of individuals and 

genetic variants in the models.  

All models were fitted using either GCTA, for smaller sample sizes and non-standard GRMs, 

or BOLT-REML, in the case of sample sizes larger than 100,000, tools. 

 

Consequences of non-zero contributions from LD to genetic variance 

We aimed to highlight the behavior of estimates of �� as the ratio of � and � changes if 

linkage disequilibrium contributes to the additive genetic variance. To this end, we simulated 

phenotypes using sets of causal variants selected so that linkage disequilibrium between 

these variants would make a positive, neutral, or negative contribution to the additive genetic 

variance. For each scenario we generated 10 replicate phenotypes. We then estimated 

variance components using different GRMs for increasing sample sizes � ranging from 

3,395 to 40,729 individuals. We repeated this procedure for three different numbers of 

variants included in the models, by dropping subsets of non-causal variants. 

The casual variants were always included in the model.    
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Results were obtained using the 10,182 common (MAF > 5%) genetic variants on 

chromosome 18. We simulated phenotypes by selecting a set of 100 causal variants and 

giving each an effect size of 1 on the scale of normalized genotypes. In order to obtain 

positive, neutral, or negative contributions to the additive genetic variance from linkage 

disequilibrium we sampled the causal variants in pairs as follows. We repeatedly selected a 

new causal variant # at random from all remaining non-causal variants. Conditional on #, we 

then selected a second new causal variant � at random from all remaining non causal 

variants for which %�2 � �%!�� , %!� 
, where %�2  is the correlation between variants # and � 
computed using all individuals. We set �%!�� , %!� 
 to (0.7,1.0), (-10-5, 10-5) and (-0.5,-0.4) in 

order to generate a positive, neutral, and negative contribution from LD respectively. The 

environmental effect for each individual was sampled from a normal distribution with 

variance chosen so that the asymptotic estimate of �� using the standard GRM would be 

either 0.25, 0.5, or 0.75.       

It is worth emphasizing, that we specifically chose to retain the causal variants in the model 

and did not simulate effects sizes following a reasonable prior distribution. We retained the 

causal variants so as to exclude effects of tagging of these by the variants retained in the 

model. We did not simulate the effects sizes from any of the linear mixed model prior 

distributions to illustrate the point that the presented results hold without assumptions on the 

true generating distribution for the population. 

 

Consequences of biased distribution of causual variants 

We implemented a simulation study following the design of Speed et al.8. Specifically, we 

simulated phenotypes selecting causal variants based on how well they were tagged by 

other variants. The measure of tagging for a genetic variant # was computed as ∑ %�22 h�/<	�, 

where %�2 � �



��

��2  is the empirical correlation between variants # and � computed using all 

available individuals, g�2  is the distance in base pairs between these variants and, following 

Speed et al., � � .log �0.125
/30= . We denoted variants with tagging values from the 

bottom 0-20% and 20-40% of values amongst all considered variants as very weakly and 

weakly tagged. Similarly, variants with a value from the top 0-20% and 20-40% are denoted 

as strongly and very strongly tagged. It is worth noting that this definition differs from Speed 

et al. who denoted the whole bottom and top 40% as weakly and strongly tagged 

respectively. We prefer to consider non-overlapping ranges, but as a consequence our 

results differ slightly from those of Speed et al. even in the small sample setting. Specifically, 

we do not observe overestimation of the true heritability for the strongly tagged causal 

variants.   
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Results were obtained using all 16,887 available genetic variants on chromosome 18.  We 

used 50 causal variants. We performed 50 replications. We fitted models using the standard 

GRM for one hundreds (N=N0=3,438), one tenth (N=34,388) and all (N=343,884) available 

individuals.    

  

Application to Height in UK Biobank  

We estimated heritability using the standard G-REML approach for height measured in UK 

Biobank participants. We included Sex, Age and the leading five genomic principle 

components, computed on the whole UK Biobank cohort, as covariates in the analysis.  

 

Effect of changes in sample size 

We fitted models for different sample sizes, using all 334,942 available common (MAF>5%) 

genetic variants. For each sample size � we randomly divided the available 343,884 

individuals into the maximal number of non-overlapping subsets, i.e., �343,884 �⁄ � subsets, 

and fitted models for each subset. The number of available estimates therefore decreases 

with �, down to only a single estimate for � � 200,000 and � � 300,000. 

 

Effect of changes in number of variants   

In order to study the effect of varying the number of variants without changes to the SNP 

heritability we generated genotype data which in addition to the �> � 334,942 available 

common (MAF>5%) genetic variants included variants which by design do not contribute 

SNP heritability. To this end, we combined � copies of the original genotype data for the 

common genetic variants, to obtain genotypes with � · �> genetic variants. In each but the 

first copy of the genotypes the genotypes of all variants were jointly randomly permuted 

amongst individuals. This ensures, that the resulting genotypes maintained the statistical 

characteristics of the original genotypes, amongst others, the MAF frequency spectrum, 

distribution of LD. Crucially, the true underlying SNP heritability is not affected by the 

addition of permuted genotypes as these are uncorrelated with the phenotype. 

In addition to results for the original genotype data (� � 1), we fitted models for different 

sample sizes, using generated genotype data for � � 2,4. We again divided the available 

343,884 individuals into the maximal number of non-overlapping subsets for each sample 

size and fitted models for each subset.      

               

Variance captured by rarer variants 

We fitted models using either all available genetic variants with either MAF > 5%, � �
334,942, or MAF > 1%, � � 623,496, for three disjoint subsets of 100,000 individuals each. 
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We then obtained genotypes with � � 623,496 variants but with the same expected 

captured additive genetic variance in two ways. On the one hand, we permuted the 

genotypes for genetic variants with MAF <5% and >1% between the individuals in each 

subset. We permuted all genetic variants jointly, i.e., an individual # was given the genotype 

for these variants from one individual �. We combined these permuted genotypes with the 

un-permuted genotypes for variants with MAF > 5%. In the second approach, we sampled 

288,554 of the variants with MAF > 5%, permuted the genotypes for these amongst 

individuals and added them as new variants to the un-permuted genotypes of variants with 

MAF>5%. With then fitted the models using these two sets of partly permuted genotypes. 

 

Accession codes 

This research has been conducted using the UK Biobank Resource under project 788. 

 

Code availability 

Models were fitted using GCTA v1.24.7 and bolt-LMM v2.3. LDAK v5.0 was used to 

compute weights for the LDAK GRM.    
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Figures 

 

Fig. 1: Consequences of contributions to the additive genetic variance from LD for 

estimates of genetic variance under different GRMs. We show G-REML estimates of the 

genetic variance for simulated phenotypes with either positive (red), neutral (gray) or 

negative (blue) contributions to the additive genetic variance from LD for varying ratios of the 

sample size  and the number of genetic variants in the model . Different shades 

correspond to three different values of . Point correspond to individual estimates in 

replicated simulations, lines indicate true simulated values for the genetic variance. The 

used GRMs are (a) the standard GRM, (b) the LDAK GRM, and (c) the LD structured GRM. 

In all cases the results follow the theoretical predictions.   
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Fig. 2: Estimates of heritability of height using a standard GRM. Estimates of heritability 

captured by common genetic variants for height in white-british UK Biobank individuals with 

varying sample sizes and numbers of genetic variants. For each sample size we obtained 

estimates from  non overlapping subsamples of all available individuals . (a) 

Estimates heritability and their variation as a function of the sample size  for a fixed set of 

 common genetic variants. The plot shows individual estimates and their mean. (b, c) 

Heritability estimates for changing numbers of genetic variants  as mutliples of , plotted 

as either a function of samples size or a function of the ratio of sample size and numbers of 

genetic variants included in the model. Additional variants beyond  are generated by 

permuting genotypes amongst individuals. Plot show individual estimates and the means for 

different .      
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Fig. 3: Consequences the non-random distribution of causal variants with respect to 

LD.  

(a) The architecture of , the additive genetic variance captured by a set genetic variants, 

as a function of the tagging of the underlying causal variants. (b) Estimates of heritability 

obtained using G-REML with a standard GRM for different sample sizes. (c) Comparison of 

the simulated heritability of causal variants, indicated by the gray line, the true  and the 

expected asymptotic estimates for various G-REML methods. All plots summarise 50 

replications of the simulations, with center line, box limits, whiskers and points indicating 

median, interquartile range, first and last datum in 1.5x interquartile range, and outliers 

respectively.     
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