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The SNP heritability hﬁnp has become a central concept in the study of complex traits.
Estimation of hfnp based on genomic variance components in a linear mixed model

using restricted maximum likelihood has been widely adopted as the method of
choice were individual level data are available. Empirical results have suggested that
this approach is not robust if the population of interest departs from the assumed
statistical model. Prolonged debate of the appropriate model choice has yielded a
number of approaches to account for frequency- and linkage disequilibrium-
dependent genetic architectures. Here we analytically resolve the question of how

these estimates relate to h?np of the population from which samples are drawn. In

particular, we show that the correct model for the purpose of inference about hﬁnp

does not require knowledge of the true genetic architecture of a trait. More generally,

2
snps

our results provide a complete perspective of these class of estimators of h
highlighting practical shortcomings of current practise. We illustrate our theoretical
results using simulations and data from UK Biobank.

The SNP heritability is defined as the fraction of the phenotypic variance explained by
additive effects of a given set of genetic variants™? It forms a bound on the ability to predict
a phenotype using linear models of the chosen variants and has been important in the
debate about the so-called missing heritability>™. It has also been used to draw conclusions
about the genetic architecture of phenotypes by contrasting the heritabilities of different
categories of genetic variants®. Variance components, based on genomic relationship
matrices, fitted using restricted maximum likelihood estimation, the so called G-REML

method®, have been proposed, implemented in various tools’™*°

, and widely adopted as an
approach to estimate hﬁnp. However, typically the quantity of interest is h?np for the wider
population from which samples were obtained. This population is not sampled from the
statistical model underlying variance component estimation. It is therefore unclear to what
extent the parameters estimated using the assumed model can be related to the quantity of

interest, namely parameters of the wider population from which samples were obtained. This


https://doi.org/10.1101/2020.09.15.276121
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.15.276121; this version posted September 16, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

is primarily the case because the estimates are not directly available in analytical form, but
are obtained using a numerical optimization procedure. Moreover it is known that G-REML
cannot estimate h?np in general, as the estimates are, unlike hﬁnp, not invariant under
general linear transformations of the genotypes®.

Based on empirical observations, it has been suggested that G-REML estimates are biased
under departure of the population from the model*®*''?, This has led to a number of
variations on the G-REML approach based on various assumptions about the genetic
architecture of the phenotype®'™. These different models yield different estimates**.
However, the correct choice of model remains unclear, as does the question what aspects of
the population need to be incorporated into the model. We show that these questions can be
resolved analytically, by directly relating the estimates of model parameters to parameters of
the population. Our results highlight the central role of the linkage disequilibrium (LD)
structure of the population, in particular between variants with non-zero additive effect. We
show that incorporating this structure, which can be estimated from data, into the genomic
relationship matrix (GRM) leads to an statistically consistent estimator of hﬁnp. Conversely,
the choice of alternative GRMs leads to a bias. This bias depends on the departure of the
GRM'’s assumptions from the LD structure of the population. It furthermore changes
depending on the relative number of individuals and genetic variants in the analysis. The G-
REML model with the standard GRM corresponds to the assumption of perfect linkage
equilibrium amongst all modeled genetic variants. In practice populations are expected to
depart from this assumption. On the one hand, natural processes like assortative mating or
selection act directly on the LD structure in the population'®. On the other hand, sampling
strategies like, for example, case-control sampling will induce LD between causal variants in
the sample’’. Finally, we show that these effects are relevant even if causal variants are in
linkage equilibrium. Typically, the set of modeled variants will not include all causal variants.
We show, that this is sufficient to necessitate accounting for the LD structure of the modeled

variants in order to avoid complex biases.

Results

Relating G-REML estimates to population parameters

The G-REML estimate of hZ,,, is given by h? = 62 /(62 + 62) where 62, 67 are the restricted
maximum likelihood estimates of genetic and environmental variance components
(Methods). Here we will concentrate on the more interesting estimate of 6;. Furthermore, we
will restrict our discussion to the form of the results in a setting which allows easier
interpretation. Amongst others, we will assume that no fixed effects beyond the mean are

fitted in the model and sufficiently large sample sizes. These and other implicit assumptions
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made here can however be relaxed, yielding a more generally applicable form of the main
result (Methods). The genetic variance component is modeled using a GRM computed from
the genotypes at the modeled genetic variants. Commonly employed GRMs are of the form
G = 7377, where Z is the N x M matrix of standardized, i.e., centered and unit variance
scaled, genotypes for M genetic variants of N individuals and X is a matrix which differs
between GRMs (Methods). We show that 692 satisfies

52 = BT(A R + M) !B 1)
where 4 = 63/692 and f and R are unbiased estimates of two statistics of the population from
which samples were drawn (Methods). Specifically, they are estimates of B the multiple
regression coefficients of standardized genotypes, i.e., the additive genetic effects, and R
the matrix of correlations between genotypes at different genetic variants, i.e., a linkage
disequilibrium matrix. They are unbiased estimates under the common assumption of i.i.d.
sampling from the population, and do not rely on any further assumptions about, for
example, the genetic architecture of a phenotype. It is worth re-emphasising, that they are
estimates of these parameters of the sampling population even if this population does not
follow the assumed variance component model. This means 692 can be directly contrasted
with the true additive genetic variance captured by the chosen set of genetic variants, which
can be expressed in terms of § and R as

gy =B"RB= X;B7 + Yijiizj RijBiBj (2
(Methods). Here, the explicit decomposition highlights the two terms contributing to agz which
are the genic variance, which is always positive, and the contribution due to LD between
genetic variants, which can be either positive or negative.
While the presence of 4 in (1) means that the provided expression does not yield an explicit
solution for &gz, it is interpretable and provides information about the asymptotic value of 6;
as well as it's qualitative behavior in the finite sample setting.
Expression (1) can in general be used to qualitatively analyse the behavior of 67 for different
choices GRM and their relation to population parameters. To illustrate this point, we will in
the following answer two questions. The first is, what is the expected behavior of the
estimate when the standard GRM is used? The second is, what is the correct form of GRM

to estimate g, ?
To answer both questions we first observe by comparing (1) and (2), that (A%’R‘l + Mx)™1

represents the effective LD structure implicitly assumed by G-REML. It depends on the
choice X, and as such the GRM, and furthermore changes with the ratio of M and N. This
effective LD structure does incorporate an estimate of R, the population’s true LD structure.

However, as the sample size increases, the contribution of this term diminishes due to the
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presence of the N~! factor. In particular, asymptotically as N increases relative to M, the
implicit LD structure only depends, through Z, on the choice of GRM.

Estimates under the standard GRM

We can now consider the consequences of the widely used standard choice of GRM,

proposed by van Raden®®, and used as a default in popular implementations of G-REML,
like GCTA’, BOLT-REML® or DISSECT™. This GRM is given by X = %1. This choice will

asymptotically estimate }; 5, the genic variance (Methods). However, for smaller sample
sizes we expect the estimate to be closer to 092 due to the stronger contribution of R. This
means, that while M/N is large, if linkage disequilibrium contributes positively or negatively
to aj, &gz will respectively over- or under-estimate the genic variance of the chosen set of
genetic variants. These conclusions are borne out by simulations (Fig. 1a, Supplementary
Fig. 1, and Methods). These effects transfer to estimates of the heritability (Supplementary
Fig. 2).

The described effects manifest in available real data and, as we illustrate, can lead to
misleading inference. Using height data from the UK Biobank'® we evaluate the behavior of
the estimate of hﬁnp of common genetic variants for increasing sample sizes (Methods). This
is consistent with a positive contribution from LD to the captured additive genetic variance
(Fig. 2a). As such, we would expect estimates of heritability at a given sample size to
increase when the number of genetic variants in the model increases, i.e., the ratio N/M
decreases. However, addition of variants to the model could also increase SNP heritability
estimates by capturing additional genetic variance through better tagging of causal variants.
In order to disentangle these two effects, we increase the number of variants by adding
genotypes permuted amongst individuals, which by their very nature should not capture
genetic variance (Methods). As predicted, the estimates of heritability for a fixed sample size
increase when the number of genetic variants modeled is doubled or quadrupled (Fig. 2b).
These increases are consistent with our expectations, as becomes apparent when the
results are plotted as a function of the ratio N/M (Fig. 2c¢). As can be seen on this scale, the
added permuted genetic variants do not capture meaningful additional variance.

In order to further illustrate how the described effects can lead to misleading conclusions, we
consider the question how much additional heritability of height is captured by rarer variants
(Methods). Using 100,000 individuals the estimate of hﬁnp for common variants (MAF > 5%)
is 0.53 (s.e. 0.005). Including rarer variants (MAF > 1%) increases this estimate to 0.66 (s.e.
0.006). However, the latter model contains almost twice the number of genetic variants
significantly altering the ratio M/N. Including the genotypes for the same rarer genetic
variants, but permuted amongst individuals should not increase the captured heritability.

However, the estimate with permuted variants is 0.64 (s.e. 0.006). That is, a vast majority of
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the increase in heritability supposedly captured by rarer variants can be attributed to the
change in M/N. These observations replicate across three disjoint samples of individuals
and, with reduced effect, if an equivalent number of permuted common, rather than rarer,

genetic variants is used (Methods and Supplementary Table 1).
Consistent estimation of af]

As the standard choice of GRM does not lead to a consistent estimate of agz, is there a GRM

that does? As asymptotically 67 — % BTx"1B (Methods), we see by reference to (2) that the

only generally correct choice of GRM is given by X = %R‘l, considering that a priori we do

not know which elements of B have non-zero values. Although we do not know R, it can be
consistently estimated from genotype data. An important consequence is, that the required
GRM does not depend on knowledge of the underlying genetic architecture of the
phenotype. This result is again borne out in simulations (Fig. 1c). This corresponds to the LD
corrected GRM, recently independently proposed as an alternative to the standard GRM

based on empirical observations®?.

Consequences of the nonrandom distribution of causal variants with respect to LD

Understanding the relationship of 672

5, and the actual population parameters allows us to

formally address questions which previously could only be considered using
simulations. This is important as simulations by necessity only consider a finite set of
conditions. This may lead to false conclusions if the set of considered conditions is too
narrow. To illustrate this point, we turn to the question of the consequences of biases in the
distribution of causal genetic variants. It has been observed that causal variants are not
expected to consist of a random sample from all genetic variants®®. Furthermore, the non-
random distribution of causal variants with respect to LD in particular has been repeatedly
suggested as a cause of bias in G-REML*®*2, This has given rise to a number of variants on
the original method, in particular LDAK® and GREML-LDMS?, aimed at correcting this bias.
Here, we re-evaluate these claims through the perspective of (1).

We will denote by o2 the total genetic variance of causal variants and by h2,,., the
associated SNP-heritability. We now consider estimation using a set of genetic variants
which does not include the causal variants. The additive genetic variance captured by these

variants, denoted by ¢Z, will be smaller than o7, and thus hZ,, for these variants will be

2
causal*

Using the LD corrected GRM, i.e., a GRM with £ = ﬁR‘l, will yield estimates of hZ,,. This

snp*

lower than h

means estimates will be smaller than hZ,,,

on the strength of LD between the causal variants and those in the model; increasing as LD

;- The magnitude of this difference will depend

weakens. We refer to this measure of LD as the tagging of the causal variants. In contrast to
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the LD corrected GRM, the behavior of estimates under other GRMs will not only depend on
h?np, but also on the architecture of hﬁnp. If hgnp contains a positive or negative contribution
of LD, estimates may change with sample size. In this context hZ,, is expected to contain
contributions from LD, even if the causal variants themselves are in linkage equilibrium. This
is the case as multiple genetic variants which are in LD with a single causal variant will have
non-zero additive effects, i.e., 8’s, and may be expected to also be in LD with each other.

We llustrate these points in the context of a previously proposed simulation study®. We

2
causal

simulate phenotypes with a constant h = 0.5, but based on casual variants which differ
in how well they are tagged by the modeled genetic variants (Methods). As expected, the
captured genetic variance, agz, increases for phenotypes with the strength of tagging of

causal variants, but always remains lower than o2, the total genetic variance of the causal
variants (Fig. 3a). Crucially, the composition of U; changes depending on the strength of
tagging (Fig. 3a). For very weakly tagged causal variants we observe a large negative

contribution from LD to ogz. On the other hand, for very strongly tagged variants we observe
a positive contribution of LD. At the same time, the genic component of agz diminishes as the
strength of tagging increases. The contributions of LD to o2 for all sets of causal variants are
negligible (Supplementary Fig. 3). This means, that we do not need to resort to processes
like assortative mating, that induce LD between causal variants. Even in the absence of any
such process, in a typical analysis contribution of LD may be expected to play an important
role.

Use of the LD corrected GRM vyields estimates which are stable across sample sizes and
consistent with hﬁnp (Supplementary Fig. 4c). Estimates obtained using G-REML with the
standard GRM show the expected behavior based on the observed architecture of agz (Fig.
3b). Specifically, for small sample sizes we qualitatively replicate the original results of the
simulations. That is, estimates increase with strength of tagging, and for very strongly
tagged causal variants not only over-estimate hZ,,, but even the full heritability hZ,, .-
However, the results change dramatically as we increase the sample size, no longer
supporting conclusions drawn based on results in smaller samples. In particular, all
estimates under-estimate hZ,, .., independent of the strength of tagging with biases being
comparable.

In simulations, both LDAK and GREML-LDMS have been observed to reduce the bias
relative to hZ,,.,; When M/N is large, i.e., comparable to the presented simulations for small

sample sizes®'*

. Using our results, we can evaluate the robustness of these empirical
observations with respect to changes in M/N by considering the asymptotic behavior of

these methods (Fig. 3c). The asymptotic behavior of GREML-LDMS is particularly
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interesting. As this approach is based on stratification of genetic variants into multiple
variance components, equation (1) is not directly applicable. However, extending (1) to a
multiple variance component setting, we show that asymptotically, when the standard GRM
is used, the estimates of any stratified model are the same as that of the single component
model containing all variants (Methods). That is to say for large sample sizes, relative to the
number of genetic variants in the model, GREML-LDMS will yield the same estimates as G-
REML with one standard GRM. Overall the asymptotic results for both methods, lead us to
conclude that they do not represent robust approaches to estimation of either hZ,,, or hZ,,sa;-
We do not question that both methods may yield good results for a specific range of M/N,
but do not see a practical way to ensure a particular analysis falls within this regime. This
conclusion is borne out in practice when applying LDAK for increasing sample sizes

(Supplementary Fig. 4b).

Discussion

We provide a qualitative understanding of the behavior of G-REML estimates obtained using
different GRMs. We resolve any questions about the relationship of the G-REML estimates
and parameters of the sampling population. Crucially, we do so without requiring any
assumptions about the genetic architecture or other properties of the population. We use
these insights to illustrate conditions under which G-REML estimates can be misleading. An
important implication of our results is, that comparison of G-REML estimates for the same
trait across analyses which differ in sample size or the numbers of genetic markers used is
arguably not meaningful. Such comparisons are often made inadvertently within a single
analysis. For example, modelling categories of genetic variants using multiple variance
components, will involve comparisons of estimates for components potential comprising very
different numbers of genetic variants®.

While we have centered our discussion primarily on the most widely used GRM, the
standard GRM, similar analyses can be performed and confirmed in simulations for other
GRMs that have been proposed in the literature. One may be inclined to argue in favor of a
particular GRM based on its asymptotic behavior. We caution against this for two reasons.
For one, the majority of analyses to date have been performed far from the asymptotic
regime, i.e., N/M < 1. In particular, use of imputed or whole genome sequencing genotype
data likely entails very low N/M ratios. Based on such data it has been recently proposed
that application of G-REML-LDMS can capture the entire narrow sense heritability of human
height®>. Based on the results presented here we would predict that this conclusion will
change as sample sizes increase consistent with Fig. 2a. We would further predict that, as
sample sizes increase, the observed differences between G-REML-LDMS and G-REML with
one variance component, which has been observed to severely overestimate the SNP
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heritability for dense genotype data®, will disappear. The second reason is that care has to
be taken with the interpretation of the asymptotic estimate. It is tempting to interpret the
estimate as the SNP heritability in a population with a LD structure given by X. For example
one might suggest that the genic variance, as estimated asymptotically under the standard
GRM, leads to the SNP heritability in a hypothetical founder population which is in linkage
equilibrium. This view is in general not coherent as the estimate is based on additive effects
B in a population which exhibits a different LD structure. To illustrate this point, we may
consider estimates in the setting when causal variants are not included in the model. Here
the asymptotic estimates are non-zero, because the modeled variants capture part of the
effects of causal variants through LD, as can be seen in the analysis of tagging (Fig. 3c). In
contrast the corresponding SNP heritability in a population which is in complete linkage
equilibrium is zero, due to the lack of LD between modeled and causal variants.

As we demonstrate no complex processes acting on LD like, for example, assortative mating
or selection, are necessary to give rise to complex behavior of the estimator. It is sufficient
for the causal variants to not be included in the model, and most analyses may be expected
to fall within this setting. Our simulations suggest that the consequences are particularly
severe if causal variants are weakly tagged, which again constitutes the expected norm
rather than exception. In general we may expect that the overall contribution from LD is the
result of the confluence of several independent processes. Some of these processes may
depend on the specific set of model variants chosen, as is for example the case for the
tagging structure.

We only present an overview of some of the implications of our theoretical results. However,
we think that the presented results are sufficient to warrant a critical evaluation of previous
conclusions based on G-REML estimates and of claims about the efficiency of various
variants of G-REML based methods. On a final note, taking a broader perspective, we
anticipate that estimating the additive genetic variance directly from estimates of B and R will

1,15
LY

prove to be a more successful approach than G-REM , by virtue of providing more

flexibility to incorporate prior knowledge.
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Methods

Derivation of Theoretical Result
Definition of g7 and hZ,,
The narrow sense heritability of a phenotype in the population, h?, is defined as the ratio of

o2, the additive genetic variance, and the phenotypic variance, o2 '**. In the context of

y
individuals genotyped at a fixed set of genetic variants, the SNP heritability, h?np, is given by
the ratio of the captured additive genetic variance, o2, to o2 2.

The additive genetic variance is defined as the variance of additive genetic values, also
referred to as breeding values in the context of animal breeding, in a population of interest. It
plays an important role in quantitative genetics, arising as a parameter in expressions for
various quantities of interest*.

Formally the additive genetic value is defined by means of linear regression of genetic
values on the genotype, where genetic values are given by the expected phenotype
conditional on a fixed genotype?'. Specifically, we consider a set of M genetic variants in the
population, which, for simplicity, we shall assume are none redundant and bi-allelic. We then
denote by g the vector of counts of one of the two alleles, chosen arbitrarily, for each of the
M variants. The additive genetic value of a phenotype y with respect to the set of chosen

genetic variants for an individual i is then defined as

a;=glB where B =argmin,yEy|(Ey,lyl - (u+g"8))]
where E,[-] denotes the expectation w.r.t. x. It is worth emphasising that the formulation of a
does not suppose a causal mechanism, in particular g are not the causal effects of a genetic
variant, rather a represents expected differences between individuals from the population of
interest carrying different alleles. The additive genetic variance captured by the M chosen
variants is then defined as the variance of a in the population of interest’*. Consequently it
takes the form
o2 = Var[a] = tr(RBTB)

where R = Cov(g) is the covariance matrix of the genetic variants in the population of

interest.

Genomic Linear Mixed Models and G-REML
The basic Genomic Linear Mixed Model (GLMM) underlying G-REML takes the form

Ly

1mm (@, 05,02) = N (y,Xa, 6;G + oZ1)
where y is a vector of phenotypes, X is a matrix of covariates with associated effect vector
a, G is a relationship matrix which is assumed to be positive semi-definite, and agz, o2 are the

variance parameters of interest®.
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Restricted maximum likelihood estimation (REML) provides an approach for unbiased

inference on o;,07. It has been classically formulated as maximum likelihood inference

utilising a set of error contrasts rather than the observations themselves®#. Specifically,

note that Hy = I — X(X"X)~1X" is normal and has N — K nonzero eigenvalues, where K is

the column rank of X. Hence the eigen decomposition of Hy can be written as LTL, and

LTLX = 0 and LLT = I. The error contrast are defined by y' = Ly with likelihood function
Lyemi(02,02) = N (¥',0,02LGL" + 621)

maximization of which yields the the G-REML estimates, 62, 62.

General form of 6
The G-REML problem, i.e., maximization of £,.,,;, iS equivalent to
argmax 2 ;2 fp" N UB , aZDN(B';0,02%p)
where U e RV and 25 e RM*™ are a matrix with full column rank and a positive definite

matrix respectively, such that LGLT = UZU”. We note that the latter decomposition is not
unique, but does always exists as G was assumed to be positive semi-definite. We now

observe that, up to factors independent of g’,

N(yl; Uﬁ,,O'ezl) o« N(ﬂ,; (UTU)_lUTy,,O'ez (UTU)—I)
N =B
and hence,

f N(Y;UB 62D N(B';0,02E)
BI
1 1 _
= f(o2)det 2n(oZB + 0;X5)) Zexp {—EbT(JezB +02%p) 1b}

for an appropriate f(-). While maximization of this form with respect to a; as a function of ¢?

is not any more tractable than that of £,.,,;, we may consider the equivalent constrained

maximisation problem,
1 -
argmax,2 ;2 ; f(ad)det 2m(o 2B + 0/ Zp)) 2 exp{— ibT(U;AB +02%p) 1b}

subjectto o7 = Ag;

~2

This transformation is well defined provided &g, 62 do not lie on the boundary of the

parameter space, i.e., both are finite and non zero. Furthermore, 1 is asymptotically bounded

provided both 692 and 62 are asymptotically bounded. Considered as a function of 2, the

objective is of a form proportional to the density function of a scale inverse chi squared
distribution with parameters
1

-1
v=M-2 rzzM_ZbT(AB+EB) b

10
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and, as a function of 2, 692 is given by the mode of said distribution. Specifically,

vr?

~ 1 -1
62 =03 =MbT(/’1B+Eﬁ) b

Form of &gz for common GRMs
We now turn to the specific case G = ZXZ, where Z is a matrix of genotypes at M genetic
variants under some encoding and X is some given symmetric positive definite matrix,

discussed in the Results section.

We note that, U = LZ, X =13 represents a suitable decomposition for the previously
M

discussed result of the general cases to be obtained, provided LZ has full column rank,

which may be expected to be the case once for sufficiently large sample sizes (we require at

least N + K > M). Therefore in this setting,

A2 aT M"‘—l -13

G5 = FTA R+ MD)'B
where, with Zy = HxZ the genotypes with covariates regressed out, B is the solution of the
ordinary least squares multiple regression of y on Zx and R = % 1Yy, i.e., is the empirical
estimate of the 2" moments of the covariate adjusted genotypes.
When furthermore, X = 1 and Z contains standardized genotypes we recover equation in the
Results section. Specifically, in this case Zy = HxZ = Z and B, R are empirical estimates of
the additive genetic effects, and the matrix of correlations between genotypes at different
genetic variants, i.e., a linkage disequilibrium matrix.

Considering the asymptotic setting when N — oo, we observe that p — B, where, we recall, g

are the population additive genetic effects. Furthermore, as R— R and 2 is bounded,
(A%ﬁ‘l + M)t %2‘1, so that

62 — — BTE I

N-oow M

Asymptotic equivalence of single variance component and stratified models
The general behavior of models with multiple genomic variance components is more
complicated due to dependencies between the parameters, similar to the dependency
between agz and o2 in the single genomic variance component model. However, the situation
simplifies in the asymptotic regime as N — oo for constant numbers of genetic variants. In
this setting we outline the argument why stratifying genetic variants into multiple variance
components does asymptotically not differ from fitting a single genomic variance component,
when standard GRMs are used.

We consider the case of ] genomic variance components, where each component j is given

by a standard GRM computed from a set of genetic variants S;, such that all S; are disjoint.
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Following similar steps as for the single component model, we observe that the G-REML

estimate such a model is given by
’ 1
argmax,2 52, 0?02 fﬁ/ N(y ;Zj LZSiﬁgj,aezl) Hj N(ﬁs’ji 0, sz ml)
where Z denotes the subset of genotypes at variants S;. We may now note that the first

term under the integral is unchanged from the single genomic component setting and in

particular

11
N(y';z Lzsjﬁéj,anl) o N(ﬂ’; (zTHXZ)‘lzTny,ozﬁ(NZTHXZ)‘1>
J
B
where B is the vector of population coefficient in the regression of genotypes on phenotypes

adjusted for covariates. This means, in the asymptotic setting,
~2 A2 A2 2 1
01,03, ) O = Argmaxszsz 52 - N(Bs;; 0,0 ml)
t J

where Bs, is the subvector of g at variants in S;. As all factors only depend on a single ajz,

the problem decomposes into |/ independent maximizations. In particular the solution is

A

given by ajz = ngﬁsj. Summing over the variance components, this is the genic variance,

the same quantity obtained asymptotically in a model with a single variance component

including all genetic variants, i.e., the union of all ;.

Data

UK Biobank Data

All simulations and primary data analyses were performed using data from the UK
Biobank'®, in particular the same set of genotype data was used throughout. These were
genotypes of 343,884 unrelated (Kinship Coefficient < 0.0442) White-British individuals. We
only considered bi-allelic autosomal variants which were assayed by both genotyping arrays
employed by UK Biobank, passed UK Biobank quality control procedures and, in the
unrelated White-British sample, had a minor allele frequency >1% and did not depart from
Hardy-Weinberg equilibrium (P < 10°°). The unrelated White-British subset of individuals
was obtained by excluding individuals who were identified by the UK Biobank as outliers
based on either genotyping missingness rate or heterogeneity, or whose sex inferred from
the genotypes did not match their self-reported sex. We then identified a subset of
individuals such that for no two individuals the Kinship Coefficient was larger than 0.0442.
The White-British subset of these was obtained by retaining all individuals for whom
the projection on the 20 leading genomic principal components was within three standard

deviations from the mean of all individuals who self identified as White-British. Finally, we

12


https://doi.org/10.1101/2020.09.15.276121
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.15.276121; this version posted September 16, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

removed individuals with a genotype call missing-ness rate >5% across variants which

passed our quality control procedure.

Computation of Genomic Relationship Matrices
We make use of three types of GRMs, referred to as the standard, LDAK, and LD structured
GRM. Denoting by Z the N x M matrix of standardized genotypes all three GRMs take the

form G = ZXZT for an appropriate X. Specifically, for the standard GRM X = il. In particular,

we note that as in BOLT-REML we normlise by M, unlike the GRM computed by GCTA
which accounts for missing genotype variants in each pair of individuals. For LDAK, X is a
diagonal matrix with diag(X) = w/Y.,, w,, where w is a vector of weights as described by
Speed et al.’. Rather than computing weights for each sample, we computed weights once
for each set of genetic variants employed in an analysis using all 343,884 available

individuals. The weights were computed using the LDAKS5 software. For the LD structured
GRM, £ =%(%ZTZ)‘1, that is the empirical LD matrix. As in the case of LDAK, we

computed this matrix only once for each required set of variants using all available

individuals.

Simulations

We implemented two simulation studies to illustrate aspects of the analytical results. All
simulations utilized the genotype data from the UK Biobank as described above. However,
we only used a restricted set of genetic variants, specifically only those on chromosome 18,
in order to be able to achieve a wider range of ratios between numbers of individuals and
genetic variants in the models.

All models were fitted using either GCTA, for smaller sample sizes and non-standard GRMs,
or BOLT-REML, in the case of sample sizes larger than 100,000, tools.

Consequences of non-zero contributions from LD to genetic variance

We aimed to highlight the behavior of estimates of h? as the ratio of N and M changes if
linkage disequilibrium contributes to the additive genetic variance. To this end, we simulated
phenotypes using sets of causal variants selected so that linkage disequilibrium between
these variants would make a positive, neutral, or negative contribution to the additive genetic
variance. For each scenario we generated 10 replicate phenotypes. We then estimated
variance components using different GRMs for increasing sample sizes N ranging from
3,395 to 40,729 individuals. We repeated this procedure for three different numbers of
variants included in the models, by dropping subsets of non-causal variants.

The casual variants were always included in the model.
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Results were obtained using the 10,182 common (MAF > 5%) genetic variants on
chromosome 18. We simulated phenotypes by selecting a set of 100 causal variants and
giving each an effect size of 1 on the scale of normalized genotypes. In order to obtain
positive, neutral, or negative contributions to the additive genetic variance from linkage
disequilibrium we sampled the causal variants in pairs as follows. We repeatedly selected a
new causal variant i at random from all remaining non-causal variants. Conditional on i, we
then selected a second new causal variantj at random from all remaining non causal
variants for which 7;; € (yin, imax), Where 1;; is the correlation between variants i and j
computed using all individuals. We set (5, gy ) t0 (0.7,1.0), (-10°, 10°°) and (-0.5,-0.4) in
order to generate a positive, neutral, and negative contribution from LD respectively. The
environmental effect for each individual was sampled from a normal distribution with
variance chosen so that the asymptotic estimate of h? using the standard GRM would be
either 0.25, 0.5, or 0.75.

It is worth emphasizing, that we specifically chose to retain the causal variants in the model
and did not simulate effects sizes following a reasonable prior distribution. We retained the
causal variants so as to exclude effects of tagging of these by the variants retained in the
model. We did not simulate the effects sizes from any of the linear mixed model prior
distributions to illustrate the point that the presented results hold without assumptions on the

true generating distribution for the population.

Consequences of biased distribution of causual variants
We implemented a simulation study following the design of Speed et al.®. Specifically, we
simulated phenotypes selecting causal variants based on how well they were tagged by

—-Ad

other variants. The measure of tagging for a genetic variant i was computed as Y, ;r;; e™*“U,

where r;; = ﬁzisz is the empirical correlation between variants i and j computed using all

available individuals, d;; is the distance in base pairs between these variants and, following
Speed et al., 2 = —log (0.125)/30° . We denoted variants with tagging values from the
bottom 0-20% and 20-40% of values amongst all considered variants as very weakly and
weakly tagged. Similarly, variants with a value from the top 0-20% and 20-40% are denoted
as strongly and very strongly tagged. It is worth noting that this definition differs from Speed
et al. who denoted the whole bottom and top 40% as weakly and strongly tagged
respectively. We prefer to consider non-overlapping ranges, but as a consequence our
results differ slightly from those of Speed et al. even in the small sample setting. Specifically,
we do not observe overestimation of the true heritability for the strongly tagged causal

variants.
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Results were obtained using all 16,887 available genetic variants on chromosome 18. We
used 50 causal variants. We performed 50 replications. We fitted models using the standard
GRM for one hundreds (N=Ny=3,438), one tenth (N=34,388) and all (N=343,884) available

individuals.

Application to Height in UK Biobank
We estimated heritability using the standard G-REML approach for height measured in UK
Biobank participants. We included Sex, Age and the leading five genomic principle

components, computed on the whole UK Biobank cohort, as covariates in the analysis.

Effect of changes in sample size

We fitted models for different sample sizes, using all 334,942 available common (MAF>5%)
genetic variants. For each sample size N we randomly divided the available 343,884
individuals into the maximal number of non-overlapping subsets, i.e., |343,884 /N| subsets,
and fitted models for each subset. The number of available estimates therefore decreases
with N, down to only a single estimate for N = 200,000 and N = 300,000.

Effect of changes in number of variants

In order to study the effect of varying the number of variants without changes to the SNP
heritability we generated genotype data which in addition to the M, = 334,942 available
common (MAF>5%) genetic variants included variants which by design do not contribute
SNP heritability. To this end, we combined k copies of the original genotype data for the
common genetic variants, to obtain genotypes with k - M, genetic variants. In each but the
first copy of the genotypes the genotypes of all variants were jointly randomly permuted
amongst individuals. This ensures, that the resulting genotypes maintained the statistical
characteristics of the original genotypes, amongst others, the MAF frequency spectrum,
distribution of LD. Crucially, the true underlying SNP heritability is not affected by the
addition of permuted genotypes as these are uncorrelated with the phenotype.

In addition to results for the original genotype data (k = 1), we fitted models for different
sample sizes, using generated genotype data for k = 2,4. We again divided the available
343,884 individuals into the maximal number of non-overlapping subsets for each sample

size and fitted models for each subset.

Variance captured by rarer variants
We fitted models using either all available genetic variants with either MAF > 5%, M =
334,942, or MAF > 1%, M = 623,496, for three disjoint subsets of 100,000 individuals each.
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We then obtained genotypes with M = 623,496 variants but with the same expected
captured additive genetic variance in two ways. On the one hand, we permuted the
genotypes for genetic variants with MAF <5% and >1% between the individuals in each
subset. We permuted all genetic variants jointly, i.e., an individual i was given the genotype
for these variants from one individual j. We combined these permuted genotypes with the
un-permuted genotypes for variants with MAF > 5%. In the second approach, we sampled
288,554 of the variants with MAF > 5%, permuted the genotypes for these amongst
individuals and added them as new variants to the un-permuted genotypes of variants with
MAF>5%. With then fitted the models using these two sets of partly permuted genotypes.

Accession codes

This research has been conducted using the UK Biobank Resource under project 788.

Code availability
Models were fitted using GCTA v1.24.7 and bolt-LMM v2.3. LDAK v5.0 was used to
compute weights for the LDAK GRM.
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Fig. 1. Consequences of contributions to the additive genetic variance from LD for

N
A

estimates of genetic variance under different GRMs. We show G-REML estimates of the
genetic variance for simulated phenotypes with either positive (red), neutral (gray) or
negative (blue) contributions to the additive genetic variance from LD for varying ratios of the
sample size and the number of genetic variants in the model . Different shades
correspond to three different values of . Point correspond to individual estimates in
replicated simulations, lines indicate true simulated values for the genetic variance. The
used GRMs are (a) the standard GRM, (b) the LDAK GRM, and (c) the LD structured GRM.

In all cases the results follow the theoretical predictions.
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Fig. 2: Estimates of heritability of height using a standard GRM. Estimates of heritability
captured by common genetic variants for height in white-british UK Biobank individuals with
varying sample sizes and numbers of genetic variants. For each sample size we obtained
estimates from non overlapping subsamples of all available individuals . (@)
Estimates heritability and their variation as a function of the sample size for a fixed set of

common genetic variants. The plot shows individual estimates and their mean. (b, c)
Heritability estimates for changing numbers of genetic variants  as mutliples of , plotted
as either a function of samples size or a function of the ratio of sample size and numbers of
genetic variants included in the model. Additional variants beyond are generated by
permuting genotypes amongst individuals. Plot show individual estimates and the means for

different
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Fig. 3: Consequences the non-random distribution of causal variants with respect to
LD.

(a) The architecture of , the additive genetic variance captured by a set genetic variants,
as a function of the tagging of the underlying causal variants. (b) Estimates of heritability
obtained using G-REML with a standard GRM for different sample sizes. (¢c) Comparison of
the simulated heritability of causal variants, indicated by the gray line, the true and the
expected asymptotic estimates for various G-REML methods. All plots summarise 50
replications of the simulations, with center line, box limits, whiskers and points indicating
median, interquartile range, first and last datum in 1.5x interquartile range, and outliers

respectively.
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