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Abstract

An individual’s microbiome consists of a diverse set of bacterial strains that encode rich information on its
colonization and evolutionary history. Here, we introduce a versatile and straightforward reference-based
strain tracking approach (StrainTrack) that determines whether distinct metagenomes carry closely-related
strains based on gene presence and absence profiles. We show that StrainTrack can predict whether two
metagenomes originate from the same donor via counting the number of species sharing closely-related
strains, achieving >96% specificity, and ~100% sensitivity. When applied to the metagenomes of adult
twins in the TwinsUK registry, we identify six cases of closely-related strains carried by both twins,
potentially over decades of colonization.

Introduction

The human gut microbiome harbors a complex community of microbial species stably colonizing for years
or even decades (Faith ef al., 2013; Lloyd-Price et al., 2017). While individuals from the same human
population usually contain similar species, different people typically carry person-specific strains,
distinguished by genomic variations such as single nucleotide polymorphisms (SNPs), insertion/deletions,
and gene presence/absence (Scholz et al., 2016; Truong et al., 2017). In principle, tracking closely-related
strains paves the way to understanding how microbial strains are transmitted between family members,
across social networks, after fecal microbiota transplantation (FMT), and throughout an infection (Ferretti
et al., 2018; Smillie et al., 2018; Brito et al., 2019). Such fine-scale monitoring of strains can provide more
significant insights into how the microbiome responds to host and environmental factors, with potential
applications in the personalization of treatment such as FMT donor selection (Duvallet ez al., 2017).

Various computational methods are available for strain-level analysis of metagenomic samples. One class
of methods resolve strains via identifying SNPs between different metagenomes by aligning short reads to
species reference genomes (Luo ef al., 2015; Costea ef al., 2017; Truong et al., 2017; Smillie et al., 2018).
However, calling SNPs is prone to false positives, as high-resolution strain profiling usually requires careful
and iterative tuning of the filtering parameters (Brito and Alm, 2016). In addition, when multiple strains
coexist, it is difficult to phase alleles carried by different strains. Another commonly-used approach
involves the analysis of pangenomes, particularly the accessory genomic regions carried by distinct strains.
Unlike SNP-based methods, pangenome-based approaches are more robust to parameter changes, yet they
require an extensive database of pangenomes built from a diverse set of available strains and substantial
computational resources; to date, only a small number of gut species have high-quality pangenomes
available (Zhu et al., 2015; Scholz et al., 2016). Overall, these approaches are limited in their ability to
leverage the strain-level information to compare the overall similarity of metagenomes samples and identify
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personalized signatures, as they often only distinguish strains from one bacterial species at a time. A
previous attempt at differentiating microbiome samples and identifying personalization using metagenomic
codes was only able achieve 80% accuracy (Franzosa et al., 2015).

Here, we introduce a flexible and simple method—StrainTrack—that uses a single reference genome for
individual species to compare strain identities between metagenomes. We assume that the accessory
genomes of microbial species are highly individual-specific and that many strains can stably colonize a
microbiome for years (Faith et al., 2013; Zhao et al., 2019). We compare the accessory genomes of 40
prevalent gut bacteria species using public metagenomes and demonstrate evidence supporting this
assumption for 25 out of the 40 species. We further design a classification rule that leverages these
comparisons to predict whether two metagenomes belong to the same individual. We achieve near-perfect
specificity and sensitivity when applied to the metagenomes of the Human Microbiome Project (HMP) and
the Broad Next 10 (BN10) project. In doing so, we find evidence supporting a mislabeling of donor IDs in
a pair of the HMP metagenomes. Lastly, when StrainTrack is applied to track strains from adult twins, we
find that certain twins can share strains that may have colonized for potentially decades and discover
signatures for adaptive evolution in these shared strains.

Results

Accessory genome difference (AGD) as a metric to define inter-sample strain variance

We develop a bioinformatic workflow (StrainTrack) to achieve strain-level comparisons between
metagenomic samples by aligning short reads against a set of well-assembled reference genomes.
In particular, we align metagenomic reads against a curated collection of 40 abundant or well-
studied representative gut bacterial species (Lloyd-Price et al., 2017; Xie et al., 2016, Table S1).
To quantify the inter-sample strain difference, we develop a metric that estimates the fraction of
the reference genome that is variable between the two metagenomes. For any given species, we
calculate the relative sequencing depth for every 5kb genomic window. We then compare the
relative sequencing depth of each genomic window between sample pairs (Methods). If the
average sequencing depth of a genomic window is >50% of the average depth in one sample and
with <5% of the average depth in another sample, we designate this genomic region as a
differential region. We define the fraction of the reference genome that is designated as
differential regions as the accessory genome difference (AGD; Methods).

To demonstrate how AGDs can reveal personalized strain signatures, we examine Bacteroides
vulgatus, a prevalent species that inhabits the large intestine (Yatsunenko et al., 2012). As an
example, a pair of distinct metagenomic samples from the same HMP donor has an AGD of 0
(Figure 1A, 1B), while a pair of metagenomes from two distinct subjects shows an AGD of 0.040
(Figure 1C). We estimate AGDs for all pairwise HMP metagenomes for B. vulgatus and observe
a clear difference between the inter-subject and intra-subject AGD profiles (Methods; Figure 1D).
Further supporting this sharp difference, we generate a receiver operating characteristic curve and
calculate the area under the curve (AUC) to be 0.989 (Figure 1E). We pick an AGD cutoff that
maximizes the sum of sensitivity and specificity (Methods) for B. vulgatus. StrainTrack then
determines that two metagenomes have a personalized signature for B. vulgatus if the inter-sample
AGD is smaller than this cutoff. We expanded this AGD comparison to all 40 species, obtaining
an AUC and a species-specific AGD cutoff for each species (Figure S1, Table S1). Among these
40 species, 25 of them have an AUC higher than 0.975.
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Figure 1 | Accessory genome difference (AGD) as a metric to define inter-sample strain variance for
B. vulgatus

(A) Examples showing that B. vulgatus strains from distinct subjects differ in accessory genomes (top three panels)
and strains from the same subject share similar accessory genomes (bottom two panels). Sequencing depths over the
B. vulgatus reference are presented for four HMP metagenomes. Genomic regions that are differentially present
between the samples are colored in red; genomic regions that are present in all four metagenomes are colored in gray.
(B) Graphical illustration of calculating AGD for B. vulgatus for a pair of metagenomic samples from the same subject.
Each dot represents the sequencing depth of a 5 Kb genomic window.

(C) Graphical illustration of calculating AGD for B. vulgatus for a pair of metagenomic samples from two different
subjects. Each dot represents the sequencing depth of a 5 Kb genomic window. Genomic regions that are differentially
present between the two samples are colored in red.

(D) Density histograms for intra-subject AGD profile (red) and inter-subject AGD profile (green) of B. vulgatus.

(E) ROC analysis for the AGD profiles of B. vulgatus. To obtain sets of sensitivity and specificity to draw the curve,
we set cutoffs from 0 to 1 with 0.0001 intervals.

StrainTrack predicts personal microbiomes for distinct people

Previous reports show that a pair of metagenomes from the same individual share strains for
multiple species, while a pair of unrelated metagenomes are unlikely to harbor closely-related
strains (Franzosa et al., 2015; Lloyd-Price et al., 2017). We, therefore, reason that StrainTrack
results could be harnessed to predict whether different metagenomic samples are from the same
donor based on the number of species sharing personalized genomic signatures. To do so, we
design a classification rule that labels two metagenomic samples are from the same donor if
more than two species share personalized signatures (Figure 2, Methods). To minimize false
predictions for individual species, we only considered the 25 species that displayed AUC values
higher than 0.975 in the AGD analysis (Figure S1; Table S1).


https://doi.org/10.1101/2020.09.14.296970
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.296970; this version posted September 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Using StrainTrack to predict whether two metagenomic samples are from the same donor
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Figure 2 | StrainTrack predicts personal microbiomes for distinct people

For a given pair of metagenomes, an inter-sample AGD is calculated for each of the 25 species that show substantial
differences between intra-subject and inter-subject AGD profiles (Table S1). For each species, the inter-sample AGD
is compared to the species-specific AGD cutoff (Table S1) and StrainTrack predicts that the metagenomes share the
personalized signature for this species if the AGD is smaller than the species-specific cutoff. When more than two

species share personalized signature between the two metagenomes, StrainTrack predicts that these two samples
belong to the same stool donor.

To examine the performance of this StrainTrack-based classifier, we use it to predict donors for
all pairs of 535 HMP metagenomic samples. These samples are from 250 distinct subjects, of
which 161 of them had more than one sample (Lloyd-Price et al., 2017). When comparing all
pairwise samples from HMP, our classifier provides us with a sensitivity of 95.79% and a
specificity of 99.99% (Figure 3A, Methods). To validate this classifier with an independent test
dataset, we apply StrainTrack to the Broad Next 10 dataset (Poyet et al., 2019), consisting of 410
metagenomic samples from 50 distinct individuals, and achieve a 100% specificity and 100%
sensitivity (Figure 3B).

From the HMP dataset, we notice a potential mislabeling of donor IDs for a pair of metagenomic
samples. We observe that the sample SRS045244 from subject 763880905 is predicted by
StrainTrack to share a microbiome donor with two samples from subject 763536994
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(SRS014287 and SRS062427); meanwhile, a different sample from the same subject
(763880905, sample SRS014948) is matched to the remaining sample from subject 763536994
(SRS050422, Figure 3C). Given that the empirical estimation of false negative rate is < 5% and
false positive rate is < 0.02% (Figure 3A), we estimate that the probability of observing these
donor matching patterns is <10°'® (Figure 3C). However, if we assume that the donor labels of
sample SRS050422 and SRS045244 were shuffled, the prediction results are identical to
expectations (Figure 3D). This analysis suggests that there is a mislabeling in the HMP
metagenomes and we offer a parsimonious solution to correct it. After fixing this putative label-
shuffling, StrainTrack-based classifier displays an updated sensitivity of 96.4% for the HMP
metagenomes.
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Figure 3 | StrainTrack-based classifier achieves >96% sensitivity and ~100% specificity in predicting
metagenome donor

(A) Contingency table shows the results of using StrainTrack to predict if a pair of HMP metagenomes belong to the
same donor. Numbers in parentheses are after correcting for misclassifications due to the putative mislabeling
illustrated in (C) and (D).

(B) Contingency table shows the results of using StrainTrack to predict if a pair of BN10 metagenomes are from the
same donor.

(C) Predictions for a set of five HMP metagenomes with proposed misclassifications. Samples labeled by HMP from
the same donor are grouped into the same block. Given the empirical false negative rate (< 5 %) and false positive
rate (< 0.02 %), the probability of observing these predictions is ~107'¢ (false positive rate® * true positive rate! * false
negative rate’ * true negative rate®)

(D) If the donor IDs of sample SRS050422 and SRS045244 are flipped, the predicted results are consistent with
expectations.
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Family members, especially young children, share many closely-related strains

Both HMP and BN10 donors consist of mostly unrelated individuals from the US, and it is
therefore expected that distinct donors carry distinct strains. However, members from the same
household may share a substantial level of strains, especially for children, whose microbiome may
partly derive from their parents (Ferretti ef al., 2018). To test whether StrainTrack can be applied
to people from the same family, we examine the metagenomes of an 8-member family, consisting
of a mother, father, and six children of ages 0, 2, 4, 6, 8, and 10 years old (Schloss et al., 2014).
Each family member has between 1 and 3 metagenomic samples sequenced (Figure S2). While
most pairs of family members can be successfully separated by StrainTrack, we find that certain
family members shared closely-related strains that complicate the classification accuracy. In
particular, the microbiomes of the 4, 6 and 8-year old children were predicted to be from the same
individual (Figure S2). These three children shared similar strain signatures for multiple species,
including many Bifidobacterium and Bacteroides strains. While such results suggest that our
method is limited in differentiating the microbiomes of family members, they demonstrate the
ability of StrainTrack in identifying transmission events between subjects (Brito et al., 2019).

Adult twins share closely-related strains at low frequency, potentially for decades

We next explore the ability of StrainTrack to detect strains shared by different human subjects
over a longer period of time (with potential transmission events). We select a dataset from adult
twins in the UK Twin Registry, including 125 pairs of adult twins between 50 and 70 years old
(Xie et al., 2016). We first calculated the inter-twin AGDs for the 25 species that are used in the
StrainTrack predictor. While the majority of the species do not have inter-twin AGDs smaller than
the species-specific cutoffs, we identify 27 cases in which a species shared a personalized signature
between twins (Table S2).

To validate if these identified personalized signatures reveal real transmission events between the
twins, we examine the evolutionary history of these strains to rule out apparent false positives. We
identify the genome-wide distribution of SNPs for these strains by searching for nucleotide
positions in which the major alleles are discordant between twins (Methods). We exclude species
with a signature of multiple-strain colonization, defined by an excess of genomic positions with
major allele frequency smaller than 0.95, were excluded (Methods). We also excluded twin-species
combinations containing genomic regions with more than 20 SNPs/Kb (Methods, Table S2,
Figure S3). Given that the documented molecular clock for bacterial species in natural
environments range from 0.5-5 SNPs/year (Didelot ef al., 2016), these numbers of SNPs are
inconsistent with recent transmission events and are likely distinct colonization events by closely-
related strains or transmission complicated by homologous recombination. After filtering, there
were six cases of shared, closely-related strains showing evidence of recently-emerged mutations.
Our analysis suggested that between 4 and 74 SNPs separated the strains harbored by distinct twins
(Figure 4A-B, Table S2). It is worth noting that our SNP analysis can only detect mutations that
reached high frequency within either twin’s microbiome. Given the molecular clocks for bacterial
species, these levels of SNPs suggest years to decades of evolutionary divergence between the
twins. Since these twins have mostly been living apart for 30-50 years, it is thus likely that these
mutations emerged and accumulated independently within the gut of each twin, while some shared
strains may have been colonizing both twins for decades.
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Strains shared by twin pairs show a signature of adaptive within-person evolution

The shared strains between adult twins and the recently emerged SNPs (years to decades)
provided an opportunity to investigate the within-person evolutionary process of these strains. To
examine if these point mutations reflect adaptive evolution within the twins, we calculated dN/dS
for the six strains that showed evidence for recent transmission (these six strains are from five
species). dN/dS is the normalized ratio of non-synonymous mutations to synonymous mutations
and is a canonical measure of selection (Methods). For the five species tested, we found the
values dN/dS are larger than or very close to one (Figure 4B). When combining SNPs identified
from all five species, we obtained a dN/dS that is significantly bigger than one, suggesting
genome-wide adaptive evolution dominates the within-person evolution for these species. We
thus suggest that the mutations that swept in these twins were driven by adaptive evolution.
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Figure 4 | Strains shared by twin pairs show signatures of adaptive within-person evolution

(A) and (B) Phylogenies of a B. caccae strain shared between the twin pair P121 and a B. cellulosilyticus strain shared
between the twin pair P58. Diamonds represent mutations in genes with more than one SNP identified between the
twins. Distinct genes are colored differently and annotated.

(C) dN/dS is calculated for SNPs identified in each individual species and combined. dN/dS is also calculated for
combined SNPs excluding B. intestinihominis, as this species appears to be a hypermutator. Error bars represent the
95% confidence intervals.

Discussion

Here, we introduce a new metagenomic analysis framework (StrainTrack) for rapid identification
of closely-related strains between metagenomes and accurate classification of shared microbiomes.
Compared to other strain-tracking methods, StrainTrack has a simple implementation and is easy
to be modified for different tasks. Leveraging the assumption that unrelated humans carry strains
with unique accessory genome profiles, we built a StrainTrack-based classifier with 25 species
that have distinct intra-personal and inter-personal AGD profiles. Such differences allow us to
infer with confidence whether two metagenomic samples share strains and further predict personal
microbiomes with high accuracy. StrainTrack performs particularly well for HMP and BN10
metagenomes, with only a few cases of misclassification in HMP samples. Our sensitivity and
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specificity are better compared to a previously reported classifier with 80% accuracy in recovering
HMP microbiome donors (Franzosa ef al., 2015). In addition, we find one case that the donor IDs
of a pair of metagenomes appeared to have been mislabeled. This mislabeling has been hinted in
the supplementary materials from a previous report (Schloissnig ef al., 2013).

Our method also enabled us to track closely-related strains across metagenome samples and
helped identify strains shared by twin pairs, potentially over decades of colonization. Further
analysis of the point mutations between the twin pairs revealed evidence that these shared strains
experience genome-wide adaptive evolution. Our analysis only accounted for mutations that
nearly sweep either twin and is likely missing mutations that are present at medium or low
frequencies. In addition, we identified six shared strains all from the Bacteroidetes phylum.
Nonetheless, our results demonstrated that adaptive evolution might dominate at short timescale
across the genome. This is striking given compelling evidence that purifying selection dominates
evolution at timescales of tens of thousands of years (Schloissnig et al., 2013; Garud et al., 2017,
Zhao et al., 2019). To solve this discrepancy, we propose two theoretical scenarios to reconcile
signals from the two timescales. One possibility is that many strains carried by an individual will
be lost over transmission between human populations; thus, within-person adaptive mutations are
rarely transmitted to new human hosts. Another possibility is that within-person adaptive
mutations are person-specific and usually lead to selective disadvantages in new human hosts,
and over time, these adaptive mutations will be selected against by natural forces. Future studies
with larger sample sizes and more strains from diverse taxonomic groups are needed to test these
hypotheses.
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Methods

Metagenomic datasets used in this study

We consider three publicly available datasets for this study: the Human Microbiome Project
(Lloyd-Price et al., 2017) (535 samples from 250 subjects: https://www.hmpdacc.org), the
TwinsUK study (Xie ef al., 2016) (250 samples from 250 subjects; ERP010708), and a gut
microbiome study of an eight-member family (Schloss et al., 2014) (15 samples from 8 family
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members). We also include datasets from the Broad Next 10 project (410 samples from 50
subjects; PRINA544527) (Poyet et al., 2019).

Reference genomes

The accessory genome comparison requires that a strain has adequate sequencing depths from
both metagenomic samples. To meet this criterion, we manually curate species that are abundant
and prevalent in the HMP and TwinsUK datasets and include some well-characterized species
found in the gut microbiome (e.g., E. coli), totalling 40 species. A representative reference
genome for each species was obtained from NCBI, and a single fasta file was generated that
contains these 40 genomes. To simplify the downstream analysis, for references with multiple
scaffolds, we connect the sequences from different scaffolds to form a single artificial contig.
The list of references used in this study can be found in Table S1.

Metagenomic reads alignment

Metagenomic reads are trimmed and filtered using Cutadapt and Sickle Sickle (Joshi and Fass,
2011; Martin, 2011). The filtered reads are aligned to the combined reference genome using
Bowtie2 (Langmead and Salzberg, 2012) (Parameters: -X 2000, --no-mixed, --very-sensitive, --
n-ceil 0,0.01, --un-conc). Alignment files (sam format) are converted to pileup files using
Samtools (Li et al., 2009) (Step 1: samtools view -bS; Step 2: samtools sort; Step 3: samtools
mpileup -q30 -x -s -O -d3000). From these pileup files, we extract information about read depth
at each genomic position from the combined reference.

AGD calculation

AGD is defined as the fraction of accessory genomic regions that are different between two
metagenomic samples. AGD is used to quantify the strain-strain distance between a pair of
metagenomes. We first divide the single contig (see Methods: Reference genomes) for the
targeted species into 5 Kb genomic windows. Average sequencing depth was calculated for each
of the genomic windows from both metagenomes. A genomic region is designated as different
when its sequencing depth is lower than 5% of the average sequencing depth in one sample and
is higher than 50% of the average in the other sample. To avoid inaccurate estimation of average
sequencing depth, due to abnormal alignment at mobile genomic regions and regions in the
reference genome that are not present in the sample-specific strains, average sequencing depth is
defined as the mean depth of genomic positions with sequence depth between the 25 and 75
percentiles of genome-wide sequencing depth.

For each species, we generate a cutoff that maximizes the differentiation of inter-subject and
intra-subject AGD profiles (Figure 1D, Table S1). This is accomplished by finding a cutoff that
maximizes the sum of sensitivity and specificity.

StrainTrack-based classifier

StrainTrack predictor includes 25 species that the AGD analysis shows AUC > 0.975. These
species all have sharply distinct intra-subject and inter-subject AGD profiles that allow detecting
closely-related strains with low degrees of false prediction. For a given pair of metagenomes, we
perform metagenomic alignment to the 25 species references and calculat the AGD for each
species between the two metagenomes. For each of the 25 species, the AGD is compared to the
species-specific AGD cutoff (Table S1). If AGD is smaller than the cutoff, the species is
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classified as having a personalized signature between the two samples. If more than two species
share a personalized signature between the two metagenomes, StrainTrack predicts that the two
samples belong to the same stool donor (Figure 2).

Identification of mutations between twins

For each species that share personalized signatures between a twin pair, candidate SNPs are
identified using SAMtools and filtered using filters optimized from previous work (Lieberman et
al., 2011, 2014). In particular, genomic positions were considered to be potential SNP positions
if the twins were discordant on the called base and both samples had: FQ score less than 30, at
least 1 read aligning either forward strand or reverse strand and a major allele frequency of at
least 80%. The median coverage across samples must be more than one read. Samples with
potential multiple-strain colonization are discarded in the analysis (>3% of the variable positions
have <95% major allele frequency, [reference]). In addition, regions that are not within 50-200%
of the average sequencing depth of the genome are discarded, as these polymorphisms are likely
from species that share homologous sequence to the reference. Detailed information of between-
twins SNPs for the shared strains are listed in Table S2.

dN/dS

Mutations were categorized as synonymous (S) or non-synonymous (N) based on open-reading
frame annotations from the GenBank files of the reference genomes. To calculate dN/dS for sets
of de novo mutations (Figure 4, Table S2), we normalized the observed N/S ratios by the
expected N/S ratios (Zhao et al., 2019). For any given set of SNPs, we calculated the expected
N/S for these SNPs, accounting for both (1) the different probabilities of acquiring non-
synonymous mutations for different types of mutations and (2) the codon compositions of the
genes in which these SNPs occurred.
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Supplementary Figures
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Figure S1 | Accessory genome difference (AGD) as a metric to define inter-sample strain variance for
B. adolescentis

(A) Examples showing that B. adolescentis strains from different human subjects are different in accessory genomes.
Sequencing depths over the B. adolescentis reference are presented for four HMP metagenomes. Genomic regions
that are differentially present between the samples are colored in red; genomic regions that are present in all four
metagenomes are colored in gray.

(B) Graphical illustration of calculating AGD for B. adolescentis for a pair of metagenomic samples from the same
subject. Each dot represents the sequencing depth of a 5 Kb genomic window.

(C) Graphical illustration of calculating AGD for B. adolescentis for a pair of metagenomic samples from two different
subjects. Each dot represents the sequencing depth of a 5 Kb genomic window. Genomic windows that are
differentially present between the two samples are colored in red (Methods)

(D) Density histograms for intra-subject AGD profile (red) and inter-subject AGD profile (green) of B. adolescentis.
(E) ROC analysis for the AGD profiles of B. vulgatus. To obtain (sensitivity, specificity) sets to draw the curve, we
set cutoffs from 0 to 1 with 0.0001 intervals.
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Figure S2 | Samples from close family members can be clustered together

StrainTrack is applied to 15 metagenomes from 8 family members. Columns and rows represent distinct
metagenomic samples. Row labels and column labels represent the identity of the family member. If two
metagenomes are predicted by StrainTrack to be from the same donor, they are colored with green in the
heatmap. We notice that StrainTrack cannot distinguish metagenomes from the 4-year old, 6-year old and
8-year old children.
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Figure S3 | Alistipes onderdonkii and Alistipes putredinis between UK twin pair P126 show signs for
recombination or separate colonization events by closely-related strains

The Alistipes onderdonkii and Alistipes putredinis strains predicted by StrainTrack as having personalized
signature between the twins. Both genomes contain regions enriched for SNPs (>20 SNPs/Kb), suggesting
that these two species underwent homologous recombinations or they are not closely-related strains.


https://doi.org/10.1101/2020.09.14.296970
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.296970; this version posted September 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table S1: Species used in StrainTrack

Species AUC cutoff TP rate TF rate
[Eubacterium] eligens 0.948 0.0036 96.0% 84.8%
[Eubacterium] rectale 0.944 0.0044 96.8% 88.3%
Acidaminococcus intestini 0.978 0.0001 95.6% 100.0%
Akkermansia muciniphila 0.934 0.0001 95.0% 92.5%
Alistipes finegoldii 0.979 0.0027 99.7% 95.5%
Alistipes onderdonkii 0.988 0.0039 98.3% 97.2%
Alistipes putredinis 0.976 0.0001 99.5% 95.0%
Alistipes shahii 0.973 0.0054 99.1% 94.6%
Bacteroides caccae 0.979 0.0011 97.8% 95.9%
Bacteroides cellulosilyticus 0.989 0.0022 99.9% 98.2%
Bacteroides dorei 0.983 0.0085 99.3% 94.7%
Bacteroides eggerthii 1.000 0.0001 100.0% 100.0%
Bacteroides fragilis 0.974 0.0029 99.8% 93.5%
Bacteroides helcogenes NA NA NA NA
Bacteroides massiliensis 1.000 0.0087 98.9% 99.2%
Bacteroides ovatus 0.983 0.0055 98.7% 95.0%
Bacteroides stercoris 0.992 0.0075 99.5% 99.1%
Bacteroides thetaiotaomicron 0.999 0.0056 99.4% 98.1%
Bacteroides uniformis 0.989 0.0043 99.3% 96.4%
Bacteroides vulgatus 0.983 0.003 99.9% 96.9%
Barnesiella intestinihominis 0.980 0.0015 98.8% 94.6%
Bifidobacterium adolescentis 0.987 0.0001 98.5% 94.1%
Bifidobacterium longum 0.968 0.0001 93.7% 100.0%
Collinsella aerofaciens 0.979 0.0001 100.0% 92.3%
Coprococcus comes 0.994 0.0001 98.9% 100.0%
Dialister invisus 0.923 0.0001 97.4% 89.2%
Dorea formicigenerans 1.000 0.0001 100.0% 100.0%
Escherichia coli 0.608 0.0022 90.1% 50.0%
Faecalibacterium prausnitzii 0.941 0.0033 93.3% 91.2%
Odoribacter splanchnicus 0.990 0.0035 99.9% 98.1%
Parabacteroides distasonis 0.989 0.0053 98.4% 97.6%
Parabacteroides merdae 0.990 0.0034 98.6% 95.8%
Paraprevotella clara 0.998 0.0024 99.5% 98.3%
Parasutterella excrementihominis 0.987 0.0018 99.0% 99.0%
Roseburia hominis 0.918 0.007 94.3% 88.5%
Roseburia intestinalis 0.973 0.0091 98.9% 90.0%
Roseburia inulinivorans 0.971 0.0062 96.0% 85.7%
Ruminococcus bromii NA NA NA NA
Sutterella wadsworthensis 0.973 0.0001 94.6% 100.0%
Tyzzerella nexilis 0.984 0.0001 96.8% 100.0%
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Table S2: closely-related strains shared between adult twins

Twin Pairs

Species

Conclusion from SNP

Number of SNPs

analysis swept in twin 1
P64 Alistipes onderdonkii  Possibly mixed strains NA
P97 Alistipes onderdonkii  Closely-related strains 8
P113 Alistipes onderdonkii ~ Possibly mixed strains NA
P119 Alistipes onderdonkii  Possibly mixed strains NA
P126 Alistipes onderdonkii  Possibly with recombination NA
P126 Alistipes putredinis Possibly with recombination NA
P121 Bacteroides caccae Closely-related strains 57
P58 Bacteroides cellulosilytic Closely-related strains 43
P73 Bacteroides ovatus Possibly mixed strains NA
P15 Bacteroides uniformis  Closely-related strains 4
P19 Bacteroides uniformis  Possibly mixed strains NA
P27 Bacteroides uniformis  Closely-related strains 56
P29 Bacteroides uniformis  Possibly mixed strains NA
P35 Bacteroides uniformis  Possibly mixed strains NA
P54 Bacteroides uniformis  Possibly mixed strains NA
P89 Bacteroides uniformis  Possibly mixed strains NA
P111 Bacteroides uniformis  Possibly mixed strains NA
P7 Bacteroides vulgatus ~ Possibly mixed strains NA
P15 Bacteroides vulgatus ~ Possibly mixed strains NA
P29 Bacteroides vulgatus ~ Possibly mixed strains NA
P45 Bacteroides vulgatus ~ Possibly mixed strains NA
P62 Bacteroides vulgatus ~ Possibly mixed strains NA
P70 Bacteroides vulgatus  Possibly mixed strains NA
P100 Bacteroides vulgatus ~ Possibly mixed strains NA
P103 Bacteroides vulgatus ~ Possibly mixed strains NA
P15 Barnesiella intestinihomi Closely-related strains 74
P47 Collinsella acrofaciens Possibly mixed strains NA
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