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Abstract 
An individual9s microbiome consists of a diverse set of bacterial strains that encode rich information on its 

colonization and evolutionary history. Here, we introduce a versatile and straightforward reference-based 

strain tracking approach (StrainTrack) that determines whether distinct metagenomes carry closely-related 

strains based on gene presence and absence profiles. We show that StrainTrack can predict whether two 
metagenomes originate from the same donor via counting the number of species sharing closely-related 

strains, achieving >96% specificity, and ~100% sensitivity. When applied to the metagenomes of adult 

twins in the TwinsUK registry, we identify six cases of closely-related strains carried by both twins, 
potentially over decades of colonization.  

 

Introduction 
The human gut microbiome harbors a complex community of microbial species stably colonizing for years 
or even decades (Faith et al., 2013; Lloyd-Price et al., 2017). While individuals from the same human 

population usually contain similar species, different people typically carry person-specific strains, 

distinguished by genomic variations such as single nucleotide polymorphisms (SNPs), insertion/deletions, 
and gene presence/absence (Scholz et al., 2016; Truong et al., 2017). In principle, tracking closely-related 

strains paves the way to understanding how microbial strains are transmitted between family members, 

across social networks, after fecal microbiota transplantation (FMT), and throughout an infection (Ferretti 

et al., 2018; Smillie et al., 2018; Brito et al., 2019). Such fine-scale monitoring of strains can provide more 
significant insights into how the microbiome responds to host and environmental factors, with potential 

applications in the personalization of treatment such as FMT donor selection (Duvallet et al., 2017). 

  
Various computational methods are available for strain-level analysis of metagenomic samples. One class 

of methods resolve strains via identifying SNPs between different metagenomes by aligning short reads to 

species reference genomes (Luo et al., 2015; Costea et al., 2017; Truong et al., 2017; Smillie et al., 2018). 
However, calling SNPs is prone to false positives, as high-resolution strain profiling usually requires careful 

and iterative tuning of the filtering parameters (Brito and Alm, 2016). In addition, when multiple strains 

coexist, it is difficult to phase alleles carried by different strains. Another commonly-used approach 

involves the analysis of pangenomes, particularly the accessory genomic regions carried by distinct strains. 
Unlike SNP-based methods, pangenome-based approaches are more robust to parameter changes, yet they 

require an extensive database of pangenomes built from a diverse set of available strains and substantial 

computational resources; to date, only a small number of gut species have high-quality pangenomes 
available (Zhu et al., 2015; Scholz et al., 2016). Overall, these approaches are limited in their ability to 

leverage the strain-level information to compare the overall similarity of metagenomes samples and identify 
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personalized signatures, as they often only distinguish strains from one bacterial species at a time. A 
previous attempt at differentiating microbiome samples and identifying personalization using metagenomic 

codes was only able achieve 80% accuracy (Franzosa et al., 2015). 

  
Here, we introduce a flexible and simple method4StrainTrack4that uses a single reference genome for 
individual species to compare strain identities between metagenomes. We assume that the accessory 

genomes of microbial species are highly individual-specific and that many strains can stably colonize a 

microbiome for years (Faith et al., 2013; Zhao et al., 2019). We compare the accessory genomes of 40 
prevalent gut bacteria species using public metagenomes and demonstrate evidence supporting this 

assumption for 25 out of the 40 species. We further design a classification rule that leverages these 

comparisons to predict whether two metagenomes belong to the same individual. We achieve near-perfect 
specificity and sensitivity when applied to the metagenomes of the Human Microbiome Project (HMP) and 

the Broad Next 10 (BN10) project. In doing so, we find evidence supporting a mislabeling of donor IDs in 

a pair of the HMP metagenomes. Lastly, when StrainTrack is applied to track strains from adult twins, we 

find that certain twins can share strains that may have colonized for potentially decades and discover 
signatures for adaptive evolution in these shared strains.  
  

Results 

Accessory genome difference (AGD) as a metric to define inter-sample strain variance 
We develop a bioinformatic workflow (StrainTrack) to achieve strain-level comparisons between 

metagenomic samples by aligning short reads against a set of well-assembled reference genomes. 

In particular,  we align metagenomic reads against a curated collection of 40 abundant or well-

studied representative gut bacterial species (Lloyd-Price et al., 2017; Xie et al., 2016, Table S1). 

To quantify the inter-sample strain difference, we develop a metric that estimates the fraction of 

the reference genome that is variable between the two metagenomes. For any given species, we 

calculate the relative sequencing depth for every 5kb genomic window. We then compare the 

relative sequencing depth of each genomic window between sample pairs (Methods). If the 

average sequencing depth of a genomic window is >50% of the average depth in one sample and 

with <5% of the average depth in another sample, we designate this genomic region as a 

differential region. We define the fraction of the reference genome that is designated as 

differential regions as the accessory genome difference (AGD; Methods). 
  
To demonstrate how AGDs can reveal personalized strain signatures, we examine Bacteroides 

vulgatus, a prevalent species that inhabits the large intestine (Yatsunenko et al., 2012). As an 

example, a pair of distinct metagenomic samples from the same HMP donor has an AGD of 0 

(Figure 1A, 1B), while a pair of metagenomes from two distinct subjects shows an AGD of 0.040 

(Figure 1C). We estimate AGDs for all pairwise HMP metagenomes for B. vulgatus and observe 

a clear difference between the inter-subject and intra-subject AGD profiles (Methods; Figure 1D). 

Further supporting this sharp difference, we generate a receiver operating characteristic curve and 

calculate the area under the curve (AUC) to be 0.989 (Figure 1E). We pick an AGD cutoff that 

maximizes the sum of sensitivity and specificity (Methods) for B. vulgatus. StrainTrack then 

determines that two metagenomes have a personalized signature for B. vulgatus if the inter-sample 

AGD is smaller than this cutoff. We expanded this AGD comparison to all 40 species, obtaining 

an AUC and a species-specific AGD cutoff for each species (Figure S1, Table S1). Among these 

40 species, 25 of them have an AUC higher than 0.975. 
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Figure 1 | Accessory genome difference (AGD) as a metric to define inter-sample strain variance for 

B. vulgatus 
(A) Examples showing that B. vulgatus strains from distinct subjects differ in accessory genomes (top three panels) 

and strains from the same subject share similar accessory genomes (bottom two panels). Sequencing depths over the 

B. vulgatus reference are presented for four HMP metagenomes. Genomic regions that are differentially present 

between the samples are colored in red; genomic regions that are present in all four metagenomes are colored in gray. 
(B) Graphical illustration of calculating AGD for B. vulgatus for a pair of metagenomic samples from the same subject. 

Each dot represents the sequencing depth of a 5 Kb genomic window. 
(C) Graphical illustration of calculating AGD for B. vulgatus for a pair of metagenomic samples from two different 

subjects. Each dot represents the sequencing depth of a 5 Kb genomic window. Genomic regions that are differentially 

present between the two samples are colored in red. 
(D) Density histograms for intra-subject AGD profile (red) and inter-subject AGD profile (green) of B. vulgatus. 
(E) ROC analysis for the AGD profiles of B. vulgatus. To obtain sets of sensitivity and specificity to draw the curve, 

we set cutoffs from 0 to 1 with 0.0001 intervals. 

 

 

StrainTrack predicts personal microbiomes for distinct people 
Previous reports show that a pair of metagenomes from the same individual share strains for 

multiple species, while a pair of unrelated metagenomes are unlikely to harbor closely-related 

strains (Franzosa et al., 2015; Lloyd-Price et al., 2017). We, therefore, reason that StrainTrack 

results could be harnessed to predict whether different metagenomic samples are from the same 

donor based on the number of species sharing personalized genomic signatures. To do so, we 

design a classification rule that labels two metagenomic samples are from the same donor if 

more than two species share personalized signatures (Figure 2, Methods). To minimize false 

predictions for individual species, we only considered the 25 species that displayed AUC values 

higher than 0.975 in the AGD analysis (Figure S1; Table S1). 
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Figure 2 | StrainTrack predicts personal microbiomes for distinct people 
For a given pair of metagenomes, an inter-sample AGD is calculated for each of the 25 species that show substantial 

differences between intra-subject and inter-subject AGD profiles (Table S1). For each species, the inter-sample AGD 

is compared to the species-specific AGD cutoff (Table S1) and StrainTrack predicts that the metagenomes share the 

personalized signature for this species if the AGD is smaller than the species-specific cutoff. When more than two 

species share personalized signature between the two metagenomes, StrainTrack predicts that these two samples 

belong to the same stool donor. 

 
  
To examine the performance of this StrainTrack-based classifier, we use it to predict donors for 

all pairs of 535 HMP metagenomic samples. These samples are from 250 distinct subjects, of 

which 161 of them had more than one sample (Lloyd-Price et al., 2017). When comparing all 

pairwise samples from HMP, our classifier provides us with a sensitivity of 95.79% and a 

specificity of 99.99% (Figure 3A, Methods). To validate this classifier with an independent test 

dataset, we apply StrainTrack to the Broad Next 10 dataset (Poyet et al., 2019), consisting of 410 

metagenomic samples from 50 distinct individuals, and achieve a 100% specificity and 100% 

sensitivity (Figure 3B). 
  
From the HMP dataset, we notice a potential mislabeling of donor IDs for a pair of metagenomic 

samples. We observe that the sample SRS045244 from subject 763880905 is predicted by 

StrainTrack to share a microbiome donor with two samples from subject 763536994 

Using StrainTrack to predict whether two metagenomic samples are from the same donor
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(SRS014287 and SRS062427); meanwhile, a different sample from the same subject 

(763880905, sample SRS014948) is matched to the remaining sample from subject 763536994 

(SRS050422, Figure 3C). Given that the empirical estimation of false negative rate is < 5% and 

false positive rate is < 0.02% (Figure 3A), we estimate that the probability of observing these 

donor matching patterns is <10-16 (Figure 3C). However, if we assume that the donor labels of 

sample SRS050422 and SRS045244 were shuffled, the prediction results are identical to 

expectations (Figure 3D). This analysis suggests that there is a mislabeling in the HMP 

metagenomes and we offer a parsimonious solution to correct it. After fixing this putative label-

shuffling, StrainTrack-based classifier displays an updated sensitivity of 96.4% for the HMP 

metagenomes. 

 

 
 

Figure 3 | StrainTrack-based classifier achieves >96% sensitivity and ~100% specificity in predicting 

metagenome donor 
(A) Contingency table shows the results of using StrainTrack to predict if a pair of HMP metagenomes belong to the 

same donor. Numbers in parentheses are after correcting for misclassifications due to the putative mislabeling 

illustrated in (C) and (D). 
(B) Contingency table shows the results of using StrainTrack to predict if a pair of BN10 metagenomes are from the 

same donor. 
(C) Predictions for a set of five HMP metagenomes with proposed misclassifications. Samples labeled by HMP  from 

the same donor are grouped into the same block. Given the empirical false negative rate (< 5 %) and false positive 

rate (< 0.02 %), the probability of observing these predictions is ~10-16 (false positive rate3 * true positive rate1 * false 
negative rate3 * true negative rate3) 

(D) If the donor IDs of sample SRS050422 and SRS045244 are flipped, the predicted results are consistent with 

expectations. 
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Family members, especially young children, share many closely-related strains 
Both HMP and BN10 donors consist of mostly unrelated individuals from the US, and it is 

therefore expected that distinct donors carry distinct strains. However, members from the same 

household may share a substantial level of strains, especially for children, whose microbiome may 

partly derive from their parents (Ferretti et al., 2018). To test whether StrainTrack can be applied 

to people from the same family, we examine the metagenomes of an 8-member family, consisting 

of a mother, father, and six children of ages 0, 2, 4, 6, 8, and 10 years old (Schloss et al., 2014). 

Each family member has between 1 and 3 metagenomic samples sequenced (Figure S2). While 

most pairs of family members can be successfully separated by StrainTrack, we find that certain 

family members shared closely-related strains that complicate the classification accuracy. In 

particular, the microbiomes of the 4, 6 and 8-year old children were predicted to be from the same 

individual (Figure S2). These three children shared similar strain signatures for multiple species, 

including many Bifidobacterium and Bacteroides strains. While such results suggest that our 

method is limited in differentiating the microbiomes of family members, they demonstrate the 

ability of StrainTrack in identifying transmission events between subjects (Brito et al., 2019). 
  
Adult twins share closely-related strains at low frequency, potentially for decades 
We next explore the ability of StrainTrack to detect strains shared by different human subjects 

over a longer period of time (with potential transmission events). We select a dataset from adult 

twins in the UK Twin Registry, including 125 pairs of adult twins between 50 and 70 years old 

(Xie et al., 2016). We first calculated the inter-twin AGDs for the 25 species that are used in the 

StrainTrack predictor. While the majority of the species do not have inter-twin AGDs smaller than 

the species-specific cutoffs, we identify 27 cases in which a species shared a personalized signature 

between twins (Table S2). 
  
To validate if these identified personalized signatures reveal real transmission events between the 

twins, we examine the evolutionary history of these strains to rule out apparent false positives. We 

identify the genome-wide distribution of SNPs for these strains by searching for nucleotide 

positions in which the major alleles are discordant between twins (Methods). We exclude species 

with a signature of multiple-strain colonization, defined by an excess of genomic positions with 

major allele frequency smaller than 0.95, were excluded (Methods). We also excluded twin-species 

combinations containing genomic regions with more than 20 SNPs/Kb (Methods, Table S2, 

Figure S3). Given that the documented molecular clock for bacterial species in natural 

environments range from 0.535 SNPs/year (Didelot et al., 2016), these numbers of SNPs are 

inconsistent with recent transmission events and are likely distinct colonization events by closely-

related strains or transmission complicated by homologous recombination. After filtering, there 

were six cases of shared, closely-related strains showing evidence of recently-emerged mutations. 

Our analysis suggested that between 4 and 74 SNPs separated the strains harbored by distinct twins 

(Figure 4A-B, Table S2). It is worth noting that our SNP analysis can only detect mutations that 

reached high frequency within either twin9s microbiome. Given the molecular clocks for bacterial 

species, these levels of SNPs suggest years to decades of evolutionary divergence between the 

twins. Since these twins have mostly been living apart for 30350 years, it is thus likely that these 

mutations emerged and accumulated independently within the gut of each twin, while some shared 

strains may have been colonizing both twins for decades. 
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Strains shared by twin pairs show a signature of adaptive within-person evolution 
The shared strains between adult twins and the recently emerged SNPs (years to decades) 

provided an opportunity to investigate the within-person evolutionary process of these strains. To 

examine if these point mutations reflect adaptive evolution within the twins, we calculated dN/dS 

for the six strains that showed evidence for recent transmission (these six strains are from five 

species). dN/dS is the normalized ratio of non-synonymous mutations to synonymous mutations 

and is a canonical measure of selection (Methods). For the five species tested, we found the 

values dN/dS are larger than or very close to one (Figure 4B). When combining SNPs identified 

from all five species, we obtained a dN/dS that is significantly bigger than one, suggesting 

genome-wide adaptive evolution dominates the within-person evolution for these species. We 

thus suggest that the mutations that swept in these twins were driven by adaptive evolution. 
 
  

 
Figure 4 | Strains shared by twin pairs show signatures of adaptive within-person evolution 
(A) and (B) Phylogenies of a B. caccae strain shared between the twin pair P121 and a B. cellulosilyticus strain shared 

between the twin pair P58. Diamonds represent mutations in genes with more than one SNP identified between the 

twins. Distinct genes are colored differently and annotated. 
(C) dN/dS is calculated for SNPs identified in each individual species and combined. dN/dS is also calculated for 

combined SNPs excluding B. intestinihominis, as this species appears to be a hypermutator. Error bars represent the 

95% confidence intervals. 

 
  

Discussion 

Here, we introduce a new metagenomic analysis framework (StrainTrack) for rapid identification 

of closely-related strains between metagenomes and accurate classification of shared microbiomes. 

Compared to other strain-tracking methods, StrainTrack has a simple implementation and is easy 

to be modified for different tasks. Leveraging the assumption that unrelated humans carry strains 

with unique accessory genome profiles, we built a StrainTrack-based classifier with 25 species 

that have distinct intra-personal and inter-personal AGD profiles. Such differences allow us to 

infer with confidence whether two metagenomic samples share strains and further predict personal 

microbiomes with high accuracy. StrainTrack performs particularly well for HMP and BN10 

metagenomes, with only a few cases of misclassification in HMP samples. Our sensitivity and 
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specificity are better compared to a previously reported classifier with 80% accuracy in recovering 

HMP microbiome donors (Franzosa et al., 2015). In addition, we find one case that the donor IDs 

of a pair of metagenomes appeared to have been mislabeled. This mislabeling has been hinted in 

the supplementary materials from a previous report (Schloissnig et al., 2013). 

 
Our method also enabled us to track closely-related strains across metagenome samples and 

helped identify strains shared by twin pairs, potentially over decades of colonization. Further 

analysis of the point mutations between the twin pairs revealed evidence that these shared strains 

experience genome-wide adaptive evolution. Our analysis only accounted for mutations that 

nearly sweep either twin and is likely missing mutations that are present at medium or low 

frequencies. In addition, we identified six shared strains all from the Bacteroidetes phylum. 

Nonetheless, our results demonstrated that adaptive evolution might dominate at short timescale 

across the genome. This is striking given compelling evidence that purifying selection dominates 

evolution at timescales of tens of thousands of years (Schloissnig et al., 2013; Garud et al., 2017; 

Zhao et al., 2019). To solve this discrepancy, we propose two theoretical scenarios to reconcile 

signals from the two timescales. One possibility is that many strains carried by an individual will 

be lost over transmission between human populations; thus, within-person adaptive mutations are 

rarely transmitted to new human hosts. Another possibility is that within-person adaptive 

mutations are person-specific and usually lead to selective disadvantages in new human hosts, 

and over time, these adaptive mutations will be selected against by natural forces. Future studies 

with larger sample sizes and more strains from diverse taxonomic groups are needed to test these 

hypotheses. 
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Methods 

Metagenomic datasets used in this study 

We consider three publicly available datasets for this study: the Human Microbiome Project 

(Lloyd-Price et al., 2017) (535 samples from 250 subjects: https://www.hmpdacc.org), the 

TwinsUK study (Xie et al., 2016) (250 samples from 250 subjects; ERP010708), and a gut 

microbiome study of an eight-member family (Schloss et al., 2014) (15 samples from 8 family 
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members). We also include datasets from the Broad Next 10 project (410 samples from 50 

subjects; PRJNA544527) (Poyet et al., 2019). 

  

Reference genomes 

The accessory genome comparison requires that a strain has adequate sequencing depths from 

both metagenomic samples. To meet this criterion, we manually curate species that are abundant 

and prevalent in the HMP and TwinsUK datasets and include some well-characterized species 

found in the gut microbiome (e.g., E. coli), totalling 40 species. A representative reference 

genome for each species was obtained from NCBI, and a single fasta file was generated that 

contains these 40 genomes. To simplify the downstream analysis, for references with multiple 

scaffolds, we connect the sequences from different scaffolds to form a single artificial contig. 

The list of references used in this study can be found in Table S1. 

  

Metagenomic reads alignment 

Metagenomic reads are trimmed and filtered using Cutadapt and Sickle Sickle (Joshi and Fass, 

2011; Martin, 2011). The filtered reads are aligned to the combined reference genome using 

Bowtie2 (Langmead and Salzberg, 2012) (Parameters: -X 2000, --no-mixed, --very-sensitive, --

n-ceil 0,0.01, --un-conc). Alignment files (sam format) are converted to pileup files using 

Samtools (Li et al., 2009) (Step 1: samtools view -bS; Step 2: samtools sort; Step 3: samtools 

mpileup -q30 -x -s -O -d3000). From these pileup files, we extract information about read depth 

at each genomic position from the combined reference. 

  

AGD calculation 

AGD is defined as the fraction of accessory genomic regions that are different between two 

metagenomic samples. AGD is used to quantify the strain-strain distance between a pair of 

metagenomes. We first divide the single contig (see Methods: Reference genomes) for the 

targeted species into 5 Kb genomic windows. Average sequencing depth was calculated for each 

of the genomic windows from both metagenomes. A genomic region is designated as different 

when its sequencing depth is lower than 5% of the average sequencing depth in one sample and 

is higher than 50% of the average in the other sample. To avoid inaccurate estimation of average 

sequencing depth, due to abnormal alignment at mobile genomic regions and regions in the 

reference genome that are not present in the sample-specific strains, average sequencing depth is 

defined as the mean depth of genomic positions with sequence depth between the 25 and 75 

percentiles of genome-wide sequencing depth. 

  

For each species, we generate a cutoff that maximizes the differentiation of inter-subject and 

intra-subject AGD profiles (Figure 1D, Table S1). This is accomplished by finding a cutoff that 

maximizes the sum of sensitivity and specificity. 

  

StrainTrack-based classifier 

StrainTrack predictor includes 25 species that the AGD analysis shows AUC > 0.975. These 

species all have sharply distinct intra-subject and inter-subject AGD profiles that allow detecting 

closely-related strains with low degrees of false prediction. For a given pair of metagenomes, we 

perform metagenomic alignment to the 25 species references and calculat the AGD for each 

species between the two metagenomes. For each of the 25 species, the AGD is compared to the 

species-specific AGD cutoff (Table S1). If AGD is smaller than the cutoff, the species is 
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classified as having a personalized signature between the two samples. If more than two species 

share a personalized signature between the two metagenomes, StrainTrack predicts that the two 

samples belong to the same stool donor (Figure 2). 

  

Identification of mutations between twins 

For each species that share personalized signatures between a twin pair, candidate SNPs are 

identified using SAMtools and filtered using filters optimized from previous work (Lieberman et 

al., 2011, 2014). In particular, genomic positions were considered to be potential SNP positions 

if the twins were discordant on the called base and both samples had: FQ score less than 30, at 

least 1 read aligning either forward strand or reverse strand and a major allele frequency of at 

least 80%. The median coverage across samples must be more than one read. Samples with 

potential multiple-strain colonization are discarded in the analysis (>3% of the variable positions 

have <95% major allele frequency, [reference]). In addition, regions that are not within 50-200% 

of the average sequencing depth of the genome are discarded, as these polymorphisms are likely 

from species that share homologous sequence to the reference. Detailed information of between-

twins SNPs for the shared strains are listed in Table S2. 

  

dN/dS 

Mutations were categorized as synonymous (S) or non-synonymous (N) based on open-reading 

frame annotations from the GenBank files of the reference genomes. To calculate dN/dS for sets 

of de novo mutations (Figure 4, Table S2), we normalized the observed N/S ratios by the 

expected N/S ratios (Zhao et al., 2019). For any given set of SNPs, we calculated the expected 

N/S for these SNPs, accounting for both (1) the different probabilities of acquiring non-

synonymous mutations for different types of mutations and (2) the codon compositions of the 

genes in which these SNPs occurred. 
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Supplementary Figures 

  
Figure S1 | Accessory genome difference (AGD) as a metric to define inter-sample strain variance for 

B. adolescentis 
(A) Examples showing that B. adolescentis strains from different human subjects are different in accessory genomes. 

Sequencing depths over the B. adolescentis reference are presented for four HMP metagenomes. Genomic regions 

that are differentially present between the samples are colored in red; genomic regions that are present in all four 

metagenomes are colored in gray. 
(B) Graphical illustration of calculating AGD for B. adolescentis for a pair of metagenomic samples from the same 
subject. Each dot represents the sequencing depth of a 5 Kb genomic window. 
(C) Graphical illustration of calculating AGD for B. adolescentis for a pair of metagenomic samples from two different 

subjects. Each dot represents the sequencing depth of a 5 Kb genomic window. Genomic windows that are 

differentially present between the two samples are colored in red (Methods) 
(D) Density histograms for intra-subject AGD profile (red) and inter-subject AGD profile (green) of B. adolescentis. 
(E) ROC analysis for the AGD profiles of B. vulgatus. To obtain (sensitivity, specificity) sets to draw the curve, we 

set cutoffs from 0 to 1 with 0.0001 intervals. 
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Figure S2 | Samples from close family members can be clustered together 
StrainTrack is applied to 15 metagenomes from 8 family members. Columns and rows represent distinct 
metagenomic samples. Row labels and column labels represent the identity of the family member. If two 

metagenomes are predicted by StrainTrack to be from the same donor, they are colored with green in the 

heatmap. We notice that StrainTrack cannot distinguish metagenomes from the 4-year old, 6-year old and 
8-year old children. 
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Figure S3 | Alistipes onderdonkii and Alistipes putredinis between UK twin pair P126 show signs for 

recombination or separate colonization events by closely-related strains 
The Alistipes onderdonkii and Alistipes putredinis strains predicted by StrainTrack as having personalized 

signature between the twins. Both genomes contain regions enriched for SNPs (>20 SNPs/Kb), suggesting 

that these two species underwent homologous recombinations or they are not closely-related strains. 
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Table S1: Species used in StrainTrack 

 
 

  

Species AUC cutoff TP rate TF rate

[Eubacterium] eligens 0.948 0.0036 96.0% 84.8%

[Eubacterium] rectale 0.944 0.0044 96.8% 88.3%

Acidaminococcus intestini 0.978 0.0001 95.6% 100.0%

Akkermansia muciniphila 0.934 0.0001 95.0% 92.5%

Alistipes finegoldii 0.979 0.0027 99.7% 95.5%

Alistipes onderdonkii 0.988 0.0039 98.3% 97.2%

Alistipes putredinis 0.976 0.0001 99.5% 95.0%

Alistipes shahii 0.973 0.0054 99.1% 94.6%

Bacteroides caccae 0.979 0.0011 97.8% 95.9%

Bacteroides cellulosilyticus 0.989 0.0022 99.9% 98.2%

Bacteroides dorei 0.983 0.0085 99.3% 94.7%

Bacteroides eggerthii 1.000 0.0001 100.0% 100.0%

Bacteroides fragilis 0.974 0.0029 99.8% 93.5%

Bacteroides helcogenes NA NA NA NA

Bacteroides massiliensis 1.000 0.0087 98.9% 99.2%

Bacteroides ovatus 0.983 0.0055 98.7% 95.0%

Bacteroides stercoris 0.992 0.0075 99.5% 99.1%

Bacteroides thetaiotaomicron 0.999 0.0056 99.4% 98.1%

Bacteroides uniformis 0.989 0.0043 99.3% 96.4%

Bacteroides vulgatus 0.983 0.003 99.9% 96.9%

Barnesiella intestinihominis 0.980 0.0015 98.8% 94.6%

Bifidobacterium adolescentis 0.987 0.0001 98.5% 94.1%

Bifidobacterium longum 0.968 0.0001 93.7% 100.0%

Collinsella aerofaciens 0.979 0.0001 100.0% 92.3%

Coprococcus comes 0.994 0.0001 98.9% 100.0%

Dialister invisus 0.923 0.0001 97.4% 89.2%

Dorea formicigenerans 1.000 0.0001 100.0% 100.0%

Escherichia coli 0.608 0.0022 90.1% 50.0%

Faecalibacterium prausnitzii 0.941 0.0033 93.3% 91.2%

Odoribacter splanchnicus 0.990 0.0035 99.9% 98.1%

Parabacteroides distasonis 0.989 0.0053 98.4% 97.6%

Parabacteroides merdae 0.990 0.0034 98.6% 95.8%

Paraprevotella clara 0.998 0.0024 99.5% 98.3%

Parasutterella excrementihominis 0.987 0.0018 99.0% 99.0%

Roseburia hominis 0.918 0.007 94.3% 88.5%

Roseburia intestinalis 0.973 0.0091 98.9% 90.0%

Roseburia inulinivorans 0.971 0.0062 96.0% 85.7%

Ruminococcus bromii NA NA NA NA

Sutterella wadsworthensis 0.973 0.0001 94.6% 100.0%

Tyzzerella nexilis 0.984 0.0001 96.8% 100.0%
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Table S2: closely-related strains shared between adult twins 

 

 
 

 

 

 

 

 

 

  

Twin Pairs Species Conclusion from SNP 

analysis

Number of SNPs 

swept in twin 1

P64 Alistipes onderdonkii Possibly mixed strains NA

P97 Alistipes onderdonkii Closely-related strains 8

P113 Alistipes onderdonkii Possibly mixed strains NA

P119 Alistipes onderdonkii Possibly mixed strains NA

P126 Alistipes onderdonkii Possibly with recombination NA

P126 Alistipes putredinis Possibly with recombination NA

P121 Bacteroides caccae Closely-related strains 57

P58 Bacteroides cellulosilyticusClosely-related strains 43

P73 Bacteroides ovatus Possibly mixed strains NA

P15 Bacteroides uniformis Closely-related strains 4

P19 Bacteroides uniformis Possibly mixed strains NA

P27 Bacteroides uniformis Closely-related strains 56

P29 Bacteroides uniformis Possibly mixed strains NA

P35 Bacteroides uniformis Possibly mixed strains NA

P54 Bacteroides uniformis Possibly mixed strains NA

P89 Bacteroides uniformis Possibly mixed strains NA

P111 Bacteroides uniformis Possibly mixed strains NA

P7 Bacteroides vulgatus Possibly mixed strains NA

P15 Bacteroides vulgatus Possibly mixed strains NA

P29 Bacteroides vulgatus Possibly mixed strains NA

P45 Bacteroides vulgatus Possibly mixed strains NA

P62 Bacteroides vulgatus Possibly mixed strains NA

P70 Bacteroides vulgatus Possibly mixed strains NA

P100 Bacteroides vulgatus Possibly mixed strains NA

P103 Bacteroides vulgatus Possibly mixed strains NA

P15 Barnesiella intestinihominiClosely-related strains 74

P47 Collinsella aerofaciens Possibly mixed strains NA
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