

1 **CIAlign - A highly customisable command line tool to clean, interpret and**
2 **visualise multiple sequence alignments.**

3 Charlotte Tumescheit, Andrew E. Firth, Katherine Brown*

4

5 Department of Pathology, University of Cambridge, Cambridge, UK

6 *corresponding author, kab84@cam.ac.uk

7

8 **Keywords:** Multiple sequence alignment, alignment quality, Python tool, comparative
9 genomics, transcriptomics, phylogenetics

10 **Abstract**

11 **Background**

12 Throughout biology, multiple sequence alignments (MSAs) form the basis of much
13 investigation into biological features and relationships. These alignments are at the heart of
14 many bioinformatics analyses. However, sequences in MSAs are often incomplete or very
15 divergent, which leads to poorly aligned regions or large gaps in alignments. This slows down
16 computation and can impact conclusions without being biologically relevant. Therefore,
17 cleaning the alignment by removing these regions can substantially improve analyses.
18 Manual editing of MSAs is very widespread but is time-consuming and difficult to reproduce.

19

20 **Results**

21 We present a comprehensive, user-friendly MSA trimming tool with multiple visualisation
22 options. Our highly customisable command line tool aims to give intervention power to the
23 user by offering various options, and outputs graphical representations of the alignment
24 before and after processing to give the user a clear overview of what has been removed.

25 The main functionalities of the tool include removing regions of low coverage due to
26 insertions, removing gaps, cropping poorly aligned sequence ends and removing sequences
27 that are too divergent or too short. The thresholds for each function can be specified by the
28 user and parameters can be adjusted to each individual MSA. CIAAlign is designed with an
29 emphasis on solving specific and common alignment problems and on providing transparency
30 to the user.

31

32 Conclusion

33 CIAAlign effectively removes problematic regions and sequences from MSAs and provides
34 novel visualisation options. This tool can be used to refine alignments for further analysis and
35 processing. The tool is aimed at anyone who wishes to automatically clean up parts of an
36 MSA and those requiring a new, accessible way of visualising large MSAs.

37 Introduction

38 Throughout biology, multiple sequence alignments (MSAs) of DNA, RNA or amino acid
39 sequences are often the basis of investigation into biological features and relationships.
40 Applications of MSAs include, but are not limited to transcriptome analysis, in which
41 transcripts may need to be aligned to genes; RNA structure prediction, in which an MSA
42 improves results significantly compared to predictions based on single sequences; and
43 phylogenetics, where trees are usually created based on MSAs. There are many more
44 applications of MSA at a gene, transcript and genome level involved in a huge variety of
45 traditional and new approaches to genetics and genomics, many of which could benefit from
46 the tool presented here.

47 An MSA typically represents three or more DNA, RNA or amino acid sequences, which
48 represent partial or complete gene, transcript, protein or genome sequences. These
49 sequences are aligned by inserting gaps between residues to bring more similar residues
50 (either based on simple sequence similarity or an evolutionary model) into the same column,
51 allowing insertions, deletions and differences in sequence length to be taken into account [1,
52 2]. The first widely used automated method for generating MSAs was CLUSTAL [2] and more
53 recent versions of this tool are still in use today, along with tools such as MUSCLE [3], MAFFT
54 [4], T-Coffee [5] and many more. The majority of tools are based upon various heuristics used
55 to optimise progressive sequence alignment using a dynamic programming based algorithm
56 such as the Needleman-Wunsch algorithm [6]. It has been shown previously that removing
57 divergent regions from an MSA improves the resulting phylogenetic tree [7]. Various tools are
58 available to remove or improve poorly aligned columns, including trimAl [8], Gblocks [7] and
59 various refinement methods incorporated into alignment software [3, 4]. Some tree building

60 software can also take into account certain discrepancies in the alignment, for example
61 RaXML [9] can account for missing data in some columns and check for duplicate sequence
62 names and gap-only columns; similarly GUI based toolkits for molecular biology such as
63 MEGA [10] sometimes have options to delete or ignore columns containing gaps. However,
64 several common issues affect the speed, complexity and reliability of specific downstream
65 analyses but are not addressed by existing tools.

66 Clean and Interpret Alignments (`CIA`lign) is primarily intended to address four issues which
67 are commonly encountered when working with MSAs. Researchers in many fields regularly
68 edit MSAs by hand to address these issues, however as well as being extremely time
69 consuming, ensuring reproducibility with this approach is almost impossible and it cannot be
70 incorporated into an automated analysis pipeline.

71 The first issue we intend to address is that it is common for an MSA to contain more gaps
72 towards either end than in the body of the alignment. This problem occurs at both the
73 sequencing and alignment stage. For example, the ends of *de novo* assembled transcripts
74 tend to have lower read coverage [11] and therefore have a higher probability of mis-
75 assembly and therefore mis-alignment. MSAs created using these sequences therefore also
76 have regions of lower reliability towards either end. Similarly, both Sanger sequences and
77 sequences generated with Oxford Nanopore's long read sequencing technology, which are
78 often used directly in MSAs, tend to have lower quality scores at the either the beginning or
79 the end [12, 13, 14]. Automated removal of these regions from MSAs would therefore
80 increase the reliability of downstream analyses. Also, while generating an MSA, terminal gaps
81 complicate analysis, and the weighting of terminal gaps relative to internal gap opening and

82 gap extension penalties can make a large difference to the resulting alignment [15]. This
83 again leads to regions of ambiguity and therefore gaps towards the ends of the alignment.

84 Secondly, insertions or other stretches of sequence can be present in a minority of sequences
85 in an MSA, leading to large gaps in the remaining sequences. For example, alignments of
86 sections of bacterial genomes often result in long gaps representing genes which are absent
87 in the majority of species. These gaps can be observed, for example, in multiple genome
88 alignments shown in Tettelin et al. 2005 [16] for *Streptococcus agalactiae* and Hu et al. 2011
89 [17] for *Burkholderia*, amongst others, which show many genes which are present in only a
90 few genomes. While these regions are of interest in themselves and certainly should not be
91 excluded from all further analysis, they are not relevant for every downstream analysis. For
92 example, a consensus sequence for these bacteria would exclude these regions and their
93 presence would increase the time required for phylogenetic analysis without necessarily
94 adding any additional information. Large gaps in some sequences may also result from
95 missing data, rather than true biological differences and, if this is known to be the case, it is
96 often appropriate to remove these regions before performing phylogenetic analysis [18].

97 Thirdly, one or a few highly divergent sequences can heavily disrupt the alignment and
98 therefore complicate downstream analysis. It is very common for an MSA to include one or a
99 few outlier sequences which do not align well with the majority of the alignment. One example
100 of this is metagenomic analyses identifying novel sequences in large numbers of datasets. It
101 is common to manually remove phylogenetic outliers which are unlikely to truly represent
102 members of a group of interest (see for example [19–21]) but this is not feasible when
103 processing large numbers of alignments.

104 Finally, very short partially overlapping sequences cannot always be reliably aligned using
105 standard global alignment algorithms. It is very common to remove these sequences,
106 manually or otherwise, prior to further analysis.

107 There are also several common issues in alignment visualisation. Large alignments can be
108 difficult to visualise and a small and concise but accurate visualisation can be useful when
109 presenting results, so this has been incorporated into the software. With many alignment
110 trimming tools it can be difficult to track exactly which changes the software has made, so a
111 visual output showing these changes could be helpful.

112 Finally, transparency is often an issue with bioinformatics software, with poor reporting of
113 exactly how a file has been processed [22–24]. CIAAlign has been developed to process
114 alignments in a transparent manner, to allow the user to clearly and reproducibly report their
115 methodology.

116 CIAAlign is freely available at github.com/KatyBrown/CIAAlign.

117

118 **Materials and Methods**

119 CIAAlign is a command line tool implemented in Python 3. It can be installed either via pip3 or
120 from GitHub and is independent of the operating system. It has been designed to enable the
121 user to remove specific issues from an MSA, to visualise the MSA (including a markup file
122 showing which regions and sequences have been removed), and to interpret the MSA in
123 several ways. CIAAlign works on nucleotide or amino acids alignments and will detect which of
124 these is provided. A log file is generated to show exactly which sequences and positions have

125 been removed from the alignment and why they were removed. Users can then adjust the
126 software parameters according to their needs.

127 CIAAlign takes as its input any pre-computed MSA in FASTA format containing at least three
128 sequences. Most MSAs created with standard alignment software will be of an appropriate
129 scale, for example single or multi-gene alignments and whole genome alignments for many
130 microbial species. Measurements on the runtime were conducted for MSAs created by
131 randomly drawing equally probable nucleotides and adding gap regions such that each MSA
132 has a certain proportion of gaps. When running CIAAlign with all core functions (cleaning
133 functions and creating mini alignments for input, output and the markup) and for fixed gap
134 proportions, the runtime scales quadratically with the size of the MSA, i.e. with n as the
135 number of sequences and m the length of the MSA, the worst case time complexity is
136 $O((nm)^2)$. Further runtime measurements were taken for running CIAAlign with the core
137 functions on an MSA of constant size with different numbers of gaps. The runtime decreases
138 linearly with an increasing proportion of gaps. It should be noted that, besides the size of the
139 MSA and its gap content, the runtime is impacted by which combination of functions is
140 applied. For very long MSAs the size of the final image becomes a limiting factor when
141 creating a sequence logo, as the matplotlib library [25] has restrictions on the number of
142 pixels in one object. We have provided detailed instructions about this limit in the “Guidelines
143 for using CIAAlign” on the CIAAlign GitHub.

144 The path to the alignment file is the only mandatory parameter. Every function is run only if
145 specified in the parameters and many function-specific parameters allow options to be fine-
146 tuned. Using the parameter option `--all` will turn on all the available functions and run them

147 with the default parameters, unless otherwise specified. Additionally, the user can provide
148 parameters via a configuration file instead of via the command line.

149 CIAAlign has been designed to maximise usability, reproducibility and reliability. The code is
150 written to be as readable as possible and all functions are fully documented. All functions are
151 covered by unit tests. CIAAlign is freely available, open source and fully version controlled.

152

153 **Cleaning Alignments**

154 CIAAlign consists of several functions to clean an MSA by removing commonly encountered
155 alignment issues. All of these functions are optional and can be fine-tuned using user
156 parameters. All parameters have default values. The available functions are presented here in
157 the order they are executed by the program. The order can have a direct impact on the
158 results, the functions removing positions that lead to the greatest disruptions in the MSA
159 should be run first as they potentially make removing more positions unnecessary and
160 therefore keep processing to a minimum. For example, divergent sequences often contain
161 many insertions compared to the consensus, so removing these sequences first reduces the
162 number of insertions which need to be removed. Sequences can be made shorter during
163 processing with CIAAlign and therefore too short sequences are removed last.

164 Fig 1 shows a graphical representation of an example toy alignment before (Fig 1A) and after
165 (Fig 1B-1F) using each function individually. The remove gap only function is run by default
166 after every cleaning step, unless otherwise specified by the user.

167

168 *Remove Divergent*

169 For each column in the alignment, this function finds the most common nucleotide or amino
170 acid and generates a temporary consensus sequence. Each sequence is then compared
171 individually to this consensus sequence. Sequences which match the consensus at a
172 proportion of positions less than a user-defined threshold (default 0.65) are excluded from the
173 alignment (Fig 1B). It is recommended to run the `make_similarity_matrix` function to
174 calculate pairwise similarity before removing divergent sequences, in order to adjust the
175 parameter value for more or less divergent alignments.

176

177 *Remove Insertions*

178 In order to define a region as an insertion, an alignment gap must be present in the majority of
179 sequences and flanked by a minimum number of non-gap positions on either side, which can
180 be defined by the user (default 5). The minimum and maximum size of insertion to be
181 removed can also be defined by the user (default 3 and 200 respectively) (Fig 1C).

182

183 *Crop Ends*

184 Crop ends redefines where each sequence starts and ends, based on the ratio of the
185 numbers of gap and non-gap positions observed up to a given position in the sequence. It
186 then replaces all non-gap positions before and after the redefined start and end, respectively,
187 with gaps. This will be described for redefining the sequence start, however crop ends is also
188 applied to the reverse of the sequence to redefine the sequence end.

189 The number of gap positions separating every two consecutive non-gap positions is
190 compared to a threshold and if that difference is higher than the threshold, the start of the
191 sequence will be reset to that position. This threshold is defined as a proportion of the total

192 sequence length, excluding gaps, and can be defined by the user (default: 0.05) (Fig 1D, Fig
193 2).

194 The user can set a parameter that defines the maximum proportion of the sequence for which
195 to consider the change in gap positions (default: 0.1) and therefore the innermost position at
196 which the start or end of the sequence may be redefined. It is recommended to set this
197 parameter no higher than 0.1, since even if there are a large number of gap positions beyond
198 this point, this is unlikely to be the result of incomplete sequences (Fig 2).

199

200 *Remove short sequences*

201 Remove short sequences removes sequences which have less than a specified number of
202 non-gap positions, which can be set by the user (default: 50) (Fig 1E).

203

204 *Remove gap only columns*

205 Remove gap only removes columns that contain only gaps. These could be introduced by
206 manual editing of the MSA before using CIAAlign or by running the functions above (Fig 1F).
207 The main purpose of the function is to clean the gap only columns that are likely to be
208 introduced after running any of the cleaning functions.

209

210 **Visualisation**

211 There are several ways of visualising the alignment, which both allow the user to interpret the
212 alignment and clearly show which positions and sequences CIAAlign has removed. CIAAlign can
213 also be used simply to visualise an alignment, without running any of the cleaning functions.
214 All visualisations can be output as publication ready image files.

215

216 *Mini Alignments*

217 CIAAlign provides functionality to generate mini alignments, in which an MSA is visualised
218 using coloured rectangles on a single x and y axis, with each rectangle representing a single
219 nucleotide or amino acid (e.g. Fig 1, Figs 3-5). Even for large alignments, this function
220 provides a visualisation that can be easily viewed and interpreted. Many properties of the
221 resulting file (dimensions, DPI, file type) are parameterised. In order to minimise the memory
222 and time required to generate the mini alignments, the matplotlib imshow function [25] for
223 displaying images is used. Briefly, each position in each sequence in the alignment forms a
224 single pixel in an image object and a custom dictionary is used to assign colours. The image
225 object is then stretched to fit the axes.

226

227 *Sequence Logos*

228 CIAAlign can generate traditional sequence logos [26] or sequence logos using rectangles
229 instead of letters to show the information and base / amino acid content at each position,
230 which can increase readability in less conserved regions.

231

232 **Interpretation**

233 Some additional functions are provided to further interpret the alignment, for example plotting
234 the number of sequences with non-gap residues at each position (the coverage), calculating a
235 pairwise similarity matrix, and generating a consensus sequence with various options.

236 Given the toy example shown in Fig 1A, running all possible cleaning functions will lead to the
237 markup plot shown in Fig 3A and the result shown in Fig 3B. In the markup plot each removed

238 part is highlighted in a different colour corresponding to the function with which it was
239 removed.

240

241 **Example Alignments**

242 Four example alignments are provided within the software directory to demonstrate the
243 functionality of CIAlign. Examples 1 and 2 use simulated sequences, examples 3 and 4 use
244 real biological sequences and are designed to resemble the type of complex alignment many
245 researchers encounter.

246 Example 1 is a very short alignment of six sequences which was generated manually by
247 creating arbitrary sequences of nucleotides that would show every cleaning function while
248 being as short as possible. This alignment contains an insertion, gaps at the ends of
249 sequences, a very short sequence and some highly divergent sequences.

250 Example 2 is a larger alignment based on randomly generated amino acid sequences using
251 RandSeq (a tool from ExPASy [27]) with an average amino acid composition, which were
252 aligned with MAFFT v7.407, under the default settings [4]. The sequences were adjusted
253 manually to reflect an alignment that would fully demonstrate the functionalities of CIAlign. It
254 consists of many sequences that align well, however there are again a few problems: one
255 sequence has a large insertion, one is very short, one is extremely divergent, and some have
256 multiple gaps at the start and at the end. For Example 3, putative mitochondrial gene
257 cytochrome C oxidase I (COI) sequences were identified by applying TBLASTN v2.9.0 [28] to
258 the human COI sequence (GenBank accession NC_012920.1, positions 5,904–7,445,
259 translated to amino acids), querying against 1,565 transcriptomic datasets from the NCBI
260 transcriptome shotgun assembly (TSA) database [29] under the default settings. 2,855

261 putative COI transcripts were reverse complemented where required, and those
262 corresponding to the COI gene of the primary host of the TSA dataset were identified using
263 the BOLD online specimen identification engine [30] (accessed 07/10/2019) querying against
264 the species level barcode records. The resulting 232 sequences were then aligned with
265 MAFFT v7.407, under the default settings [4].

266 For Example 4, 91 sequences were selected from Example 3 to be representative of as many
267 taxonomic families as possible and to exclude families with unclear phylogeny in the
268 literature. These sequences were aligned with MAFFT v7.407 under the default settings and
269 the alignment was refined with 1000 iterations. Robinson-Foulds distances of the resulting
270 trees were calculated using ete3 compare [31].

271 Materials and methods for benchmarking and for large-scale examples with biological data
272 are provided as Supplementary Materials and Methods.

273

274 **Results and Discussion**

275 Here an example is presented and the visualisation functions are used to illustrate the
276 functionality of CIAAlign. Results will differ when using different parameters and thresholds.

277 CIAAlign was applied to the Example 2 alignment with the following options:

278 `python3 CIAAlign.py --infile INFILe --outfile_stem OUTFILE_STEM --all`

279 Using these settings on the alignment in Fig 4A results in the markup shown in Fig 4B and the
280 output shown in Fig 4C. The markup shows which function has removed each sequence or
281 position. The benefits of CIAAlign are clear in this simulation – the single poorly aligned
282 sequence, the large insertion, very short sequences, and gap-only columns have been

283 removed, and the unreliably aligned end segments of the sequences have been cropped. The
284 resulting alignment is significantly shorter, which will speed up and simplify any further
285 analysis. The clear graphical representation makes it easy to see what has been removed, so
286 in the case of over-trimming the user can intervene and adjust functions and parameters.

287 In order to demonstrate the use of CIAlign on real biological sequences, an alignment was
288 generated based on the COI gene commonly used in phylogenetic analysis and DNA
289 barcoding [30]. As CIAlign addresses some common problems encountered when generating
290 an MSA based on *de novo* assembled transcripts, which tend to have a higher error rates at
291 transcript ends, gaps due to difficult to assemble regions and divergent sequences due to
292 chimeric connections between unrelated regions [11, 32], COI-like transcripts were identified
293 by searching the NCBI transcriptome shotgun assembly database. Aligning these transcripts
294 demonstrated several common problems – multiple insertions, poor alignment at the starts
295 and ends of sequences, and a few divergent sequences resulting in excessive gaps (Fig 5A).
296 This alignment was cleaned using the default CIAlign settings except the threshold for
297 removing divergent sequences was reset to 50%, as some of the sequences are from
298 evolutionarily distant species. Under these settings, CIAlign resolved several of the problems
299 with the alignment: the insertions and highly divergent sequences were removed and the
300 poorly aligned regions at the starts and ends of sequences were cropped (Fig 5B). One
301 sequence and 6,029 positions were removed from the alignment and a total of 2,446 positions
302 were cropped from the ends of 112 sequences. The processed alignment is 26.59% of the
303 size of the input alignment. However, a minimal amount of actual sequence data (as opposed
304 to gaps) was removed, with 85.70% of bases remaining.

305 A subset of this sequence set was selected to demonstrate the functionality of CIAlign in
306 streamlining phylogenetic analysis. 91 COI-like transcripts from different taxonomic families of
307 metazoa were selected from Example 3, incorporated into an MSA and cleaned using CIAlign
308 with the same settings as above (Supp. Fig 1). 1,437 positions were removed from the
309 alignment and a total of 289 positions were cropped from the ends of 17 sequences. The
310 processed alignment is 70.67% of the size of the input alignment and 96.52% of bases
311 remain. Phylogenetic trees were generated for the input alignment and for the alignment
312 processed with CIAlign, using PhyML [33] under the GTR model plus the default settings. For
313 the input alignment, PhyML used 138 MB of memory and took 532 seconds (on one Intel
314 Core i7-7560U core with 4 GB of RAM, running at 2.40 GHz). For the cleaned alignment, on
315 the same machine, PhyML used 109 MB of memory and took 243 seconds. The tree
316 generated with the input alignment (Supp. Fig 1D) had a Robinson-Foulds [34] difference
317 from a “correct” tree (generated manually based on the literature, Supp. Fig 1D) of 100.00
318 (normalised Robinson-Foulds 0.57, Quartet divergence [35] 0.159). The tree generated with
319 the cleaned alignment (Supp. Fig 1E) had a Robinson-Foulds difference from the correct tree
320 of 90.00 (normalised Robinson-Foulds 0.52, Quartet divergence 0.073) Therefore the tree
321 based on the CIAlign cleaned alignment was generated more quickly, used less memory, and
322 was more similar to the expected tree.

323

324 **Benchmarking with Simulated Data**

325 We performed a series of benchmarking analyses on simulated data, in order to test and
326 demonstrate the utility of the CIAlign cleaning functions, confirm the validity of our default

327 parameter settings and ensure that running these functions does not have unexpected
328 negative effects on downstream analyses.

329 First, CIAlign was tested using two tools (EvolvAGene [36], and INDELible [37]) which
330 generate sets of unaligned sequences alongside “true” alignments and phylogenies expected
331 to accurately represent the relationship between the sequences. We used these tools to
332 determine if cleaning a user generated alignment with CIAlign affects its distance from the
333 true alignment. Test alignments of the simulated data were created using four common
334 alignment algorithms. These alignments were then cleaned with CIAlign with relaxed,
335 moderate or stringent parameter settings (Supplementary Table 1). With relaxed CIAlign
336 settings, a median of 0.19% of correct pairs of aligned residues (POARs) [38] were removed,
337 for moderate settings 0.75% were removed and for stringent settings 3.76% (Fig 6A, Table 1).
338 For comparison, the median total proportion of residues removed was 1.72% for relaxed,
339 2.40% for moderate and 3.86% for stringent (Fig 6A, Table 1). The median proportions of gap
340 positions removed were much higher: 53-56% for all sets of parameters (Fig 6A, Table 1).
341 This shows that with relaxed and moderate settings, running CIAlign has a very minimal
342 impact on correctly aligned residues in the alignment, while a considerable amount of gaps
343 and noise are removed. The more stringent settings should be used cautiously, however even
344 with high stringency a large majority of correctly aligned residues remain and the majority of
345 gaps are removed.

346 Phylogenetic trees were generated for each of these alignments to determine if cleaning with
347 CIAlign impacts the distance between the true phylogenetic tree and a phylogenetic tree
348 based on a test alignment (Fig 6B, Table 1. The mean normalised Robinson-Foulds distance
349 [34] and Quartet divergence [35] between the test trees and true trees were virtually

350 unchanged by running CIAlign and none of the changes were statistically significant ($p>0.05$,
351 Mann Whitney U test) (Fig 6B, Table 1).

352

353 We also compared the input sequence for our simulations to consensus sequences based on
354 alignments with and without CIAlign cleaning. For all three stringency levels, CIAlign
355 increased the percentage nucleotide identity between the consensus sequence and the input
356 sequence by 4% to 5% (Fig 6C, Table 1). All of these changes are statistically significant
357 ($p<0.001$, Mann-Whitney U test).

358 The long-read sequencing simulation tool BadRead [39] was used to demonstrate the use of
359 CIAlign to remove common sources of error in long read sequencing data. Sequences were
360 generated to represent low, moderate and high quality Oxford Nanopore reads based on an
361 input genome, then aligned and cleaned with CIAlign with moderate settings (Supplementary
362 Table 1). Using CIAlign increased the identity between the alignment consensus and the input
363 sequence significantly for all read quality levels - by 6.57% for high quality reads, 9.51% for
364 moderate quality reads and 12.25% for poor quality reads (Fig 6D) (all $p<0.001$, Mann-
365 Whitney U test). For the high quality reads, the reads cleaned with CIAlign generated
366 consensus sequences almost identical to the input sequence, with a mean of 99.24% identity
367 (Fig 6D).

368 Full output tables for all three sets of simulations are available online at
369 github.com/KatyBrown/CIAlign/benchmarking/tables and the simulated data and alignments
370 at github.com/KatyBrown/benchmarking_data_CIAlign.

371

372 **Examples of Using CIAlign with Biological Data**

373 We also used CIAAlign to clean real biological data from several online databases, in order to
374 test and demonstrate its usefulness in automated processing of different types of sequencing
375 data.

376 *Cleaning Pfam Alignments*

377 The Pfam database provides manually curated seed alignments for over 17,000 protein
378 families, plus much larger automatically generated full alignments containing sequences
379 identified by database searching [40]. CIAAlign cleaning functions were applied to seed and full
380 alignments for 500 Pfam domains and consensus sequences were generated for both
381 alignments, before and after cleaning. Randomly selected sequences from the full alignment
382 were then compared to each consensus. For the full alignments, the mean identity between
383 the consensus sequence and the alignment sequences increased by 10.71% ($p < 0.001$,
384 Mann-Whitney U test) after cleaning with CIAAlign (Fig 7A). For the seed alignments identity
385 also increased significantly, by 4.89% ($p < 0.001$, Mann-Whitney U test) (Fig 7A). After
386 running CIAAlign, the full alignment consensus approaches the level of similarity to the
387 alignment sequences which is seen for seed alignment consensus, despite the full alignment
388 having undergone no manual curation (Fig 7A). Even for the curated seed alignments,
389 cleaning with CIAAlign further increases the similarity between the consensus and the aligned
390 sequences.

391

392 *Removing Insertions and Deletions from Human Genes*

393 To demonstrate the ability of CIAAlign to remove non-majority indels, we used data for 50
394 indels across over 150 individuals from the 1000 genomes project [41], which has annotated
395 insertions and deletions for individual human genomes. In all cases, CIAAlign removed all

396 insertions present in a majority of samples and ignored all insertions present in a minority of
397 samples (Fig 7B).

398

399 *Removing Outliers*

400 CIAAlign can also be used to remove clear outliers from an alignment, for example prior to
401 phylogenetic analysis. To illustrate this, we ran the CIAAlign cleaning functions on data from the
402 mammalian 10K trees project [42]. Three single-gene trees were identified with clear outliers,
403 the 12S ribosomal gene from primates and the *APOB* and *RAG1* genes from Carnivora. The
404 issues with these trees are shown in Fig 7C and Supp Fig 2. CIAAlign successfully removed
405 the outlying group, without removing any other sequences, in all three of these cases.

406

407 **Comparison with Other Software**

408 While the functionality of CIAAlign has some overlaps with other software, for example Jalview
409 [43], Gblocks [7] and trimAI [8], the presented software can be seen as complementary to
410 these, with some different features and applications. Jalview is designed for manual curation
411 of alignments, but it is unsuitable for a simple overview of large alignments and does not
412 provide the option of editing automatically, which is useful in large batch applications and
413 ensures reproducibility. Gblocks is designed to choose blocks from an alignment that would
414 be suitable for phylogenetic analysis, which is too restrictive for many other purposes. Some
415 functionalities of trimAI overlap with those of CIAAlign; however, trimAI is designed to
416 algorithmically define and remove any poorly aligned regions whereas CIAAlign is designed to
417 remove specific MSA issues, as defined by the user, for different downstream applications.
418 For highly divergent alignments, trimAI can be too sensitive and remove useful regions.

419 CIAAlign also provides additional visualisation options. Therefore, CIAAlign should be seen as a
420 tool that aims to fill in the gaps that exist in currently available software.

421

422 **Parameters**

423 Having as many parameters as possible to allow as much user control as possible gives
424 greater flexibility. However, this also means that these parameters should be adjusted, which
425 requires a good understanding of the cleaning functions and the MSA in question. CIAAlign
426 offers default parameters selected to be often applicable based on our benchmarking
427 simulations and testing with different types of data. However, parameter choice highly
428 depends on MSA divergence and the downstream application. To choose appropriate values
429 it is recommended to first run CIAAlign with all default parameters and then adjust these
430 parameters based on the results. Since the mini alignments show what has been removed by
431 which functions it is straightforward to identify the effect of each function and any changes to
432 the parameters which may be required.

433 New features are in progress to be added in the future, such as collapsing very similar
434 sequences, removing divergent columns, and making the colour scheme for the bases or
435 amino acids customisable.

436

437 **Conclusion**

438 CIAAlign is a highly customisable tool which can be used to clean multiple sequence
439 alignments and address several common alignment problems. Due to its multiple user options
440 it can be used for many applications. CIAAlign provides clear visual output showing which

441 positions have been removed and for what reason, allowing the user to adjust the parameters
442 accordingly. A number of additional visualisation and interpretation options are provided.

443

444 **Availability**

445 **Current release, v1.0.10:** doi.org/10.5281/zenodo.4650727

446 (corresponds to github.com/KatyBrown/ClAlign/releases/tag/v1.0.10)

447 **GitHub:** github.com/KatyBrown/ClAlign

448 **pip3:** pypi.org/project/cialign

449

450 **References**

451 1. Boswell, RD. Sequence alignment by word processor. Trends Biochem Sci.
452 1987;12:279–80.

453 2. Higgins DG, Sharp PM. CLUSTAL: a package for performing multiple sequence
454 alignment on a microcomputer. Gene. 1988;73:237–44.

455 3. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and
456 space complexity. BMC Bioinformatics. 2004;5:113.

457 4. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple
458 sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.

459 5. Notredame C, Higgins DG, Heringa J. T-coffee: a novel method for fast and accurate
460 multiple sequence alignment11Edited by J. Thornton. J Mol Biol. 2000;302:205–17.

461 6. Needleman SB, Wunsch CD. A general method applicable to the search for similarities in
462 the amino acid sequence of two proteins. *J Mol Biol.* 1970;48:443–53.

463 7. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and
464 ambiguously aligned blocks from protein sequence alignments. *Syst Biol.* 2007;56:564–77.

465 8. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated
466 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics.* 2009;25:1972–3.

467 9. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
468 large phylogenies. *Bioinforma Oxf Engl.* 2014;30:1312–3.

469 10. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary
470 Genetics Analysis across Computing Platforms. *Mol Biol Evol.* 2018;35:1547–9.

471 11. Bushmanova E, Antipov D, Lapidus A, Prjibelski AD. rnaSPAdes: a de novo
472 transcriptome assembler and its application to RNA-Seq data. *GigaScience.* 2019;8.
473 doi:10.1093/gigascience/giz100.

474 12. Richterich P. Estimation of Errors in “Raw” DNA Sequences: A Validation Study.
475 *Genome Res.* 1998;8:251–9.

476 13. Tyler AD, Mataseje L, Urfano CJ, Schmidt L, Antonation KS, Mulvey MR, et al.
477 Evaluation of Oxford Nanopore’s MinION Sequencing Device for Microbial Whole Genome
478 Sequencing Applications. *Sci Rep.* 2018;8:1–12.

479 14. Magi A, Giusti B, Tattini L. Characterization of MinION nanopore data for resequencing
480 analyses. *Brief Bioinform.* 2017;18:940–53.

481 15. Fitch WM, Smith TF. Optimal sequence alignments. *PNAS.* 1983;80:1382–6.

482 16. Tettelin H, Maignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome
483 analysis of multiple pathogenic isolates of *Streptococcus agalactiae*: implications for the
484 microbial “pan-genome.” *Proc Natl Acad Sci U S A*. 2005;102:13950–5.

485 17. Hu B, Xie G, Lo C-C, Starkenburg SR, Chain PSG. Pathogen comparative genomics in
486 the next-generation sequencing era: genome alignments, pangenomics and metagenomics.
487 *Brief Funct Genomics*. 2011;10:322–33.

488 18. Sayyari E, Whitfield JB, Mirarab S. Fragmentary Gene Sequences Negatively Impact
489 Gene Tree and Species Tree Reconstruction. *Mol Biol Evol*. 2017;34:3279–91.

490 19. Schulz F, Roux S, Paez-Espino D, Jungbluth S, Walsh DA, Denef VJ, et al. Giant virus
491 diversity and host interactions through global metagenomics. *Nature*. 2020;578:432–6.

492 20. Käfer S, Paraskevopoulou S, Zirkel F, Wieseke N, Donath A, Petersen M, et al. Re-
493 assessing the diversity of negative strand RNA viruses in insects. *PLoS Pathog*. 2019;15.
494 doi:10.1371/journal.ppat.1008224.

495 21. Bäckström D, Yutin N, Jørgensen SL, Dharamshi J, Homa F, Zaremba-Niedwiedzka K,
496 et al. Virus Genomes from Deep Sea Sediments Expand the Ocean Megavirome and Support
497 Independent Origins of Viral Gigantism. *mBio*. 2019;10. doi:10.1128/mBio.02497-18.

498 22. Petyuk VA, Gatto L, Payne SH. Reproducibility and Transparency by Design. *Mol Cell*
499 *Proteomics*. 2019. doi:10.1074/mcp.1P119.001567.

500 23. Brito JJ, Li J, Moore JH, Greene CS, Nogoy NA, Garmire LX, et al. Recommendations
501 to enhance rigor and reproducibility in biomedical research. 2020.
502 <https://arxiv.org/abs/2001.05127v2>.

503 24. Langille MGI, Ravel J, Fricke WF. “Available upon request”: not good enough for
504 microbiome data! *Microbiome*. 2018;6:8.

505 25. Hunter JD. Matplotlib: A 2D Graphics Environment. *Comput Sci Eng*. 2007;9:90–5.

506 26. Schneider TD, Stephens RM. Sequence logos: a new way to display consensus
507 sequences. *Nucleic Acids Res*. 1990;18:6097–100.

508 27. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: The
509 proteomics server for in-depth protein knowledge and analysis. *Nucleic Acids Res*.
510 2003;31:3784–8.

511 28. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+:
512 architecture and applications. *BMC Bioinformatics*. 2009;10:421.

513 29. Transcriptome Shotgun Assembly Sequence Database. National Center for
514 Biotechnology Information, Bethesda, Maryland, USA. 2012.
515 <https://www.ncbi.nlm.nih.gov/genbank/tsa/>. Accessed 08 Oct 2019.

516 30. bold: The Barcode of Life Data System (<http://www.barcodinglife.org>).
517 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1890991/>. Accessed 6 Apr 2020.

518 31. Huerta-Cepas J, Serra F, Bork P. ETE 3: Reconstruction, Analysis, and Visualization of
519 Phylogenomic Data. *Mol Biol Evol*. 2016;33:1635–8.

520 32. Liao X, Li M, Zou Y, Wu F-X, Yi-Pan, Wang J. Current challenges and solutions of de
521 novo assembly. *Quant Biol*. 2019;7:90–109.

522 33. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large
523 phylogenies by maximum likelihood. *Syst Biol*. 2003;52:696–704.

524 34. Robinson DF, Foulds LR. Comparison of phylogenetic trees. *Math Biosci.* 1981;53:131–
525 47.

526 35. Smith MR. Bayesian and parsimony approaches reconstruct informative trees from
527 simulated morphological datasets. *Biol Lett.* 2019;15:20180632.

528 36. Hall BG. Simulating DNA coding sequence evolution with EvolveAGene 3. *Mol Biol*
529 *Evol.* 2008;25:688–95.

530 37. Fletcher W, Yang Z. INDELible: a flexible simulator of biological sequence evolution.
531 *Mol Biol Evol.* 2009;26:1879–88.

532 38. Thompson JD, Plewniak F, Poch O. A comprehensive comparison of multiple sequence
533 alignment programs. *Nucleic Acids Res.* 1999;27:2682–90.

534 39. Wick RR. Badread: simulation of error-prone long reads. *J Open Source Softw.*
535 2019;4:1316.

536 40. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the
537 protein families database. *Nucleic Acids Res.* 2014;42 Database issue:D222–30.

538 41. Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, et al. A
539 global reference for human genetic variation. *Nature.* 2015;526:68–74.

540 42. Arnold C, Matthews LJ, Nunn CL. The 10kTrees website: A new online resource for
541 primate phylogeny. *Evol Anthropol Issues News Rev.* 2010;19:114–8.

542 43. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2--a
543 multiple sequence alignment editor and analysis workbench. *Bioinforma Oxf Engl.*
544 2009;25:1189–91.

545

546 Tables

547 Table 1

CIAli	Correct	Nucleotides	Gaps	Positions	Normalised	Quartet	Consensus
Stringency	Pairs Removed	Removed	Removed	Removed	Robinson-Foulds Distance	Divergence	Percentage Identity
None	-	-	-	-	0.2475	0.1622	67.15
Relaxed	0.1900	1.725	53.35	7.430	0.2403	0.1626	71.47
Moderate	0.7500	2.400	53.42	8.130	0.2561	0.1665	71.50
Stringent	3.760	3.855	55.72	10.00	0.2518	0.1705	71.48

548

549 Table showing the effect of cleaning with CIAli on simulated alignments. Correct pairs
550 removed, nucleotides removed, gaps removed and positions removed are median percentage
551 of the total in the test alignment which was removed by CIAli. Normalised Robinson-Foulds
552 distance and Quartet divergence are the mean proportion similarity between the benchmark
553 tree and the tree generated based on the test alignment. Consensus percentage identity is
554 the mean alignment similarity between the consensus and the EvolvAGene input sequence.

555

556 Figure Legends

557 Fig 1

558 **Mini alignments showing the main functionalities of CIAli based on Example 1.**

559 **a** Input alignment before application of CIAli, generated using the command “CIAli
560 --infile example1.fasta --plot_input”. **b** Output alignment showing the
561 functionality of the remove divergent function, generated using the command “CIAli
562 --infile example1.fasta --remove_divergent --plot_output”. **c** Output

563 alignment showing the functionality of the remove insertions function, generated using the
564 command “CIAutoAlign --infile example1.fasta --remove_insertions
565 --plot_output”. **d** Output alignment showing the functionality of the crop ends function,
566 generated using the command “CIAutoAlign --infile example1.fasta --crop_ends
567 --plot_output”. **e** Output alignment showing the functionality of the remove short
568 sequences function, generated using the command “CIAutoAlign --infile
569 example1.fasta --remove_short --plot_output”. **f** Output alignment showing the
570 functionality of the remove gap only function, generated using the command “CIAutoAlign
571 --infile example1.fasta --plot_output”. Subplots were generated using the
572 drawMiniAlignment function of CIAutoAlign.

573

574 **Fig 2**

575 **Crop ends diagram**

576 This manually created example illustrates how crop_ends works internally. The length of the
577 sequence shown is 111 including gaps and 80 excluding gaps (1). With a threshold of 10% for
578 the proportion of non-gap positions to consider for change in end positions, 8 positions at the
579 start and at the end, respectively, are being considered (illustrated by red crossbars). For
580 each of these, the number of preceding gaps is calculated (2). Then the change in gap
581 numbers (3) for every two consecutive non-gap positions is compared to the gap number
582 change threshold, which is 5%, i.e. 4 gaps, as a default value. Looking at the change in gap
583 numbers, the last change at each end equal to or bigger than the threshold is coloured in red.

584 This leads to redefining the start and the end of this example sequence to be where the
585 nucleotides are coloured in green.

586

587 **Fig 3**

588 **Mini alignments and legends showing further functionalities of CIAutoAlign based on**
589 **Example 1.**

590 **a** Alignment showing the functionality of the plot markup function, generated using the
591 command “CIAutoAlign --infile example1.fasta --all”. The areas that have been
592 removed are marked up in different colours, each corresponding to a certain function of
593 CIAutoAlign. **b** Output alignment after application of all functions of CIAutoAlign combined, generated
594 using the command “CIAutoAlign --infile example1.fasta --all”. Subplots were
595 generated using the drawMiniAlignment function.

596

597 **Fig 4**

598 **Mini alignments showing the main functionalities of CIAutoAlign based on Example 2.**

599 **a** Input alignment before application of CIAutoAlign, generated using the command “CIAutoAlign
600 --infile example2.fasta --plot_input”. **b** Alignment markup showing areas that
601 were removed by CIAutoAlign, generated using the command “CIAutoAlign --infile example2.fasta
602 --all”. **c** Output alignment after application of CIAutoAlign, generated using the command
603 “CIAutoAlign --infile example2.fasta --all”. Subplots were generated using the
604 drawMiniAlignment function.

605

606 **Fig 5**

607 **Mini alignments showing the main functionalities of CIAlign based on Example 3.**

608 **a** Input alignment before application of CIAlign, generated using the command “CIAlign
609 --infile example3.fasta --plot_input”. **b** Output alignment after application of
610 CIAlign, generated using the command “CIAlign --infile example3.fasta --all
611 --remove_divergent_minperc 0.5”. Subplots were generated using the
612 drawMiniAlignment function.

613

614 **Fig 6**

615 **Metrics from benchmarking CIAlign with simulated data.**

616 **a** Box plots showing the impact of running CIAlign cleaning functions with relaxed (green, left
617 box), moderate (blue, middle box) and stringent (red, right box) parameter values on
618 alignments of sequences simulated using either EvolvAGene [36] or INDELible [37] (plots are
619 combined for the two tools). From left to right, the y-axis represents proportion of correctly
620 aligned pairs of residues [38] removed (identified by comparison with a benchmark
621 alignment), proportion of total nucleotides (i.e. non-gap positions) removed, proportion of
622 gaps removed, proportion of positions (gap or non-gap) removed. **b** Histograms showing the
623 distribution of normalised Robinson-Foulds distances [34] and Quartet divergence [35]
624 between benchmark trees and test trees without running CIAlign cleaning functions (orange)
625 and after running CIAlign with the three sets of parameter values, for trees based on
626 simulated sequences generated with EvolvAGene [36] (left two columns) and INDELible [37]
627 (right two columns). **c** Density plot showing the distribution of the percentage identity between

628 the input sequence to EvolvAGene [36] and a consensus sequence based on an alignment of
629 the simulated sequences generated by this tool, without running CIAlign (orange) and after
630 running CIAlign cleaning functions with the three sets of parameter values . **d** Density plots
631 showing the distribution of the percentage identity between the input sequence to BadRead
632 [39] and a consensus sequences generated with (blue) and without (orange) running CIAlign
633 cleaning functions for alignments of good (top), medium (middle) and poor (bottom) quality
634 simulated reads.

635

636 **Fig 7**

637 **Metrics from using CIAlign with biological data.**

638 **a** Left, density plots showing the distribution of percentage identity (top) and normalised
639 Needleman-Wunsch score (bottom) between samples of sequences from the Pfam [40] full
640 alignments and consensus sequences generated based on Pfam seed alignments without
641 (light blue) and with (light red) CIAlign cleaning and Pfam full alignments without (dark blue)
642 and with (dark red) CIAlign cleaning. Right, box plots showing the alignment total size (top)
643 and number of gaps (bottom) for these four alignments. **b** Left, bar chart showing the size of
644 insertions from the 1000 genomes data [41] used to test the ability of CIAlign to remove
645 insertions and deletions. Right, bar chart showing the proportion of sequences in which these
646 insertions were present in data from 162 individuals and whether they were (pink) or were not
647 (blue) removed by the CIAlign remove insertions function. **C** Left, phylogenetic tree based on
648 an alignment of sequences from the 10k trees project [42] for the 12s ribosomal gene in
649 primates. Colours represent known monophyletic groups of primates. Nodes have been
650 collapsed where multiple sequences from the same group formed a monophyletic clade.

651 Sequences annotated with circles were removed by CIAAlign. Top-right, tree based on the
652 same alignment after cleaning with CIAAlign, which removed the outlying group. Bottom-right,
653 mini alignments showing the effect of running CIAAlign on this alignment.

654

655 **Supplementary Information**

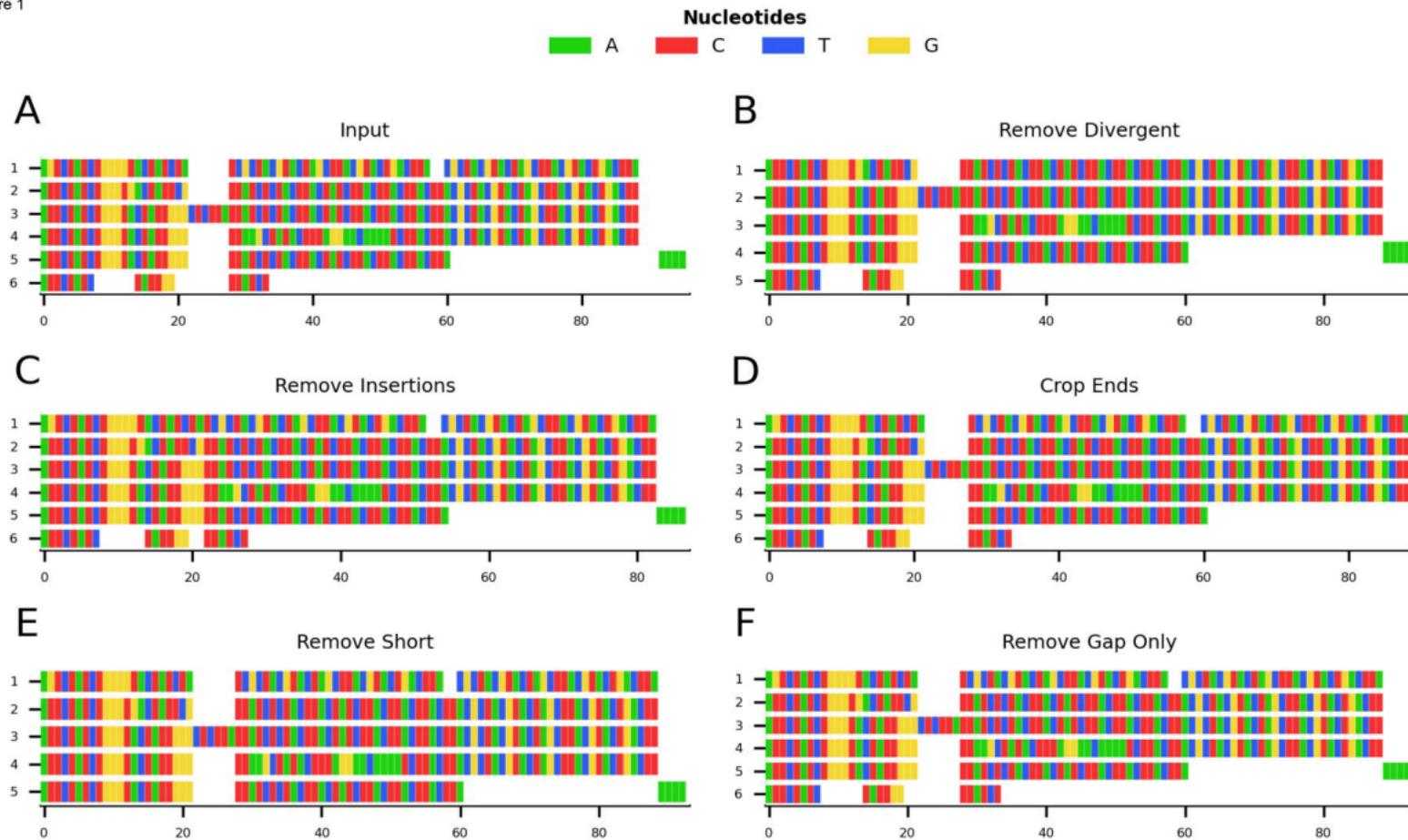
656 **Supplementary Figure 1**

657 **Mini alignments and phylogenetic trees showing the application of CIAAlign to**
658 **phylogenetic data, based on Example 4, a subset of Example 3.** **a** Input alignment before
659 application of CIAAlign, generated using the command “*CIAAlign --infile*
660 *example4.fasta --plot_input*”. **b** Output alignment after application of CIAAlign,
661 generated using the command “*CIAAlign --infile example4.fasta --all*
662 *--remove_divergent_minperc 0.5*”. Subplots were generated using the
663 “*drawMiniAlignment* function. **c** Phylogenetic tree generated manually using the literature to
664 show the current best estimate for the phylogenetic relationships between these 91 families of
665 metazoa. Relationships are based on the literature listed in the Supp. References. **d** PhyML
666 phylogenetic tree generated under the GTR model plus default settings on the input alignment
667 before application of CIAAlign. **e** PhyML phylogenetic tree generated under the GTR model
668 plus default settings on the cleaned alignment after application of CIAAlign. In (c-e) branch
669 colours correspond to the labelled phyla, coloured squares indicate class and bold text
670 indicates order. Common names are shown where available.

671

672 **Supplementary Figure 2**

673 **a** Left, phylogenetic tree based on an alignment of sequences from the 10k trees project [42]
674 for the *APOB* gene in Carnivora. Colours represent known monophyletic families of
675 Carnivora. Nodes have been collapsed where multiple sequences from the same family
676 formed a monophyletic clade. Sequences annotated with circles were removed by CIAlign.
677 Top-right, tree based on the same alignment after cleaning with CIAlign, which removed the
678 outlying group. Bottom-right, mini alignments showing the effect of running CIAlign on this
679 alignment. **b** As for **a**, but for the *RAG1* gene in Carnivora.


680

681 **Supplementary Table 1**

682 Relaxed, moderate and stringent parameter settings used for benchmarking.

683

Figure 1

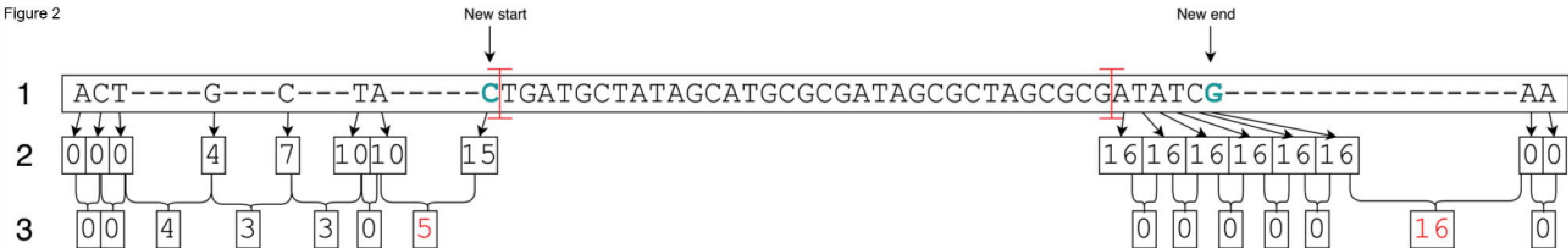


Figure 3

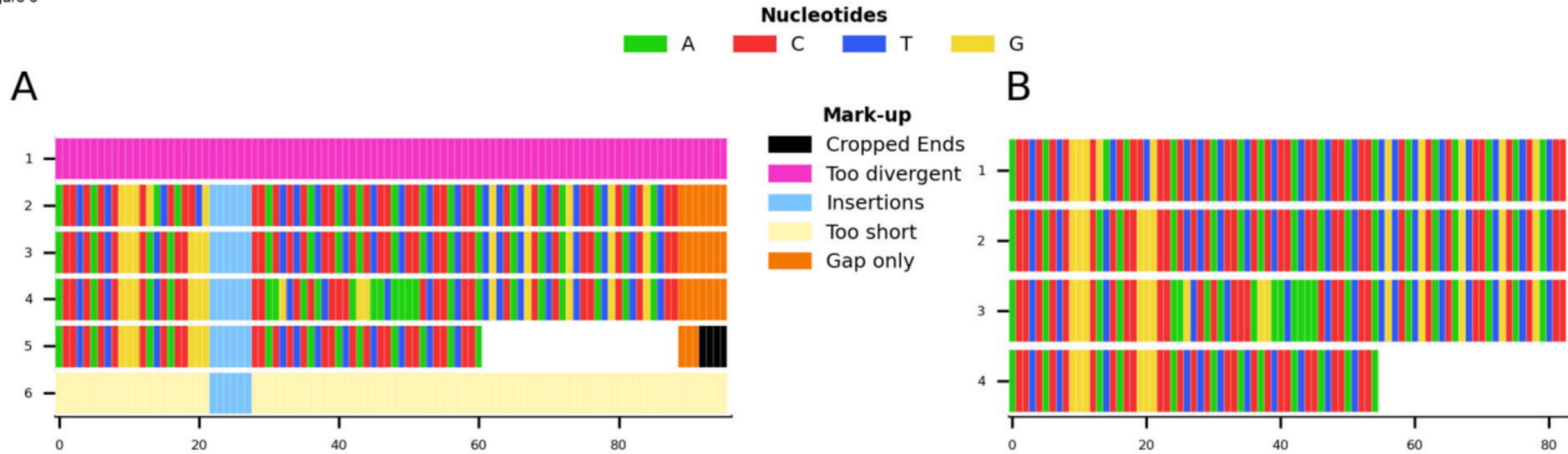
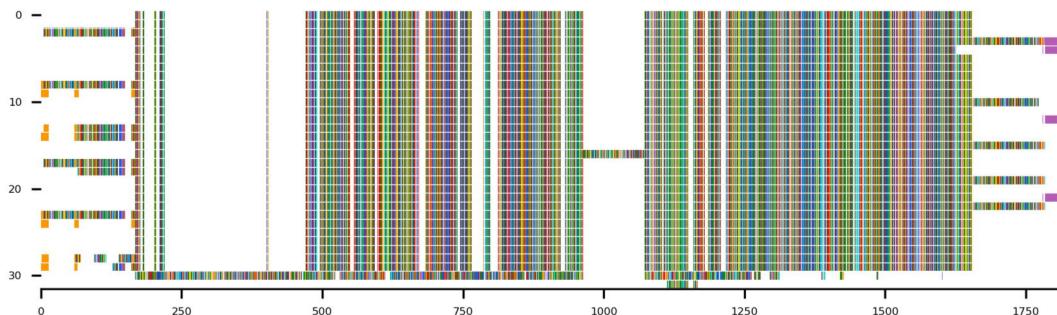
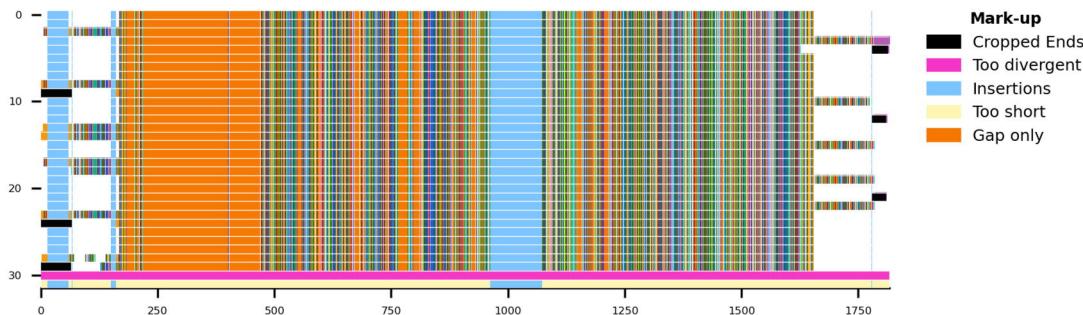
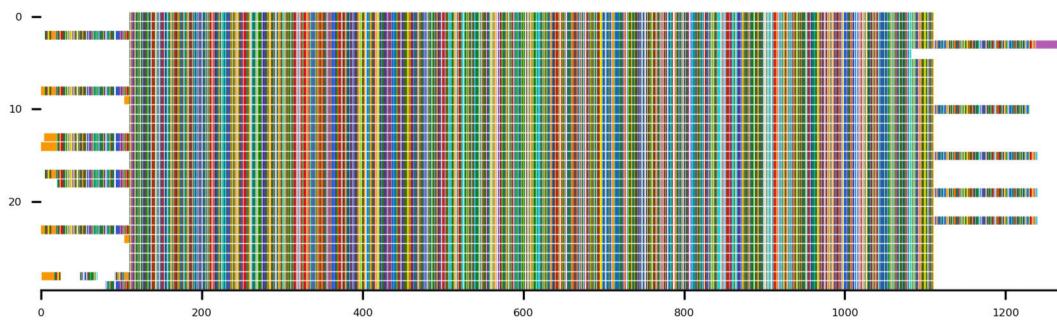
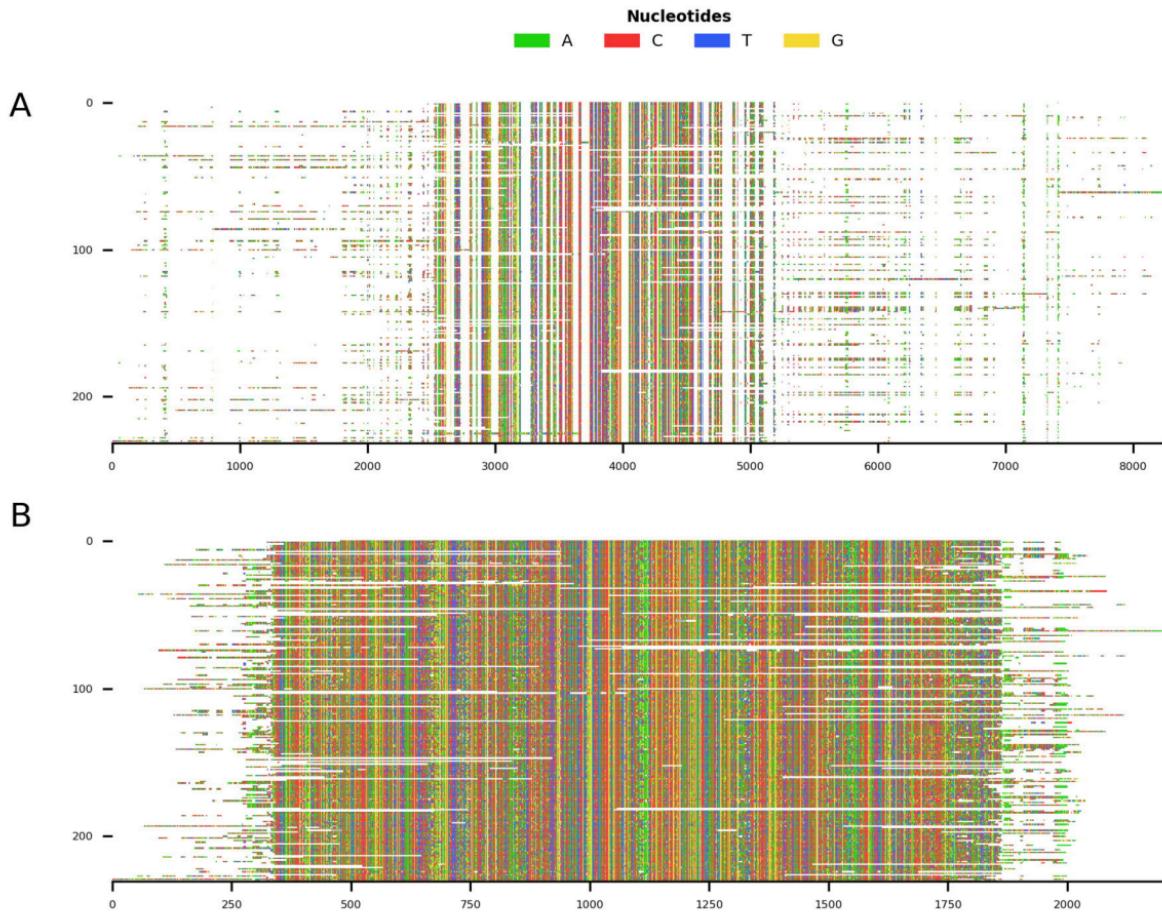
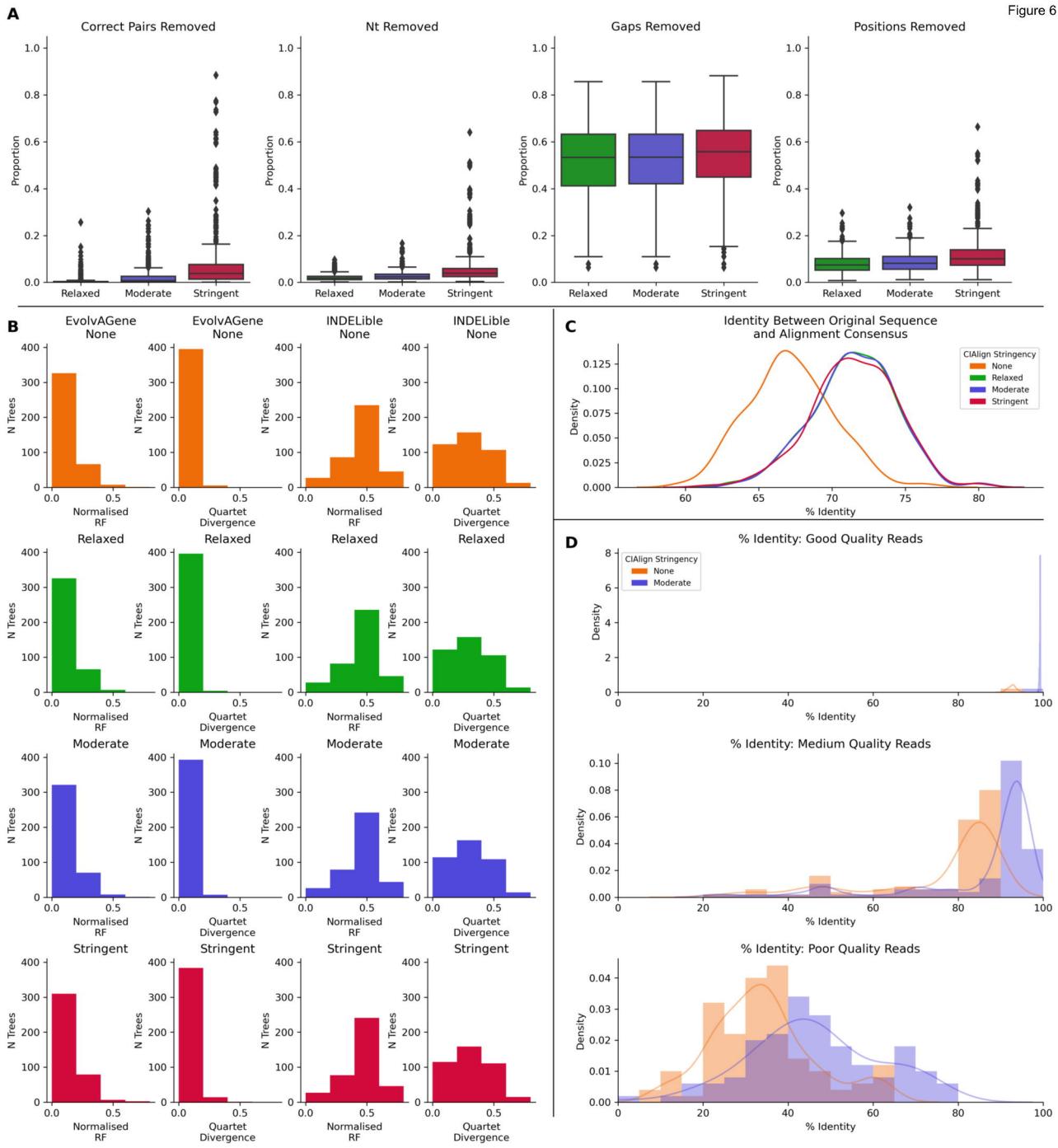
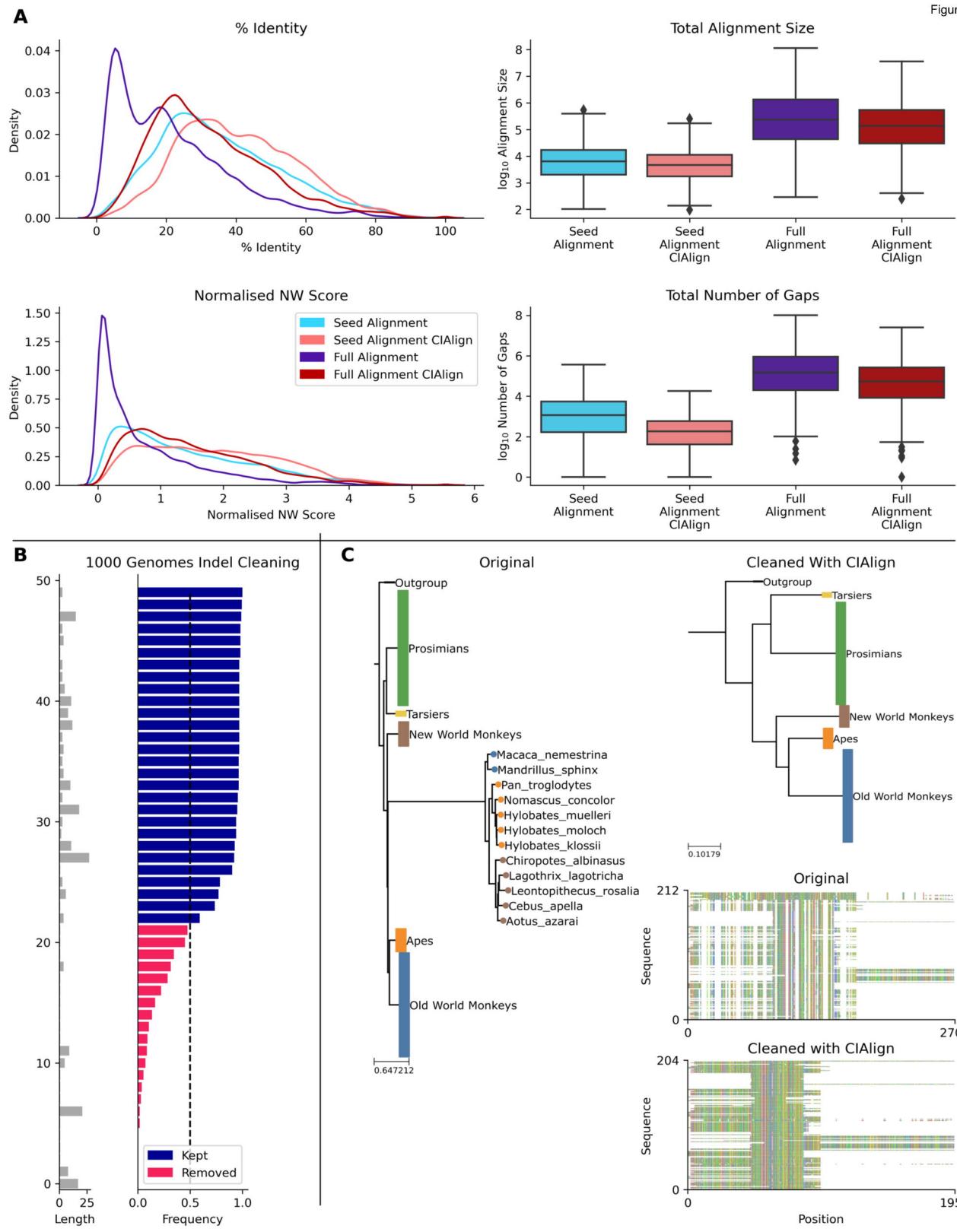
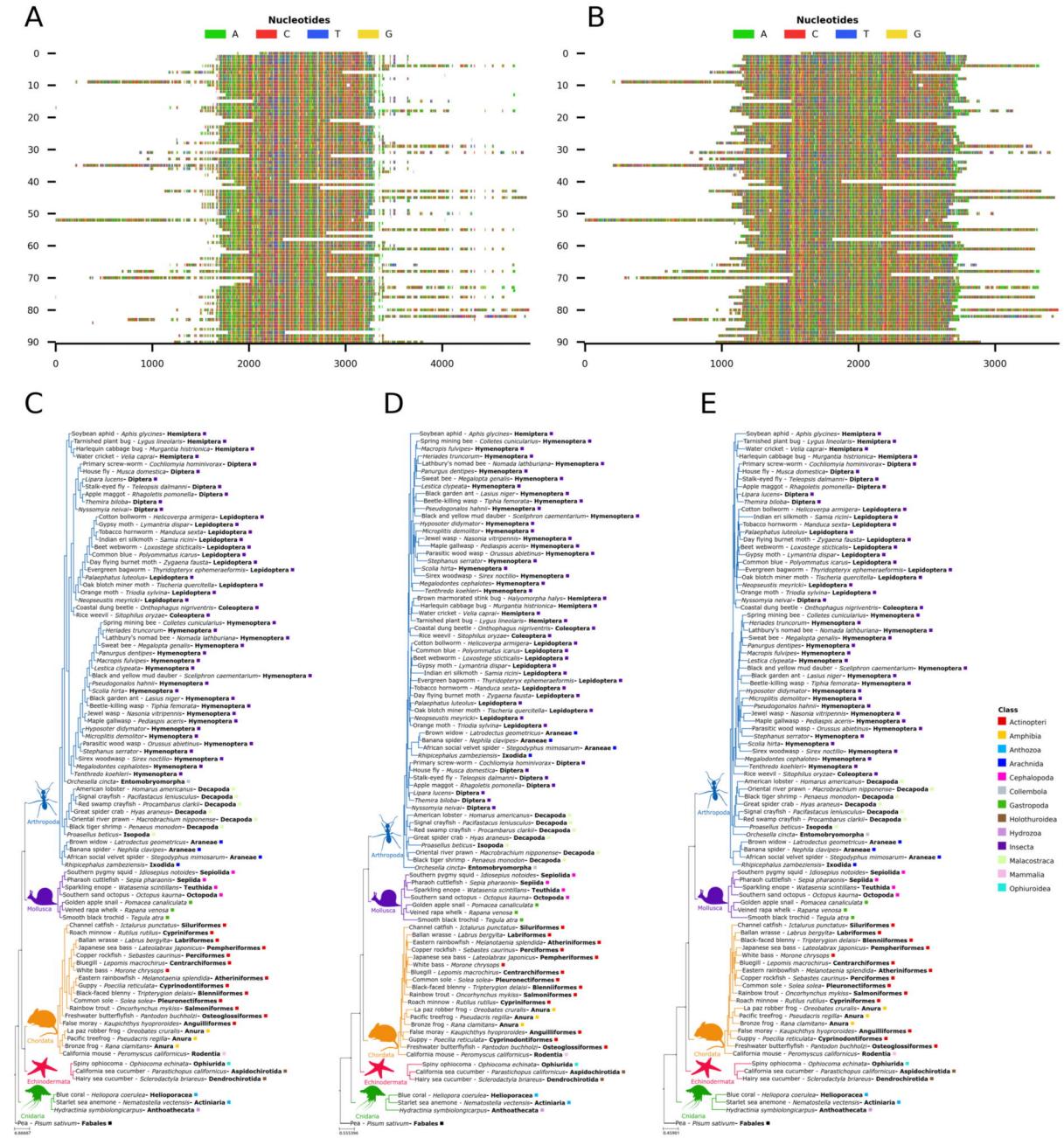
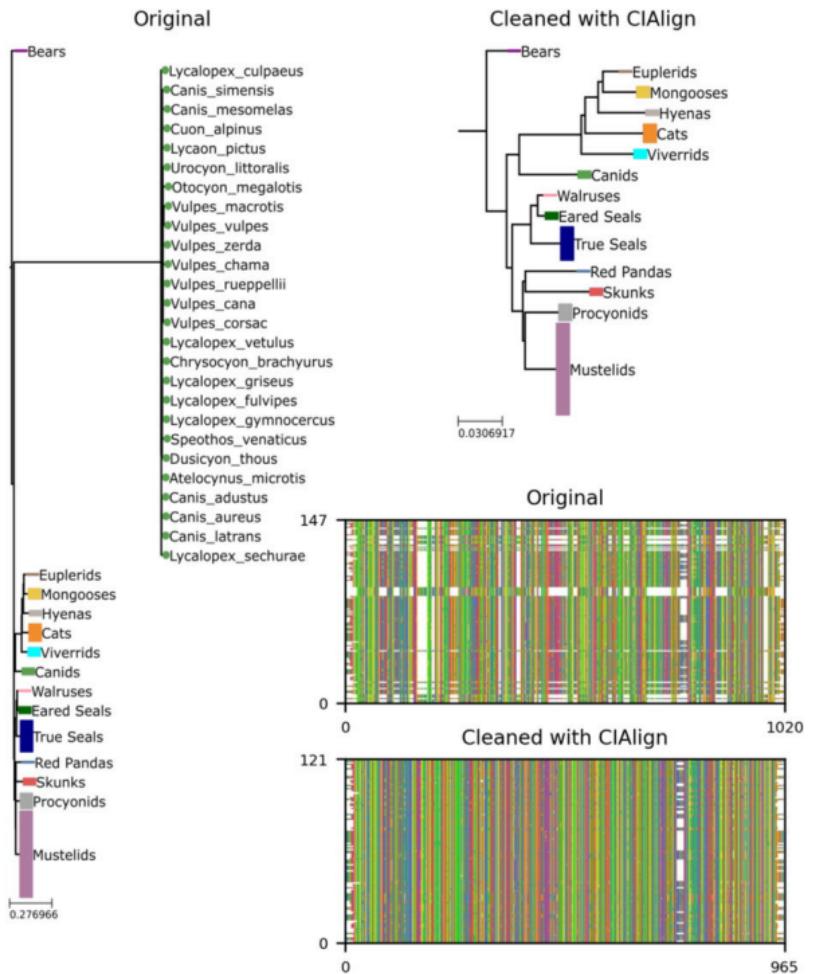
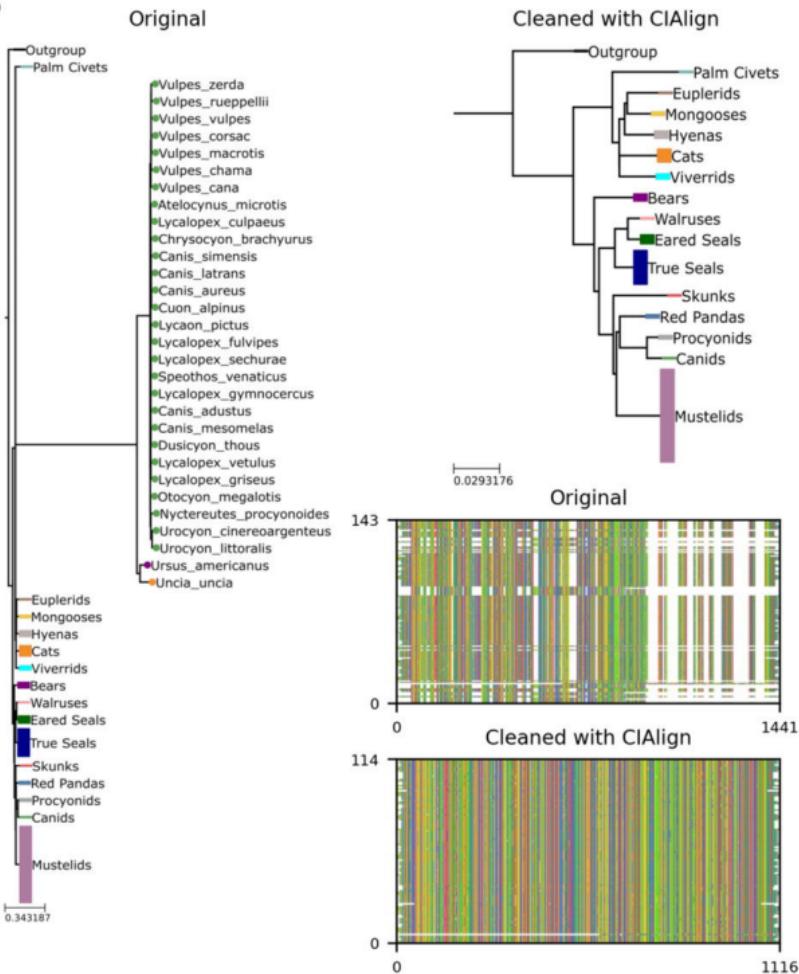


Figure 4

Amino Acids

Asp, Glu	Lys, Arg	Phe, Tyr	Gly	Ala	Trp	His	Pro
Met, Cys	Ser, Thr	Gln, Asn	Leu, Ile, Val				








A**B****C**



Figure 5

A**B**