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ABSTRACT 

 

The development of objective brain-based measures of individual differences in psychological 

traits is a longstanding goal of clinical neuroscience. Here we show that reliable objective 

markers of children9s neurocognitive abilities can be built from measures of brain connectivity. 

The sample consists of 5,937 9- and 10-year-olds in the Adolescent Brain Cognitive 

Development multi-site study with high-quality functional connectomes that capture brain-

wide connectivity. Using multivariate methods, we built predictive neuromarkers for a general 

factor of neurocognitive ability as well as for a number of specific cognitive abilities (e.g., spatial 

reasoning, working memory). Neuromarkers for the general neurocognitive factor successfully 

predicted scores for held-out participants at 19 out of 19 held-out sites, explaining over 14% of 

the variance in their scores. Neuromarkers for specific neurocognitive abilities also exhibited 

statistically reliable generalization to new participants. This study provides the strongest 

evidence to date that objective quantification of psychological traits is possible with functional 

neuroimaging. 

 

INTRODUCTION 

 

Psychological traits and abilities arise from complex patterns in the structure and function of 

the human brain. A central goal for clinical neuroscience is to objectively measure these brain 

patterns in order to assess and predict individual differences in traits and abilities. Recent 

studies provide hints that objective quantification of psychological traits is possible with non-

invasive functional neuroimaging135  (see 6 for a review), but modest sample sizes and 

inconsistent results have prevented any strong conclusions. 

 

In the present work, we take a significant step forward. We establish the strongest evidence to 

date for the effectiveness and generalizability of brain-based objective markers 

(<neuromarkers=) for neurocognitive abilities, a set of inter-related abilities for reasoning, 

problem solving, manipulating representations, and learning and recall of information739. 

Individual differences in these abilities are important because they are associated with diverse 

life outcomes. Better neurocognitive abilities are associated with health, well-being, and 

occupational success10,11, while deficits in neurocognition, and closely related constructs such 

as executive functioning7,9, are associated with a broad range of psychopathologies12316.  

 

Traditionally, neurocognitive abilities were studied in functional imaging with task-based 

studies and locationist methodology173204participants are given tasks that engage 

neurocognitive processing with the aim of localizing task-associated processing to specific brain 

regions. Our work here differs in three respects. First, we take a network neuroscience 

approach21,22, examining interconnections among distributed large-scale networks measured 

when participants are at rest23. Second, we apply recently developed multivariate predictive 

modeling methods that aggregate (typically small) units of information across the entire brain, 
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creating an overall best prediction of scores on individual difference variables.24 Such methods 

provide a substantial improvement in effect size compared to traditional mass univariate 

approaches (which conduct separate statistical tests at each brain feature), potentially allowing 

clinically meaningful predictions of individual differences at the level of the single subject. 

Third, we do not study how brain features are associated with a single neurocognitive task. 

Rather, we examine how brain connectivity is linked to an overarching general factor of 

neurocognitive ability25328 that contributes to performance across diverse neurocognitive tasks, 

as well as several specific factors of neurocognitive ability29,30.   

 

Our study leverages imaging and behavioral data from 11,875 9 and 10-year olds in the 

Adolescent Brain and Cognitive Development (ABCD) national consortium study, Release 

2.131,32. We applied bifactor modeling to the comprehensive ABCD 11-task neurocognitive 

battery33 to quantify individual differences in a dominant general factor of neurocognitive 

ability, which captured 75% of the variation in task scores (coefficient w hierarchical34), as well 

as three domain-specific factors that together accounted for 13% of the variation in task scores 

(Figure 1). We also produced resting state connectomes for 5,937 youth who met stringent 

neuroimaging quality control standards; these connectomes capture tens of thousands of 

functional connections between hundreds of brain regions. We next applied a multivariate 

approach predictive modeling approach, brain basis set (BBS)35,5,36, to build neuromarkers for 

neurocognitive abilities from whole-brain functional connectivity patterns. To guard against 

identifying spurious relationships and to provide evidence of generalizability, we coupled BBS 

with leave-one-site-out cross-validation, in which we construct neuromarkers in all sites except 

one, test the marker at the held-out site, and repeat until each site is held out.  

 

RESULTS 

 

 
Figure 1: Factor Model of the ABCD Neurocognitive Battery. The comprehensive 11-task ABCD 

neurocognitive battery was factor analyzed yielding a general factor of neurocognitive ability 

and three specific factors.  
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Figure 2: Correlations Between Predicted and Actual General Factor Scores in Leave-One-Site-

Out Cross-Validation Analysis. Neuromarkers for the general factor of neurocognitive ability 

were constructed based on whole brain connectivity patterns. (Left Panel) These neuromarkers 

generalized to 19 out of 19 held out sites. The overall mean correlation between predicted and 

observed general factor scores for 5,937 held out subjects was 0.36, pPERM<0.0001 (observed 

correlation was higher than 10,000 correlations in the permutation distribution). (Right Panel) 

Scatter plots for the four largest held-out sites show highly consistent performance. 

 

Connectivity-based neuromarkers for the general factor of neurocognitive ability are highly 

effective in predicting scores in held-out subjects 

 

In leave-one-site-out cross-validation, the correlation between actual versus predicted general 

factor scores, averaging across folds of the cross-validation, was 0.36 (Figure 1, left panel). That 

is, brain connectivity patterns accounted for 14.2% of the variance in general factor scores in 

held-out samples of youth (variance explained was calculated with the r-squared cross-

validated metric37). Cross-site generalizability was remarkably consistent (Figure 1, right panel). 

Correlations between predicted and actual scores were statistically significant in 19 out of 19 

held-out sites (all 19 site-specific p values < 0.0001; observed correlations were higher than all 

10,000 correlations in the permutation distribution). 

 

Predictive performance of neuromarkers for the general factor of neurocognition remained 

highly statistically significant across multiple robustness checks 

 

Analysis 

General Factor of 

Neurocognitive Ability 

Number of 

Participants (N) 

1. Main Analysis r=0.36; p<0.0001* 5,937 

2. Additional Demographic Controls r=0.30; p<0.0001* 5,468 

3. White/European-American (non-

Hispanic) Subsample 

r=0.27; p<0.0001* 3,480 

4. Leave-One-Site Out General Factor r=0.36; p<0.0001* 5,937 

5. Ultra-Low Motion Subsample r=0.32; p<0.0001* 2,847 
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Table 1: Summary of Additional Analyses to Assess Robustness. The sensitivity of our main 

analyses (top row) to modeling choices was assessed with a number of robustness checks (rows 

2-5). Correlations between actual and predicted neurocognitive scores remained statistically 

significant and similar in size across all these analyses.  * = observed correlation was higher than 

all 10,000 correlations in the permutation distribution. 

 

We next assessed the robustness of our leave-one-site-out cross-validation analysis via 

sensitivity checks that modified key elements of the analysis stream. We tested alternative 

analyses that utilized: 1) Additional ABCD demographic covariates (household income, highest 

parental education, household marital status), and 2) A subsample restricted to participants 

who reported their race as White/European-American (non-Hispanic), to confirm that findings 

were not driven by potentially confounding demographic factors; 3) Bifactor models of 

neurocognition learned in the training sample and applied to the held-out sample (to create 

total separation between training and test samples); and 4) An ultra-low head motion sample 

(mean framewise displacement<0.2; to confirm motion was not responsible for any 

associations). As shown in Table 1, all results remained highly statistically significant across 

these changes, confirming the robustness of our analysis stream.  

 

Neuromarkers for specific cognitive abilities also exhibited statistically reliable generalization 

to unseen subjects, with neuromarkers for verbal abilities performing the best 

 
Figure 3: Correlations Between Predicted and Actual Scores for 14 Specific Neurocognitive 

Abilities in Leave-One-Site-Out Cross-Validation Analysis. Neuromarkers for 14 specific ability 

variables were constructed based on whole brain connectivity patterns. All 14 neuromarkers 

exhibited statistically reliable generalization to unseen subjects. 

 

We next assessed the predictivity of neuromarkers for specific neurocognitive abilities, in 

particular the three specific factors as well as the 11 individual neurocognitive tasks (Figure 1). 

Neuromarkers were constructed in 14 separate BBS models, each tested with leave-one-site-

out cross-validation. We found that neuromarkers for all 14 specific ability variables exhibited 
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statistically reliable generalization to unseen subjects (Figure 3). Neuromarkers for verbal 

abilities (vocabulary and reading) performed the best, each accounting for more than 9% of the 

variance in scores in held out participants. To address the fact that the general factor is 

correlated (to varying degrees) with some of the 14 specific ability variables, we constructed 

additional neuromarkers for all 14 specific ability variables, this time performing leave-one-site-

out cross-validation controlling for the effect of the general factor of neurocognitive ability. We 

found 13 of the 14 neuromarkers continued to exhibit statistically reliable generalization to 

unseen subjects (the 14th neuromarker, working memory, was trend significant at pPERM=0.10, 

Figure S3). This result demonstrates that resting state connectivity patterns contain unique 

information about multiple specific domains of neurocognitive abilities over and above 

information about the general factor.  

 

Functional connections involving control networks and processing networks were prominent 

in the general factor neuromarker. Additionally, these connections varied the most across the 

fifteen neuromarkers for different neurocognitive abilities. 

 

 
Figure 4: Connections Between Brain Networks in the Neuromarker for the General Factor of 

Neurocognition. (Left Panel) Supra-threshold connections linking large-scale networks are 

shown as red and blue dots. The map shows a distributed set of brain-wide connections is 

related to the general factor for neurocognitive ability. Connections involving control networks 

(fronto-parietal, ventral attention, dorsal attention, and cingulo-opercular) and processing 

networks (visual, default) are especially prominent. (Right Panel) Network map highlighting 

connections involving control networks and processing networks. Width of chords represents 

number of suprathreshold connections linking the indicated pair of networks. Red shades = 

connections at which higher connectivity predicts higher neurocognitive scores; Blue shades = 

connections at which lower connectivity predicts higher neurocognitive scores. 

 

We next examined consensus connectomes, importance-weighted composite maps associated 

each neuromarker (see Methods, §9). For the general factor neuromarker, its consensus 

connectome (Figure 4) showed prominent representation of connections involving control 
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networks (fronto-parietal, cingulo-opercular, ventral attention, and dorsal attention) and 

processing networks (visual, default). Connections involving these networks were 56.4% of the 

suprathreshold connections in the general factor neuromarker, even though make up only 

22.6% of the connections in the connectome.  

 

 
Figure 5: Connections Involving Control Networks and Processing Networks Differentiate 

Neuromarkers for Different Neurocognitive Abilities. We identified pairs of networks (listed in 

rows) in which inter-network connections varied the most across the fifteen neuromarkers for 

neurocognitive abilities (listed in columns). The size of the gray circles indicates the number of 

suprathreshold connections linking the pair of networks for each neuromarker. Red network 

labels indicate positive connections and blue indicate negative connections. The figure shows 

that connections involving control networks (Fronto-parietal, Cingulo-opercular, Dorsal 

Attention, Ventral Attention) and processing networks (Default, Visual, Somatomotor-Hand) 

play a major role in differentiating neuromarkers for distinct neurocognitive abilities.  

 

We next calculated a variability index (Methods, §10) that identifies pairs of networks whose 

connections varied the most across the 15 neuromarkers for neurocognitive abilities (the index 

separates positive and negative internetwork connections, and is thus calculated over 240 

inter-network values). This index illuminates the main network connectivity patterns that best 
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differentiate the neuromarkers. We found the top 21 inter-network relationships (out of 240 

total) accounted for over 50% of the variance in inter-network connectivity across the 15 

neuromarkers. These 21 highly varying inter-network relationships are shown in Figure 5, which 

in addition highlights interesting patterns of specificity for different domains of neurocognition. 

For example, the Speed/Flexibility factor is heavily represented in negative connections 

involving fronto-parietal and cingulo-opercular connections with default network. The 

Learning/Memory factor, in contrast, is most represented in negative connections within 

default network and positive connections linking default network with fronto-parietal network. 

Similar patterns of specificity are found for other specific neurocognitive abilities. Additionally, 

we found connections linking control networks and processing networks (see Figure 5 caption), 

which were heavily represented in the general factor neurosignature (see Figure 4), were also 

the most variable across neuromarkers.  

 

DISCUSSION 

 

This study examined behavioral and resting state imaging data for 5,937 9- and 10-year-old 

participants across 19 sites in the ABCD Consortium study33,38. Using a multivariate predictive 

modeling approach, we aimed to build neuromarkers for neurocognitive abilities from resting 

state connectivity patterns and validate their performance with leave-one-site cross-validation. 

Our main findings are that multivariate neuromarkers of neurocognitive abilities are effective at 

predicting multiple domains of neurocognition and reliably generalize to held out subjects. In 

addition, neuromarkers for the general factor of neurocognition were particularly effective, 

explaining over 14% of variance in scores in held out subjects, a clinically meaningful level of 

predictivity, and remained highly predictive after a number of robustness checks. Our results 

provide the strongest evidence yet that neuroimaging can be used to build reliable and 

generalizable brain-based markers for psychological traits and abilities. Moreover, these 

findings set the stage for additional investigation in the longitudinal ABCD dataset to better 

understand how the connectivity patterns here linked to neurocognitive abilities change and 

mature over the course of adolescence.  

 

Previous studies also identified links between brain imaging features, including resting state 

functional connectivity, and neurocognitive phenotypes136. The present study adds to the 

literature in three key ways. First, this is the largest study ever examining links between brain 

connectivity and cognitive abilities in youth. Larger samples enable estimation of effects with 

less variability39, yielding especially reproducible insights into brain-behavior relationships. 

Second, this study provides unique evidence about generalizability, showing that neuromarkers 

trained in one set of subjects effectively and consistently generalize to new subjects (with 

successful generalization in 19 out of 19 held out ABCD sites). The utility of imaging-based 

markers for psychological traits and abilities depends heavily on their applicability to new 

datasets collected at heterogenous sites with different subject characteristics and scanners, and 

this study confirms that strong generalizability is possible. Third, most previous neuroimaging 

studies exclusively examined a single aspect of cognition, such as a single neurocognitive 

ability1,4,40,  or a general factor of cognitive ability3,36,41. This study is among the first to shed 
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light on how brain connectivity contributes to the general factor of neurocognition, several 

specific factors, as well as a number of individual neurocognitive abilities. 

 

To this point, we found that neuromarkers across different domains of neurocognition 

exhibited varying levels of performance. Predictivity was highest for the general factor of 

neurocognitive ability, explaining over 14% of the variance in scores in out of sample subjects. 

Strong predictivity was also observed for a verbal/spatial specific factor as well as for several 

individual tasks, especially for the crystalized abilities of reading and vocabulary. Relatively 

poorer performance, on the other hand, was observed for two other neurocognitive domains, 

the Speed/Flexibility domain and the Learning/Memory domain, as well as the individual task 

associated with these domains (Figure 3). 

 

In explaining these differences, it is possible that these neurocognitive variables that were less 

well predicted simply do not have sizable signatures in resting state connectomes in 9- and 10-

year old youth. There is some evidence that neurocognitive abilities remain fairly 

undifferentiated27, unspecialized42, or underdeveloped43,44  in late childhood/early adolescence. 

Thus, it is possible that performance for a number of specific factors and individual tasks will 

improve as the architecture of neurocognition becomes more refined over the course of 

adolescence and the specific abilities reflected in these factors/tasks separate out from the 

general factor. An alternative explanation is that the multivariate classifiers used for the 

present analysis are not sensitive to signatures for certain specific factors and individual tasks. 

For example, if resting state signatures of certain neurocognitive abilities are mainly localized in 

small, spatially discrete structures (e.g., striatum or hippocampus), classifiers that rely on 

distributed whole-connectome information, including the BBS method used in the present 

report, will be unlikely to recover them. In future studies, alternative classifiers (e.g., supervised 

methods), modalities (e.g., task-based methods), or search strategies (e.g., regions of interest 

approaches) could be utilized. 

 

The connectivity neurosignatures for the general factor of neurocognition and other 

neurocognitive variables were highly distributed across the connectome, but there was 

nonetheless a concentration of connections involving control networks (such as fronto-parietal 

network and cingulo-opercular network) and processing networks (such as default network and 

visual network). Additionally, we found control network/processing network connections were 

the most variable across the set of neurosignatures for different neurocognitive domains. 

Control networks45,46 are proposed to be the source of cognitive control signals that modulate 

responses in other networks based on contextual demands4a function that is consistent with 

the observation that these networks are implicated in higher-order cognitive abilities. 

Additionally, connections involving control networks and default network are found to be 

among the most variable across individuals.47 These connections also exhibit substantial 

maturation across childhood and adolescence48,49, and their maturational trajectories exhibit 

significant inter-individual differences4,50,51. Taken together, these observations align well with 

our finding that connections involving control networks and processing networks are a primary 

locus of individual differences in neurocognitive abilities.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2020. ; https://doi.org/10.1101/2020.09.10.291500doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.10.291500
http://creativecommons.org/licenses/by-nc-nd/4.0/


One important potential application for neuromarkers of neurocognition is in elucidating 

psychological, neural, and developmental mechanisms of cognitive abilities43,52. Neuromarkers 

summarize complex distributed whole-brain connectivity patterns with a small number of 

quantitative metrics24, opening the door to sophisticated statistical modeling methods that 

assess genetic and environmental (e.g., poverty, family environment) contributions to 

neuromarker expression and, in turn, the contributions of neuromarker expression to 

subsequent outcomes. Critically, a major strength of the 10-year longitudinal ABCD study31 is 

that it allows researchers to track the maturational patterns across adolescence of the 

connections implicated in our neurocognitive markers. This will facilitate future work that 

delineates in detail the role of neuromarker expression in mediating the relationship between 

genetic and environmental risk factors (e.g., poverty, family environment) and the subsequent 

emergence of behavioral (e.g., substance initiation) or psychopathological (e.g., psychosis) 

endpoints.  

 

Additionally, neuromarkers of the type demonstrated here could one day find more direct 

clinical application. There is growing evidence that impaired neurocognitive abilities are 

associated with diverse forms of psychopathology12316,  including schizophrenia53355, 

externalizing disorders such as ADHD56,57 and substance use disorders58,59, and internalizing 

disorders such as depression60,61. Notably, in this same ABCD baseline sample, we recently 

showed62 that reduced scores on the general factor of neurocognition were associated with 

elevation in the general factor of psychopathology63365 (widely terms the <P factor=), which 

confers vulnerability to nearly all prevalent psychiatric symptoms. The possibility thus exists 

that neuromarkers for neurocognitive abilities could find clinical use in identifying individuals at 

risk for negative psychiatric outcomes, potentially at an early age well before overt signs and 

symptoms have emerged.   

 

In sum, in a large rigorously characterized sample of youth, we established that neuromarkers 

of neurocognitive abilities built from distributed brain network connectivity patterns 

consistently generalize to new subjects across different data collection sites, are robust across a 

number of sensitivity checks, and capture clinically meaningful quantities of variation in general 

and specific neurocognitive abilities.  

 

METHODS 

 

1. Sample and Data 

The ABCD study is a multisite longitudinal study with 11,875 children between 9-10 years of age 

from 21 sites across the United States. The study conforms to the rules and procedures of each 

site9s Institutional Review Board, and all participants provide informed consent (parents) or 

assent (children). Detailed description of recruitment procedures66, assessments67, and imaging 

protocols38 are available elsewhere.  

 

2. Data Acquisition, fMRI Preprocessing, and Connectome Generation 
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Imaging protocols were harmonized across sites and scanners. High spatial (2.4 mm isotropic) 

and temporal resolution (TR=800 ms) resting state fMRI was acquired in four separate runs 

(5min per run, 20 minutes total, full details are described in 68). The entire data pipeline 

described below was run through automated scripts on the University of Michigan9s high-

performance cluster, and is described below, with additional detailed methods automatically 

generated by fRMIPrep software provided in the Supplement. Code for running the analyses 

can be found at Code for running the analyses can be found at 

https://github.com/SripadaLab/ABCD_Resting_Neurocognition. 

 

Preprocessing was performed using fMRIPrep version 1.5.069, a Nipype70 based tool. Full details 

of the fMRIPrep analysis can be found in supplemental materials. Briefly, T1-weighted (T1w) 

and T2-weighted images were run through recon-all using FreeSurfer v6.0.1. T1w images were 

also spatially normalized nonlinearly to MNI152NLin6Asym space using ANTs 2.2.0. Each 

functional run was corrected for fieldmap distortions, rigidly coregistered to the T1, motion 

corrected, and normalized to standard space. ICA-AROMA was run to generate aggressive noise 

regressors. Anatomical CompCor was run and the top 5 principal components of both CSF and 

white matter were retained. Functional data were transformed to CIFTI space using HCP9s 

Connectome Workbench. All preprocessed data were visually inspected at two separate stages 

to ensure only high-quality data was included: After co-registration of the functional data to the 

structural data and after registration of the functional data to MNI template space. 

 

Connectomes were generated for each functional run using the Gordon 333 parcel atlas71, 

augmented with parcels from high-resolution subcortical72 and cerebellar73 atlases. Volumes 

exceeding a framewise displacement threshold of 0.5mm were marked to be censored. 

Covariates were regressed out of the time series in a single step74, including: linear trend, 24 

motion parameters (original translations/rotations + derivatives + quadratics), aCompCorr 5 CSF 

and 5 WM components and ICA-AROMA aggressive components, high pass filtering at 0.008Hz, 

and censored volumes. Next, correlation matrices were calculated for each run. Each matrix 

was then Fisher r-to-z transformed, and then averaged across runs for each subject yielding 

their final connectome.  
 

3. Bifactor Modeling of the ABCD Neurocognition Task Battery 

Preliminary exploratory factor analyses (EFA) were first conducted (maximum likelihood 

estimation with oblique geomin rotation) to explore the latent structure of the 11 ABCD 

neurocognitive tasks. In addition, a parallel analysis with 1,000 random draws was also run that 

suggested the presence of three factors. The optimal factor structure was determined by 

considering the scree plot, parallel analysis, model fit, and the interpretability of different factor 

solutions (including consistency with past research). Overall, three broad factors best 

characterize these tasks, corresponding to spatial/verbal, speed/flexibility, and 

learning/memory; in the bifactor models these three factors served as the specific factors. 

Follow-up confirmatory factor analysis showed very good fit by conventional standards (c2 

(34)=443.16, p<0.001, RMSEA=0.03, CLI=0.99, TLI=0.98, SRMR=0.02), with the general factor 

capturing 75% of the variation in task scores (coefficient w hierarchical34), and the three 
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domain-specific factors together accounting for 13% of the variation in task scores (see Figure 

S3).  

 

4. Inclusion/Exclusion 

There are 11,875 subjects in the ABCD Release 2.0.1 dataset. Screening was initially done using 

ABCD raw QC to limit to subjects with 2 or more good runs of resting data as well as a good T1 

and T2 image (QC score, protocol compliance score, and complete all =1). This resulted in 9598 

subjects with 2 or more runs that entered preprocessing. Each run was subsequently visually 

inspected for registration as well as for warping quality, and only those subjects who still had 2 

or more good runs were retained (N=8858). After connectome generation, runs were excluded 

if they had less than 4 minutes of uncensored data, and next subjects were retained only if they 

had 2 or more good runs (N=6568). Next, sites with fewer than 75 subjects were dropped. This 

left us with N=6449 subjects across 19 sites to enter PCA. Finally, subjects with missing values 

for neurocognitive scores or nuisance covariates were excluded. This left 5937 subjects to enter 

our main BBS predictive modeling analysis. Number of subjects for alternative analysis streams 

conducted as part of our robustness checks are reported in Table 1.  

 

5. Constructing a Brain Basis Set (BBS) 

BBS is a validated multivariate method that uses principal components dimensionality 

reduction to produce a basis set of components that are then associated with phenotypes4,35. 

We select the top 250 components for our basis set based on previous work showing that 50-

100 components per 1000 subjects captures most meaningful variance without overfitting35,36.  

 

6. Leave-One-Site-Out Cross Validation 

To assess generalizability of BBS-based regression models, we used leave-one-site-out cross-

validation. In each fold of the cross-validation, data from one of the 19 sites served as the held-

out test dataset and data from the other 18 sites served as the training dataset. Additionally, to 

ensure separation of train and test datasets, at each fold of the cross-validation, a new PCA was 

performed on the training dataset yielding a 250-component basis set. We assessed the 

performance of BBS models with Pearson9s correlation, cross-validated r-squared (see 

Supplement), and mean squared error.  

 

7.  Accounting for Covariates in Cross-Validation Framework 

In each fold of cross-validation, BBS models were trained in the train partition with the 

following covariates: gender, race, age, age squared, mean FD and mean FD squared. To 

maintain strict separation between training and test datasets, regression coefficients for the 

covariates learned from the training sample are applied to the test sample, and the variance 

they explain is subtracted away. This procedure, described in detail in our previous 

publication36, yields an estimate of the contribution of brain components alone in predicting 

test subject P factor scores, excluding the contribution of the nuisance covariates. Note that by 

employing leave-one-site-out, members of twinships and sibships are never present in both 

training and test samples. 

 

8. Permutation Testing  
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We assessed the significance of all cross-validation-based correlations with non-parametric 

permutation tests in which we randomly permuted the 5,880 subjects9 P factor scores 10,000 

times, as described in detail in the Supplement. 

 

9.  Consensus Connectome Maps  

To help convey overall patterns across entire BBS multiple regression models with 250 

components, we constructed <consensus= component maps. We used multi-level multiple 

regression modeling, with the neurocognitive scores as outcome variables and expression 

scores for the 250 components as predictors. Gender, race, age, mean FD, and mean FD 

squared were entered as fixed effect covariates, with family id and ABCD site entered as 

random effects (family nested within site). We next multiplied each connectomic component 

with its associated regression coefficient. We then summed across all 250 components yielding 

a single map, and thresholded the entries at z=2. We in addition created circular visualizations 

of consensus connectomes (see Figure 4, right panel) using the circlize software library in R, 

restricting the visualization to a subset of networks of interest. 

 

 

10. Identifying Highly Varying Network Pairs 

We quantified variation of pairs of networks across 15 connectomic neuromarkers (4 for the 

factor model and 11 for individual tasks). For each neuromarker, we summed suprathreshold 

connections for each pair of networks separately for positive and negative connections, yielding 

240 values per neuromarker. We next calculated the variance of these values across the 15 

neuromarkers. We selected the 21 most varying network pairs (which together accounted for 

over 50% of the variance across the 15 neuromarkers) and displayed the number of 

suprathreshold connections for each network pair for each neuromarker with a bubble heat 

map.  

 

11.  Data Availability 

The ABCD data used in this report came from NDA Study 721, 10.15154/1504041, which can be 

found at https://nda.nih.gov/study.html?id=721. 
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