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The global public health is endangered due to COVID-19 pandemic, which is caused by Severe Acute Respiratory Syndrome

Coronavirus-2 (SARS-CoV-2). Despite having similar pathology to MERS and SARS-CoV, the infection fatality rate of SARS-

CoV-2 is likely lower than 1%. SARS-CoV-2 has been reported to be uniquely characterized by the accessory protein ORF10,

which contains eleven cytotoxic T lymphocyte (CTL) epitopes of nine amino acids length each, across various human leukocyte

antigen (HLA) subtypes. In this study, all missense mutations found in sequence databases were examined across twnety-two

unique SARS-CoV-2 ORF10 variants that could possibly alter viral pathogenicity. Some of these mutations decrease the

stability of ORF10, e.g. I4L and V6I were found in the MoRF region of ORF10 which may also possibly contribute to Intrinsic

protein disorder. Furthermore, a physicochemical and structural comparative analysis was carried out on SARS-CoV-2 and

Pangolin-CoV ORF10 proteins, which share 97.37% amino acid homology. The high degree of physicochemical and structural

similarity of ORF10 proteins of SARS-CoV-2 and Pangolin-CoV open questions about the architecture of SARS-CoV-2 due to

the disagreement of these two ORF10 proteins over their sub-structure (loop/coil region), solubility, antigenicity and change

from the strand to coil at amino acid position 26, where tyrosine is present. Altogether, SARS-CoV-2 ORF10 is a promising

pharmaceutical target and a protein which should be monitored for changes which correlate to change pathogenesis and

clinical course of COVID-19 infection.

Introduction

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), responsible for the global pandemic, has brought the

whole world to a stand-still1, 2. The contagious nature of this virus is concerning as it has infected more than 25 million

people worldwide claiming 850,000 deaths, so far3–5. In addition to low-pathogenicity and endemic coronaviruses, high

pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus

(MERS-CoV) in 2002 and 2013, respectively, caused severe human illnesses, e.g. pneumonia, and renal failure but without any

pandemic grade transmission capacities6. SARS-CoV had a 9.7% infection fatality rate and MERS a 37% infection fatality rate,

but SARS-CoV-2 has a lower than 1% infection fatality7. Therefore, it is vital to monitor critical mutations in the proteins

such as ORF10 (open reading frame 10) that could possibly change viral pathogenicity. SARS-CoV-2 is a Baltimore class

IV positive-sense, single-stranded RNA virus with four structural proteins, sixteen non-structural proteins, and six accessory

proteins8.

The smallest accessory protein in SARS-CoV-2, the 38-residue peptide ORF10, and distinguishes the infection more

rapidly than PCR based strategies9. The protein SARS-CoV-2 ORF10 has the highest number of immunogenic epitopes of all

putative ORF proteins, therefore making it a potential target for vaccine development10. Due to its short length, ORF10 has

been suggested to be an insertion mutation. However, this is unlikely as the ORF10 gene is present at the terminal its sgRNA

sequence. It has been hypothesised that ORF10 is a transposon, but this is also unlike as transposons are of larger size9.

ORF10 consists of a Molecular Recognition Feature (MoRF) region from amino acid residue 3 to 7, which is a molecular

recognition site for interaction with other proteins11. It is one of the critical properties of intrinsically disordered proteins

that allow proteins to adapt an ensemble of conformations when bound to different proteins, and this permits interaction

with multiple proteins12. Through high-throughput analysis it was revealed that ORF10 can interact with a large number

of host proteins despite its small structure; therefore, this aspect can be likely attributed to the MoRF region11. Through

bioinformatics, it was previously reported that the SARS-CoV-2 ORF10 exhibits interaction with multiple members of the

Cullin-ubiquitin-ligase complex and controls the host-ubiquitin machinery for viral pathogenesis13–16.

Humans may not have been able to utilize any memory B and T cells elicited against other microorganisms to target ORF10

and fight SARS-CoV-2, contributing to its contagious nature17. It was further reported that no sequence homology was found

with any protein in the NCBI protein depository. Recently, SARS-CoV-2 ORF10 is found to have 99.15% nucleotide similarity

to that of Pangolin-CoV-202018, 19.

The present study examines mutations discovered in SARS-CoV-2 ORF10 variants, which along with their physiochemical

and immunological properties suggests the significance of these mutations to alter pathogenesis and to possibly identify some

potential vaccine candidates. A inclusive parity and disparity analysis between the two ORF10 proteins of SARS-CoV-2 and

Pangolin-CoV was also conducted.

Results

Mutations in SARS-CoV-2 ORF10

Each unique ORF10 sequence was aligned using the National Center for Biotechnology Information (NCBI) protein p-blast and

omega blast suites to determine the mismatches and thereby, the missense mutations (amino acid changes) were identified20, 21

(Figure 1(A)). A mutation from one amino acid A1 to another A2 at the position p is denoted by A1 pA2 or A1(p)A2. Based on

the mutations, conserved and non-conserved residues in ORF10 proteins are identified and marked in different colors in (Figure

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2020. ; https://doi.org/10.1101/2020.09.06.284976doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.06.284976
http://creativecommons.org/licenses/by-nc-nd/4.0/


2(B). Also, the molecular recognition features (MoRF) (YINVF) are predicted using the server MoRFchibi for the ORF10

Wuhan sequence22.

Figure 1. (A): Mutations and their amino acid positions in ORF10 proteins of SARS-CoV-2; (B): Conserved, mutated

residues and molecular recognition features of ORF10 (YP_009725255) of SARS-CoV-2.

There are altogether 22 distinct missense mutations which were examined across 22 unique ORF10 variants of SARS-CoV-2.

These missense mutations are found in the entire ORF10 sequence starting from the amino acid position 2 to 38. The amino

acids arginine (R), valine (V), and leucine (L) are substituted to more than one amino acid at fixed positions (marked magenta

in Figure 1(B). The largest conserved region across all the 24 ORF10 variants is "SLLLC" at positions 15–19.

Note that each unique variant (Table 2) of SARS-CoV-2 ORF10 possesses a single missense mutation (Table 1).

Accession ID Mutations Type of Mutations ∗PROVEAN Score Effect of Mutations on Structure ? RI Polarity Changes Charge

QNI23218.1 G2D Deleterious -7 Decrease 7 NP to P Neutral to Acidic

QIS29991.1 V6I Neutral -1 Decrease 7 NP to NP Neutral to Neutral

QLI33453.1 Y14C Deleterious -9 Decrease 2 P to P Neutral to Neutral

QNC04532.1 R20I Deleterious -8 Decrease 3 NP to NP Basic (strongly) to Neutral

QLA48060.1 R20K Deleterious -3 Decrease 8 NP to P Basic (strongly) to Basic

QMT97141.1 S23F Deleterious -6 Increase 2 P to NP Neutral to Neutral

QMU93213.1 R24C Deleterious -8 Decrease 7 P to P Basic (strongly) to Neutral

QMT54534.1 R24L Deleterious -7 Decrease 9 P to NP Basic (strongly) to Neutral

QKU54102.1 Y26H Deleterious -5 Decrease 8 P to P Neutral to Basic (weakly)

QNI25281.1 V30A Deleterious -4 Decrease 9 NP to NP Neutral to Neutral

QNC49349.1 V30L Deleterious -3 Decrease 4 NP to NP Neutral to Neutral

QNA70543.1 L37F Deleterious -4 Decrease 7 NP to NP Neutral to Neutral

QKV37245.1 T38I Deleterious -6 Decrease 5 P to NP Neutral to Neutral

QKV08176.1 L37P Deleterious -7 Decrease 8 NP to NP Neutral to Neutral

QNB17780.1 F35S Deleterious -8 Decrease 9 NP to P Neutral to Neutral

QMT94417.1 D31Y Deleterious -9 Decrease 6 P to P Acidic to Neutral

QLY88596.1 A28V Deleterious -4 Decrease 5 NP to NP Neutral to Neutral

QLG76514.1 N22T Deleterious -6 Decrease 1 P to P Neutral to Neutral

QLG99793.1 I13M Deleterious -3 Decrease 8 NP to NP Neutral to Neutral

QNG42985.1 P10S Deleterious -8 Decrease 8 NP to P Neutral to Neutral

QLJ57416.1 A8V Deleterious -4 Increase 3 NP to NP Neutral to Neutral

QNG41574.1 I4L Neutral -2 Increase 1 NP to NP Neutral to Neutral

Table 1. Twenty-two ORF10 proteins (SARS-CoV-2) and their corresponding mutations and predicted effects with changes in

chemical properties. ∗PROVEAN score: If the PROVEAN score is equal to or below a predefined threshold (e.g., -2.5), the

protein variant is predicted to have a "deleterious" effect. If the PROVEAN score is above the threshold, the variant is predicted

to have a "neutral" effect. ?RI: Reliability Index ranges from 0 to 9.

From Table 1, it was established that the majority of the diversified mutations are deleterious and cause the stability of the

protein to decrease, thus indicating the amplification of intricate virulence of SARS-CoV-2.

Sequence Homology and Mutations of SARS-CoV-2 ORF10

It was reported that SARS-CoV-2 ORF10 is not homologous with other proteins in the NCBI depository9. The SARS-CoV-2

ORF10 was blasted in the NCBI depository and no significant homology was detected for ORF10 SARS-CoV as well as

Bat-CoV ORF10. Surprisingly, SARS-CoV-2 ORF10 showed 97.37% homology to Pangolin-CoV ORF10 (QIG55954.1

(Release date: 2020-05-18; Collection date: 2019-03-29; Geo-location: China; Host: Sunda pangolin (Manis javanica)))

(Figure 2)19.
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Figure 2. Alignment of two ORF10 sequences (37 out of 38 identical residues) of Pangolin-CoV.

Only the serine (S) has been mutated to asparagine (N) at amino acid position 25 in SARS-CoV-2 ORF10 from the

Pangolin-CoV ORF10 and the mutation is deleterious (PROVEAN score -3). Due to this mutation, the stability of the protein

structure is predicted to be decreased and consequently the intricate virulence of SARS-CoV-2 will escalate.

Analysis of the per-residue intrinsic disorder predispositions of the ORF10 of SARS-CoV-2 and ORF10 proteins from

SARS-CoV and Pangolin-CoV provide further evidence of their differences. Figure 3A represents the results of this analysis

and shows that while ORF10 proteins from SARS-CoV-2 and Pangolin-CoV show very similar disorder profiles, the per-residue

disorder propensity of the ORF10 protein from SARS-CoV is remarkably different, especially within the C-terminal half of this

protein. This is in agreement with the results of other analyses conducted in this study.

Figure 3. (A) Comparison of the intrinsic disorder profile of the reference ORF10 protein from SARS-CoV-2

(YP_009725255) from the NC_045512 SARS-CoV2 genome (China, Wuhan) (bold black curve) with those of ORF10 proteins

from the Pangolin-CoV (QIG55954.1) and SARS-CoV TW-HP1 (UniProt ID: Q6SRY8).

(B) Analysis of the intrinsic disorder predisposition of the unique variants of SARS-CoV2 ORF10 in comparison with the

reference ORF10 protein from SARS-CoV-2 (YP_009725255) from the NC_045512 SARS-CoV2 genome (China, Wuhan)

(bold black curve). Analysis is conducted using PONDR-VSL2 algorithm23, which is one of the more accurate standalone

disorder predictors24–26. A disorder threshold is indicated as a thin line (at score = 0.5). Residues/regions with the disorder

scores > 0.5 are considered as disordered, whereas residues with disorder scores between 0.25 and 0.5 are considered highly

flexible, and residues with disorder scores between 0.1 and 0.25 are taken as moderately flexible.

Figure 3B compares intrinsic disorder predispositions of the 24 unique variants of ORF10 protein from different isolates of

SARS-CoV-2. It is seen that intrinsic disorder predispositions can vary significantly, especially within the C-terminal half of

the protein. In fact, majority of substitutions found within the N-terminal region (residues 1-15; i.e., mutations G2D, I4L, V6I,

A8V, P10S, I13M, and Y14C) have very little effect on the local intrinsic disorder predisposition of ORF10. On the other hand,

ORF10 variants with the mutations within the C-terminal region (residues 20-38; i.e., mutations R20I/K, N22T, S23F, R24C/L,

Y26H, A28V, V30A/L, D31Y, F35S, L37P/F, and T38I, as well as shortened QJR96431.1 variant, which is truncated due to a

nonsense mutation at the position 29) typically show rather substantial variability in their local disorder predispositions. The

most significant changes are observed within the “disorder hump” region (residues 20-30), intensity of which is increased in

QKU54102.1 (Y26H), QNI25281.1 (V30A), and QNB17780.1 (F35S) ORF10 variants, whereas in the variants QMT54534.1

(R24L), QNC04532.1 (R20I), QMU93213.1 (R24C), and QMT97141.1 (S23F), this hump is either eliminated or noticeably
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flattened. Interestingly, comparison of the Figure 3A and 3B shows that the variability in the disorder predisposition between

many variants of the ORF10 protein from various SARS-CoV-2 isolates is noticeably greater than that between the reference

ORF10 from SARS-CoV-2 and ORF10 from Pangolin-CoV. On the other hand, none of the SARS-CoV-2 ORF10 variants (with

the exception for the truncated QJR96431.1 variant) has as disordered C-terminal half as the ORF10 protein from SARS-CoV

does.

Comparison of SARS-CoV2 ORF10 and Pangolin-CoV ORF10

Considering the highest amount of sequence homology of ORF10 proteins of SARS-CoV-2 and Pangolin-CoV, we intended to

discover the parity and disparity between the ORF10 proteins of SARS-CoV-2 and Pangolin-CoV. We, therefore, performed a

multi-dimensional analysis of both ORF10 proteins from structural, physicochemical, biophysical and immunological aspects

to understand the origin of SARS-CoV-2 from the ORF10 perspective.

Figure 4. (A): Basic properties of ORF10 proteins of SARS-CoV-2 and Pangolin-CoV; (B): Peptide and solvent accessibility

properties of ORF10 proteins of SARS-CoV-2 and Pangolin-CoV

Exploration of similarities between SARS-CoV-2 and Pangolin ORF10 sequences (Figure 4A) revealed that neither of

them had disulfide linkages. However, many differences were detected. The SARS-CoV-2 ORF10 protein was classified as

an alpha-helical transmembrane protein (with probability 0.489) owing to the server ABTMpro as well as the presence of a

majority of hydrophobic amino acids, whereas the Pangolin-CoV ORF10 sequence was predicted to be a non-transmembrane

protein (with probability 0.513). Also, it was discerned that the predicted probability of antigenicity of SARS-CoV-2 ORF10

was slightly higher than that of Pangolin-CoV ORF10. It was predicted that both proteins are located in the capsid region of the

virus as both of them have a positive distance score, with a higher score for Pangolin-CoV (0.1502) than for SARS-CoV-2

(0.1141).
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To achieve deeper insights into the ORF10 proteins of SARS-CoV-2 and Pangolin-CoV, we characterized their secondary

structure (Figure 4B) and found them to be very much similar except for a significant difference at the position 26, Tyr (Y),

which for SARS-CoV-2 ORF10 is in the coil region whereas for Pangolin-CoV ORF10, it is located in the strand region. Most

of the residues, 23 in SARS-CoV-2 ORF10 and 24 in Pangolin-CoV ORF10, are buried and consequently, the solubility of

SARS-CoV-2 ORF10 is slightly higher than that of Pangolin-CoV.

Figure 5. (A): Physicochemical properties and hydropathy of ORF10 of SARS-CoV-2 and Pangolin-CoV; (B): Enzymes and

numbers of associated cleavages and their positions.

After structural and fundamental property studies, a subsequent thorough analysis of the physicochemical properties of two

ORF10 proteins of SARS-CoV-2 and Pangolin-CoV was performed, which unveiled the high similarity based on extinction

coefficient, isoelectric point and net charge (Figure 5A). However, the molecular weight (4449.18 g/mol) of the SARS-CoV-2

ORF10 was higher compared to Pangolin-CoV ORF10 (4422.16 g/mol), due to the substitution of S (low molecular weight)

of Pangolin-CoV to N (high molecular weight) of SARS-CoV-2. The enzyme cleavage sites for the SARS-CoV-2 and

Pangolin-CoV ORF10 were also indistinguishable for all proteases (Figure 5B).
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Figure 6. Disordered loops and hotloops of ORF10 of SARS-CoV-2 and Pangolin-CoV

Protein intrinsic disorder analysis disclosed the presence of hotloops in both sequences within the same span of amino-acids

(26-38). However, the presence of loops/coils (22-29) was a distinct characteristic of SARS-CoV-2 ORF10 and no such

structures were observed for Pangolin ORF10 (Figure 6).

Figure 7. Eleven distinct epitopes in the SARS-CoV-2 ORF10 were identified and analysed for binding affinity using

PICKPOCKET across 12 HLA subtypes. The IDEB score was predicted using the IDEB immunogenicity tool. Eleven epitopes

(marked in orange) from the Wuhan SARS-CoV-2 ORF10 sequence. Scores in red/blue show an increase/decrease concerning

the score associated with nine epitopes. Green marked scores convey the immunogenicity value remaining unchanged.

To shed light on the immunogenic properties of ORF10, we carried out immunoinformatics analysis and identified (Figure

7) nine amino acid long epitopes in 11 Cytotoxic T-lymphocytes (CTLs) from the SARS-CoV-2 ORF10 sequence across all

12 HLA subtypes. Their scores were recorded, and corresponding epitope-bearing mutations were analysed. Comparison of

scores with the original epitopes were done and thereby predicted the increase/decrease in binding affinity for class I MHC

molecules due to mutations. These eleven epitopes and mutational sequence-bearing epitopes were analysed using the IDEB

tool to account for their immunogenicity.

Discussion

A detailed study of the ORF10 protein was carried out to evaluate its potential to yield to variants that could possibly alter

viral pathogenicity. It was observed that each SARS-CoV-2 ORF10 sequence possesses one distinct mutation. Each of the

twenty-two SARS-CoV-2 ORF10 variants is at a uniquely different position. None of these mutations in the SARS-CoV-2

ORF10, however, contributes to the determination of clades of SARS-CoV-2. Of all variants, a total of 13 variants were
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identified to possess mutations at amino acid positions 22-38 and in a region predicted to contain overlapping loops/coils

and hot-loop regions of the ORF10 protein. All mutations were predicted to be deleterious with decreased effect on protein

structure stability except S23F, which increased stability, denoting that these mutations play an active role in enhancing intrinsic

propensity disorder (IPD) and allowing the protein to undergo more favorable interactions with other proteins. Two other

mutations, I4L and V6I, were found to be in the MoRF region of ORF10, and which may also possibly contribute to the IPD as

well.

The mutations at positions 20 and 24 were also significant due to their sensitivity for trypsin activity. Four ORF10 variants

(QNC04532.1, QMT54534.1, QMU93213.1 and QLA48060.1) possess four mutations at these two positions. Among them,

three variants harboring the mutations R20I, R24L and R24C provide trypsin resistance, while the fourth variant (QLA48060.1)

with the R20K mutation is susceptible to protease degradation.

An amino acid homology of 97.37% was observed between SARS-CoV-2 ORF10 and Pangolin-CoV ORF10. Although

most physicochemical and peptide properties are similar, the probability of antigenicity is greater for SARS-CoV-2 ORF10

than that of Pangolin-CoV ORF10 and consequently a stronger immune response is predicted for SARS-CoV-2 ORF10. A

change from strand (Pangolin-CoV ORF10) to coil (SARS-CoV-2 ORF10) at position 26 (tyrosine (Y)), is predicted indicating

the higher disordered state of the protein. A sequence with the Y26H mutation was also detected in SARS-CoV-2 ORF10,

which showed that a hydrophobic amino acid was replaced by a hydrophilic amino acid, thus increasing the probability for

more ionic interactions.

Analysis identified ORF10 mutations predicted to alter binding affinity to respective HLA alleles and to possibly corre-

spondingly change the immunogenicity of SARS-CoV-2 ORF10. Eight ORF10 variants (containing one of the following

mutations each G2D, I4L, I13M, Y14C, Y26H, F35S, L37S and L37P (Table 1)) accounted for 40% of total mutations and

demonstrated decreased affinity for MHC class I, 25% of the variants (carrying mutations R20K, R20I, R24C, R24L and D31Y)

predict for increased affinity, and 35% of the variants (carrying mutations V6I, A8V, P10S, S23F, A28V and V30A) contain

both high and low binding affinity epitopes. This may indicates that mutations in ORF10 are predominantly decrease the

affinity of epitopes to escape the host-immune system, while in the mixed cases the effect of increased affinity by mutations is

nullified by the presence of mutations contributing to decreased affinity. For mutations showing only increased binding affinity

epitopes, it is hypothesized that acquiring more than one mutation in a single sequence in the future will nullify them as well.

In addition, the immunogenicity score prediction revealed that a large number of mutations had decreased or no effect and

very few of them exhibited an increased immunogenicity score, which may be a possible strategy adopted by SARS-CoV-2 to

evade the host-immune response. Six mutation-bearing sequences (QLJ57416.1, QMT97141.1, QLY88596.1, QNC49349.1,

QMT54534.1, and QLG76514.1) were found to contain epitopes showing both high affinity binding for MHC class 1 and high

immunogenicity, indicating that these epitopes can mount significant immune response and might serve as potential targets for

vaccine candidates. More critical study in ORF10 SARS-CoV2 is necessary to monitor high frequency mutations that could

change viral pathogenesis.

ORF10 protein of SARS-CoV-2 and Pangolin-CoV are similar. However, there are predicted notable differences detected

between these two ORF10 proteins in terms of loop/coil structure, antigenicity, solubility, and in mutational diversification of

SARS-CoV-2. These significant disagreements of various physicochemical, structural, immunological properties despite an

amino acid homology (97.37%) between the ORF10 proteins of SARS-CoV-2 and Pangolin-CoV are quite surprising, and

deserving of further study.

Data and Methods

Data acquisition

There were 11,288 complete genomes of SARS-CoV-2 available on the NCBI (National Center for Biotechnology Information)

database, as of 28th August 2020. Each genome contains the ORF10 accessory protein and among them only 34 sequences

were found to be unique. Among these unique ORF10 protein sequences, only 22 sequences possess only one missense

mutation each and the remaining sequences possess ambiguous mutations. It is noted that, there was only one ORF10 sequence

(QJR96431.1) which was truncated due to a nonsense mutation at amino acid position 29. The present study focused on these

23 ORF10 proteins (Table 2).
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Accession Geo_location Collection_Date Accession Geo_location Collection_Date

YP_009725255 China 2019-12 QNC04532 USA 2020-04-29

QLJ57416 USA: WA 2020 QNI25281 USA: Virginia 2020-05

QIS29991 China: Hubei, Wuhan 2020-01-10 QLI33453 USA 2020-05-12

QJR96431 USA: CA 2020-03-13 QNC49349 Pakistan 2020-05-15

QKU54102 USA: Washington,King County 2020-03-15 QMT94417 USA: Washington,Yakima County 2020-05-27

QLA48060 USA: NY 2020-03-24 QMT54534 USA: Washington,Yakima County 2020-06-17

QNG41574 USA: Minnesota 2020-03-25 QLG76514 Australia: Victoria 2020-06-20

QKV08176 USA: Washington,King County 2020-03-26 QNG42985 USA: FL 2020-06-23

QKV37245 Australia: Northern Territory 2020-03-27 QMT97141 USA: FL 2020-06-30

QNI23218 USA: Virginia 2020-04 QNB17780 Bangladesh 2020-07-07

QLG99793 USA: CA 2020-04-16 QMU93213 USA: Wisconsin, Dane county 2020-07-13

QLY88596 USA: GA 2020-04-27 QNA70543 Bangladesh 2020-07-19

Table 2. Twenty-four unique ORF10 protein IDs with associated geo-location and date of collection of the sample

A reference ORF10 protein (YP_009725255.1) of the SARS-CoV-2 genome (NC_045512) from Wuhan, China was used to

identify the mutations27.

The miscellany of ORF10 variants of SARS-CoV-2 is clearly observed in the sequence-based homology (Figure 8(A)) and

phylogeny (Figure 8(B)).
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Figure 8. (A): Multiple sequence alignment (MSA) of 24 SARS-CoV-2 ORF10 proteins; (B): Phylogeny of 24 SARS-CoV-2

ORF10 sequences.

Each ORF10 of SARS-CoV-2 is different from the Wuhan SARS-CoV-2 ORF10 sequence utilizing a single amino acid

change at a distinct position. Noticeably, these positions (18) are widely varying from the position 2 to 38 for the 22

SARS-CoV-2 ORF10 variants.

Methods

Webserver based predictions

The prediction of various properties of ORF10 proteins was determined by several webservers which are briefly described as

follows.
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• For the prediction of the effect of identified mutations, the PROVEAN webserver was used and also for the structural

effects of mutations, and another webserver, I-MUTANT, was used28–30. The QUARK webserver was used for the

prediction of secondary structure of ORF10 proteins31–33.

• Given an amino acid sequence, the ABTMpro webserver predicts whether the given sequence is a transmembrane protein.

If the given sequence is a transmembrane protein, it further predicts the probabilities of the protein being an alpha-helix

transmembrane protein or a Beta Barrel transmembrane protein. In addition, for various peptide property findings, the

INNOVAGEN webserver was used34.

• The DIpro can predict whether the given protein sequence contains a cysteine disulfide bond, based on 2D recurrent

neural network, support vector machine, graph matching and regression algorithms35.

• The protein antigenicity is predicted using the webserver ANTIGENpro, which is a sequence-based, alignment-free

and pathogen-independent predictor. A two-stage architecture makes the probability of prediction based on multiple

representations of the primary sequence and five machine learning algorithms36. The intrinsic disorder prediction of a

given protein sequence was made using the server DisEMBL37.

• Epitopes of a given amino acid sequence were spotted and analyzed for binding affinity using across 12 HLA (human

leukocyte antigen) subtypes (HLA-A*01:01, HLA-A*02:01, HLA-A*03:01, HLA-A*24:02, HLA-A*26:01, HLA-

B*07:02, HLA-B*08:01, HLA-B*27:05 B*39:01, B*40:01, B*58:01 and B*15:01). The IDEB (The Immune Epitope

Database) score was predicted using the IDEB immunogenicity tool38, 39.

Evaluating the per-residue predisposition of various ORF10 proteins for intrinsic disorder

Per-residue disorder distribution within ORF10 protein sequences was evaluated by PONDR−V SL223, which is one of the

more accurate standalone disorder predictors24–26. The per-residue disorder predisposition scores are on a scale from 0 to 1,

where values of 0 indicate fully ordered residues, and values of 1 indicate fully disordered residues. Values above the threshold

of 0.5 are considered disordered residues, whereas residues with disorder scores between 0.25 and 0.5 are considered highly

flexible, and residues with disorder scores between 0.1 and 0.25 are taken as moderately flexible.
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