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Abstract

The global COVID-19 pandemic has caused massive disruptions in every society around the world.
To help fight COVID-19, new molecular tools specifically targeting critical components of the
causative agent of COVID-19, SARS-Coronavirus-2 (SARS-CoV-2), are desperately needed. The
SARS-CoV-2 nucleocapsid protein is a major component of the viral replication processes, integral to
viral particle assembly, and is a major diagnostic marker for infection and immune protection.
Currently available antibody reagents targeting the nucleocapsid protein were primarily developed
against the related SARS-CoV virus and are not specific to SARS-CoV-2 nucleocapsid protein.
Therefore, in this work we developed and characterized a series of new mouse monoclonal
antibodies against the SARS-CoV-2 nucleocapsid protein. The anti-nucleocapsid monoclonal
antibodies were tested in ELISA, western blot, and immunofluorescence analyses. The variable
regions from the heavy and light chains from five select clones were cloned and sequenced, and
preliminary epitope mapping of the sequenced clones was performed. Overall, the new antibody
reagents described here will be of significant value in the fight against COVID-19.

Introduction

Over the course of the last nine months, the novel SARS-CoV-2 coronavirus has spread dramatically
across the world, causing the severe respiratory illness termed COVID-19. There have been over 25
million reported cases of COVID-19 globally as of August 2020 (1), and over 845 thousand reported
deaths attributed to this devastating disease. SARS-CoV-2 is a respiratory droplet-borne pathogen
(2) and is easily transmitted between individuals in close proximity, leading to explosive spread and a
dire need for rapid diagnostic testing to help control outbreaks.

Testing for COVID-19 infection currently focuses primarily on detection of viral genomic RNA present
in patient respiratory samples, including nasopharyngeal swabs and nasal samples. Because COVID-
19 is a respiratory disease, detection of viral genomic RNA in patient nasal samples is a positive
indicator of both infection and the potential for an infected individual to spread the virus to others. The
current diagnostic for detecting viral genomic RNA is quantitative reverse-transcriptase polymerase
chain reaction (QRT-PCR), which can sensitively detect the presence of viral RNA in samples (3-5)
and can be automated for to test large numbers of samples in parallel. This workhorse assay can
provide exquisitely sensitive and specific detection of SARS-CoV-2 infection, but faces challenges.
Those challenges include significant pre-processing of samples such as RNA extraction, high cost of
reverse-transcription quantitative PCR reagents, and the need for sophisticated real-time capable
thermocyclers for performing the PCR procedure (6). Additionally, RNA is only one of a number of
analytes that can provide significant clinical value for diagnosing infection. The coronavirus
nucleocapsid protein is one such analyte.
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Coronavirus RNA genomes are coated with nucleocapsid protein within viral particles and within
infected cells. The nucleocapsid (N) protein is a ~50kDa protein that forms dimers that oligomerize on
viral RNA, providing protection of the viral genome from cellular RNA decay enzymes and compacting
the viral genome into a small enough package to fit within virion particles (7—10). There have been
estimates that between 720 and 2200 nucleocapsid monomers are present for every viral RNA
genome copy within virion particles (10-15), making the nucleocapsid protein an intriguing analyte for
viral infection. Several publications from the original SARS-CoV outbreak in 2003-2004 indicated that
detection of nucleocapsid in patient serum samples is diagnostic for early SARS disease, and the
amount of detectable SARS-CoV nucleocapsid antigen present in patient samples tracked well with
viremia (16—20). More recent data from the SARS-CoV-2 pandemic indicate that N protein is found in
very low but detectable amounts in patient serum (21), but N protein has been found in greater
amounts in patient nasopharyngeal swab and anterior nares swab samples.(22) Given the high copy
number of the N protein compared to viral genomes and the relative stability of N protein in patient
samples, detection of N can serve as a valuable orthogonal diagnostic marker compared to genome
detection by RT-gPCR. Detection of protein analytes requires specific antibodies, and since SARS-
CoV-2 has emerged very recently, no SARS-CoV-2 specific antibodies have been reported in the
literature. There is significant homology between SARS-CoV and SARS-CoV-2, new antibodies need
to be produced for the research community that may have increased specificity and utility for
detecting SARS-CoV-2 nucleocapsid protein or for potential therapeutic use (23-25).

Here we report the generation and characterization of a panel of monoclonal antibodies targeting the
SARS-CoV-2 N protein. We expressed and purified a truncated recombinant N protein, used the
recombinant antigen to immunize mice and generated a panel of hybridomas, and tested the resulting
clones for activity in western blots, ELISAs, and immunofluorescence assays with SARS-CoV-2
infected cells. Cross-reactivity of the antibodies against SARS-CoV, HuCoV-NL63, and HuCoV-229E
N protein was tested. We determined the Vy and V. sequences of the top 5 clones and performed
epitope mapping to identify antigenic regions within the N protein. Overall, our data provides a strong
foundation for using these monoclonal antibodies to study SARS-CoV-2 N protein and development
of novel diagnostic assays to detection of COVID-19.

Materials and Methods

Expression and purification of Coronavirus N proteins.

Amino acid sequences for coronavirus N proteins (SARS-CoV-2 (YP_009724397.2), SARS-CoV
(ABI196968.1), MERS (YP_009047211.1), HuCoV-NL63 (ABI20791.1), HUCoV-229E (N
protein_073556.1), HuCoV-HKU1 (AYN64565.1), HuCoV-OC43 (QBP84763.1) were obtained from
GenBank for sequence alignments. For generation of E. coli expression plasmids, amino acid
sequences from each virus (SARS-CoV-2 (132-419), SARS-CoV (133-422), HuCoV-NL63 (100-377),
and HuCoV-229E (102-389), were used to generate bacterial codon optimized DNA gBlocks using
the Integrated DNA Technologies web server tool. A list of gBlocks and PCR primers can be found in
Table S1. Each gBlock was cloned into the pET28a T7 expression vector using the New England
Biolabs NEBuilder Assembly 2X Master Mix according to the manufacturer’s instructions. The
resulting clones (SARS-CoV-2 = pBG690 | SARS-CoV = pBG700 | HuCoV-NL63 = pBG702 | HuCoV-
229E — pBG705) were sequence verified by Sanger sequencing (Genewiz).

Nucleocapsid proteins were expressed in BL21 DE3 pLys E. coli and purified by nickel affinity and gel
filtration chromatography essentially as previously described (26) with the exception of using 25 mM
HEPES (pH 7.5) as the buffer and changing the final NaCl concentration to 500mM in all of the
buffers to reduce oligomerization of N proteins. N proteins were concentrated to ~2mg/ml in gel
filtration buffer (25 ImM Hepes pH 7.5, 500 mM NaCl, 1 mM DTT, 0.1 mM AEBSF, and 10% glycerol)
using 10K Centricon concentrators, flash frozen in liquid nitrogen, and stored at -80°C until use.
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N protein generation and initial screening of monoclonal antibodies
All immunizations were intraperitoneal in a final volume of 200ul containing 25 ug of recombinant N
protein antigen. Two 6-week old female BALB/c mice (Jackson Laboratories) were primed with
antigen emulsified in an equal volume of complete Freund's adjuvant (Millipore-Sigma). The mice
were boosted 2 and 4 weeks later with antigen emulsified in incomplete Freund's adjuvant. Mice were
bled from the tails at 2 and 6 weeks to verify seroconversion by ELISA. A final boost of antigen in
PBS at 8 weeks followed by euthanasia and spleen retrieval 4 days later. On the day of splenocyte
collection, immunized mice were euthanized by CO, asphyxiation followed by exsanguination. Mouse
carcasses were sterilized with 70% ethanol before the spleen was removed and eviscerated. After
passing through a 16-gauge needle, the splenocytes were washed and fused with Sp2/0 Ag14
myeloma cells using the ClonaCell™-HY Hybridoma Kit. Following fusion, hybridoma cells were
rested for 24 hours before being resuspended and plated in ten 10cm plates with ClonaCell™-HY
Semi-Solid Medium D and allowed to propagate for 10 days at 5% CO, at 37°C. Eleven days after
fusion, individual colonies were selected and transferred to individual wells in a 96-well plate using a
10ul micropipetter. 920 colonies were harvested and left to grow for five days at 5% CO, and 37°C.

Primary Hybridoma Screen

Hybridomas were screened using enzyme-linked immunosorbent assay (ELISA) for activity against
SARS-CoV-2 N protein. 96-well plates were coated with 2ug/ml N protein diluted in 1X PBS and
incubated overnight at 4°C. Plates were blocked with SuperBlock™ T20 (TBS) for 1 hour shaking at
room temperature. After three washes with 0.1% Tween in 1X PBS (Hyclone), supernatant from the
920 hybridoma colonies were incubated on the plates for 1 hour shaking at room temperature. After
three more washes the plates were incubated with HRP conjugated goat anti-mouse polyclonal
antibodies (Abcam ab97023) diluted at 1:10,000 in 1X PBS for 1 hour at room temperature, shaking.
The plates were then washed three more times before being developed with 3,3',5,5-
Tetramethylbenzidine (TMB) before the reaction was stopped with an equal volume of 2M H,SO..
Absorbance at 450nm was determined for each well using a PerkinElmer Victor X5 multilabel plate
reader. Absorbances were corrected against the PBS negative control and organized by absorbance
on Microsoft Excel. Ninety-two colonies with the highest absorbance at 450nm were selected for
further testing.

Bacteria Cross-Reactivity Screen

One 96-well plate was coated with 200ng/well of recombinant N protein and another plate was coated
with 200ng/well of E. coli lysate (BL21 DE3 pLys). The aforementioned ELISA protocol was
performed using the selected 92 parent hybridoma culture supernatants as the primary antibody.
Following A4s0 determination any colonies with reactivity towards the bacterial lysate protein excluded
from further screening.

His-Tag Cross-Reactivity Screen

One 96-well plate was coated with 200ng/well of recombinant N protein and another plate was coated
with 200ng/well of recombinant 6xHis-tagged SARS-CoV-2 spike protein receptor binding domain
(RBD) produced using the FreeStyle 293 Expression System (Thermo Fisher) from BEI Resources
(Cat# NR-52366) as described (27). The ELISA protocol described previously was performed using
the selected 92 parent hybridoma culture supernatants as the primary antibody. Following A450
determination and correction in relation to the Medium E negative control, any colonies with reactivity
towards the His tags were removed from consideration.

SARS-CoV-2 virus

SARS-CoV-2 coronavirus (Isolate USA-WA1/2020) was obtained from BEI Resources. Stocks of
virus were grown in Vero-EG6 cells in DMEM (Gibco) supplemented with 10% fetal bovine serum (Atlas
Biologicals) and 25mM HEPES (pH 7.5) in BSL-3+ containment at the Colorado State University
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Regional Containment Biocontainment Laboratory. Virus containing media was stored at -80°C in
single use aliquots. Viral titers were performed using plaque assay as described (28).

Immunofluorescence assay

Vero cells were plated at a concentration of 3.5x10* cells/well in a 96-well plate. The cells were
inoculated with SARS-CoV-2 in BSL-3 at a MOI of 0.1 and allowed to absorb for 1 hour at room
temperature. Unabsorbed virus was washed with 1X PBS, cells were overlaid with 1X DMEM
supplemented with 2mM glutamine, non-essential amino acids and 2% fetal bovine serum, and the
cells were incubated for 24 hours at 5% CO, and 37°C. Infected cells were briefly washed with 1X
PBS then fixed with either 4% paraformaldehyde (PFA) or methanol for 10 minutes before being
washed three more times. PFA fixed cells were permeabilized by incubating with 0.5% Tween in 1X
PBS for 20 minutes.

Plates of infected fixed cells were blocked with 4% nonfat dry milk powder dissolved in 1X PBS +
0.1% Tween 20 for 1 hour at room temperature, shaking. Supernatant from parents 17, 21, 22, 57,
and 67 along with rabbit anti-N protein polyclonal control antibody were then incubated for 1 hour
shaking at room temperature and then washed three times with 1X PBS + 0.1% Tween 20. FITC-
conjugated goat anti-mouse secondary antibodies or Alexa 488-conjugated goat anti-rabbit
secondary antibodies at a dilution of 1:2000 in 1X PBS were added to the appropriate wells, with all
wells receiving Hoescht staining at 1:4000. After 1 hour of incubating the secondary antibodies and
stains in the dark at room temperature, the plates were washed three times with 1X PBS + 0.1%
Tween 20 with the last wash being 50pl of 1X PBS. Cell labeling and fluorescence were observed
with a Celigo high-content imaging cytometer (Nexcelcom) and a Nikon Diaphot 200 fluorescence
microscope.

Western Blot

The ability for the parent colonies’ antibodies to detect linear epitopes was assessed via western
blotting. Recombinant N protein and recombinant spike RBD proteins were resolved on a 12% gel in
triplicate at 120V for 1 hour before being transferred to PVDF membranes for one hour at 100V. Blots
were blocked with 4% nonfat dry milk powder blocking solution in 1X PBS. Supernatants were diluted
1:5 in blocking solution (PBS+2% non-fat dry milk) before being applied to blocked blots overnight,
shaking at 47'1C. Blots were washed three time with blocking solution for five minutes each before
being incubated for 1 hour at room temperature with goat anti-mouse HRP-conjugated secondary
antibodies diluted in blocking solution. After three more washes with 1X PBS, the blots were
developed with 1-Step™ Ultra TMB Blotting Solution (Pierce) before being quenched in deionized
water and imaged.

Reactivity towards endogenously produced N protein from an active SARS-CoV-2 infection was
assessed with infected cell lysates on western blots. Vero cells were infected at 0.1 MOI with SARS-
CoV-2 in BSL-3 and allowed to incubate for 48 hours before cells were trypsinized, spun down, and
resuspended in RIPA buffer. These samples were then diluted in 2X Laemmli Buffer and boiled for 15
minutes before being resolved on an SDS-PAGE gel alongside uninfected Vero cell lysate and
processed for western blot analysis as described above.

Isotyping
The isotype of the antibodies produced by parent hybridomas was assessed using the Pierce™

Rapid Antibody Isotyping Kit plus Kappa and Lambda (catalog no. 26179) for mouse antibodies
according to the provided procedure. Briefly, antibodies were diluted 1:100 in the provided sample
diluent before being applied to the lateral flow assay and the corresponding bands observed after 10
minutes.
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Sequencing of anti-N protein monoclonal antibody genes
RNA from each hybridomas 17, 21, 22, 57, and 67 was isolated and stored at -80°C following Trizol
(Invitrogen) and phenol-chloroform extraction. Isolation of kappa, lambda, and heavy chain RNA
sequences for hybridoma colonies was accomplished using the monoclonal antibody sequencing
protocol established in Meyer et al. 2019 (29). Primers specific for the 3’ constant region of either the
kappa, lambda, or heavy chain RNA sequences outlined in the protocol were used in conjunction with
SMARTScribe Reverse Transcriptase. Amplification of the RT product is accomplished with PCR
using primers specific to the universal sequence and a region of the kappa, lambda, or heavy chain
sequences that were offset to the primers used during reverse transcription. Successfully produced
PCR products were then cloned into the NEB pMiniT 2.0 Escherichia coli vector using the NEB PCR
Cloning Kit. Five kappa and heavy chain clones were sequenced for each hybridoma by Genewiz.
Clone sequences were analyzed by IgBLAST (30) for antibody framework regions (FMR) and
complementary-determining regions (CDR).

Epitope Mapping

Primers described in Table S1 in were used to create 50 amino acid deletions from the pBG690
plasmid used to produce SARS-CoV-2 N protein amino acids 133-419. The primers produced
recombinant N protein variant sequences corresponding to proteins A133-179, A180-229, A230-279,
A325-379, and A381-419. These transcripts were circularized by NEBuilder and then cloned into
BL21 E. coli cells. Protein expression was incubated overnight in LB broth with 10% glucose.
Recombinant N protein production was then induced with IPTG alongside uninduced transformed
variants for five hours. Cells were then spun down and resuspended in Laemmli Sample Buffer and
boiled for five minutes and then run on a 10% SDS-PAGE gel. Protein was then transferred to a
PVDF membrane and then labeled according to the aforementioned western blot protocol before
being developed with TMB.

Results

This project was focused on developing novel antibodies that are able to specifically detect SARS-
CoV-2 nucleocapsid protein for use in research and diagnostic testing efforts. Therefore, recombinant
N protein was produced as antigen for hybridoma production. The N-terminal domain of human
coronavirus N proteins have several conserved regions that may contribute to monoclonal cross-
reactivity (Fig. 1A). Previous work developing monoclonal antibodies against MERS coronavirus N
protein found that removal of the N-terminal domain improved antibody specificity and increased
recombinant protein solubility (31). Therefore, we developed a bacterial expression plasmid that
produces AA133-416 of the SARS-CoV-2 (isolate USA-WA1/2020) N protein with a N-terminal T7
leader sequence to improve translation efficiency (pBG690). Expression of recombinant N protein in
BL21 DE3 pLys E. coli was relatively robust, but we found that the recombinant protein formed large
molecular weight oligomers at NaCl concentrations below 300 mM (data not show). Purification of
nickel-affinity purified N protein on a Superdex 200 gel filtration column in 500 mM NaCl resolved
these aggregation issues and produced protein migrated as the predicted molecular weight of a
truncated N dimer (Fig. 1B). SDS-PAGE analysis of purified SARS-CoV-2 N protein showed that the
protein was >98% pure and migrated at the expected molecular weight (Fig. 1C). This purified
antigen was found to be antigenic and produced rabbit polyclonal antibodies that reacted with N
protein in deer mouse infections in parallel work (32). The recombinant N protein was used to
immunize BALB/c mice according to the protocol described above to generate immunized mice, from
which spleens were collected and hybridoma clones were produced.

For primary screening of hybridoma colonies, supernatant was collected from the 920 colonies and
tested for the presence of N protein specific antibodies by ELISA (Fig. 2A). After determining
reactivity of produced monoclonal activities against the antigen via light absorbance at 450nm and
correcting based on the negative control, the highest scoring 92 hybridoma colonies were selected for
further testing and expansion as “parent” colonies. Due to the bacterial system used for N protein
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immunogen production, we then screened these 92 parents for reactivity against bacterial proteins.
Plates were coated with bacterial lysate protein (BLP) and tested by ELISA in parallel to N protein-
coated plates to determine which parents had residual bacterial reactivity. Of these, parents 5,7, 23,
43,53, 54, 65, 77, and 79 demonstrated specificity for bacterial proteins and were thus eliminated
from further testing. The remaining parents were then tested for reactivity against the 6xHis tag
modification attached to the N protein immunogen and antigen used during the primary screen.
Parent 55 showed reactivity to the 6xHis tag and was thus eliminated from further testing. After
assessing the reactivity towards N protein in the primary screen, BLP screen, and His tag screen in
contrast to reactivity towards BLP and His, 18 parents were selected to be top parents for further
testing and given the prefix mBG (Fig. 2B). Later in the project we produced recombinant protein for
SARS-CoV, HuCoV-NL63, and HUCoV-229E N proteins (Fig. 1C), but these proteins were not
available until late in the hybridoma screening process and could not be used to counter-screen
hybridomas during the initial screening process.

Recombinant SARS-CoV N protein, HuCoV-NL63 N protein, and HuCoV-229E N protein were
expressed and purified for determining the top 18 parents’ specificity compared to SARS-CoV-2 N
protein. After ELISA testing and analysis, the parents’ reactivity towards these variants of N protein
were compared (Table 1). With the exception of mBG 61, 64, and 86 there was strong cross reactivity
with SARS-CoV N protein. In a diagnostic or research environment, such cross reactivity is of limited
concern due to the low prevalence of SARS-CoV circulating in communities. Cross reactivity with
NL63 N protein was similar in that mBG 61, 64, and 86 lacked reactivity to this N protein variant while
other parents maintained some reactivity, albeit much less than they demonstrated for SARS-CoV.
mBG 21, 22, 57, and 67 all had reduced reactivity towards NL63 N protein. All parents lacked
reactivity towards 229E N protein, whereas the anti-His control showed equal reactivity towards all N
proteins tested.

Western blots were performed to determine reactivity of the top 18 parents towards linear or semi-
linear epitopes. All parents demonstrated specific reactivity for recombinant SARS-CoV-2 N protein
(Supplemental Fig. 1) with any residual bands in the neighboring wells being the result of bleed-over
of sample during loading. The multiple bands on each blot corresponds to oligomers of N protein and
degraded protein. mBG 67, 80, and 86 demonstrated two band labeling each, suggesting a specificity
for linear epitopes on the N protein while the other parents labeling suggests conformational epitopes.
Western blots comparing reactivity towards SRS-CoV-2 infected Vero cell lysates and uninfected
Vero cell lysates (Fig. 3) demonstrated a high specificity towards antigen in infected cells and the
endogenously produced N protein for the top 18 clones.

To test the capability of these antibodies to be used for cellular localization of N in SARS-CoV-2
infected cells, the ability for the top 18 parents to label endogenous N protein following PFA or
methanol fixation was determined by immunofluorescence assay (IFA). Signals intensity and
subcellular localization were comparable to a previously described rabbit anti-NP polyclonal antibody
(32) and Fig. S2. Results indicated that the parents’ antibodies that demonstrated reactivity to fixed
infected cells were non-reactive towards uninfected fixed cells. N protein was found predominantly in
the cytoplasm in SARS-CoV-2 infected cells (Fig 4B). IFA positive clones varied in effectiveness
between methanol and paraformaldehyde fixation methods (Fig. 4A).

Based on the activity of clones in ELISA, western blot, and IFA analysis, we chose five clones
(mBG17, mBG21, mBG22, mBG57, and mBG67) for sequence analysis. Sequence determination via
the method outline in Meyer et al., with five separate clones for each Vyor V| being sequenced (29).
Consensus sequences for each clone were assembled, translated, and subjected to IgBLAST
analysis to determine framework and complementary determining regions (Table 2). mBG21 and 22
presented identical sequences, suggesting a common B-cell origin. Isotype tests revealed each of the
five parents, with the identical isotypes of mBG 21 and 22 supporting the prediction of a common
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origin. Clones mBG21/22, and mBG57 shared identical heavy chains but different kappa chains.
Clones mBG17 and mBG67 possessed unique heavy and light chains.

Finally, we sought to determine preliminary epitope ranges for clones mBG17, mBG21/22, mBG57,
and mBG67 using SARS-CoV-2 N protein deletion mutants in western blot analysis. Recombinant N
protein expression plasmids, each with a different 50 amino acid deletion, were constructed and used
to narrow down the range of epitope locations for mBG17, mBG22, mBG57, and mBG67 (Fig. 5).
Clones mBG22, mBG57, and mBG67 showed strong reactivity in western blot analysis against all
clones except the A133-179 deletion, suggesting that mBG21/22, mBG57, and mBG67 epitope
resides within AA133-179 range. mBG17 showed strong reactivity towards all deletions except A381-
419, indicating that clone mBG17 is likely within AA381-419 at the C-terminal end of the N protein.
Additional peptide mapping is needed to determine the exact amino acid sequences for each epitope.

Conclusions

With SARS-CoV-2 spreading globally amidst a dearth of effective diagnostics, treatments, and
reagents to tackle pandemic, it is more important than ever for tools for detection and research are
developed and validated. The hybridoma antibodies characterized in this paper have been selected
and validated for high specificity towards SARS-CoV-2 nucleocapsid protein across several
diagnostic and research assays, such as direct ELISA, IFA, and western blot. Future studies can
utilize these antibodies for studies determining N protein structure, intracellular interactions,
diagnostic development, and potential therapeutics. Preliminary epitope mapping experiments
revealed ranges of amino acids that contain partial or full epitopes utilized by antibodies from five of
the top mBG antibodies. The sequences for the FMR and CDR regions of these antibodies shown in
Table 2 be used for the production of recombinant single-chain variable fragment (scFv) antibodies
that may be used for observing real-time N protein production (33), heavy and light genes cloned into
antibody expression vectors for non-hybridoma eukaryotic expression systems, or used in
neutralizing treatments (34). Overall, we hope that these data will be useful to the wider research
community for fighting the ongoing COVID-19 pandemic.
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Figure Legends.

Figure 1. Production and characterization of truncated SARS-CoV-2 nucleocapsid protein. A)
Sequence alignment of human coronavirus N proteins. B) Size exclusion chromatograph of nickel-
column purified SARS-CoV-2 NP (133-419). C) SDS-PAGE gel of purified Coronavirus nucleocapsid
proteins.

Figure 2. Screening of Anti-Nucleocapsid Clones. A) Direct ELISA analysis of 920 clones picked
from hybridoma fusion. B) Verification ELISA of top 18 anti-nucleocapsid monoclonal antibody clones
and counter screening against bacterial lysate (BLP) and 6-His-tagged SARS-CoV-2 Spike RBD
domain. Averages are presented following background subtraction.

Figure 3. Western Blot Analysis of Anti-Nucleocapsid Monoclonal Antibody Clones Against
Uninfected (U) or SARS-CoV-2 infected () Vero cells.


https://doi.org/10.1101/2020.09.03.280370
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.03.280370; this version posted September 3, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 4. Immunofluorescence Analysis of Anti-Nucleocapsid Monoclonal Antibody Clones. A)
Relative reactivities of clones in SARS-CoV-2 infected Vero cells fixed with methanol or
paraformaldehyde. B) representative images of uninfected and SARS-CoV-2 infected Vero cells
(paraformaldehyde fixed) processed for immunofluorescence analysis with mBG17.

Figure 5. Epitope mapping using N protein deletions. A) Western blot analysis of selected
antibody reactivity against SARS-CoV-2 nucleocapsid protein deletions. B) Sequence alignments of
NP AA133-179 and AA381-419 regions with heterologous human coronavirus nucleocapsid proteins.

Table 1. Cross-Reactivity Screening of Anti-Nucleocapsid Monoclonal Antibody Clones. Left:
Direct ELISA analysis of top 18 clones against SARS-CoV2, SARS-CoV, NL63, and 229E human
coronavirus nucleocapsid proteins. Average signals are corrected against background signal Right:
Relative binding of monoclonal antibodies to nucleocapsid proteins compared to SARS-CoV-2.

Table 2. Immunoglobulin heavy and light chain amino acid sequences of top 5 hybridoma
clones (as defined by IgBlast).

Supplemental Figure 1. Western blot analysis of anti-SARS-CoV-2 N protein monoclonal
antibodies against recombinant antigen

Supplemental Figure 2. IFA images of SARS-CoV-2 infected and uninfected cells stained with
control rabbit anti-NP polyclonal antibody. Images obtained with a Celigo high-content
imaging cytometer (Nexcelcom)

Supplemental Table 1. DNA gBlocks and oligonucleotide primers
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Figure 2

Primary hybridoma Screening Anti-NP Direct ELISA and Cross-reaction Testing

Hybridoma reactivitv Primary Screen and Background Crossreaction Screen

Absorbance

5 Parent # SARS-CoV-2 NP BLP 6-HisTag
17 1.32 0.02 0.00

21 1.47 0.01 0.02

2 1.04 0.00 0.01

2% 1.25 0.01 0.02

38 134 0.03 0.01

48 1.60 0.01 0.02

51 1.42 0.01 0.00

52 0.94 0.00 0.00

57 1.69 0.00 0.00

58 161 0.00 0.00

MO A RMON SO A SMOW oMo o~ 61 145 0.00 0.01
M R E YRR RRRCIBRRRAGEER 64 111 0.01 0.02
67 1.24 0.03 0.00

Clone Rank 72 152 0.00 0.00

80 0.75 0.00 0.01

920 clones tested " o o oo

Top 18 clones characterized 8 0.83 0.03 0.02

86 1.05 0.02 0.00

"9SUBOI| [RUOITRUISIU| 0" AN-ON-AS-DD® Japun a|qe|reAe

apeuw sl | ‘Aunadiad ul uudaid ayy Aejdsip 01 asuadl| B AIxHoIq pajuelh sey oym ‘1spunyioyine ayi si (mainal 1aad Aq paiiniad jou sem Yyaiym)
uudaud siys Joy Japjoy WyBLAdod 8yl "0Z0z ‘€ Jequisidas palsod uoisian syl :02£082'€0°60°0202/TOTT 0T/Bi0"10p//:sdny :lop Juudaid AixHoIq


https://doi.org/10.1101/2020.09.03.280370
http://creativecommons.org/licenses/by-nc-nd/4.0/

arent #

17

21

22

26

38

418

51

52

57

58

61

64

67

72

80

81

85

86
Anti-NP
Anti-His

Table 1

Corected Average

1.28
143
134
1.32
1.32
112
1.23
0.17
1.22
143
1.38
1.37
1.38
144
1.20
1.33
117
116
1.38
1.35

SARS-CoV-2

[+ (4 14 14+ 1+ I+ 14+ 14+ I+ 14+ 14+ 1+ 14+ 14+ 14+ I+ 1+ 14+ 1+ 1+

0.15
0.23
0.28
0.10
0.24
0.23
0.20
0.09
0.10
0.08
0.02
0.01
0.03
0.06
0.02
0.06
0.21
0.03
0.24
0.10

Standard Deviation Corected Average

1.39
1.49
0.76
1.32
144
1.54
141
0.30
145
1.39
0.24
0.21
0.39
1.53
1.60
141
1.47
0.05
0.02
1.52

Betacoronavirus Cross-Reactivity Screen

SARS-CoV

[+ 1+ 14+ 14+ I+ I+ 14+ I+ I+ I+ |1+ I+ I+ 1+ I+ I+ I+ 1+ |+ |+

0.07
0.22
0.13
0.15
0.13
0.09
0.10
0.02
0.08
0.23
0.04
0.03
0.01
0.05
0.09
0.02
0.04
0.00
0.02
0.03

Standard Deviation Corected Average

0.54
0.47
0.51
0.58
0.42
0.47
0.37
0.04
0.53
0.65
0.01
0.00
0.03
0.57
0.29
0.36
0.36
0.03
0.57
151

NL63

I+ 1+ 1+ 1+ 1+ 1 4 I I+ I+

Standard Deviation Corected Average

0.09
0.03
0.05
0.12
0.07
0.02
0.02
0.00
0.18
0.03
0.02
0.00
0.00
0.01
0.02
0.01
0.02
0.05
0.06
0.11

0.03
0.03
0.01
0.02
0.04
0.03
0.01
0.00
0.02
0.05
0.00
0.01
0.00
0.02
0.02
0.02
0.02
0.01
0.00
114

[+ [+ I+ 1+ I+ I+ I+ I+ I+ I+ |+ |+ I+ 1+ I+ I+ I+ 1+ |+ |+

Standard Deviation
0.01
0.01
0.00
0.00
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.01
0.00
0.31

Parent #
17
21
22
26
38
48
51
52
57
58
61
64
67
72
80
81
85
86
Rb Anti-NP
Ms Anti-His

Betacoronavirus Cross-Reactivity Screen

SARS-CoV-2
+HH
et
it
+H++
+H++
+HH
+HH
+HH
+HH
i+t
i+t
+H++
+H++
+HH
+HH
+HH
+HH
it

e+
-+t

SARS-CoV
+HH+
++++

++
+H++
+H++
HHHH
HHHH
-
HHHH+
++++
+
+
++
+HH+
HHHH
+HH+
FHHH+

-+

NL63
++
+
++
++
+
++
+
+
++
++

+ + o+

++
-+

229E

-+

"asua2l| [euoeualul 0’y AN-DN-AG-DDe J1apun a|gejrene

apeuw sl | ‘Aunadiad ul uudaid ayy Aejdsip 01 asuadl| B AIxHoIq pajuelh sey oym ‘1spunyioyine ayi si (mainal 1aad Aq paiiniad jou sem Yyaiym)
uudaud siys Joy Japjoy WyBLAdod 8yl "0Z0z ‘€ Jequisidas palsod uoisian syl :02£082'€0°60°0202/TOTT 0T/Bi0"10p//:sdny :lop Juudaid AixHoIq


https://doi.org/10.1101/2020.09.03.280370
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.03.280370; this version posted September 3, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

()]
I
=
o
g3
T o
o @
o £
N
B < 23
) O o Q
= =%
D wn
_ nonu
—_ oD -
a =
- k:g _ S a
c <
-] Eg
£
— 00 ; 8'<
-) N
=|=t - ©
¥ ~ O g
LN
- L I
— ~ _
-) o) o)
D o0
| b = I
_ i o
T - 2 -
5 Tz o
I > 2
LL - 00
D <
+
5 50
- 00 -)
) N >
=
S -y o
- - o
+ 00
)
I

U
#17 #21 #22
U
#72

U
#o67


https://doi.org/10.1101/2020.09.03.280370
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.03.280370; this version posted September 3, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

- -

- -

Overlay

mBG17

)
vy
£
O “+
v
®]
v
S - -
= pajpajulun P33133ju] Z-A0D-SHV'S
o1}
o m—
Ll
|
:.(—_ $ + + + ¥ + +
&
J:
i
5 1 t % * ! 1 +
£
i)
=
i 3 Z & [N 2 P 8 @
© Q © Q 0 Q Q Q ]
o o o o o =] o o =]
E 1S E £ = E £ £ E
o
w
x + + + 1 e
i I b I ¥ ¥ ¥ + ! +
< +
o
o
g
w
E + + $ + + z '
S
@
=3
~ - ~ 0 00 @ — ~ r~
— o ~ o~ o un un ["a}
0 © © b} Q U} ] Q ]
o [ o o o 2] ) ) w
E = E £ £ £ = = E



https://doi.org/10.1101/2020.09.03.280370
http://creativecommons.org/licenses/by-nc-nd/4.0/

who has granted bioRxiv a license to display the preprint in perpetuity. It is made

a(C-BY-NC-ND 4.0 International license.

o © HIFTTHLD9D4 IMdSHHADT DAALYVOIVINSSILISASLOSOSOSIIVINDSYIN S.S AMTAISSOIHDDAMH ASSSASS SYLOLWNLAY3DTISYSNIVdSOLIAID eddey £9
S TSALALLOVOM AQ4AQ3040A18Y DAANVYLIAASHTISSTO T TLENYNOESILIEANASOTAA LSOONHNI LYAIITENAHLOEAMEN DANSILID SYVISTIHISODdDATDODSIATONT Aneay 94| £9
mmm.ozwdcxmgﬂ_} DTdNITHOW JAANDADIVINGSIHTLIVLIOSDSOLIHAJADSYIN S AlIT0dSDOdHD1EAMAT ALNONSHTISH SSDOSISASIOdLINDISdVYVOLNAID eddey LS
S WYSALATLODOM HYV Q4 ALVLAINMINNIDIAVLISYELITSIVIHONAQAVAL d3OL3LNI MOWMHSDONDdVONAMHN SAQL4ALAD SYYISIHALIDANNIIJOSDATOID Aeay 199 LS
M .nm HIFTALDDDSA 1MdSSAQDD J4AAYI0IVOALLILHLHA1DADED14HAdADLAEN Svd AIMHLSDO4HDDAMYA ANSASD SYHOLILAHADYSATISHLLOLNAI edde) (44
o &SALATLODOM HYW D4ALVLOINMINNIDIAVLSYSLITISIVIHONIQOVAL dIDLILINI MOWMHSONDdVOUAMHIN SAQLALAD SYYUISIHALIDINNHIIJOSDATOID Meay qzo3dl [44
[ © {3 THLD9DD4 1MdSSAQDD J4AAYIAIVOALLILHLHAIDADED 1 HALADLAEN Syd AMTHASDO4HODAMYA ANSASD SYHILILAHADVSATIAHLLOLNAL eddey 1z
SALATLODOM HYWY QJALVLOINMINNIDIAVLISYSLITSIVIHONIAAVAL dIOLILINI MONMNHSDOADdVOUAMHN SAQLALAD SYHISHALIDINNTIIDSDATOID Meay qz93) 114
HIFTHLDDD4 1HdANAZIDD DAAAYTIOIVHAASSILILIQLDSOSDIIHAdAD SO L SYM AITTHdSDOIHDDAMY T ANMDAOSLATISO SSHOSINLINIDASAYISSHSDSWNAID eddey LT
SSALASLODOM AQWYSHL JAAIDSAIVHINNWDTAASSHSATESILIYONASYYAH  LVANNSHTHI IVAMMITONAISDHNINW MAOSH14D SYAJISHNSDOJONTDODSITTINT Aneay 1981 Ll
LaUbE E£-40 E-WHd 4@ (4L LE] T-4Q0 T-WHd uleyy adAios) auop

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.03.280370; this version posted September 3, 2020. The copyright holder for this preprint

(which was not certified by peErfevieyf) is

¢9jqel



https://doi.org/10.1101/2020.09.03.280370
http://creativecommons.org/licenses/by-nc-nd/4.0/

-YASAIAAJAATIVIISHAIdLIANS————-IHOLAYSINISA
IISIATLAdIANITISIAIVLITISMNODANSHdSYASING
||||||| NAZAIIALIISATAYA-—————dAVIYdSLOSANI
|||||| HIAINAIZIIVSAQAYI-————————dMSHdISUYNTI

~YOLSAVSVOSWSNOTOUSAAAWAYVATTIIALIONNOUO4dTId
~¥Y0LSA¥YS--SWSO0T0MSAAATAVYdTTIALOOMMON0d TV

. L] L]
oty oov 06€

JuawudIly 6TH-T8E VYV

ND 4.0 International license.

HHAXADOdTILOAS AYL -~ ~dIVIOILdAUVSAASdISLAYOHSYAM
SHIXX90dTALIAAIYL~—~-dIVAASSAAUAATIAYALNAAYONSYAM

@Mmmmlllm>>B>OZmQMOthmHmmmmzmmmbwwaImHHM¢OQ>¢>3
@mmnmhllmbbmqmmmqﬂHmhM&Md&MOZ&MMZQAmEIZ>EM¢wm&¢>3
FBIAVAIONATILLOOATI T~~~ ALYVNNNINIIOTIHANd INTYDILVAM
PAVAIONATLIOOITOT--~AIVYNNVINILOTHANd INTVOILVAM

. [ e .
0LT 09T 0st ort

JBWUBIY 6LT-EETVV

gyefsion posted September 3, 2020. The copyright holder for this preprint
as granted bioRxiv a license to display the preprint in perpetuity. It is made

fun

available u

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.03;

(which was not certified by peer review) is the author/

"% ss S8 s e LL]

LL] L1 L1} L1} L1} L]

TOMH-AODNH
€ ¥O0—-AODTH
d6¢C-ACDNH
€97 IN-AODNH
AOD—-SYVS

Z—AOD—-SYVS

TNAH-AODNH
£ 7D0—-AODNH
d6Z2Z-AOCDNH
€97IN-AODTH
AOD—-S¥VS

Z—-NAOD—-SYVS

G 9.n314

£95gW

£59gW

Zzogu

L199W

dN-1uy
leuopAjod qqey

1 R

6TY-TSEV |5

6LE-STEV | S

6LC-0€CV | 5

6¢C-081V | 5

6LT-EETIV |5

OTV-EET dN| 5


https://doi.org/10.1101/2020.09.03.280370
http://creativecommons.org/licenses/by-nc-nd/4.0/

