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Abstract: High dimensionality omics and hyperspectral imaging datasets present difficult 
challenges for feature extraction and data mining due to huge numbers of features that cannot be 
simultaneously examined. The sample numbers and variables of these methods are constantly 
growing as new technologies are developed, and computational analysis needs to evolve to keep 20 
up with growing demand. Current state of the art algorithms can handle some routine datasets but 
struggle when datasets grow above a certain size. We present a training deep learning via neural 
networks on non-linear dimensionality reduction, in particular t-distributed stochastic neighbour 
embedding (t-SNE), to overcome prior limitations of these methods. 

One Sentence Summary: Analysis of prohibitively large datasets by combining deep learning 25 
via neural networks with non-linear dimensionality reduction. 

Main Text: When describing big data, two types of big data challenges are often discussed; data 
with large sample numbers such as stock exchange, marketing, and social media data, and data 
that contains a large variable space (high dimensionality), such as genomics, transcriptomics, and 
mass spectrometry based omics (proteomics and metabolomics).  30 

Some methods have high sample numbers but low numbers of variables (such as electron 
microscopy), and as such analysis is limited to review of single or composite images. On the 
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other hand, there are methods that produce very high dimensional data, but the sample numbers 
are sufficiently low that memory efficient analysis algorithms need not be developed. Examples 
of these include many standard omics data such as genomics1, metabolomics2, proteomics3,4 and 
transcriptomics5. Then there are methods that combine both of these challenges having vast 
numbers of variables from large sample numbers. These types of data present the greatest 5 
challenges for analysis and information extraction. Examples of these techniques include spatial 
and single cell transcriptomics6, hyperspectral imaging7, chromosome conformation capture (Hi-
C)8, mass spectrometry imaging (MSI)9, and imaging mass cytometry10. Common tasks required 
to analyse these data include image segmentation, dimensionality reduction, and classification as 
a means for interpretation, and visualisation11-13.  10 

However, when datasets are particularly large, many of these algorithms fail due to lack of 
memory (RAM), and in extreme cases even loading the full dataset into memory becomes 
prohibitive. Examples of these include large Hi-C data, hyperspectral imaging, and mass 
spectrometry imaging (MSI)(Figure 1).  

Non- linear dimensionality reduction via methods such as t-SNE and uniform manifold 15 
approximation and projection (UMAP) provide insightful feature extraction, and are commonly 
used in analysis of omics data7,14-16, and other areas where sample numbers remain relatively 
low. These algorithms have been shown to outperform other linear dimensionality reduction 
methods in a number of different areas including document clustering17, genomics16,18 
transcriptomics6, and visualisation tasks14,19. 20 

There are three major limitations of both of these algorithms however:  

• Applying t-SNE and UMAP to large sample numbers requires a lot of computational 
resources. This is because the memory usage (space complexity) and calculation time 
(time complexity) scales by the number of pixels (n) squared for t-SNE20, or by n1.14  for 
UMAP21. This means it is not feasible to perform reduction on large datasets using 25 

standard computers in a reasonable timeframe. 
• The second fault with these methods is that typically the whole dataset is required in 

order to create the low dimensional representation. This means that in order to reduce 
additional data alongside existing data, a new instance of reduction must be performed 
using a combined dataset of existing and additional data. This limitation, combined with 30 

the high complexity, both in time and memory, mean that it is not practical to repeat these 
methods often.  

• Unlike algorithms such as principal component analysis (PCA) and non-negative matrix 
factorisation (NMF)22, there is no way to determine the high dimensional contributions 
towards the low dimensional representation. It is critical in some areas to not only extract 35 

features, but also to relate these features to the high dimensional information.  

The issue of computational complexity has been addressed in t-SNE by several different 
approaches. The parametric t-SNE algorithm has similarities with the methodology we are 
proposing in that it uses a neural network based training using the t-SNE cost function23. 
However unlike our proposed method this method does not perform t-SNE and the reduction 40 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.09.03.269555doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.03.269555
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 
 

itself is performed by neural networks. Other tree-based and fast Fourier Transform 
approximation methods to the pairwise distances of pixels have been investigated24. These are 
able to reduce both the memory requirement and computational complexity to O(n log n) 
depending on the depth of the tree. Unfortunately this is still insufficient for extremely large 
datasets25. 5 

Abdelmoula et al. recently demonstrated the use of a hierarchical stochastic neighbour 
embedding method using landmark features to embed and visualise large 3D mass spectrometry 
imaging datasets26. This allowed t-SNE dimensionality reduction to be performed on datasets 
with over 1 million pixels such as 3D MSI data. Along with this, Boytsov et al. recently 
proposed the use of local interpolation with outlier control t-SNE (LION-tSNE) to embed newly 10 
acquired data into previously t-SNE mapped space27,28. As well as allowing t-SNE to be 
performed on large datasets, this also allows new data to be incorporated into the embedded 2D 
or 3D space. Although this method demonstrates the power of mapping data into a previously 
determined lower dimensional space, outlier data is randomly assigned to new locations, and so 
there is no way to understand how outlier data are related to the existing data.  15 

Subsampling of data has been used to improve algorithm efficiency in many different fields for 
tasks such as clustering and PCA9,29, as well as t-SNE in the viSNE algorithm30. By subsampling 
the data and applying dimensionality reduction or clustering to a subset of it, more efficient data 
analysis can be performed. The limitation with this for t-SNE and UMAP is that there is no 
mathematical transformation that can then be applied to the remaining data to embed it into the 20 
low dimensional space.  

Deep learning via neural networks can be used to learn mathematical transformations to go from 
high to low dimensional space. These can be either supervised such as those used in 
classification problems31,32, or unsupervised, such as stacked and variational autoencoders33,34. 
Neural networks are often applied in classification problems, demonstrating greater accuracy 25 
than linear approaches 35. 

Recently, there has been a development of methods using neural networks and autoencoders to 
perform dimensionality reduction itself. In particular, methods such as parametric t-SNE, VAE-
SNE and net-SNE have used the Kullback-Leibler divergence used in t-SNE as an optimisation 
function for autoencoders to produce similar results to t-SNE36,37. Other methods such as IVIS 30 
use Siamese neural networks with triplet loss function to preserve local and global similarity in 
the reduced space38. Recently Abdelmoula et al. demonstrated the usefulness of these types of 
approaches to return spectral information from MSI data as well their capability to handle large 
datasets39.  

To date, the majority of developments in neural network based non-linear reduction have been 35 
aimed at performing the non-linear reduction optimisation using cost functions derived from 
existing methods such as t-SNE. Espadoto et al. showed that neural networks can be trained on t-
SNE and UMAP projections directly, and demonstrated this on relatively small testing datasets40. 
Here we demonstrate the use of deep learning on subsampled non-linear dimensionality 
reduction using t-SNE and UMAP to extract features from large complex biological datasets. We 40 
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deploy this method on datasets from different fields including Hi-C, hyperspectral imaging, and 
MSI. 

Results  

Description of the method 

Our approach is to take a small subset of the data and perform dimensionality reduction on it. 5 
The resulting dimensionally reduced data is then used as the training set for deep learning using 
neural networks (Figure 2). The remaining data not used for training is then embedded into the 
same reduced space along with any other new data subsequently measured.  A similar set of 
networks are also trained on the reverse from the lower into higher dimensional space. This 
allows any hypothetical point in the low dimensional space to be returned into a predicted high 10 
dimensional data point. This algorithm includes several steps, each of which could be 
independently optimised, and many will not be independent of one another. A fully exhaustive 
comparison of these parameters is not feasible in the current work, but we will discuss the main 
parameters that are unique to this method. These include subset size used, method of 
subsampling the data, and the algorithm used when training the neural networks themselves. In 15 
all other cases, optimal parameters taken from prior literature have been used. 

 Example case studies   

Large data t-SNE  

The foremost challenge is to apply t-SNE to larger datasets, broadening the applicability of this 
method. This has been addressed by hierarchical t-SNE and LION-tSNE described 20 
previously26,27. Using NN t-SNE is another way to achieve this with greater efficiency than these 
existing methods. We demonstrated this using a publicly available chromosome conformation 
capture dataset containing over 2 million samples8. This method is able to rapidly produce 
informative results on these large data that could not be analysed using standard t-SNE methods 
(Figures 3 and S1). Hi-C is a DNA sequencing-based method for probing the 3D structure and 25 
interactions of chromosomes. This type of data is notoriously challenging to load into RAM and 
process, even on modern computers. We performed a three-dimensional embedding of the entire 
Hi-C dataset for a human GM12878 cell line8 using the highest possible resolution of 1kb. The 
resulting embedding captured the spatial relationships between the chromosomes encoded in the 
Hi-C dataset (Figure 2a). Not surprisingly, the 22 chromosomes exhibit more intrachromosomal 30 
interactions than interchromosomal interactions. Moreover, the approach captured more 
hierarchical nature of the human nucleus, such as division into discrete A/B sub-compartments, 
described previously8. These sub-compartments are regions of chromosomes which harbour 
different epigenetic marks and display a tendency to physically interact with regions in the same 
sub-compartment type. After annotating our 3D embedding with the H3K27ac ChIP-seq signal 35 
(H3K27ac is an epigenetic mark linked to active gene expression), we observed that regions of 
high transcriptional activity co-cluster together in the 3D space (Figure S1). This highlights the 
hierarchy and complexity encoded in our unsupervised embedding and suggests that using this 
approach can further aid studies of the human genome architecture, for example in identifying 
novel genome sub-compartment types which could be missed using lower resolution data. In 40 
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order to perform t-SNE on these data, over 80 TB of RAM would be required, making these 
analyses infeasible on these types of datasets. Using the NN t-SNE method, less than 10 GB are 
required at any one time to segment these data. 

Addition of new data 

While performing t-SNE on large datasets is useful, any requirement to incorporate new data 5 
would necessitate rerunning the whole process to obtain segmentation of all data together. This 
would likely be time consuming, produce a different colour mapping (due to the stochastic 
nature of t-SNE), and may exceed the memory constraints of this algorithm. Using the NN t-SNE 
approach, new data can be embedded into the low dimensional space of the previously 
segmented data. This can either be used to find data similar to the existing data, or data that is 10 
different from the training data for outlier detection.  

To demonstrate segmentation of new data into the same RGB colour mapping, two datasets were 
selected; a hyperspectral imaging data from a series of faces from the isetbio database 
(http://52.32.77.154/repository/isetbio/resources/scenes/hyperspectral/stanford_database/faces3m
/. accessed 30/08/2019) containing over 30 million (1m per image) samples and 160 variables, 15 
and MALDI MSI images of 30 coronal serial sections of drug treated mouse brain glioblastoma 
model were taken (500,000 samples, 4,000 variables).  

To analyse the hyperspectral imaging data, a subset of the data from the face of one person was 
selected for training, and the learned networks were applied to the images from other datasets. 
The pixels from the same features were easily and quickly segmented and discerned as similar to 20 
one another demonstrating that this method can be applied to many datasets sequentially (Figure 
4). The rapid and effective evaluation of features in hyperspectral imaging is important for areas 
such as biomedicine where it may be used for classification purposes41, or in satellite imaging 
where algorithms will need to match ever increasing data rates afforded by new 
instrumentation42. 25 

In the MSI images, data from one of the tissue sections (containing the tumour) were taken as the 
training data, t-SNE was performed on it, and neural networks used to learn a transformation 
from the original to t-SNE space. The trained network was then applied to the data from the 
remaining 29 serial sections, and a consistent segmentation of the same anatomical features into 
the same colours can be seen (Figure 5a). As well as producing consistent segmentation of 30 
anatomy, the application of the network to the new data took around 1.5s per dataset, far faster 
than the data acquisition itself. The consistent segmentation provides an excellent platform for 
registration and resulting 3D segmented image generation (Figure 5b).  

In addition to consistently segmenting the same anatomies of similar data, new data that is 
dissimilar to all existing data can be identified. This is demonstrated on the same MSI data from 35 
the serial sections of mouse brain. By training the network on t-SNE applied to a section without 
tumour present, the tumour tissue and the cerebellum region is still identified as being different 
from all tissue within the training data (Figure S2). This means that this approach can be used to 
identify outlier data from the training data, could be used as a quality control metric, or be used 
to identify data of interest for additional analysis.  40 
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The consistent embedding provided by NN t-SNE can also be applied to non-imaging mass 
spectrometric data. A promising new area of mass spectrometric research is rapid evaporative 
ionisation mass spectrometry (REIMS)43,44. This has the potential to classify tissues during 
surgeries in almost real time. In addition to this, it can be used for rapid cell profiling45. NN t-
SNE analysis was performed on REIMS data acquired from cell pellets extracted from the small 5 
intestine and colon of mice with different oncogenetically relevant mutations. There is a much 
clearer separation in the genetic types observed by this method as compared to PCA (Figure S3). 
These data were then used as a basis for classification by linear discriminant analysis (LDA). 
The classification based on the NN t-SNE reduced data shows much higher accuracies as 
compared to data reduced by PCA (Rand index 0.93 compared to 0.83, Table S1), indicating that 10 
this may be a better dimensionality reduction method to apply prior to classification. It is 
important to note that a normal t-SNE approach would be inadequate for classification because 
new data cannot be projected into the reduced space. The clinical application of this approach is 
clear - it allows real-time stratification of patients/mice into groups based upon multidimensional 
datasets, rather than binary segregation based upon presence or absence of individual dominant 15 
oncogenic mutations. The latter approach has broadly failed as a both as stratification strategy 
and has little prognostic value, and in the case of colorectal cancer, has been superseded by more 
advanced molecular subtyping approaches (genomic, transcriptomic), which while inherently 
more representative of the underlying biology of a tumour, are both costly and time-consuming. 

Returning spectral information using MSI data 20 

One of the biggest limitations of t-SNE as compared to other dimensionality reduction methods 
like PCA and non-negative matrix factorisation is that no spectral contributions driving the 
differences between features can be obtained. By reversing the neural networks, we can obtain a 
transformation to go from any three-dimensional RGB value (or any other t-SNE reduced space) 
into a spectrum. By performing this for red ([1 0 0]) green ([0 1 0]) and blue ([0 0 1]) we can 25 
obtain the relative spectral contributions along these dimensions to our image segmentation. 
Alternatively, we can segment the reduced space and calculate centroids in the reduced space to 
determine the spectrum that would be derived from that region. We demonstrate this capability 
using DESI MSI data of mouse mammary gland tumours containing 90,000 samples and 2,000 
variables. 30 

The oncogene MYC is amplified in approximately 15% of breast cancers and is associated with 
poor prognosis. Oncogenes such as MYC define metabolic vulnerabilities in tumours. 
ErbB2/HER2 is overexpressed in 20% percent of human breast cancers and correlates with 
tumour chemo-resistance and poor prognosis46. Mammary gland tumours were generated in 
transgenic mouse with ectopic expression of either MYC or ErbB2 under the control of mouse 35 
mammary tumour virus (MMTV) promoter47,48. Resulting tumours were harvested at max 1.2 
cm. These two oncogenes result in distinct metabolic profiles. Normal mammary glands (NMG) 
from healthy mice were also analysed. For each phenotype two biological replicates were 
analysed in a single acquisition.  

NN t-SNE of these data following background subtraction (Figure 6) clearly segments the three 40 
samples (MYC and ErbB2 tumours and NMG) in low dimensional space (Figure 6a-b). 
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Bounding boxes describe distinct areas including leached fatty regions from the NMG, and the 
majority of pixels in the MYC or ErbB2 tumours (Figure 6c).  

While such spatial segmentation is useful, in order to provide biological interpretation we must 
interrogate which spectral features are driving the separation in low dimensional space. We 
generated the spectral representation for selected corners of the low dimension space (red, green, 5 
blue and yellow) (Figure 6d). Spectral representations may include positive and negative values 
indicating their relative contribution at the selected coordinates. Selected peaks with strong 
contributions to the spectra representation for each selected low dimensional coordinate were 
matched by exact mass to HMDB-v4.0 database49 and putative annotations made (Figure 6e).  
Cholesterol sulfate, a structural component of cellular membranes, has been previously identified 10 
in DESI MS experiments as a potential biomarker of prostate cancer50. Here it is a strong 
contributor to the “yellow” corner of low dimensional space where pixels from the ErbB2 
tumour are positioned. This appears to be a strong marker for ErbB2 tumours over MYC tumours 
and NMG and it localised throughout the tumour, not just in the blood and plasma-rich regions. 
Two peaks annotated as PI lipids are prominent in the spectral representation of the red and 15 
yellow side of low dimensional space. In the single ion images, they are localised in the MYC 
and ErbB2 tumours but absent in the NMG. As cell density is notably higher in the tumours than 
the sparse fat pad, this elevation of structural lipids in the tumours is expected. A notable 
contributor to the spectral representation of the “blue” corner of low dimension space is m/z 606, 
assigned as UDP-N-actyl-alpha-D-galactosamine. This nucleotide sugar has been implicated 20 
protein glycosylation51. It is present in both tumour types but elevated in MYC-driven tumours, 
with some heterogeneity within individual tumours observed. 

 Combining these attributes (large data consistent segmentation and spectral information) 

When acquiring data from biological samples, technical and biological replicates are important. 
Even just performing these in duplicate, this means that for any single tissue type, four tissues 25 
may be analysed. Adding multiple genetic variants and tissue types further increases the amount 
of data for comparison. This was demonstrated on a MALDI dataset from the colon of four 
genetic variants of genetically engineered mouse models (wild-type, Apc defficient, KrasG12D 
mutant, and dual Apc deficient with KrasG12D mutation), analysed with duplicate biological and 
technical replicates (total of 24 tissue sections). This dataset contained 427,967 pixels and 4,000 30 
spectral features. Using the NN t-SNE algorithm, we see that there is a clear cluster relating to 
the KRAS mutation containing mice (pink cluster Figure 7), a cluster which is primarily present 
in the mice with Apc deficient intestinal tissue (dark blue cluster Figure 7) as well as a cluster in 
all but the wild type mice (light blue cluster Figure 7). The main drivers of these differences 
were m/z 885.550 (light blue), 514.280 (dark blue), and 835.530, 861.550, and 887.566 (pink). 35 
These masses were then matched to the HMDB within 5 ppm mass error to provide tentative 
assignments of PI (38:4) [M-H]-  (m/z 885.550) taurocholic acid [M-H]- (m/z 514.280), and PI 
(34:1), (36:2), and (38:3) [M-H]- respectively(m/z 835.530, 861.550, 887.566). The PI species 
identified in this study have clear biological relevance, with PI(38:4) known to be the most 
abundant mammalian phosphatidyl inositol52. Phosphatidyl inositide species are critical cell 40 
signaling secondary messenger molecules whose relative abundance is both influenced by 
oncogene or tumour suppressor mutations (such as Apc loss or Kras mutation), and are critical 
for characteristic tumour cell phenotypes including unrestrained growth and survival signalling. 
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Similarly, the identification of the purple cluster associated with Apc deficiency driven by a 
secondary bile acid such as taurocholic acid may give valuable insight into the comparative 
biology of transformed versus normal intestinal enterocytes and relate to the critical role played 
by the gut microbiome in initiation and progression of colorectal cancer53. 

Parameter optimisation 5 

There are a several considerations to be taken into account when applying neural network t-SNE 
to MSI datasets. One of these is the effect of the size of the subset on the accuracy of the 
segmentation. Due to the stochastic nature of t-SNE, performing it on different subsets will give 
different results each time, making evaluation of the segmentation challenging. Therefore, a 
smaller dataset was taken, on which t-SNE was performed on the whole data. Subsets of the final 10 
reduced data were then taken as the input for training a neural network. The result of the neural 
network trained t-SNE was then compared to the t-SNE on the complete dataset by means of the 
correlation of the resulting reduced three-dimensional space. This was performed by 
subsampling the data both randomly and in an ordered manner.  

The effect of random or ordered subsampling seems to have little to no effect on the end result in 15 
this instance (Figure S4 and S5), as both methods converge to give the same correlation to the 
original t-SNE (within error bars) from around 10% subset size, and similar anatomical 
segmentation. Efficient subsampling to give subsets that are representative of the whole data 
would be an interesting topic for a future study. For example, in image analysis, Sobol series 
sampling has been used to minimise the unsampled areas of the image when performing a 20 
subsampling for PCA29.  

To analyse the effect of subset size on the whole algorithm, including the t-SNE portion, well 
known samples are required. Towards this end, sagittal, transverse and coronal mouse brain 
tissues were chosen as they have very well-defined anatomical features. These were acquired 
with a variety of different pixel sizes (100, 45 and 20 µm) to give a total number or pixels 25 
ranging from 10,000 to 100,000. NN t-SNE was then applied to these datasets using subsets 
ranging from the whole data down to 0.1% of the data (Figure S6). As might be expected, the 
larger the subset of data, the better the neural network training. The performance is not linear 
however, and below a subset size of 1,000 pixels the segmentation performs very poorly 
compared to the expected anatomical features (Figure S7). The measure of image autocorrelation 30 
introduced for MSI by Smets et al.21 was also used to evaluate the results from the subset size 
comparison on the sagittal brain dataset, and similarly we see a large decrease in the correlation 
between subsets of 600-200 pixels (0.5% and 0.2%, Figure S6). This is independent of the size of 
the original data, making this method particularly well suited for datasets with large sample 
numbers (pixels).  35 

The analysis of these images shows that with larger datasets, smaller subsets can be used, and the 
same quality of embedding can be achieved. The sagittal brain dataset with 123,557 pixels shows 
similar embedding with 618 pixels in the subset (0.5% subsampling) and 12,356 pixels (10% 
subsampling) whereas the quality of the segmentation in the coronal and transverse brain images 
declines rapidly below 1478 and 930 pixels (5 and 10%) respectively. Since the performance is 40 
more dependent on the absolute subset size rather than percentage, a subset of at least 2,000 
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pixels is recommended. Notably, larger subsets are not required for the data containing 
1,000,000 pixels compared to 10,000. It is also worth noting that the time taken to perform t-
SNE increases quadratically with increasing number of pixels whereas the neural network 
training is linear, and generally requires much less time (figure S8). Therefore, the rate limiting 
step in this method remains the application of t-SNE to the subset of data.  5 

The other consideration is how accurately the reconstruction of a spectrum from the t-SNE space 
can be achieved. In order to evaluate the success of these results single pixel spectra were 
compared to the returned spectra from their respective RGB points in the NN t-SNE (Figure S9). 
This was demonstrated on six spectra were randomly selected from the colorectal cancer dataset 
in Figure 4. In all cases a very high correlation (r2 > 0.9) between the original and returned 10 
spectra were observed. 

The final consideration for this approach is the neural network training parameters. There are a 
large number of possible combinations that could be altered to varying effect. To exhaustively 
study this landscape is beyond the scope of this investigation but would be valuable further work, 
however a preliminary evaluation of the different neural network training algorithms was carried 15 
out. Twelve different algorithms were investigated, and the correlation between original t-SNE 
and NN trained t-SNE was used to evaluate this (Figure S10). It was seen that Bayesian 
regularisation and Levenberg-Marquardt outperform all other algorithms (r2 >0.9 compared to 
<0.75 for all other methods) with Bayesian regularisation having slightly better performance of 
the two. This is likely because this method is robust towards overfitting which can occur due to 20 
the high dimensionality of MSI and other data54.  

Extension to other dimensionality reduction methods 

Finally, this approach is not limited to using t-SNE as the basis for dimensionality reduction. 
Since the UMAP algorithm has shown recent popularity in many different areas we demonstrate 
the use of neural network learning of UMAP embedding on the vast chromosome conformation 25 
capture data shown in Figure 3, and the mass spectrometry imaging dataset used to evaluate 
performance shown in Figure S5. As with t-SNE, this deep learning training approach is able to 
reduce the Hi-C data into 3D showing the same segmentation based primarily intra-chromosome 
interaction (Figure S11a), with additional hierarchical interactions, and transcriptional activity 
clustering (Figure S11b and 11c). This approach is generalisable to different dimensionality 30 
reduction and demonstrates training of deep learning on non-linear dimensionality reduction. 
Since the field of non-linear dimensionality reduction is continually growing this approach is 
applicable to other future developments in this area.  

Conclusions 

The NN t-SNE method described overcomes the major limitations of conventional t-SNE. The 35 
proposed method can be performed on large datasets, return consistent embedding with the 
ability to incorporate of new data into the embedded space, and return the driving spectral 
contributors to the changes observed. This presents a new way to more effectively mine high 
dimensional data that has large sample numbers. This algorithm can also be applied to the other 
data types described in Table 1, many of which could benefit from this improvement. In many of 40 
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the fields where t-SNE is currently applied, such as genomics and proteomics, data is expected to 
soon exceed the current capacity of existing algorithms. For example, the UK Biobank currently 
contains genomics data from 487,401 samples, again far greater than conventional t-SNE can 
analyse55. These large-scale initiatives will continue to acquire large cohort datasets from many 
different techniques, and algorithms need to develop to allow processing and mining of these 5 
data. This methodology can also be applied to other dimensionality algorithms such as UMAP. 
Future considerations for this work include additional comparison of subset sampling methods 
(such as Sobol sampling) and applications to other areas of research such as large-scale genomics 
initiatives. We have benchmarked the performance of this approach against using standard t-SNE 
using the correlation metric between the original t-SNE and NN trained t-SNE with r2 > 0.95 10 
between the two approaches both for the forward and reverse transformations.  
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Figure 1. The range of sample numbers and variables associated with common and emerging tools in biomedicine. 
Colour scale indicates the amount of RAM required to load data of the corresponding size into memory, and lines 
indicate the computational limit for principal component analysis (100,000 variables), t-SNE (50,000 samples) and 
UMAP (500,000 samples). 

5  
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Figure 2. Outline of the novel workflow using t-SNE as the base dimensionality reduction method. A large dataset 
that cannot have t-SNE performed on it is subsampled, and t-SNE is performed on the subset of data. The resulting 
embedding is then used as training data to train deep learning via neural networks to go from the high to low 
dimensional space. The networks can then be applied to remaining data (and any new data) resulting in reduction of 
the full dataset into an approximation of t-SNE. 5 
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Figure 3.  Results of 3D embedding from NN t-SNE dimensionality reduction on Hi-C data containing over 2 
million samples labelled by chromosome (A), or interactions (B). Using standard t-SNE approaches would not be 
possible for either this dataset due to memory constraints, and simply loading these data into RAM is often not 
possible. 
 5 
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Figure 4. Visualisation of the results from NN t-SNE trained on a single hyperspectral image 
(highlighted by black box), and then applied to the data from the remaining images showing a 
consistent segmentation of hyperspectral facial features in a unified colour scheme. We can see 
clearly that pixels from the same features such as face, hair and background are consistently 
segmented, allowing for rapid extraction of common features between datasets. 5 
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Figure 5. Results of segmentation using neural network t-SNE trained on MSI data from a single 
section of murine brain (highlighted in red) containing glioblastoma (segmented in light green). 
The data from the remaining sections were then reduced using the trained networks to segment 
the same anatomies in the same colour scheme. By embedding data into the same colour space 
similar features can easily be identified, and the results of this can easily be used to perform 5 
registration to generate 3D representations such as shown in (B). 
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Figure 6. Results of NN t-SNE applied to MSI data from genetically engineered breast cancer models. The three 
genetic models are clearly differentiated in both the scatter plot (a) and image (b). These can be segmented to give 
masks for the different models (c) and the underlying spectral drivers can be identified (d) and their corresponding 
ion images generated (e).5 
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Figure 7. Results of neural network t-SNE applied to MSI data from biological and technical replicates from a 
genetically engineered mouse models for colorectal cancer. The RGB colour space from the NN t-SNE clearly 
differentiates the genetic differences based on difference in the metabolites detected by MSI. The pink cluster is 
observed primarily in the KRAS mutation containing tissues, while the purple cluster is prevalent in the APC 
deletion containing tissues. These clusters are driven by phosphatidyl inositol lipids and taurocholic acid 5 
respectively. This segmentation is consistent in technical replicated (b), and additional data from small intestine can 
be compared with comparable colour segmentation (c). 
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