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Abstract: High dimensionality omics and hyperspectral imaging datasets present difficult
challenges for feature extraction and data mining due to huge numbers of features that cannot be
simultaneously examined. The sample numbers and variables of these methods are constantly
growing as new technologies are developed, and computational analysis needsto evolve to keep
up with growing demand. Current state of the art algorithms can handle some routine datasets but
struggle when datasets grow above a certain size. We present atraining deep learning via neural
networks on non-linear dimensionality reduction, in particular t-distributed stochastic neighbour
embedding (t-SNE), to overcome prior limitations of these methods.

One Sentence Summary: Analysis of prohibitively large datasets by combining deep learning
via neural networks with non-linear dimensionality reduction.

Main Text: When describing big data, two types of big data challenges are often discussed; data
with large sample numbers such as stock exchange, marketing, and social media data, and data
that contains a large variable space (high dimensionality), such as genomics, transcriptomics, and
mass spectrometry based omics (proteomics and metabolomics).

Some methods have high sample numbers but low numbers of variables (such as electron
microscopy), and as such analysisis limited to review of single or composite images. On the
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other hand, there are methods that produce very high dimensional data, but the sample numbers
are sufficiently low that memory efficient analysis algorithms need not be developed. Examples
of these include many standard omics data such as genomics', metabolomics?, proteomics®* and
transcriptomics®. Then there are methods that combine both of these challenges having vast
numbers of variables from large sample numbers. These types of data present the greatest
challenges for analysis and information extraction. Examples of these techniques include spatial
and single cell transcriptomics®, hyperspectral imaging’, chromosome conformation capture (Hi-
C)®, mass spectrometry imaging (M S1)®, and imaging mass cytometry®. Common tasks required
to analyse these data include image segmentation, dimensionality reduction, and classification as
ameans for interpretation, and visualisation***2,

However, when datasets are particularly large, many of these algorithmsfail due to lack of
memory (RAM), and in extreme cases even |loading the full dataset into memory becomes
prohibitive. Examples of these include large Hi-C data, hyperspectral imaging, and mass
spectrometry imaging (M SI)(Figure 1).

Non- linear dimensionality reduction via methods such as t-SNE and uniform manifold
approximation and projection (UMAP) provide insightful feature extraction, and are commonly
used in analysis of omics data”***®, and other areas where sample numbers remain relatively
low. These algorithms have been shown to outperform other linear dimensionality reduction
methods in a number of different areas including document clustering’, genomics'®*

transcriptomics®, and visualisation tasks'*°.
There are three mgjor limitations of both of these algorithms however:

e Applying t-SNE and UMAP to large sample numbers requires alot of computational
resources. Thisis because the memory usage (space complexity) and calculation time
(time complexity) scales by the number of pixels (n) squared for t-SNEZ, or by n*** for
UMAP?L. This meansit is not feasible to perform reduction on large datasets using
standard computers in a reasonable timeframe.

e The second fault with these methodsis that typically the whole dataset is required in
order to create the low dimensional representation. This means that in order to reduce
additional data alongside existing data, a new instance of reduction must be performed
using a combined dataset of existing and additional data. This limitation, combined with
the high complexity, both in time and memory, mean that it is not practical to repeat these
methods often.

e Unlike algorithms such as principal component analysis (PCA) and non-negative matrix
factorisation (NMF)%, thereis no way to determine the high dimensional contributions
towards the low dimensional representation. It is critical in some areas to not only extract
features, but also to relate these features to the high dimensional information.

The issue of computational complexity has been addressed in t-SNE by several different
approaches. The parametric t-SNE agorithm has similarities with the methodology we are
proposing in that it uses a neural network based training using the t-SNE cost function®.
However unlike our proposed method this method does not perform t-SNE and the reduction
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itself is performed by neural networks. Other tree-based and fast Fourier Transform
approximation methods to the pairwise distances of pixels have been investigated®. These are
able to reduce both the memory requirement and computational complexity to O(n log n)
dependisQSg on the depth of the tree. Unfortunately thisis still insufficient for extremely large
datasets™.

Abdelmoula et al. recently demonstrated the use of a hierarchical stochastic neighbour
embedding method using landmark features to embed and visualise large 3D mass spectrometry
imaging datasets?®. This allowed t-SNE dimensionality reduction to be performed on datasets
with over 1 million pixels such as 3D M SI data. Along with this, Boytsov et al. recently
proposed the use of local interpolation with outlier control t-SNE (LION-tSNE) to embed newly
acquired datainto previously t-SNE mapped space””?. Aswell as allowing t-SNE to be
performed on large datasets, this also allows new data to be incorporated into the embedded 2D
or 3D space. Although this method demonstrates the power of mapping data into a previously
determined lower dimensional space, outlier datais randomly assigned to new locations, and so
there is no way to understand how outlier data are related to the existing data.

Subsampling of data has been used to improve algorithm efficiency in many different fields for
tasks such as clustering and PCA**, as well as t-SNE in the viSNE algorithm®. By subsampling
the data and applying dimensionality reduction or clustering to a subset of it, more efficient data
analysis can be performed. The limitation with thisfor t-SNE and UMAP is that thereis no
mathematical transformation that can then be applied to the remaining data to embed it into the
low dimensional space.

Deep learning via neural networks can be used to learn mathematical transformationsto go from
high to low dimensional space. These can be either supervised such asthose used in
classification problems™, or unsupervised, such as stacked and variational autoencoders®*,
Neural networks are often applied in classification problems, demonstrating greater accuracy
than linear approaches *.

Recently, there has been a development of methods using neural networks and autoencoders to
perform dimensionality reduction itself. In particular, methods such as parametric t-SNE, VAE-
SNE and net-SNE have used the Kullback-Leibler divergence used in t-SNE as an optimisation
function for autoencoders to produce similar resultsto t-SNE***’. Other methods such as V1S
use Siamese neural networks with triplet loss function to preserve local and global similarity in
the reduced space®®. Recently Abdelmoula et al. demonstrated the usefulness of these types of
approac?g% to return spectral information from MSI data as well their capability to handle large
datasets™.

To date, the mgjority of developmentsin neural network based non-linear reduction have been
aimed at performing the non-linear reduction optimisation using cost functions derived from
existing methods such ast-SNE. Espadoto et al. showed that neural networks can be trained on t-
SNE and UMAP projections directly, and demonstrated this on relatively small testing datasets™.
Here we demonstrate the use of deep learning on subsampled non-linear dimensionality
reduction using t-SNE and UM AP to extract features from large complex biological datasets. We
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deploy this method on datasets from different fields including Hi-C, hyperspectral imaging, and
MSI.

Results
Description of the method

Our approach isto take a small subset of the data and perform dimensionality reduction on it.
The resulting dimensionally reduced data is then used as the training set for deep learning using
neural networks (Figure 2). The remaining data not used for training is then embedded into the
same reduced space along with any other new data subsequently measured. A similar set of
networks are also trained on the reverse from the lower into higher dimensional space. This
allows any hypothetical point in the low dimensional space to be returned into a predicted high
dimensional data point. Thisalgorithm includes several steps, each of which could be
independently optimised, and many will not be independent of one another. A fully exhaustive
comparison of these parametersis not feasible in the current work, but we will discuss the main
parameters that are unique to this method. These include subset size used, method of
subsampling the data, and the algorithm used when training the neural networks themselves. In
all other cases, optimal parameters taken from prior literature have been used.

Example case studies
Large data t-SNE

The foremost challenge isto apply t-SNE to larger datasets, broadening the applicability of this
method. This has been addressed by hierarchical t-SNE and LION-tSNE described
previously?®%’. Using NN t-SNE is another way to achieve this with greater efficiency than these
existing methods. We demonstrated this using a publicly available chromosome conformation
capture dataset containing over 2 million samples®. This method is able to rapidly produce
informative results on these large data that could not be analysed using standard t-SNE methods
(Figures 3 and S1). Hi-C isa DNA sequencing-based method for probing the 3D structure and
interactions of chromosomes. Thistype of datais notoriously challenging to load into RAM and
process, even on modern computers. We performed a three-dimensional embedding of the entire
Hi-C dataset for a human GM 12878 cell line® using the highest possible resolution of 1kb. The
resulting embedding captured the spatial relationships between the chromosomes encoded in the
Hi-C dataset (Figure 2a). Not surprisingly, the 22 chromosomes exhibit more intrachromosomal
interactions than interchromosomal interactions. Moreover, the approach captured more
hierarchical nature of the human nucleus, such as division into discrete A/B sub-compartments,
described previously®. These sub-compartments are regions of chromosomes which harbour
different epigenetic marks and display atendency to physically interact with regionsin the same
sub-compartment type. After annotating our 3D embedding with the H3K27ac ChlP-seq signal
(H3K27ac is an epigenetic mark linked to active gene expression), we observed that regions of
high transcriptional activity co-cluster together in the 3D space (Figure S1). This highlightsthe
hierarchy and complexity encoded in our unsupervised embedding and suggests that using this
approach can further aid studies of the human genome architecture, for example in identifying
novel genome sub-compartment types which could be missed using lower resolution data. In
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order to perform t-SNE on these data, over 80 TB of RAM would be required, making these
analyses infeasible on these types of datasets. Using the NN t-SNE method, less than 10 GB are
required at any one time to segment these data.

Addition of new data

While performing t-SNE on large datasets is useful, any requirement to incorporate new data
would necessitate rerunning the whole process to obtain segmentation of all datatogether. This
would likely be time consuming, produce a different colour mapping (due to the stochastic
nature of t-SNE), and may exceed the memory constraints of this algorithm. Using the NN t-SNE
approach, new data can be embedded into the low dimensional space of the previously
segmented data. This can either be used to find data similar to the existing data, or datathat is
different from the training data for outlier detection.

To demonstrate segmentation of new data into the same RGB colour mapping, two datasets were
selected; a hyperspectral imaging datafrom a series of faces from the isetbio database
(http://52.32.77.154/repository/i setbio/resources/scenes/hyperspectral/stanford _database/faces3m
/. accessed 30/08/2019) containing over 30 million (1m per image) samples and 160 variables,
and MALDI MSI images of 30 coronal serial sections of drug treated mouse brain glioblastoma
model were taken (500,000 samples, 4,000 variables).

To analyse the hyperspectral imaging data, a subset of the data from the face of one person was
selected for training, and the learned networks were applied to the images from other datasets.
The pixels from the same features were easily and quickly segmented and discerned as similar to
one another demonstrating that this method can be applied to many datasets sequentially (Figure
4). The rapid and effective evaluation of features in hyperspectral imaging isimportant for areas
such as biomedicine where it may be used for classification purposes™, or in satellite imaging
where algorithms will need to match ever increasing data rates afforded by new
instrumentation®.

In the M Sl images, data from one of the tissue sections (containing the tumour) were taken as the
training data, t-SNE was performed on it, and neural networks used to learn a transformation
from the original to t-SNE space. The trained network was then applied to the data from the
remaining 29 serial sections, and a consistent segmentation of the same anatomical features into
the same colours can be seen (Figure 5a). As well as producing consi stent segmentation of
anatomy, the application of the network to the new data took around 1.5s per dataset, far faster
than the data acquisition itself. The consistent segmentation provides an excellent platform for
registration and resulting 3D segmented image generation (Figure 5b).

In addition to consistently segmenting the same anatomies of similar data, new datathat is
dissmilar to all existing data can be identified. Thisis demonstrated on the same M S| data from
the serial sections of mouse brain. By training the network on t-SNE applied to a section without
tumour present, the tumour tissue and the cerebellum region is still identified as being different
from all tissue within the training data (Figure S2). This means that this approach can be used to
identify outlier data from the training data, could be used as a quality control metric, or be used
to identify data of interest for additional analysis.
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The consistent embedding provided by NN t-SNE can also be applied to non-imaging mass
spectrometric data. A promising new area of mass spectrometric research israpid evaporative
ioni sation mass spectrometry (REIMS)**. This has the potential to classify tissues during
surgeriesin almost real time. In addition to this, it can be used for rapid cell profiling™. NN t-
SNE analysis was performed on REIM S data acquired from cell pellets extracted from the small
intestine and colon of mice with different oncogenetically relevant mutations. There is amuch
clearer separation in the genetic types observed by this method as compared to PCA (Figure S3).
These data were then used as a basis for classification by linear discriminant analysis (LDA).
The classification based on the NN t-SNE reduced data shows much higher accuracies as
compared to data reduced by PCA (Rand index 0.93 compared to 0.83, Table S1), indicating that
this may be a better dimensionality reduction method to apply prior to classfication. It is
important to note that a normal t-SNE approach would be inadequate for classification because
new data cannot be projected into the reduced space. The clinical application of this approach is
clear - it allows real-time stratification of patients/mice into groups based upon multidimensional
datasets, rather than binary segregation based upon presence or absence of individual dominant
oncogenic mutations. The latter approach has broadly failed as a both as stratification strategy
and has little prognostic value, and in the case of colorectal cancer, has been superseded by more
advanced molecular subtyping approaches (genomic, transcriptomic), which while inherently
more representative of the underlying biology of atumour, are both costly and time-consuming.

Returning spectral information using MS data

One of the biggest limitations of t-SNE as compared to other dimensionality reduction methods
like PCA and non-negative matrix factorisation isthat no spectral contributions driving the
differences between features can be obtained. By reversing the neural networks, we can obtain a
transformation to go from any three-dimensional RGB value (or any other t-SNE reduced space)
into a spectrum. By performing thisfor red ([1 0 0]) green ([0 1 0]) and blue ([0 0 1]) we can
obtain the relative spectral contributions along these dimensions to our image segmentation.
Alternatively, we can segment the reduced space and cal culate centroids in the reduced space to
determine the spectrum that would be derived from that region. We demonstrate this capability
using DESI M SI data of mouse mammary gland tumours contai ning 90,000 samples and 2,000
variables.

The oncogene MY C is amplified in approximately 15% of breast cancers and is associated with
poor prognosis. Oncogenes such as MY C define metabolic vulnerabilitiesin tumours.
ErbB2/HER?2 is overexpressed in 20% percent of human breast cancers and correlates with
tumour chemo-resistance and poor prognosis*®. Mammary gland tumours were generated in
transgenic mouse with ectopic expression of either MY C or ErbB2 under the control of mouse
mammary tumour virus (MMTV) promoter*”*. Resulting tumours were harvested at max 1.2
cm. These two oncogenes result in distinct metabolic profiles. Normal mammary glands (NMG)
from healthy mice were also analysed. For each phenotype two biological replicates were
analysed in asingle acquisition.

NN t-SNE of these data following background subtraction (Figure 6) clearly segments the three
samples (MY C and ErbB2 tumours and NMG) in low dimensional space (Figure 6a-b).


https://doi.org/10.1101/2020.09.03.269555
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

15

20

25

30

35

40

bioRxiv preprint doi: https://doi.org/10.1101/2020.09.03.269555; this version posted September 3, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Bounding boxes describe distinct areas including leached fatty regions from the NM G, and the
majority of pixelsinthe MY C or ErbB2 tumours (Figure 6c).

While such spatial segmentation isuseful, in order to provide biological interpretation we must
interrogate which spectral features are driving the separation in low dimensional space. We
generated the spectral representation for selected corners of the low dimension space (red, green,
blue and yellow) (Figure 6d). Spectral representations may include positive and negative values
indicating their relative contribution at the selected coordinates. Selected peaks with strong
contributions to the spectra representation for each selected low dimensional coordinate were
matched by exact mass to HMDB-v4.0 database™ and putative annotations made (Figure 6e).
Cholesterol sulfate, a structural component of cellular membranes, has been previously identified
in DESI M'S experiments as a potential biomarker of prostate cancer™. Hereit isa strong
contributor to the “yellow” corner of low dimensional space where pixels from the ErbB2
tumour are positioned. This appears to be a strong marker for ErbB2 tumours over MY C tumours
and NMG and it localised throughout the tumour, not just in the blood and plasma-rich regions.
Two peaks annotated as Pl lipids are prominent in the spectral representation of the red and
yellow side of low dimensional space. In the single ion images, they are localised inthe MY C
and ErbB2 tumours but absent in the NMG. As cell density is notably higher in the tumours than
the sparse fat pad, this elevation of structural lipidsin the tumoursis expected. A notable
contributor to the spectral representation of the “blue” corner of low dimension space is m/z 606,
assigned as UDP-N-actyl-alpha-D-galactosamine. This nucleotide sugar has been implicated
protein glycosylation™. It is present in both tumour types but elevated in MY C-driven tumours,
with some heterogeneity within individual tumours observed.

Combining these attributes (large data consistent segmentation and spectral information)

When acquiring data from biological samples, technical and biological replicates are important.
Even just performing these in duplicate, this meansthat for any single tissue type, four tissues
may be analysed. Adding multiple genetic variants and tissue types further increases the amount
of data for comparison. This was demonstrated on aMALDI dataset from the colon of four
genetic variants of genetically engineered mouse models (wild-type, Apc defficient, Kras®?
mutant, and dual Apc deficient with Kras®™?° mutation), analysed with duplicate biological and
technical replicates (total of 24 tissue sections). This dataset contained 427,967 pixels and 4,000
spectral features. Using the NN t-SNE algorithm, we see that thereis aclear cluster relating to
the KRAS mutation containing mice (pink cluster Figure 7), acluster which is primarily present
in the mice with Apc deficient intestinal tissue (dark blue cluster Figure 7) as well asa cluster in
all but the wild type mice (light blue cluster Figure 7). The main drivers of these differences
were m/z 885.550 (light blue), 514.280 (dark blue), and 835.530, 861.550, and 887.566 (pink).
These masses were then matched to the HMDB within 5 ppm mass error to provide tentative
assignments of Pl (38:4) [M-H]™ (m/z 885.550) taurocholic acid [M-H] (m/z 514.280), and PI
(34:1), (36:2), and (38:3) [M-H]" respectively(m/z 835.530, 861.550, 887.566). The Pl species
identified in this study have clear biological relevance, with PI(38:4) known to be the most
abundant mammalian phosphatidy! inositol®’. Phosphatidy! inositide species are critical cell
signaling secondary messenger molecules whose relative abundance is both influenced by
oncogene or tumour suppressor mutations (such as Apc loss or Kras mutation), and are critical
for characteristic tumour cell phenotypes including unrestrained growth and survival signalling.
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Similarly, the identification of the purple cluster associated with Apc deficiency driven by a
secondary bile acid such as taurocholic acid may give valuable insight into the comparative
biology of transformed versus normal intestinal enterocytes and relate to the critical role played
by the gut microbiome in initiation and progression of colorectal cancer™.

Parameter optimisation

There are a several considerations to be taken into account when applying neural network t-SNE
to M Sl datasets. One of these isthe effect of the size of the subset on the accuracy of the
segmentation. Due to the stochastic nature of t-SNE, performing it on different subsets will give
different results each time, making evaluation of the segmentation challenging. Therefore, a
smaller dataset was taken, on which t-SNE was performed on the whole data. Subsets of the final
reduced data were then taken as the input for training a neural network. The result of the neural
network trained t-SNE was then compared to the t-SNE on the compl ete dataset by means of the
correlation of the resulting reduced three-dimensional space. This was performed by
subsampling the data both randomly and in an ordered manner.

The effect of random or ordered subsampling seems to have little to no effect on the end result in
thisinstance (Figure $4 and S5), as both methods converge to give the same correlation to the
original t-SNE (within error bars) from around 10% subset size, and similar anatomical
segmentation. Efficient subsampling to give subsets that are representative of the whole data
would be an interesting topic for a future study. For example, in image analysis, Sobol series
sampling has been used to minimise the unsampled areas of theimage when performing a
subsampling for PCAZ,

To analyse the effect of subset size on the whole algorithm, including the t-SNE portion, well
known samples are required. Towards this end, sagittal, transverse and coronal mouse brain
tissues were chosen as they have very well-defined anatomical features. These were acquired
with avariety of different pixel sizes (100, 45 and 20 um) to give atotal number or pixels
ranging from 10,000 to 100,000. NN t-SNE was then applied to these datasets using subsets
ranging from the whole data down to 0.1% of the data (Figure S6). As might be expected, the
larger the subset of data, the better the neural network training. The performanceis not linear
however, and below a subset size of 1,000 pixels the segmentation performs very poorly
compared to the expected anatomical features (Figure S7). The measure of image autocorrelation
introduced for MSI by Smets et al.* was also used to evaluate the results from the subset size
comparison on the sagittal brain dataset, and similarly we see alarge decrease in the correlation
between subsets of 600-200 pixels (0.5% and 0.2%, Figure S6). Thisisindependent of the size of
the original data, making this method particularly well suited for datasets with large sample
numbers (pixels).

The analysis of these images shows that with larger datasets, smaller subsets can be used, and the
same quality of embedding can be achieved. The sagittal brain dataset with 123,557 pixels shows
similar embedding with 618 pixelsin the subset (0.5% subsampling) and 12,356 pixels (10%
subsampling) whereas the quality of the segmentation in the coronal and transverse brain images
declines rapidly below 1478 and 930 pixels (5 and 10%) respectively. Since the performanceis
more dependent on the absolute subset size rather than percentage, a subset of at least 2,000
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pixelsisrecommended. Notably, larger subsets are not required for the data containing
1,000,000 pixels compared to 10,000. It is aso worth noting that the time taken to perform t-
SNE increases quadratically with increasing number of pixels whereas the neural network
training islinear, and generally requires much less time (figure S8). Therefore, the rate limiting
step in this method remains the application of t-SNE to the subset of data.

The other consideration is how accurately the reconstruction of a spectrum from the t-SNE space
can be achieved. In order to evaluate the success of these results single pixel spectrawere
compared to the returned spectra from their respective RGB pointsin the NN t-SNE (Figure S9).
This was demonstrated on six spectrawere randomly selected from the colorectal cancer dataset
in Figure 4. In all cases a very high correlation (r? > 0.9) between the original and returned
spectrawere observed.

Thefinal consideration for this approach isthe neural network training parameters. There are a
large number of possible combinations that could be altered to varying effect. To exhaustively
study this landscape is beyond the scope of this investigation but would be valuable further work,
however a preliminary evaluation of the different neural network training algorithms was carried
out. Twelve different algorithms were investigated, and the correlation between original t-SNE
and NN trained t-SNE was used to evaluate this (Figure S10). It was seen that Bayesian

regul arisation and Levenberg-Marquardt outperform all other algorithms (r*>0.9 compared to
<0.75 for al other methods) with Bayesian regularisation having dightly better performance of
the two. Thisislikely because this method is robust towards overfitting which can occur dueto
the high dimensionality of MSI and other data™.

Extension to other dimensionality reduction methods

Finally, this approach is not limited to using t-SNE as the basis for dimensionality reduction.
Since the UM AP algorithm has shown recent popularity in many different areas we demonstrate
the use of neural network learning of UM AP embedding on the vast chromosome conformation
capture data shown in Figure 3, and the mass spectrometry imaging dataset used to evaluate
performance shown in Figure S5. As with t-SNE, this deep learning training approach is able to
reduce the Hi-C data into 3D showing the same segmentation based primarily intra-chromosome
interaction (Figure S11a), with additional hierarchical interactions, and transcriptional activity
clustering (Figure S11b and 11c). This approach is generalisable to different dimensionality
reduction and demonstrates training of deep learning on non-linear dimensionality reduction.
Sincethefield of non-linear dimensionality reduction is continually growing this approach is
applicable to other future developmentsin this area.

Conclusions

The NN t-SNE method described overcomes the mgjor limitations of conventional t-SNE. The
proposed method can be performed on large datasets, return consistent embedding with the
ability to incorporate of new data into the embedded space, and return the driving spectral
contributors to the changes observed. This presents a new way to more effectively mine high
dimensional datathat has large sample numbers. This algorithm can also be applied to the other
data types described in Table 1, many of which could benefit from this improvement. In many of
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the fields where t-SNE is currently applied, such as genomics and proteomics, datais expected to
soon exceed the current capacity of existing algorithms. For example, the UK Biobank currently
contains genomics data from 487,401 samples, again far greater than conventional t-SNE can
analyse™. These large-scale initiatives will continue to acquire large cohort datasets from many
different techniques, and algorithms need to develop to allow processing and mining of these
data. This methodology can also be applied to other dimensionality algorithms such as UMAP.
Future considerations for this work include additional comparison of subset sampling methods
(such as Sobol sampling) and applications to other areas of research such as large-scale genomics
initiatives. We have benchmarked the performance of this approach against using standard t-SNE
using the correlation metric between the original t-SNE and NN trained t-SNE with r? > 0.95
between the two approaches both for the forward and reverse transformations.
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Figure 1. The range of sample numbers and variables associated with common and emerging tools in biomedicine.
Colour scale indicates the amount of RAM required to load data of the corresponding size into memory, and lines
indicate the computational limit for principal component analysis (100,000 variables), t-SNE (50,000 samples) and
UMAP (500,000 samples).
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Figure 2. Outline of the novel workflow using t-SNE as the base dimensionality reduction method. A large dataset
that cannot have t-SNE performed on it is subsampled, and t-SNE is performed on the subset of data. The resulting
embedding is then used astraining data to train deep learning via neural networks to go from the high to low
dimensional space. The networks can then be applied to remaining data (and any new data) resulting in reduction of
the full dataset into an approximation of t-SNE.
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Figure 3. Results of 3D embedding from NN t-SNE dimensionality reduction on Hi-C data containing over 2
million samples labelled by chromosome (A), or interactions (B). Using standard t-SNE approaches would not be
possible for either this dataset due to memory constraints, and simply loading these datainto RAM is often not
possible.
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Figure 4. Visualisation of the results from NN t-SNE trained on a single hyperspectral image
(highlighted by black box), and then applied to the data from the remaining images showing a
consistent segmentation of hyperspectral facial features in a unified colour scheme. We can see
clearly that pixels from the same features such as face, hair and background are consistently
segmented, allowing for rapid extraction of common features between datasets.
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Figure 5. Results of segmentation using neural network t-SNE trained on M S| data from asingle
section of murine brain (highlighted in red) containing glioblastoma (segmented in light green).
The data from the remaining sections were then reduced using the trained networks to segment
the same anatomies in the same colour scheme. By embedding data into the same colour space
similar features can easily be identified, and the results of this can easily be used to perform
registration to generate 3D representations such as shown in (B).
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Figure 6. Results of NN t-SNE applied to MSI data from genetically engineered breast cancer models. The three
genetic models are clearly differentiated in both the scatter plot (a) and image (b). These can be segmented to give
masks for the different models (c) and the underlying spectral drivers can be identified (d) and their corresponding
ion images generated (e).
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Figure 7. Results of neura network t-SNE applied to M S| data from biological and technical replicates from a
genetically engineered mouse models for colorectal cancer. The RGB colour space from the NN t-SNE clearly
differentiates the genetic differences based on difference in the metabolites detected by MSI. The pink cluster is
observed primarily in the KRAS mutation containing tissues, while the purple cluster is prevaent in the APC
deletion containing tissues. These clusters are driven by phosphatidyl inositol lipids and taurocholic acid
respectively. This segmentation is consistent in technical replicated (b), and additional datafrom small intestine can
be compared with comparable colour segmentation (c).
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