

1 *Pre-print manuscript draft for BioRxiv*
2

3 **Broiler Chickens and Early Life Programming: Microbiome transplant-induced cecal
4 bacteriome dynamics and phenotypic effects**

5 Gustavo A. Ramírez^{1&2}, Ella Richardson¹, Jory Clark¹, Jitendra Keshri¹, Yvonne Drechsler¹,
6 Mark E. Berrang³, Richard J. Meinersmann³, Nelson A. Cox³ and Brian B. Oakley^{*1}
7

8
9 Author affiliations:
10

11 ¹College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA,
12 USA.²Department of Marine Sciences, University of North Carolina at Chapel Hill, NC,
13 USA. ³USDA Agricultural Research Service, National Poultry Center, Athens, GA, USA
14

15
16
17
18
19
20
21
22
23

24 *Corresponding author:
25 Brian B. Oakley
26 Western University of Health Sciences
27 College of Veterinary Medicine
28 Pomona, CA 91766
29 boakley@westernu.edu
30

31 **Abstract**

32 The concept of successional trajectories describes how small differences in initial community
33 composition can magnify through time and lead to significant differences in mature
34 communities. For many animals, the types and sources of early-life exposures to microbes have
35 been shown to have significant and long-lasting effects on the community structure and/or
36 function of the microbiome. In modern commercial poultry production, chicks are reared as a
37 single age cohort and do not directly encounter adult birds. This scenario is likely to initiate a
38 trajectory of microbial community development that is significantly different than non-
39 industrial settings where chicks are exposed to a much broader range of environmental and
40 fecal inocula; however, the comparative effects of these two scenarios on microbiome
41 development and function remain largely unknown. In this work, we performed serial transfers
42 of cecal material through multiple generations of birds to first derive a stable source of
43 inoculum. Subsequently, we compared microbiome development between chicks receiving this
44 passaged cecal material, versus an environmental inoculum, to test the hypothesis that the first
45 exposure of newly hatched chicks to microbes determines early GI microbiome structure and
46 may have longer-lasting effects on bird health and development. Cecal microbiome dynamics
47 and bird weights were tracked for a two-week period, with half of the birds in each treatment
48 group exposed to a pathogen challenge at 7 days of age. We report that: i) a relatively stable
49 community was derived after a single passage of transplanted cecal material, ii) this cecal
50 inoculum significantly but ephemerally altered community structure relative to the
51 environmental inoculum and PBS controls, and iii) either microbiome transplant administered
52 at day-of-hatch appeared to have some protective effects against pathogen challenge relative
53 to uninoculated controls. Differentially abundant taxa were identified across treatment types
54 that may inform future studies aimed at identifying strains associated with beneficial
55 phenotypes.

56

57 **Introduction**

58 Poultry comprise an economically important global protein market and are common animal
59 models used in basic and applied research. Since the middle of the last century, antimicrobial
60 growth promoters (AGPs), in-feed antibiotics at sub-therapeutic concentrations, have been
61 commonly used in commercial broiler chicken farming to improve feed conversion efficiency
62 (Landers et al., 2012). Despite their proven efficacy, presumed to result from modulations of
63 the gastrointestinal (GI) microbiome and host interactions (Danzeisen et al., 2011; Costa et al.,
64 2017; Gadde et al., 2018), the specific mechanisms of action of AGPs remain largely unknown.
65 In the last decade, concerns about antibiotic overuse and shifting consumer preferences have
66 led to new regulatory guidelines and industry practices removing AGPs from feed in the E.U.
67 and the U.S. Promising alternatives to AGPs include the modulation of the chicken GI
68 microbiome with prebiotics such as starches in the diet, antimicrobials such as organic acids or
69 phytochemicals, and mono- or mixed-culture probiotics, as reviewed elsewhere (Huyghebaert
70 et al., 2011; Clavijo and Flórez, 2018; Yadav and Jha, 2019). While many of these alternatives
71 to antibiotics have shown some efficacy compared to controls, re-capturing the performance
72 benefits of AGPs remains an elusive goal. A better understanding of specific bacterial strains
73 associated with desirable phenotypes could help identify effective probiotic alternatives to
74 AGPs.

75

76 The establishment and population dynamics of the chicken GI microbiome have been fairly
77 well-described (Lu et al., 2003; Oakley et al., 2014). Generally, immediately after hatching,
78 colonization by environmental microbes and subsequent community succession results in
79 hundreds of billions of bacterial cells per gram of GI content after just a few days (Ella and
80 Barnes, 1979). Of particular interest within the GI tract are the ceca where the highest
81 prokaryotic loads (Oakley et al., 2014) and the longest community residence times (Sergeant
82 et al., 2014) are found. Importantly, the ceca are a major site for bacterial fermentations and
83 the production of short-chain fatty acids [SCFAs; (Van der Wielen et al., 2000; Dunkley et al.,
84 2007)]. SCFAs, including lactate, acetate, propionate, and butyrate, directly stimulate increases
85 in absorptive surface area (Dibner and Richards, 2005), suppress the growth of zoonotic
86 pathogens (Namkung et al., 2011), induce the expression of host-defense peptides (Sunkara et
87 al., 2011), and modulate host epigenetic regulation (Canani et al., 2011).

88

89 One promising approach to better understand how specific GI bacterial taxa may influence
90 growth performance and pathogen resistance in poultry is the use of microbiome transplants

91 (MTs). Targeted modulation of the GI microbiome, particularly during early development, may
92 significantly influence phenotypes in mature birds (Rubio, 2019). Work in mammalian models
93 has shown that fecal transplants can affect host energy balance and weight gain (Turnbaugh et
94 al., 2006; Ridaura et al., 2013). In chickens, transplantation of fecal excreta from healthy adult
95 birds to newly hatched chicks has been shown to improve resistance against *Salmonella*
96 (Siegerstetter et al., 2018). By inducing desirable phenotypes such as changes in body weight-
97 gain or pathogen resistance via early life “metabolic programming” (Waterland and Garza,
98 1999), MTs can be used to infer which bacterial strains, consortia, or metabolic pathways may
99 contribute to phenotypic effects observed in the host. MTs may affect host health via the
100 competitive exclusion of potential pathogens, lowering community production of growth
101 suppression metabolites, and/or improving host energy metabolism (Dibner and Richards,
102 2005; Yadav and Jha, 2019). Chickens in the natural environment are exposed to a wide
103 diversity of microbes early in life from environmental sources and excreta from multi-age
104 cohorts of birds. In contrast, chicks in typical commercial broiler production systems do not
105 encounter adult birds and are reared as a single age cohort in relatively controlled conditions
106 under modern biosecurity regimens. The importance of early-life exposures to microbes has
107 been shown repeatedly for many host animals and humans; for example, cesarean-section vs.
108 vaginal birth (Neu and Rushing, 2011), or breast-fed vs formula fed infants (Milani et al.,
109 2017), but for chickens, how exposure to environmental versus host-derived microbial
110 communities (e.g. FMT) shapes the microbiome, remains unknown.

111
112 Here, to better understand microbiome-host interactions and the effects of MTs, we assessed
113 cecal microbiome dynamics of healthy broiler chicks, from hatching to 14 days post-hatch,
114 administered one of three treatments: i) a community enriched from serial passages of cecal
115 contents through multiple generations of chicks (CMT), ii) an environmental community
116 obtained from commercial poultry litter (EMT), or iii) a phosphate buffer saline (PBS) control.
117 At one week of age, approximately half of the chicks in each group were administered an oral
118 gavage of a pathogen challenge. We report significant differential phenotypic effects elicited
119 by specific MT treatments for weight gain and pathogen resistance. Further, we identify shifts
120 in the cecal microbiome at the community- and strain-level and identify differentially abundant
121 taxa across MT treatment types associated with observed phenotypes.

122

123 **Results**

124 *1. Community dynamics of serially passaged CMT.*

125 Community composition of the cecal microbiome transplants generally stabilized after a single
126 passage (Figure 1A). Samples prior to the first serial passage were dominated (nearly 90% of
127 all sequences) by the phylum Firmicutes, whereas, after one transfer, the phylum Bacteroidetes
128 was dominant (Figure 1B). This shift in community composition at the phylum level after one
129 transfer could be clearly seen in a stable Firmicutes to Bacteroidetes ratio after the first serial
130 passage (Figure 1C). At the genus level, the community prior to the first serial passage was
131 comprised primarily of *Lactobacillus*, *Eubacterium*, *Faecalibacterium*, and *Anaerobacterium*;
132 whereas communities after one transfer were dominated by a few *Bacteroides* genera including
133 *Alistipes*, *Barnesiella*, and *Blautia* (Figure 1D). Summaries of alpha diversity at the genus level
134 showed significantly higher taxonomic richness prior to the first of the serial passages while
135 all subsequent serial passages show lower and stable counts of observed genera (Figure 1E).
136 Overall, despite some individual variability, frozen cecal material was significantly altered
137 after the first passage and stable thereafter. This stable community derived from serial passages
138 through young chicken ceca was subsequently used as the CMT inoculum in this study.

139

140

141 *2. Bacterial community composition of gavage inocula*

142 We used a simple factorial design to assess the effects of day-of-hatch microbiome transplant
143 type (*i.e.*: EMT, CMT, and PBS) on cecal microbiome dynamics and pathogen resistance
144 (Figure 2A). Community composition of the environmental and cecal-enrichment gavages
145 (EMT and CMT treatments, respectively) differed drastically (Figure 2B). Over 98% of the
146 sequences recovered from the EMT gavage belong to the phylum Firmicutes, primarily the
147 genus *Lactobacillus*. In contrast, at the phylum-level, the CMT gavage community was
148 predominantly (>75%) comprised of the phylum Bacteroidetes with the remainder (< 25%) of
149 sequences classified as Firmicutes. At the genus-level, the CMT gavage was more diverse than
150 the EMT gavage with the Bacteroidetes genera *Alistipes*, *Bacteroides*, and *Barnesiella*
151 representing approximately 75% of the CMT community (Figure 2B).

152

153 *3. Bird Weight as a function of treatment group and pathogen challenge*

154 Body weight differences across treatment groups were only significantly different at d14 post-
155 hatching (Figure 2C, Table 1). In the non-challenged group at d14, weight distributions
156 significantly differed as a function of the type of day-of-hatch MT received; EMT and PBS
157 recipients were significantly heavier relative to birds that received a CMT. Interestingly, in the
158 pathogen-challenged group at d14, significant differences were observed as a function of

159 receiving either CMT or EMT at day-of-hatch relative to PBS controls. The PBS gavage
160 (negative MT control) recipients lost approximately 20% of their average body weight between
161 12 and 14 days of age (5-7 days post-challenge) and at day 14 of age were significantly lighter
162 than MT (EMT and CMT) recipients. Also, at d14 of age, EMT recipients were significantly
163 heavier than CMT recipients.

164

165 *4. Alpha-diversity*

166 The number of observed taxa (genus- and 99% OTU-level) was lowest in 1-day old birds for
167 all treatment groups (Figure 3, A & B). However, significantly more taxa at the genus and 99%
168 OTU levels were observed at d1 for birds administered a CMT relative to the EMT treatment
169 or PBS controls (Figure 3, A & B). From day 1 to day 7, significant increases in observed taxa
170 occurred for all treatment groups (Figure 3). Subsequently, for birds that did not undergo a
171 pathogen challenge, there were no significant differences in genus- or OTU-level richness
172 between bird age 7 and 14 days (Figure 3, A & B). For birds that were pathogen challenged at
173 7 days of age, a significant decrease in OTU-level richness at 14d relative to 7d was observed
174 in the group that received a day-of-hatch CMT (Figure 3D). A day-of-hatch CMT
175 administration generally resulted in higher OTU richness at d7 versus d14 for both the non-
176 challenged and pathogen-challenged groups; however, these observations were only
177 statistically significant in the challenged group (Figure 3, B & D).

178

179 *5. Beta-diversity*

180 Cecal communities of 1-day old birds (1d) showed few distinct patterns but CMT recipients
181 generally clustered close to the CMT gavage itself along positive axis 1 and 2 values (Figure
182 4A). Cecal communities from EMT and PBS recipients and the EM gavage spread along the
183 range of axis 2 but were largely confined to negative axis 1 values (Figure 4A). By 7 days of
184 age (d7), cecal communities from birds that received a PBS gavage instead of a microbiome
185 transplant were most similar to each other and generally clustered along negative axis 1 values
186 (Figure 4, B & D). Cecal communities of CMT or EMT recipients also clustered together and
187 were more similar to the CMT than the EMT gavage community (Figure 4, B & D). By 14
188 days of age (d14), community distinctions among treatments collapsed and no discernable
189 patterns associated with MT type were observed (Figure 4, C & E).

190

191 *6. Differentially abundant taxa in MTs relative to PBS controls in 7-day old chicks*

192 *6.1.1 Unchallenged Birds: EMT*

193 A total of 9 OTU lineages, belonging to three genera within the phylum Bacteroidetes,
194 exhibited significant differences in abundance in cecal communities from unchallenged birds
195 that received EMTs compared to PBS controls (Figure 5A). These OTUs were classified as
196 members of the *Barnesiella*, *Parabacteroides*, and *Alistipes* genera (Figure 5A).

197

198 *6.1.2 Unchallenged Birds: CMT*

199 A total of 24 OTU lineages, belonging to either the Firmicutes or Bacteroidetes exclusively,
200 were significantly differentially abundant in cecal communities from unchallenged birds that
201 received CMT relative to PBS controls (Figure 5B). Specifically, 18 OTUs were significantly
202 more abundant in CMT versus PBS treatments (Figure 4B). These OTUs were classified within
203 the following genera: *Rikenella*, *Parabacteroides*, *Lactobacillus*, *Alistipes*, and *Barnesiella*
204 (Figure 5B). Five OTUs classified as *Coprococcus*, *Barnesiella*, *Alistipes* and *Sporobacter*
205 were significantly less abundant in CMT versus PBS treatments (Figure 5B). Interestingly,
206 two genera, *Alistipes* and *Barnesiella*, had OTUs that were both significantly more and less
207 abundant in cecal communities of CMT recipients relative to PBS controls (Figure 5B).

208

209 *6.2.1 Pathogen Challenged Birds: EMT*

210 A total of 54 OTU lineages, belonging to either the Firmicutes or Bacteroidetes, exhibited
211 significant differences in abundance in cecal communities from pathogen challenged birds in
212 the EMT group versus PBS controls (Figure 5C). Specifically, thirty-six and nineteen OTU
213 lineages were significantly more and less abundant, respectively, in cecal communities from
214 EMT recipients relative to PBS controls. All OTUs classified as *Lactobacillus*, *Butyricicoccus*,
215 *Bacillus*, and *Parabacteroides*, were significantly enriched in EMT relative to PBS controls.
216 All OTUs classified as *Faecalitalea*, *Barnesiella*, *Odoribacter*, and *Faecalibacterium* were
217 significantly less abundant in cecal communities from birds that received an EMT relative to
218 PBS controls. Interestingly, three genera (*Alistipes*, *Barnesiella*, and *Bacteroides*) contained
219 some OTUs that were significantly enriched and some that were significantly less abundant in
220 cecal communities of EMT recipients relative to controls (Figure 5C).

221

222 *6.2.2 Pathogen Challenged Birds: CMT*

223 A total of 90 OTU lineages, belonging to either the Firmicutes or Bacteroidetes, exhibited
224 significant differences in abundance in cecal communities from pathogen challenged birds that
225 received a CMT compared to PBS controls (Figure 5D). 61 and 29 OTU lineages were
226 significantly more abundant or less abundant, respectively, in cecal communities from CMT

227 recipients relative to PBS controls. All OTUs classified as *Butyricicoccus*, *Rikenella*,
228 *Bacteroides*, *Parabacteroides*, and *Bacillus*, were significantly enriched in CMT relative to
229 PBS controls. All OTUs classified as *Odoribacter*, *Blautia*, and *Faecalibacterium*, were
230 significantly less abundant in CMT relative to PBS controls. Four genera (*Alistipes*,
231 *Barnesiella*, *Ruminiclostridium*, and *Eubacterium*) contained some OTUs that were
232 significantly enriched and some that were significantly less abundant in cecal communities of
233 CMT recipients relative to PBS controls (Figure 5D).

234

235 *6.3 Taxa Differentially Abundant in Both Challenged and Unchallenged Groups*

236 A total of 178 OTU lineages exhibited significant differences in relative abundance between
237 birds that received a MT (EMT or CMT) versus PBS controls (Figure 6A). 125 and 13 of these
238 OTUs were observed exclusively in challenged and unchallenged groups, respectively. Twenty
239 differentially abundant OTUs, all classified as Bacteroidetes, were observed in both pathogen-
240 challenged and unchallenged groups. Interestingly, these 20 OTUs exhibit similar trends in
241 magnitude and fold change direction as a function of MT administration in both pathogen-
242 challenged and unchallenged groups even though these were independent experimental cohorts
243 (Figure 6B).

244

245 **Discussion**

246 Applying the conceptual framework of successional trajectories (Fastie, 1995), similar to the
247 concept of “early life programming” (Rubio, 2019), we hypothesized that first exposure of
248 newly hatched chicks to environmental microbes determines early GI microbiome structure
249 and may have long-lasting effects on bird health and development. To test this hypothesis, we
250 tracked cecal microbiome dynamics and pathogen resistance of broiler chicks that received
251 complex microbiome transplants at day-of-hatch. To compare the effects of very different first
252 microbial exposure starting points, we compared a stable inoculum derived from serial
253 passages of cecal material to a complex environmental community derived from used poultry
254 litter and sterile PBS controls. To assess if early microbial exposure influences resistance to
255 pathogenic infection, we performed this study on two bird panels, one that was pathogen
256 challenged at 7d of age and one that was not pathogen challenged (Figure 2A).

257

258 *Microbiome dynamics through serial passages of cecal material*

259 To obtain a transplant community inoculum selected by the cecal environment of broiler
260 chicks, we serially transplanted cecal material from 14-day-old birds to newly hatched chicks.

261 When the chicks reached 2 weeks of age, cecal contents were harvested and transplanted to a
262 new batch of chicks. This serial passaging was repeated for five generations of chicks. We
263 hypothesized that environmental filtering (Szekely and Langenheder, 2014) would result in an
264 overall reduction in community richness with each serial transfer of cecal material and
265 eventually lead to a stable microbial cohort consistently sorted by environmental and host-
266 mediated factors. After just one passage, a relatively stable inoculum was derived (Figure 1).
267 After the first serial passage, the starting inoculum had changed significantly in community
268 diversity and composition from Firmicutes to Bacteroidetes dominance and remained relatively
269 stable thereafter (Figure 1 C-E). These results suggest that a taxonomic subset of a community
270 is quickly selected in a deterministic fashion by the host. We speculate that, given its relative
271 stability, the selected community should be beneficial to the host.

272

273 *Either CMTs or EMTs enhance resistance to pathogen infection*

274 We observed two significant effects of day-of-hatch MT on bird weight. First, in unchallenged
275 birds, day-of-hatch EMT administration had no effect on weight while CMT administration led
276 to significantly lower bird weight relative to controls (Figure 2C). In pathogen challenged
277 birds, administration of either MT type resulted in higher bird weight relative to controls;
278 however, birds administered the EMT gavage were significantly heavier than CMT recipients
279 (Figure 2C). These observations lend credence to the notion that MT-elicited modulations of
280 the GI flora, are both a consequence of host genetics and health status (Schokker et al., 2015),
281 and also a cause of changes in host phenotype. Because EMT rather than CMT administration
282 resulted in increased weight gain, independent of pathogen challenge status, we concluded that
283 gavage composition drives phenotypic outcomes and that EMT inoculation alone may be
284 sufficient to produce desirable phenotypes. The EMT gavage was largely comprised of
285 Firmicutes lineages assigned as *Lactobacillus* spp. while the CMT was primarily comprised of
286 Bacteroidetes lineages within the *Alistipes*, *Bacteroides*, and *Barnesiella* genera. Notably,
287 despite being sourced from used commercial poultry litter, the EMT composition
288 (predominantly Firmicutes, Figure 2B) differs from previously reported communities of
289 chicken feces [predominantly Proteobacteria (Siegerstetter et al., 2018)]. Generally, a high
290 prevalence of Firmicutes in the broiler GI tract is associated with beneficial immunomodulation
291 (LeBlanc et al., 2013; Oakley and Kogut, 2016). *Lactobacillus* spp. are common probiotics that
292 have been shown to enhance energy metabolism (LeBlanc et al., 2013), and inhibit colonization
293 of *Campylobacter jejuni* in broilers (Neal-McKinney et al., 2012). Together, these factors may
294 explain our observations that EMT treatment consistently resulted in higher bird weight relative

295 to CMT. However, we note that the CMT gavage, comprised primarily of Bacteroidetes
296 lineages, also resulted in increased weight gain relative to controls in pathogen challenged
297 birds. This suggests that Firmicutes dominance (*Lactobacillus* spp., specifically) is not the sole
298 determinant of the phenotypic effects elicited by both MT types in pathogen challenged birds.
299 Overall, enhanced resistance to pathogen infection, inferred from weight gain, during early
300 development (< 2 weeks of age) appears to be a global benefit conferred by administration of
301 day-of-hatch MT (EMT and CMT) in broilers.

302

303 *MT-induced bacteriome dynamics*

304 Early life microbiome status plays a critical role in establishing immune functions in murine
305 (Cahenzli et al., 2013) and chicken models (Schokker et al., 2015). We report rapid increases
306 in community richness between 1d and 7d independent of MT type administered at day-of-
307 hatch and pathogen-challenge status, however, richness generally remained stable between 7d
308 and 14d. This corroborates previous work suggesting the rapid (within less than a week post-
309 hatching) establishment of taxonomically rich GI communities (Apajalahti et al., 2004).
310 Interestingly, pathogen-challenged birds at 7d had significantly more diverse cecal
311 communities if a CMT gavage was administered at day-of-hatch (Figure 3D), however, no
312 additional effects of either MT treatment on bacterial community richness were observed.
313 Enrichment of *Lactobacillus* spp. and a concurrent drop in alpha-diversity have been reported
314 in chicken ceca of birds receiving Virginiamycin as a prophylactic AGP (Costa et al. 2017);
315 here, MT administration generally led to higher observed community richness relative to
316 controls, however, these observations were not statistically significant (Figure 3). Ordination
317 analyses of 7d cecal communities show compositional differences between birds that received
318 MTs relative to controls in both pathogen-challenged and non-challenged birds (Figure 4 B &
319 D). Given that differences in bird weight as a function of administered MT were observed at
320 14d, the microbial community clustering at 7d, where both CMT and EMT communities are
321 similar to each other and dissimilar to controls, is particularly intriguing. Both MT types altered
322 the cecal microbiome relative to controls prior to the observed phenotypic differences. These
323 short-lived patterns in cecal bacteriome structure completely dissipate by 14d (Figure 4E) but
324 may have had longer lasting effects on bird phenotype since both CMT and EMT recipients
325 exhibit weight trajectories that were unaffected by pathogen challenge (Figure 2C). Overall,
326 we show that ephemeral GI microbial community states specifically elicited by MTs
327 administration early in a bird's life may result in longer-lasting phenotypes. The mechanisms

328 underlying this observation may involve immunological programming (Schokker et al.,
329 2015;Oakley and Kogut, 2016) and are worthy of further investigations.

330

331 *Differentially abundant lineages*

332 To better understand the potential mechanisms of action of MTs, we identified taxa that were
333 significantly differentially abundant between MTs and control communities at 7d (Figure 5).

334 In non-pathogen challenged birds, significantly higher abundances of 9 lineages belonging to
335 the *Barnesiella*, *Parabacteroides*, and *Alistipes* genera were observed in the EMT treatments
336 relative to controls at 7d (Figure 5A). The differential abundance of these taxa at 7d did not
337 result in significant differences in bird weight at 14d (Figure 2C). Conversely, day-of-hatch
338 CMT administration did result in lower bird weights at 14d relative to controls (Figure 2C),
339 and thus taxa that differed significantly between the CMT and control communities at 7d
340 (Figure 5A), may represent specific lineages implicated in longer term phenotypic outcomes.

341 At 7d, taxa significantly less abundant in CMT communities relative to controls were
342 *Coprococcus*, *Barnesiella*, *Alistipes*, and *Sporobacter* spp. while *Lactobacillus*,

343 *Parabacteroides*, and *Rikenella* spp. OTUs were significantly more abundant relative to
344 controls (Figure 5B). Other studies have reported *Coprococcus* spp., a butyrate-producing
345 genera (Pryde et al., 2002), enriched in chicken ceca in response to AGP treatment (Danzeisen
346 et al., 2011). A depletion of *Coprococcus* at 7d in the CMT treatment may lead to lower
347 production of SCFAs which are well-described as key microbially-produced metabolites
348 mediating host GI tract health, resulting in lower bird weight by 14d in our study. *Lactobacillus*
349 spp. have been implicated in improved feed conversion ratios (Torok et al., 2011) and reduced
350 mortality (Timmerman et al., 2006) in broilers and are thus generally considered beneficial
351 probiotics (Bai et al., 2013). Despite the relative enrichment of *Lactobacillus* spp., birds in the

352 CMT group ultimately experienced less weight gain relative to controls. Remarkably, the 9
353 lineages that were significantly more abundant in the 7d cecal communities of EMT recipients
354 were also significantly more abundant in CMT recipient communities, even though the EMT

355 and CMT treatments were derived and administered independently. These taxa may represent
356 a core transplant microbiome, perhaps part of a consortium. Based on performance outcomes,
357 the differentially abundant lineages in the CMT comparison, a total of 18 OTUs, should be
358 considered potential performance-related phylotypes. In contrast, the subset of 9 lineages
359 differentially abundant in the EMT comparison were not associated with any significant
360 phenotypic differences. Together, these observations highlight specific OTU lineages that are
361 differentially abundant across MTs and controls at critical points in early cecal community

362 establishment and may provide clues to disentangle the complex links between broiler
363 microbiome modulation and desirable phenotypes.

364 In pathogen challenged birds, day-of-hatch administration of a CMT or EMT gavage resulted
365 in significantly higher bird weight relative to controls at 14d (Figure 2C). Taxa that were
366 differentially abundant in both the CMT and EMT treatments at 7d compared to controls
367 include: i) increases in OTUs assigned to the *Bacillus*, *Parabacteroides*, and *Butyricicoccus*
368 genera, ii) depletion of OTUs assigned to the *Odoribacter*, and *Faecalibacterium* genera, iii)
369 and increases and decreases in OTUs within the genera *Barnesiella* and *Alistipes* (Figure 5 C
370 &D). Both *Bacillus* and *Butyricicoccus* spp. are currently used as probiotics that have been
371 shown to reduce heat stress-associated inflammatory responses (Wang et al., 2018) and confer
372 protection against necrotic enteritis (Eeckhaut et al., 2016), respectively, in broiler chickens.
373 Interestingly, despite being a common lineage recovered from chicken feces, here
374 *Parabacteroides* spp. is significantly enriched along with *Bacillus* and *Butyricicoccus* spp.,
375 suggesting its potential as a possible probiotic. *Faecalibacterium* spp. have been repeatedly
376 associated with positive health outcomes in humans (Sokol et al., 2008; Miquel et al., 2013)
377 and have also been inversely correlated with expression of pro-inflammatory cytokines in
378 broiler chickens (Oakley and Kogut, 2016). *Odoribacter* spp. decreases in cecal communities
379 have been associated with butyric acid supplementation in chicken diets (Bortoluzzi et al.,
380 2017). Together, these observations suggest that increases in abundance and/or activity of
381 butyrate-producing taxa, such as *Faecalibacterium* and *Butyricicoccus* spp., may in fact dictate
382 community dynamics and host-microbiome activities by generating fermentative metabolites
383 and perhaps influence phenotypes later in life. Interestingly, we observed multiple genera
384 (*Alistipes*, *Barnesiella*, *Bacteroides*, *Ruminiclostridium*, and *Eubacterium*) with OTUs that
385 were both positively and negatively associated with experimental treatment and phenotype,
386 reinforcing existing dogma that ‘strains matter’, i.e. specific bacterial strains can elicit
387 significantly different phenotypes (). We note that in pathogen challenged birds, day-of-hatch
388 MT administration yielded significantly higher bird weights relative to controls, however, the
389 highest weight gains were observed in EMT recipients (Figure 1C). Two OTU lineages of
390 *Lactobacillus* spp. were significantly more abundant in the EMT recipients at 7d relative to
391 controls. Butyrate producers are known to cross-feed with lactic acid produced by
392 *Lactobacillus* spp. (De Maesschalck et al., 2015) and the significant co-enrichment of
393 *Lactobacillus* and, for example, *Butyricicoccus* spp. in the 7d cecal community of EMT
394 recipients relative to controls, not observed in CMT recipients, suggests that the observed
395 benefits of MT administration may result from enhanced cecal SCFA production.

396

397 *Conclusions*

398 To advance our knowledge of microbiome-induced modulation of host health outcomes,
399 microbiome transplants can provide predictive and testable guidance by identifying specific
400 taxa that are differentially represented between treatments. Here we used MTs to better
401 understand microbiome establishment from diverse inocula and to identify specific strains
402 associated with pathogen resistance. Our results show that i) a relatively stable community was
403 derived after a single passage of transplanted cecal material, ii) this cecal inoculum
404 significantly but ephemerally altered community structure relative to the environmental
405 inoculum and PBS controls, and iii) either microbiome transplant administered at day-of-hatch
406 appeared to have some protective effects against pathogen challenge relative to uninoculated
407 controls. We identify lineages that significantly differ in abundance in cecal contents from
408 birds treated with MTs at day-of-hatch relative to controls that may drive observed phenotypic
409 effects. These results suggest that environmental exposure to used poultry litter may provide
410 an effective inoculum that could protect against pathogens and identifies specific taxa that may
411 be responsible for this effect.

412

413 **Materials and Methods**

414 *Microbiome Transplant Source Materials*

415 The CMT source material was developed as follows: Frozen cecal material from 6 week-old
416 broiler chickens was reconstituted by diluting 3:1 (w:v) in PBS and 0.2 mL administered via
417 oral gavage to ten day-of-hatch chicks. When these chicks reached 2 weeks of age, their cecal
418 contents were similarly prepared and administered to the next set of ten chicks. This serial
419 passaging was repeated for five sets of chicks, with 10 chicks belonging to each group for a
420 total of 50 birds. Chicks in each cohort were housed together. Cecal contents from each bird
421 were sequenced as described below. The cecal contents from the final 10 birds were suspended
422 3:1 in PBS, pooled, and used immediately as the CMT inoculum. The EMT source material
423 was generated from built up litter collected from a commercial poultry operation mixed 3:1
424 (w:v) in PBS and also provided as an oral gavage of 0.2 mL.

425

426 *Experimental Design*

427 To determine the effects of host-derived versus environmental microbiome transplants (MT)
428 on cecal microbiome dynamics and pathogen resistance in commercial broiler chicks, we
429 designed a simple factorial experiment (Figure 2A, Table 2) with birds receiving either cecal

430 microbiome transplants (CMT), environmental microbiome transplants (EMT), or PBS control
431 at day-of-hatch. The CMT and EMT inocula were derived and administered as described above
432 and the PBS control was also provided as an oral gavage of 0.2 mL. At 7d post-hatch, half of
433 the birds in each treatment group received a pathogen challenge via oral gavage and the other
434 half remained as controls (Figure 2A). Birds were co-housed until pathogen challenge when
435 they were separated by challenge group. A subset of birds from each treatment group were
436 euthanized and cecal contents removed at the following time points: day-of-hatch, day 7, and
437 day 14 (Figure 1A). For the pathogen challenge, birds in each treatment group were inoculated
438 via oral gavage of 0.2 mL of live *Salmonella enteritis* and *Campylobacter jejuni* cells at an
439 approximate total load of 10^9 cells for each bacterium. Individual bird weights were recorded
440 as a function of MT type and challenge group (Figure 1B). This experiment was conducted
441 according to the Western University of Health Sciences Institutional Animal care and Use
442 Committee Protocol R15IACUC021.

443

444 *DNA Extraction and Sequencing*

445 DNA was extracted from ~100 mg of cecal contents using the MoBio UltraClean Soil DNA
446 extraction kit (Qiagen, Carlsbad, CA) following the manufacturer's protocol. Extracts
447 concentration and quality was checked via spectrophotometry (NanoDrop Products,
448 Wilmington, DE, USA). Amplicons for the V4-V5 hypervariable regions of the 16S rRNA
449 gene were generated via PCR using the 519F (5'-CAG CMG CCG CGG TAA TWC-3') and
450 926R (5'-CCG TCA ATT CCT TTR AGG TT-3') primers following the barcoding scheme of
451 (Faircloth and Glenn, 2012) as detailed elsewhere (Oakley et al., 2013;Oakley and Kogut,
452 2016). Amplicons were paired-end sequenced on an Illumina MiSeq platform, using a 2x250bp
453 v2 kit, following the manufacturer's protocol.

454

455 *Sequence Analysis*

456 Custom PERL and Unix shell scripts were used to implement portions of the QIIME (Caporaso
457 et al., 2012) and Mothur (Schloss et al., 2009) sequence analyses packages, as described
458 previously (Oakley et al., 2012;Oakley et al., 2013;Oakley and Kogut, 2016). In brief,
459 sequences were trimmed with trimmomatic (Bolger et al., 2014), subsequently merged with
460 Flash (Magoc and Salzberg, 2011), and quality-trimmed (Phred quality threshold of 25) using
461 fastq_quality_trimmer (Blankenberg et al., 2010). Chimera detection was performed with
462 usearch (Edgar et al., 2011) using a type strain database assembled from the SILVA v128
463 database (Yarza et al., 2010). Taxonomic assignments were performed with usearch against

464 the SILVA database v128 and by the RDP naïve Bayesian classifier against the RDP database
465 (Cole et al., 2014). Sequences were clustered into Operational Taxonomic Units (OTUs) at the
466 RDP genus-level and at 99% sequence similarity with usearch (Edgar et al., 2011).

467

468 *Statistical Analyses and Data Summaries*

469 Community analyses were performed in RStudio version 0.98.1091 (Racine, 2012) using the
470 vegan (Oksanen et al., 2015) and phyloseq (McMurdie and Holmes, 2013) R-packages. Briefly,
471 observed community richness was separately assessed for rarefied Genus-level (n= 1012 per
472 sample) and 99% similarity clustered (n=1044 per sample) OTU datasets. Bray-Curtis
473 distances were calculated from the rarefied 99% similarity OTU dataset and used for Principal
474 Coordinate Analyses (PCoA). Differential abundance analyses were performed on abundant
475 taxa (minimum $n < 100$ total reads per OTU) with DESeq2 (Love et al., 2014) using unrarefied
476 experimental subsets, as suggested elsewhere (McMurdie and Holmes, 2014).

477

478 **Tables**

479

	CMT	EMT	PBS
Day 8	n= 20 (11NC, 9C)	n= 15 (8NC, 7C)	n= 18 (10NC, 8C)
Day 10	n= 20 (11NC, 9C)	n= 15(8NC, 7C)	n= 18(10NC, 8C)
Day 12	n= 20 (11NC, 9C)	n= 15(8NC, 7C)	n= 18(10NC, 8C)
Day 14	n= 20 (11NC, 9C)	n= 15(8NC, 7C)	n= 18(10NC, 8C)

480

481 Table 1. Weight data replicates used to produce Figure 2C. The same 53 birds had their weight
482 in two-day intervals at the following post-microbiome transplant (bird age) dates and data was
483 tabulated as a function of gavage type and pathogen challenge status (NC for not challenged
484 and C for challenged).

485

	CMT	EMT	PBS
Day 1	n= 6	n= 5	n= 5
Day 7	n= 11 (5NC, 6 C)	n= 11 (5NC, 6 C)	n= 10 (6NC, 4C)
Day 14	n= 19 (11NC, 8C)	n= 16 (9NC, 7C)	n= 16 (9NC, 7C)

486

487 Table 2. Molecular sequencing replicates. Each replicate represents a cecal community from a
488 euthanized bird. For days 7 and 14, total replicates are subdivided into not challenged (NC)
489 and Challenged (C) groups.

490

491 **Figure Legends**

492 Figure 1
493 Microbiome analyses of serial transfer samples rarefied to even depth (n=850 sequences per
494 sample). A) Ordination analysis color coded by serial transfer number. B) Phylum level
495 community composition. C) Firmicutes:Bacteroidetes ratios for each serial passage. D) Genus
496 level community composition. E) Number of observed genera as a function of serial transfer
497 order (*: significantly different means, p < 0.05).

498

499 Figure 2
500 A) Schematic of the pooled cross-sectional study design for assessing the combined influence
501 MT type (PBS, EMT, CMT) and pathogen challenge status (challenged vs. not-challenged).
502 MT (via oral gavage) and pathogen challenge administration, both experimental variables, are
503 time-stamped and depicted in blue and orange fonts, respectively. Longitudinal cross-sectional
504 data collection for cecal molecular analyses and panel data collection for bird weight time
505 series are depicted by red and orange purple, respectively. B) Bacterial community composition
506 at the genus-level for gavages used to administer EMT and CMT in day-of-hatch chicks. C)
507 Time series results for bird weight as a function of MT type and pathogen challenge status for
508 birds age 8 through 14 days.

509

510 Figure 3
511 Community richness summary for each experiment group as a function of time (bird age in
512 days). Only taxa with abundances greater than 5 in the dataset and samples with 1000
513 sequences are retained. All samples were rarefied to even depth A) Operational taxonomic
514 units defined at the Genus-level (n= 1012 per sample) for non-pathogen challenged group. B)
515 Operational taxonomic units defined at the 99% sequence similarity-level (n=1044 per sample)
516 for non-pathogen challenged group. C) Operational taxonomic units defined at the Genus-level
517 (n= 1012 per sample) for pathogen challenged group. D) Operational taxonomic units defined
518 at the 99% sequence similarity-level (n=1044 per sample) for pathogen challenged group.
519 Horizontal bars with asterisks denote significant differences between comparison pairs (student
520 t-test, alpha = 0.05). Significant differences within MT groups and between MT groups are
521 depicted at the top and bottom of the figure, respectively.

522

523 Figure 4
524 A-C: Ordinations plots depicting community composition for unchallenged bird group of each
525 treatment group as a function of time (bird age in days). D & E: Ordinations plots depicting

526 community composition for challenged birds of each treatment group as a function of time
527 (bird age in days).

528

529 Figure 5

530 Taxa exhibiting significant differences in abundance following MT treatments relative to PBS
531 controls in the cecal communities of 7-day old birds. The x-axis shows taxonomic assignment
532 at the genus-level for individual OTU depicted as circles. Circle color depicts phylum-level
533 taxonomic assignments. The y-axis shows the differential Log2-fold abundance change for
534 each taxon. Open circles represent OTUs that are significantly (Wald Test, alpha=0.05) less
535 abundant in MT data relative to PBS. Closed circles represent OTUs that are significantly
536 (Wald Test, alpha=0.05) more abundant in MT data relative to PBS. See Supplemental
537 Materials for a comprehensive list of differentially abundant OTU IDs and fasta sequences. A)
538 Not challenged group: Significant differences in EMT relative to controls. B) Not challenged
539 group: Significant differences in CMT relative to controls. C) Pathogen challenged group:
540 Significant differences in EMT relative to controls. D) Pathogen challenged group: Significant
541 differences in CMT relative to controls.

542

543 Figure 6

544 Observed abundances of differentially abundant taxa present in both pathogen-challenged and
545 unchallenged experiment groups. The x-axis shows the differential Log2-fold abundance
546 change for each OTU observed per experiment group (challenge and unchallenged abundances
547 summarized in gray and orange, respectively). The y-axis shows taxonomic assignment at the
548 genus-level for each OTU.

549

550 Acknowledgments

551 Support was provided by the U.S. Poultry & Egg Association, the Western University of Health
552 Sciences College of Veterinary Medicine and the Office of the Vice-President for Research
553 and Biotechnology. The authors thank Mr. George M. Montoya for commenting on a near-
554 final version of this manuscript.

555

556 Author Contributions

557 BBO, MEB, and NAC conceived the experiment, YD helped with experimental design and
558 project management. ER, JC, and BBO performed the experiment. GAR, JK, and BBO

559 performed bioinformatic analyses. GAR and BBO wrote the manuscript with input from all co-
560 authors.

561

562 Works Cited.

563 Apajalahti, J., Kettunen, A., and Graham, H. (2004). Characteristics of the gastrointestinal
564 microbial communities, with special reference to the chicken. *World's Poultry Science
565 Journal* 60, 223-232. doi: DOI: 10.1079n;VPS2004 15.

566 Bai, S.P., Wu, A.M., Ding, X.M., Lei, Y., Bai, J., Zhang, K.Y., and Chio, J.S. (2013). Effects
567 of probiotic-supplemented diets on growth performance and intestinal immune
568 characteristics of broiler chickens. *Poult Sci* 92, 663-670. doi: 10.3382/ps.2012-02813.

569 Blankenberg, D., Gordon, A., Von Kuster, G., Coraor, N., Taylor, J., Nekrutenko, A., and
570 Galaxy, T. (2010). Manipulation of FASTQ data with Galaxy. *Bioinformatics* 26, 1783-
571 1785. doi: 10.1093/bioinformatics/btq281.

572 Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
573 sequence data. *Bioinformatics* 30, 2114-2120. doi: 10.1093/bioinformatics/btu170.

574 Bortoluzzi, C., Pedrosa, A.A., Mallo, J.J., Puyalto, M., Kim, W.K., and Applegate, T.J. (2017).
575 Sodium butyrate improved performance while modulating the cecal microbiota and
576 regulating the expression of intestinal immune-related genes of broiler chickens. *Poult
577 Sci* 96, 3981-3993. doi: 10.3382/ps/pex218.

578 Cahenzli, J., Koller, Y., Wyss, M., Geuking, M.B., and Mccoy, K.D. (2013). Intestinal
579 microbial diversity during early-life colonization shapes long-term IgE levels. *Cell
580 Host Microbe* 14, 559-570. doi: 10.1016/j.chom.2013.10.004.

581 Canani, R.B., Costanzo, M.D., Leone, L., Bedogni, G., Brambilla, P., Cianfarani, S., Nobili,
582 V., Pietrobelli, A., and Agostoni, C. (2011). Epigenetic mechanisms elicited by
583 nutrition in early life. *Nutr Res Rev* 24, 198-205. doi: 10.1017/S0954422411000102.

584 Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens,
585 S.M., Betley, J., Fraser, L., Bauer, M., Gormley, N., Gilbert, J.A., Smith, G., and
586 Knight, R. (2012). Ultra-high-throughput microbial community analysis on the
587 Illumina HiSeq and MiSeq platforms. *ISME J* 6, 1621-1624. doi: 10.1038/ismej.2012.8.

588 Clavijo, V., and Flórez, M. (2018). The gastrointestinal microbiome and its association with
589 the control of pathogens in broiler chicken production: a review. *Poult Sci* 97, 1006-
590 1021. doi: 10.3382/ps/pex35.

591 Cole, J.R., Wang, Q., Fish, J.A., Chai, B., Mcgarrell, D.M., Sun, Y., Brown, C.T., Porras-
592 Alfaro, A., Kuske, C.R., and Tiedje, J.M. (2014). Ribosomal Database Project: data and
593 tools for high throughput rRNA analysis. *Nucleic Acids Res* 42, D633-642. doi:
594 10.1093/nar/gkt1244.

595 Costa, M.C., Bessegatto, J.A., Alfieri, A.A., Weese, J.S., Filho, J.A., and Oba, A. (2017).
596 Different antibiotic growth promoters induce specific changes in the cecal microbiota
597 membership of broiler chicken. *PLoS One* 12, e0171642. doi:
598 10.1371/journal.pone.0171642.

599 Danzeisen, J.L., Kim, H.B., Isaacson, R.E., Tu, Z.J., and Johnson, T.J. (2011). Modulations of
600 the chicken cecal microbiome and metagenome in response to anticoccidial and growth
601 promoter treatment. *PLoS One* 6, e27949. doi: 10.1371/journal.pone.0027949.

602 De Maesschalck, C., Eeckhaut, V., Maertens, L., De Lange, L., Marchal, L., Nezer, C., De
603 Baere, S., Croubels, S., Daube, G., Dewulf, J., Haesebrouck, F., Ducatelle, R.,
604 Taminau, B., and Van Immerseel, F. (2015). Effects of Xylo-Oligosaccharides on
605 Broiler Chicken Performance and Microbiota. *Appl Environ Microbiol* 81, 5880-5888.
606 doi: 10.1128/AEM.01616-15.

607 Dibner, J.J., and Richards, J.D. (2005). Antibiotic growth promoters in agriculture: History and
608 mode of action. *Poultry science* 84, 634-643.

609 Dunkley, K.D., Dunkley, C.S., Njongmeta, N.L., Callaway, T.R., and Hume, M.E. (2007).
610 Comparisons of in vitro fermentation and molecular microbial profiles of high-fiber
611 feed substrates incubated with chicken cecal inocula. *Poultry science* 86, 801.

612 Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. (2011). UCHIME improves
613 sensitivity and speed of chimera detection. *Bioinformatics* 27, 2194-2200. doi:
614 10.1093/bioinformatics/btr381.

615 Eeckhaut, V., Wang, J., Van Parys, A., Haesebrouck, F., Joossens, M., Falony, G., Raes, J.,
616 Ducatelle, R., and Van Immerseel, F. (2016). The Probiotic *Butyricoccus pullicaecorum* Reduces Feed Conversion and Protects from Potentially Harmful
617 Intestinal Microorganisms and Necrotic Enteritis in Broilers. *Front Microbiol* 7, 1416.
618 doi: 10.3389/fmicb.2016.01416.

619 Ella, M., and Barnes, O.B.E. (1979). The intestinal microflora of poultry and game birds during
620 life and after storage. *Journal of Applied Bacteriology* 46, 407-419.

621 Faircloth, B.C., and Glenn, T.C. (2012). Not all sequence tags are created equal: designing and
622 validating sequence identification tags robust to indels. *PLoS One* 7, e42543. doi:
623 10.1371/journal.pone.0042543.

624 Fastie, C. (1995). Causes and Ecosystem Consequences of Multiple Pathways of Primary
625 Succession at Glacier Bay, Alaska. *Ecology* 76, 1899-1916. doi:
626 <https://doi.org/10.2307/1940722>.

627 Gadde, U.D., Oh, S., Lillehoj, H.S., and Lillehoj, E.P. (2018). Antibiotic growth promoters
628 virginiamycin and bacitracin methylene disalicylate alter the chicken intestinal
629 metabolome. *Sci Rep* 8, 3592. doi: 10.1038/s41598-018-22004-6.

630 Huyghebaert, G., Ducatelle, R., and Van Immerseel, F. (2011). An update on alternatives to
631 antimicrobial growth promoters for broilers. *Vet J* 187, 182-188. doi:
632 10.1016/j.tvjl.2010.03.003.

633 Landers, T., Cohen, B., Wittum, T., and Larson, E. (2012). A review of antibiotic use in food
634 animals: Perspective, policy, and potential. *Public Health Rep.* 127, 4-22. doi:
635 10.1177/003335491212700103.

636 Leblanc, J., Milani, C., Savoy De Giori, G., Sesma, F., Van Sinderen, D., and Ventura, M.
637 (2013). Bacteria as vitamin suppliers to their host: a gut microbiota perspective. *Curr
638 Opin Biotechnol* 24, 160-168.

639 Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and
640 dispersion for RNA-seq data with DESeq2. *Genome Biol* 15, 550. doi: 10.1186/s13059-
641 014-0550-8.

642 Lu, J., Idris, U., Harmon, B., Hofacre, C., Maurer, J.J., and Lee, M.D. (2003). Diversity and
643 Succession of the Intestinal Bacterial Community of the Maturing Broiler Chicken.
644 *Applied and Environmental Microbiology* 69, 6816-6824. doi:
645 10.1128/aem.69.11.6816-6824.2003.

646 Magoc, T., and Salzberg, S.L. (2011). FLASH: fast length adjustment of short reads to improve
647 genome assemblies. *Bioinformatics* 27, 2957-2963. doi:
648 10.1093/bioinformatics/btr507.

649 McMurdie, P.J., and Holmes, S. (2013). phyloseq: an R package for reproducible interactive
650 analysis and graphics of microbiome census data. *PLoS One* 8, e61217. doi:
651 10.1371/journal.pone.0061217.

652 McMurdie, P.J., and Holmes, S. (2014). Waste Not, Want Not: Why Rarefying Microbiome
653 Data is Inadmissible. *PLoS Comput Biol* 10. doi: 10.1371/.

654 Milani, C., Duranti, S., Bottacini, F., Casey, E., Turroni, F., Mahohy, J., Belzer, C., and
655 Delgado-Palacio, S. (2017). The First Microbial Colonizers of the Human Gut:

657 Composition, Activities, and Health Implications of the Infant Gut Microbiota
658 *Microbiol Mol Biol Rev* 81. doi: 10.1128/MMBR.

659 Miquel, S., Martin, R., Rossi, O., Bermudez-Humaran, L.G., Chatel, J.M., Sokol, H., Thomas,
660 M., Wells, J.M., and Langella, P. (2013). *Faecalibacterium prausnitzii* and human
661 intestinal health. *Curr Opin Microbiol* 16, 255-261. doi: 10.1016/j.mib.2013.06.003.

662 Namkung, H., Yu, H., Gong, J., and Leeson, S. (2011). Antimicrobial activity of butyrate
663 glycerides toward *Salmonella Typhimurium* and *Clostridium perfringens*. *Poult Sci* 90,
664 2217-2222. doi: 10.3382/ps.2011-01498.

665 Neal-Mckinney, J.M., Lu, X., Duong, T., Larson, C.L., Call, D.R., Shah, D.H., and Konkel,
666 M.E. (2012). Production of organic acids by probiotic lactobacilli can be used to reduce
667 pathogen load in poultry. *PLoS One* 7, e43928. doi: 10.1371/journal.pone.0043928.

668 Neu, J., and Rushing, J. (2011). Cesarean versus vaginal delivery: long-term infant outcomes
669 and the hygiene hypothesis. *Clin Perinatol* 38, 321-331. doi:
670 10.1016/j.clp.2011.03.008.

671 Oakley, B.B., and Kogut, M.H. (2016). Spatial and Temporal Changes in the Broiler Chicken
672 Cecal and Fecal Microbiomes and Correlations of Bacterial Taxa with Cytokine Gene
673 Expression. *Front Vet Sci* 3, 11. doi: 10.3389/fvets.2016.00011.

674 Oakley, B.B., Lillehoj, H.S., Kogut, M.H., Kim, W.K., Maurer, J.J., Pedroso, A., Lee, M.D.,
675 Collett, S.R., Johnson, T.J., and Cox, N.A. (2014). The chicken gastrointestinal
676 microbiome. *FEMS Microbiol Lett* 360, 100-112. doi: 10.1111/1574-6968.12608.

677 Oakley, B.B., Morales, C.A., Line, J., Berrang, M.E., Meinersmann, R.J., Tillman, G.E., Wise,
678 M.G., Siragusa, G.R., Hiett, K.L., and Seal, B.S. (2013). The poultry-associated
679 microbiome: network analysis and farm-to-fork characterizations. *PLoS One* 8, e57190.
680 doi: 10.1371/journal.pone.0057190.

681 Oakley, B.B., Morales, C.A., Line, J.E., Seal, B.S., and Hiett, K.L. (2012). Application of high-
682 throughput sequencing to measure the performance of commonly used selective
683 cultivation methods for the foodborne pathogen *Campylobacter*. *FEMS Microbiol Ecol*
684 79, 327-336. doi: 10.1111/j.1574-6941.2011.01219.x.

685 Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'hara, R.B., Simpson,
686 G.L., Solymos, P., Stevens, M.H.H., and Wagner, H. (2015). *vegan*: Community
687 Ecology Package. R Package Version 2.2-1. Available online at: <http://cran.r-project.org/package=vegan>.

688 Pryde, S., Duncan, S., Hold, G., Stewart, C., and Flint, H. (2002). The microbiology of butyrate
689 formation in the human colon. *FEMS Microbiol Lett* 217, 133-139.

690 Racine, J.S. (2012). RStudio: A Platform-Independent IDE for R and Sweave. *Journal of
691 Applied Econometrics* 27, 167-172. doi: 10.1002/jae.1278.

692 Ridaura, V.K., Faith, J.J., Rey, F.E., Cheng, J., Duncan, A.E., Kau, A.L., Griffin, N.W.,
693 Lombard, V., Henrissat, B., Bain, J.R., Muehlbauer, M.J., Ilkayeva, O., Semenkovich,
694 C.F., Funai, K., Hayashi, D.K., Lyle, B.J., Martini, M.C., Ursell, L.K., Clemente, J.C.,
695 Van Treuren, W., Walters, W.A., Knight, R., Newgard, C.B., Heath, A.C., and Gordon,
696 J.I. (2013). Gut microbiota from twins discordant for obesity modulate metabolism in
697 mice. *Science* 341, 1241214. doi: 10.1126/science.1241214.

698 Rubio, L.A. (2019). Possibilities of early life programming in broiler chickens via intestinal
699 microbiota modulation. *Poult Sci* 98, 695-706. doi: 10.3382/ps/pey416.

700 Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski,
701 R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G.,
702 Van Horn, D.J., and Weber, C.F. (2009). Introducing mothur: open-source, platform-
703 independent, community-supported software for describing and comparing microbial
704 communities. *Appl Environ Microbiol* 75, 7537-7541. doi: 10.1128/AEM.01541-09.

706 Schokker, D., Veninga, G., Vastenhouw, S.A., Bossers, A., De Bree, F.M., Kaal-Lansbergen,
707 L.M., Rebel, J.M., and Smits, M.A. (2015). Early life microbial colonization of the gut
708 and intestinal development differ between genetically divergent broiler lines. *BMC
709 Genomics* 16, 418. doi: 10.1186/s12864-015-1646-6.

710 Sergeant, M.J., Constantinidou, C., Cogan, T.A., Bedford, M.R., Penn, C.W., and Pallen, M.J.
711 (2014). Extensive microbial and functional diversity within the chicken cecal
712 microbiome. *PLoS One* 9, e91941. doi: 10.1371/journal.pone.0091941.

713 Siegerstetter, S.C., Petri, R.M., Magowan, E., Lawlor, P.G., Zebeli, Q., O'connell, N.E., and
714 Metzler-Zebeli, B.U. (2018). Fecal Microbiota Transplant from Highly Feed-Efficient
715 Donors Shows Little Effect on Age-Related Changes in Feed-Efficiency-Associated
716 Fecal Microbiota from Chickens. *Appl Environ Microbiol* 84. doi:
717 10.1128/AEM.02330-17.

718 Sokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., Bermudez-Humaran, L.G., Gratadoux, J.J.,
719 Blugeon, S., Bridonneau, C., Furet, J.P., Corthier, G., Grangette, C., Vasquez, N.,
720 Pochart, P., Trugnan, G., Thomas, G., Blottiere, H.M., Dore, J., Marteau, P., Seksik, P.,
721 and Langella, P. (2008). *Faecalibacterium prausnitzii* is an anti-inflammatory
722 commensal bacterium identified by gut microbiota analysis of Crohn disease patients.
723 *Proc Natl Acad Sci U S A* 105, 16731-16736. doi: 10.1073/pnas.0804812105.

724 Sunkara, L.T., Achanta, M., Schreiber, N.B., Bommneni, Y.R., Dai, G., Jiang, W., Lamont,
725 S., Lillehoj, H.S., Beker, A., Teeter, R.G., and Zhang, G. (2011). Butyrate enhances
726 disease resistance of chickens by inducing antimicrobial host defense peptide gene
727 expression. *PLoS One* 6, e27225. doi: 10.1371/journal.pone.0027225.

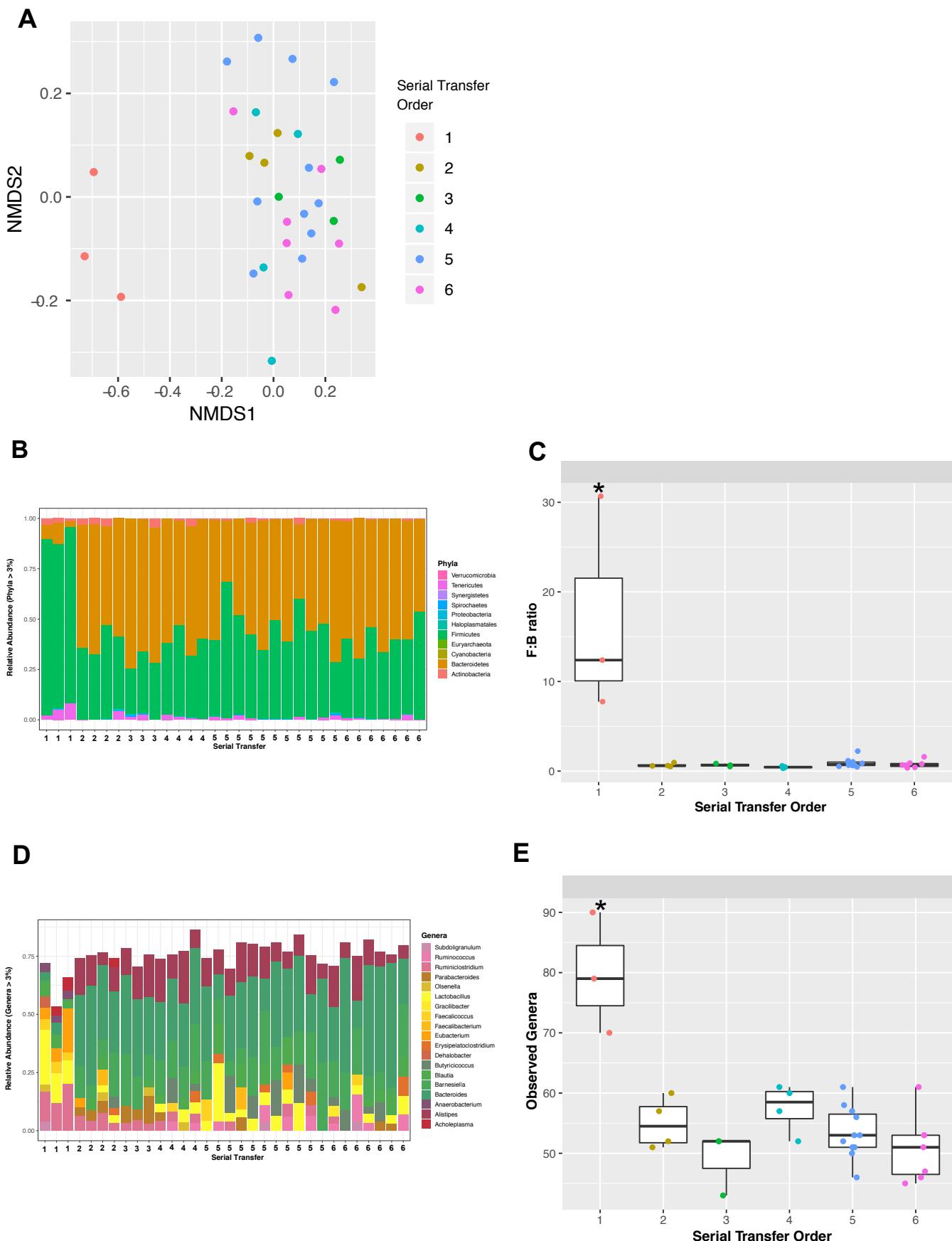
728 Szekely, A.J., and Langenheder, S. (2014). The importance of species sorting differs between
729 habitat generalists and specialists in bacterial communities. *FEMS Microbiol Ecol* 87,
730 102-112. doi: 10.1111/1574-6941.12195.

731 Timmerman, H., Veldman, A., Van Den Elsen, E., Rombouts, F., and Beynen, A. (2006).
732 Mortality and growth performance of broilers given drinking water supplemented with
733 chicken-specific probiotics. *Poult Sci* 85, 1383-1388.

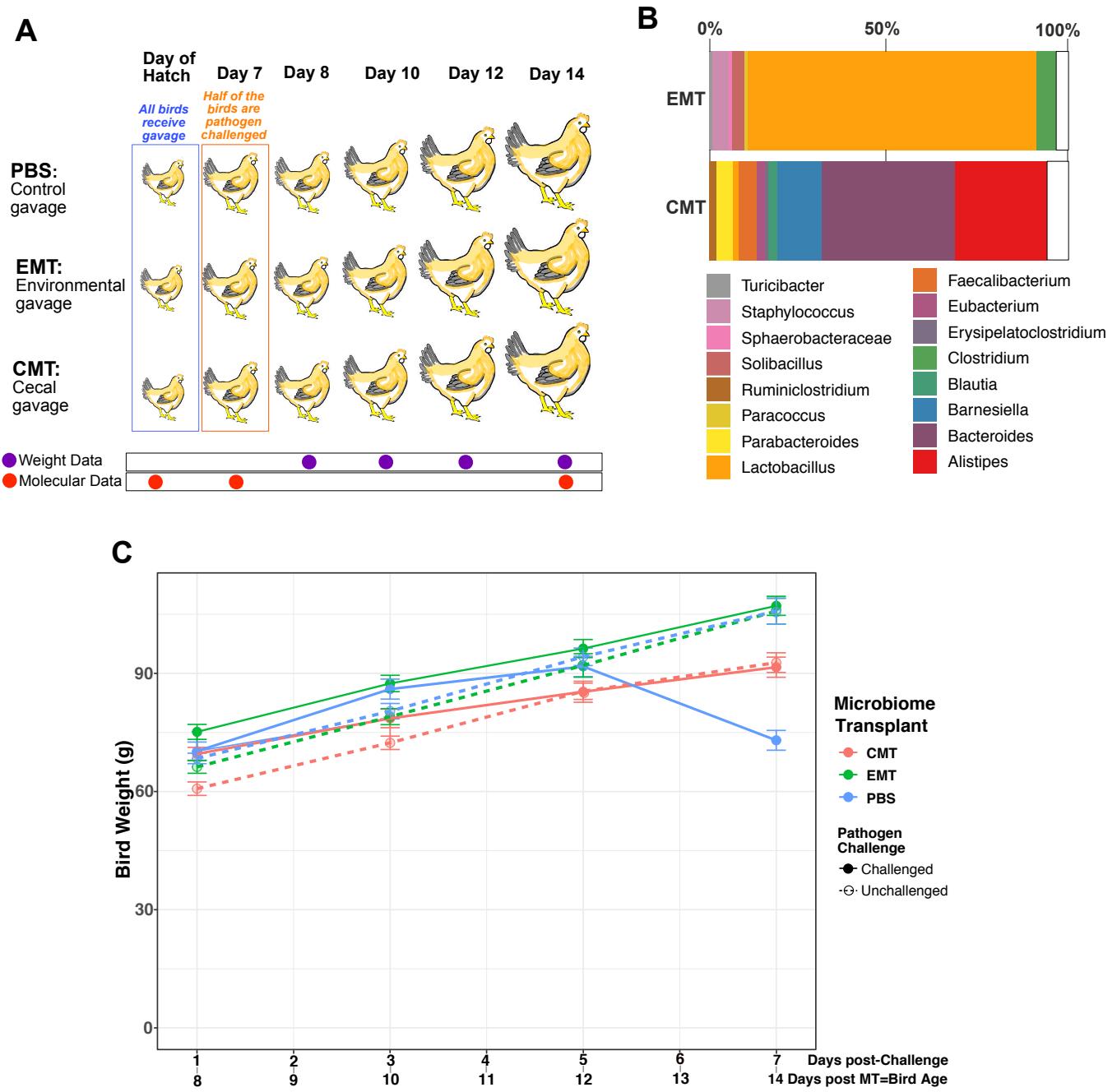
734 Torok, V.A., Hughes, R.J., Mikkelsen, L.L., Perez-Maldonado, R., Balding, K., Macalpine, R.,
735 Percy, N.J., and Ophel-Keller, K. (2011). Identification and characterization of
736 potential performance-related gut microbiotas in broiler chickens across various
737 feeding trials. *Appl Environ Microbiol* 77, 5868-5878. doi: 10.1128/AEM.00165-11.

738 Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., and Gordon, J.I.
739 (2006). An obesity-associated gut microbiome with increased capacity for energy
740 harvest. *Nature* 444, 1027-1031. doi: 10.1038/nature05414.

741 Van Der Wielen, P.W.J.J., Biesterveld, S., Notermans, S., Hofstra, H., Urlings, B.a.P., and
742 Vanknapen, F. (2000). Role of volatile fatty acids in development of the cecal
743 microflora in broiler chickens during growth. *Appl Environ Microbiol* 66, 2536-2540.

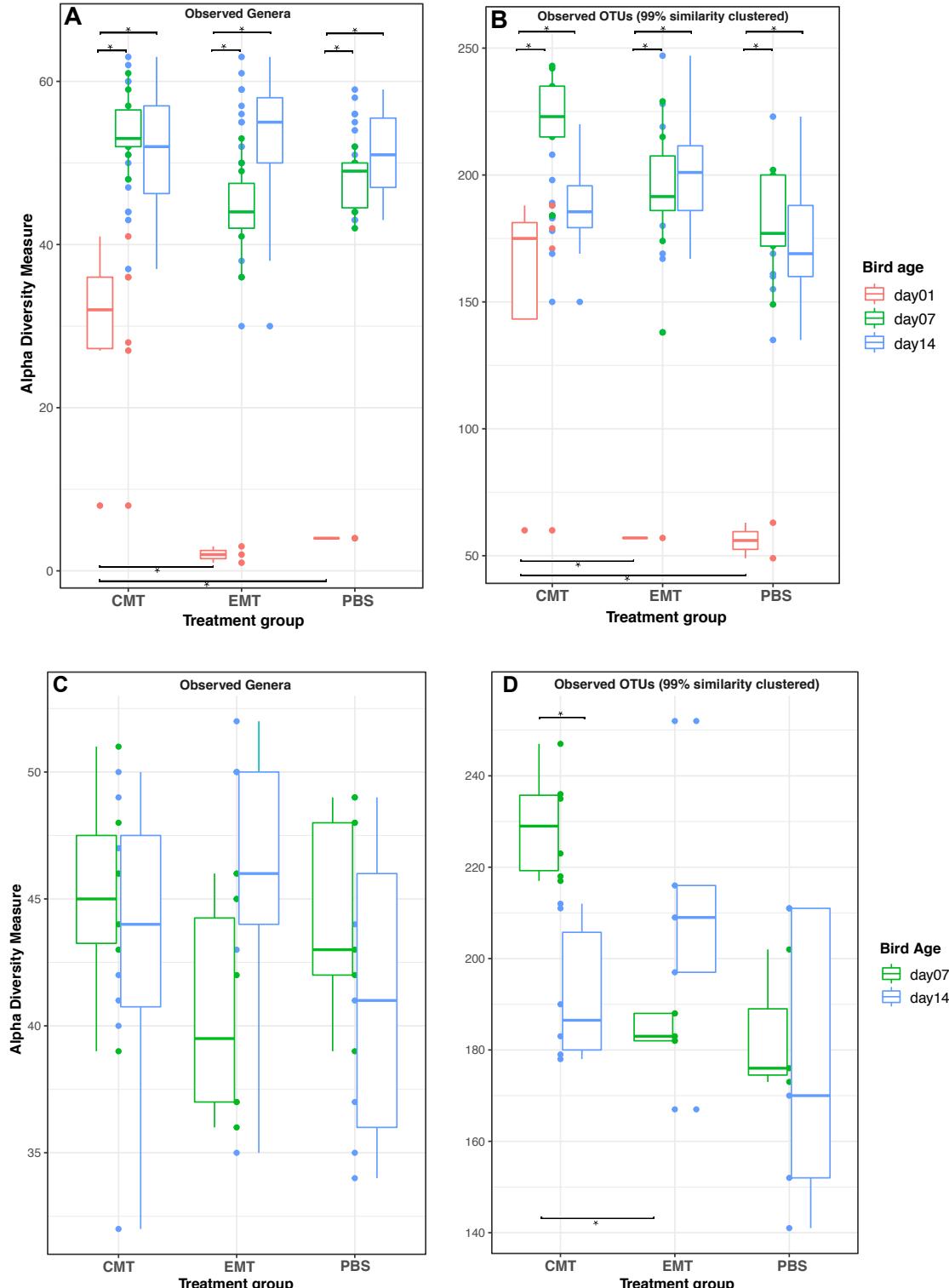

744 Wang, W.C., Yan, F.F., Hu, J.Y., Amen, O.A., and Cheng, H.W. (2018). Supplementation of
745 *Bacillus subtilis*-based probiotic reduces heat stress-related behaviors and
746 inflammatory response in broiler chickens. *J Anim Sci* 96, 1654-1666. doi:
747 10.1093/jas/sky092.

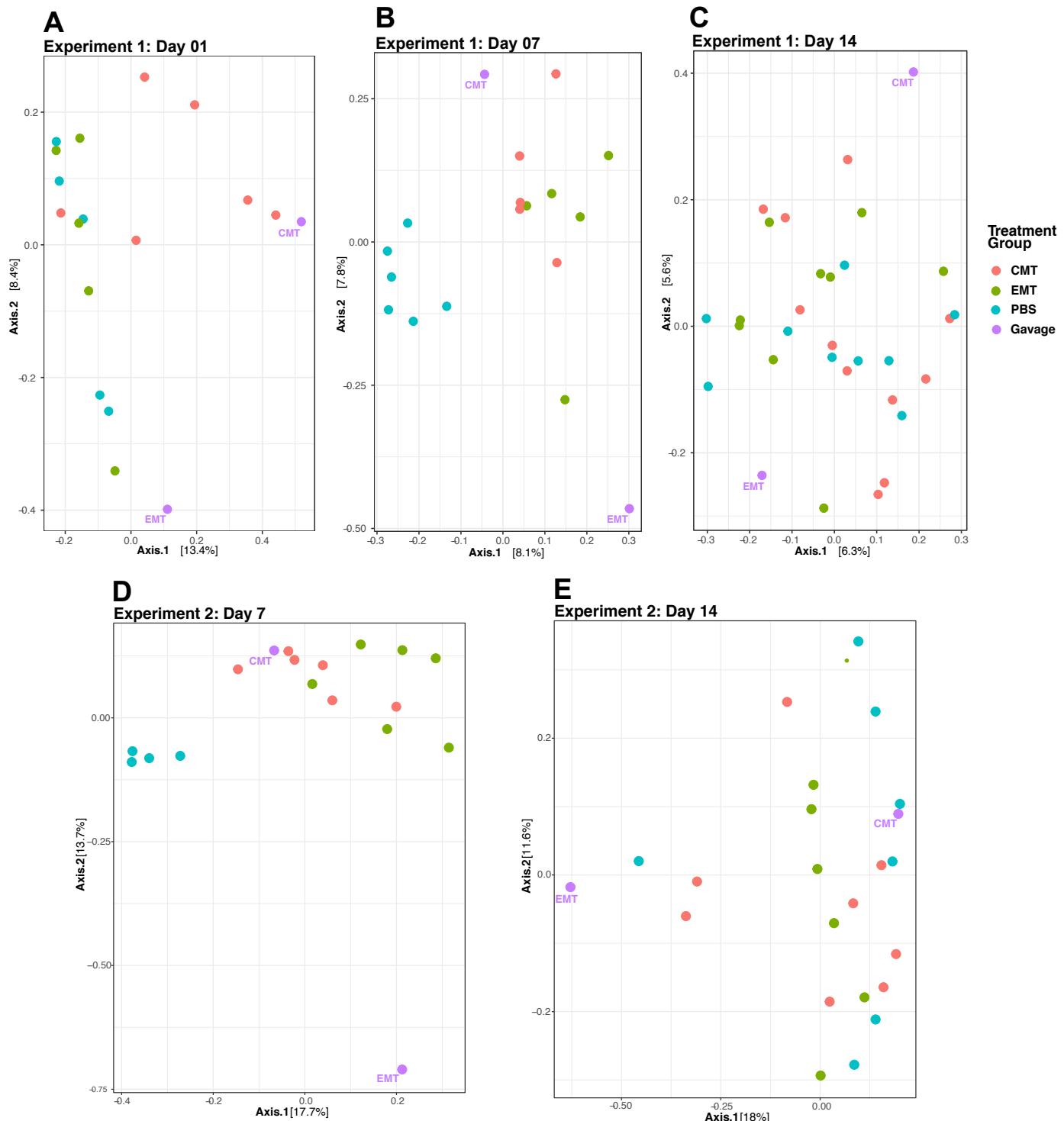
748 Waterland, R., and Garza, C. (1999). Potential mechanisms of metabolic imprinting that lead
749 to chronic disease. *Am J Clin Nutr* 69, 179-197.

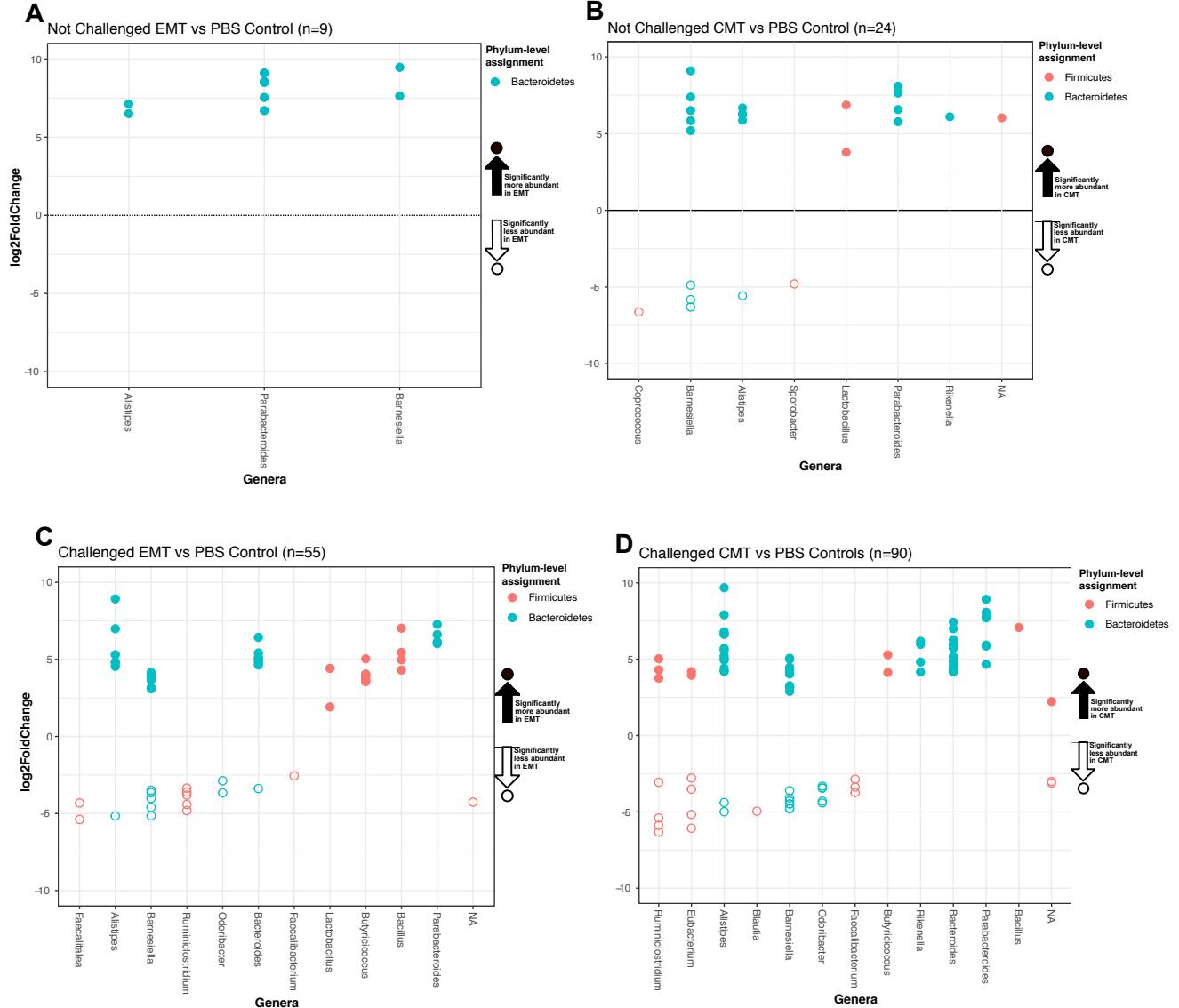

750 Yadav, S., and Jha, R. (2019). Strategies to modulate the intestinal microbiota and their effects
751 on nutrient utilization, performance, and health of poultry. *J Anim Sci Biotechnol* 10, 2.
752 doi: 10.1186/s40104-018-0310-9.

753 Yarza, P., Ludwig, W., Euzeby, J., Amann, R., Schleifer, K.H., Glockner, F.O., and Rossello-
754 Mora, R. (2010). Update of the All-Species Living Tree Project based on 16S and 23S

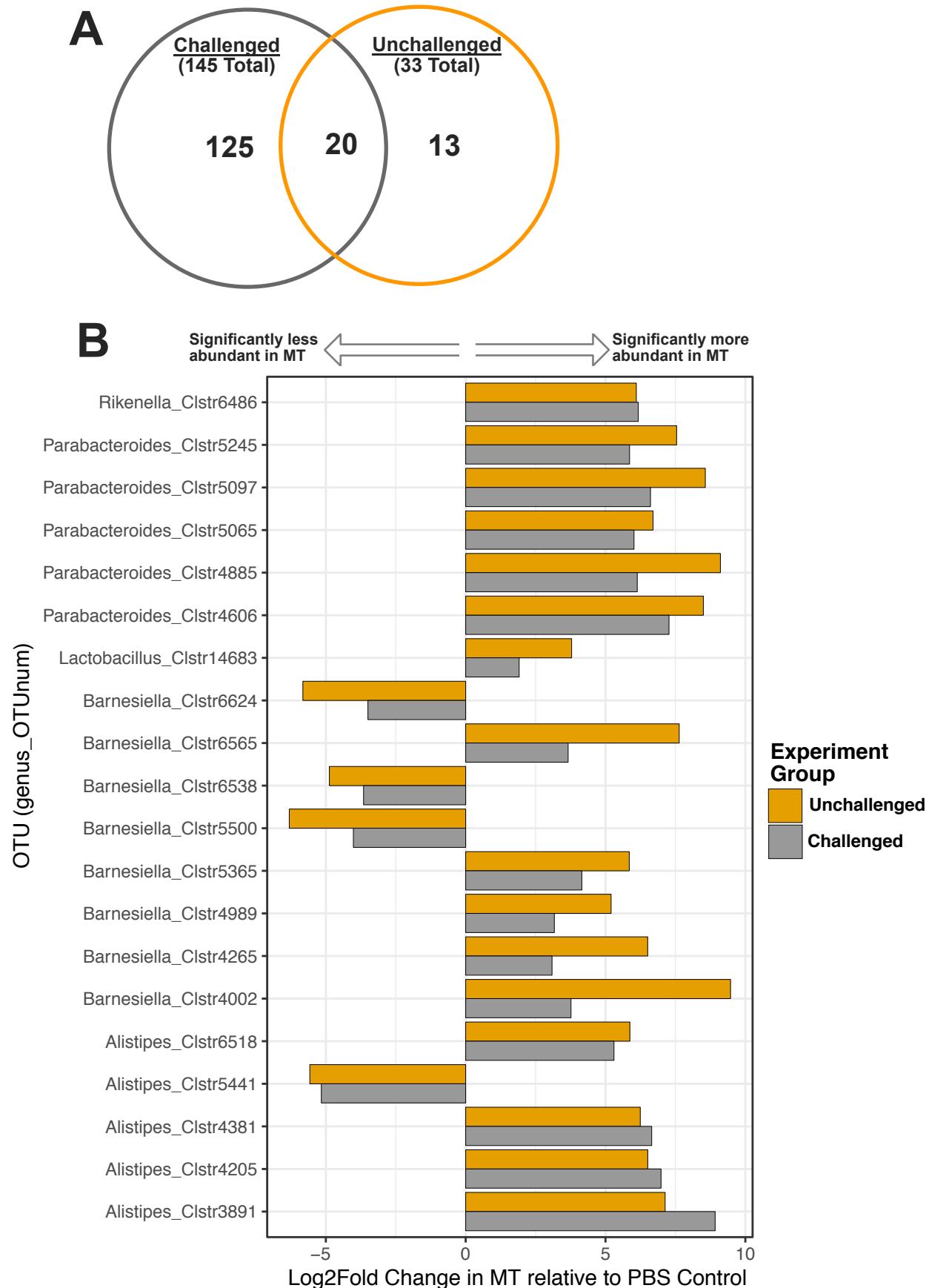
755 rRNA sequence analyses. *Syst Appl Microbiol* 33, 291-299. doi:
756 10.1016/j.syapm.2010.08.001.
757
758




Ramírez et al. In prep.
Figure 1



Ramírez et al. in prep.


Figure 2

Ramírez et al. in prep.
Figure 5

