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. Abstract

7 Dimensionality reduction is a common tool for visualization and inference of population
s structure from genotypes, but popular methods either return too many dimensions for easy
o plotting (PCA) or fail to preserve global geometry (t-SNE and UMAP). Here we explore the
0 utility of variational autoencoders (VAEs) — generative machine learning models in which
un a pair of neural networks seek to first compress and then recreate the input data — for
12 visualizing population genetic variation. VAEs incorporate non-linear relationships, allow
13 users to define the dimensionality of the latent space, and in our tests preserve global ge-
1 ometry better than t-SNE and UMAP. Our implementation, which we call popvae, is avail-
15 able as a command-line python program at github.com/kr-colab/popvae. The approach
1 yields latent embeddings that capture subtle aspects of population structure in humans and
1w Anopheles mosquitoes, and can generate artificial genotypes characteristic of a given sample
18 or population.

» Introduction

2 As we trace the genealogy of a population forward in time, branching inherent in the ge-
a1 nealogical process leads to hierarchical relationships among individuals that can be thought
2 of as clades. Much of the genetic variation among individuals in a species thus reflects the
23 history of isolation and migration of their ancestors. Describing this population structure
2 is itself a major goal in biogeography, systematics, and human genetics; wherein one might
»s  attempt to infer the number of genotypic clusters supported by the data (Holsinger and
% Weir, 2009), estimate relative rates of migration (Petkova et al., 2016), or observe turnover
x in the ancestry of people living in a geographic region (Antonio et al., 2019).

28 Estimation of population structure is also critical for our ability to accurately link genetic
2 variation to phenotypic variation, because population structure is a major confounding
w factor in genome-wide association studies (GWAS) (Lander and Schork, 1994; Pritchard
s and Donnelly, 2001; Marchini et al., 2004; Freedman et al., 2004). Downstream studies
» that use GWAS information can themselves be compromised by inadequate controls for
33 structure, for instance in recent work trying to identify the effects of natural selection
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1 on complex traits (Mathieson and McVean, 2012; Berg et al., 2019; Sohail et al., 2019).
55 Dimensionality reduction via principal components analysis (PCA) has been an important
3 tool for geneticists in this regard, and is now commonly used both to control for the effects
w of population structure in GWAS(Price et al., 2006; Patterson et al., 2006) as well as for
3 visualization of genetic variation.

30 As a visualization tool however, PCA scatterplots can be difficult to interpret because
w0 information about genetic variation is split across many axes, while efficient plotting is
a restricted to two dimensions. Though techniques like plotting marginal distributions as
« stacked density plots can aid interpretation, these require binning samples into ”popula-
s tions” prior to visualization, are rarely used in practice, and remain difficult to interpret
w in complex cases. Recently two techniques from the machine learning community — t-SNE
s (Maaten and Hinton, 2008) and UMAP (McInnes et al., 2018) — have shown promising per-
s formance in producing two-dimensional visualizations of high-dimensional biological data.
« In the case of UMAP, Diaz-Papkovich et al. (2019) recently showed that running the algo-
s rithm on a large set of principal component axes allows visualization of subtle aspects of
w0 population structure in three human genotyping datasets.

50 However, interpreting UMAP and t-SNE plots is also complicated by a lack of so-called
s global structure. Though these methods perform well in clustering similar samples, distances
52 between groups are not always meaningful — two clusters separated by a large distance in a
53 t-SNE plot can be more similar to each other than either is to their immediate neighbors
sa (Becht et al., 2019). The degree to which initialization and hyperparameter tuning can
ss  alleviate this issue remains an open question in the literature (Kobak and Linderman, 2019).
56 To create meaningful and interpretable visualizations of population genetic data we
s7 would like a method that encodes as much information as possible into just two dimen-
ss  sions while maintaining global structure. One way of achieving this is with a variational
5o autoencoder (VAE).

60 VAEs consist of a pair of deep neural networks in which the first network (the encoder)
s encodes input data as a probability distribution in a latent space and the second (the de-
&2 coder) seeks to recreate the input given a set of latent coordinates (Kingma and Welling,
63 2013). Thus a VAE has as its target the input data itself. The loss function for a VAE
s 1s the sum of reconstruction error (how different the generated data is from the input)
s and Kullback-Leibler (KL) divergence between a sample’s distribution in latent space and
s a reference distribution which acts as a prior on the latent space (here we use a standard
& multivariate normal, but see (Davidson et al., 2018) for an alternative design with a hy-
s perspherical latent space). The KL term of the loss function incentivizes the encoder to
e generate latent distributions with meaningful distances among samples, while the recon-
7 struction error term helps to achieve good local clustering and data generation. VAE’s have
7 been used extensively in image generation (Gulrajani et al., 2016; Larsen et al., 2015; Hou
» et al., 2016) and several recent studies have applied them to dimensionality reduction and
1 classification of single-cell RNAseq data (Wang and Gu, 2018; Grgnbech et al., 2018; Lafarge
7 et al., 2018; Hu and Greene, 2019). At deeper timescales than we test here, Derkarabetian
et al. (2019) recently explored the use of VAEs in species delimitation.

76 In population genetics two recent studies have studied the utility of generative deep
7 neural networks for creating simulated genotypes. Montserrat et al. (2019) use a class-
s conditional VAE to generate artificial human genotypes, while Yelmen et al. (2019) use a
7 restricted Boltzman machine and provide an in-depth assessment of the population genetic
s characteristics of their artificial genotypes. These studies found that such generative meth-
&1 ods can produce short stretches of artificial genotypes that are difficult to distinguish from
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= real data, but performance was improved by using a generative adversarial network (GAN)
&3 — either in combination with a VAE as in Montserrat et al. (2019) or as a standalone method
s in Yelmen et al. (2019). In this study we focus not on generation of simulated genotypes,
s but instead on the learned latent space representations of genotypes produced by a VAE,
s and study when and how they can best be used for visualizing population structure.

87 We introduce a new method, popvae (for population VAE), a command-line python
e program that takes as input a set of unphased genotypes and outputs sample coordinates
s in a low-dimensional latent space. We test popvae with simulated data and demonstrate
o its utility in empirical datasets of humans and Anopheles mosquitoes. In general popvae is
o1 most useful for complex samples for which PCA projects important aspects of structure
o across many axes. Relative to t-SNE and UMAP, the approach appears to better preserve
o3 global geometry at the cost of less pronounced clustering of individual sample localities.
u However, we show that hyperparameter tuning and stochasticity associated with train/test
o splits and parameter initialization are ongoing challenges for a VAE-based method, and the
o approach is much more computationally intensive than PCA.

» Methods
98 Model

oo In this manuscript we describe the application of a Variational Auto-Encoder (VAE) to pop-
0o ulation genetic data for clustering and visualization Kingma and Welling (2013). Formally
o let X be our dataset consisting of N observations (i.e. individual genotypes) such that
e X ={x1,29,...,2n}, and let the probability of those data with some set of parameters 6 be
103 pg(X). For VAEs we are interested in representing the data with a latent model, assigning
14 some latent process parameters z, such that we can write a generative latent process as
s po(x,z) = pe(z)pe(x|z), where pg(z) is the prior distribution on z. The last conditional
s probability here pg(x|z) is often referred to as the decoder, as it maps from latent space to
w07 data space.

108 For VAEs we also define a so-called encoder model g4(z|z), where ¢ represents the
100 parameters of the encoding (the mapping of x to the latent space z), and we seek to optimize
uo the encoder such that g4(z|z) ~ pe(z|x). In practice the parameters ¢ represent the weights
m  and biases of the encoding neural network. We thus step from data space by using

(p,log(o)) = EncoderNeuralNetwork (X)) (1)
q(2|) = N(z; p, diag()) (2)

1n2  The complete VAE information flow then has three steps: the encoder estimates sample
us  distributions in latent space as g4(z|x), we sample from the prior on the latent space using
us  pp(2), and finally decode back to data space using py(x|z). Training is then performed by
us  optimizing the evidence lower bound or ELBO which has parameters of the encoder and
e decoder within it such that

Lo,¢(X) = Eq, (2]2) [logpo (z, 2) — loggy (2|7)] 3)

w7 Optimization of the ELBO here leads to simultaneous fitting of the parameters of the en-
us coder, ¢, and the decoder, 6. In practice we use binary cross-entropy between true and
ne  generated sequences for the first term, and Kullback-Leibler divergence of sample latent
1o distributions (relative to a standard normal N(0, 1)) for the second term of equation 3. A
11 graphical depiction of this computational flow can be seen in Figure 1.
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Figure 1: A schematic of the variational autoencoder (VAE) architecture. Input allele
counts are passed to an encoder network which outputs parameters describing a sample’s
location as a multivariate normal in latent space. Samples from this distribution are then
passed to a decoder network which generates a new genotype vector. The loss function
used to update weights and biases of both networks is the sum of reconstruction error (from
comparing true and generated genotypes) and Kullback-Leibler divergence between sample
latent distributions and N(0,1).

2 Implementation

123 We implemented this model in python 3 using the tensorflow and keras libraries (Abadi et al.,
e 2015; Chollet et al., 2015), with preprocessing relying on numpy, pandas, and scikit-allel
s (Miles and Harding, 2017; Oliphant, 2006—; McKinney, 2010). popvae reads in genotypes
s from VCFs, Zarr files https://zarr.readthedocs.io/en/stable/, or a bespoke hdf5 file
127 format. Genotypes are first filtered to remove singletons and non-biallelic sites, and missing
s data is filled by taking two draws from a binomial distribution with probability equal to the
120 allele frequency across all samples (a binned version of the common practice of filling missing
10 genotypes with the mean allele frequency (Jombart, 2008; Dray and Josse, 2015)). Filtered
w1 genotpes are then encoded with 0/0.5/1 representing homozygous ancestral, heterozygous,
122 and homozygous derived states, respectively.

133 Samples are split into training and validation sets before model training. We also ex-
13« perimented with using all samples for training and a fixed number of epochs but found
135 this generally led to poor performance (Appendix 1, Figure S1). Training samples are used
136 to optimize weights and biases of the neural network, while validation samples are used
wr to measure validation loss after each training epoch (a complete pass through the data),
13 which in turn tunes hyperparameters of the optimizer. By default we use a random 90% of
139 samples for training. However we found considerable variation in latent representations of
1o some datasets when using different sets of training and validation samples (see e.g. Figure
w S2), so we encourage users to compare multiple training runs with different starting seeds
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12 when interpreting plots.

143 popvae’s encoder and decoder networks are fully-connected feed-forward networks whose
14 size is controlled by two parameters — ‘width‘, which sets the number of hidden units per
s layer, and ‘depth‘, which sets the number of hidden layers. We experimented with a range
us of network sizes and set defaults to depth 6 and width 128, which performed well on the
w7 empirical analyses described here (Table S1, Figure S3). However we also include a grid
us  search function by which popvae will conduct short training runs across a user-defined range
1o of network sizes and then fit a final model using the network size with minimum validation
10 1oSs.

151 We use a linear activation on the input layers to both networks and a sigmoid activation
152 on the output of the decoder (this produces numeric values bound by (0, 1)). We interpret the
153 sigmoid decoder outputs as the probability of observing a derived allele at a site, consistent
15« with our 0/0.5/1 encoding of the input genotypes. All other layers use “elu” activations
155 (Clevert et al., 2015), a modification of the more common “relu” activation which avoids
16 the “stuck neuron” problem by returning small but nonzero values with negative inputs.
157 We use the Adam optimizer (Kingma and Ba, 2014) and continue model training until
158 validation loss has not improved for p epochs, where p is a user-adjustable ‘patience’
159 parameter. We also set a learning rate scheduler to decrease the learning rate of the optimizer
1o by half when validation loss has not improved for p/4 epochs. This is intended to force the
11 optimizer to take small steps when close to the final solution, which increases training time
12 but in our experience leads to better fit models. Users can adjust many hyperparameters
163 from the command line, and modifying our network architectures is straightforward for those
14 familiar with the Keras library.

165 To evaluate model training popvae returns plots of training and validation loss by epoch
6 (e.g., Figure S4), and also outputs estimated latent coordinates for validation samples given
17 the encoder parameters at the end of each epoch. These can then be plotted to observe
s how the model changes over the course of training, which can sometimes help to diagnose
1o overfitting. We also include an interactive plotting function which generates a scatter plot of
wo  the latent space and allows users to mouse-over points to view metadata (Figure S5). This is
i intended to allow users to quickly iterate through models while adjusting hyperparameters.
2 In Appendix 1 we discuss alternate approaches to network design and optimization tested
13 while developing popvae.

174 popvae is available at https://github.com/kr-colab/popvae, and scripts for re-
s producing plots and analyses in this manuscript are available at https://github.com/
e cjbattey/popvae_analysis_scripts. HGDP genotypes used in this paper are avail-
w able at ftp://ngs.sanger.ac.uk/production/hgdp, AG1000G genotypes at https://
s www.malariagen.net/data/agl000g-phase-2-arl, and 1000 genomes phase 3 data at
w9 https://www.internationalgenome.org/category/phase-3/.

» Results

e Latent Spaces Reflect Human Migration History

12 We first applied popvae to 100,000 SNPs from chromosome 1 in the Human Genetic Diver-
113 sity Project (HGDP; Bergstrom et al. (2019)), a sample of global modern human diversity.
18« The resulting latent space reflects geography from the point of view of human demographic
s history (Figure 2, Figure S6, Figure 4). Sub-Saharan African and South American popula-
185 tions are placed on opposite ends of one latent dimension, and north African (Mozabite) and
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Figure 2: PCA axes 1-8 (left) and popvae run at default settings (right) for 100,000 random
SNPs from chromosome 1 of the HGDP data. Axes are flipped to approximate geography.

751 Mean LD1
6
50 4
2
25 0
o Samples
O 10
O 20
2] O 2
(O 40
_50-

T
-100 0 100

Figure 3: HGDP population locations with color scaled to the mean latent coordinate of a
1-dimensional popvae latent space.


https://doi.org/10.1101/2020.08.12.248278
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.12.248278; this version posted October 19, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

2519

Space
|:| geographic

@ latent

0.0

Z(y)

Region

@ Africa

d,@cp © Central/South Asia
East Asia

Europe

Middle East
Oceania

-2.54

o
] JoI' )

-5.0 1

Z(x)

Figure 4: Comparing the VAE latent space with the geography of sampling localities in non-
American HGDP samples (see Figure S8 for a plot including the Americas). Circles show
z-normalized sample locations in latent space and squares show the corresponding location
in geographic space.

157 east Asian samples are on opposite ends of the second; mirroring the geography of Africa
18 and Eurasia. Samples from the Americas are roughly centered among Furasian samples on
180 latent dimension (LD) 2, consistent with recent demographic modeling studies suggesting
10 a mix of Eurasian ancestries in ancestral American populations (Flegontov et al., 2019;
1 Posth et al., 2018). Indeed the closest American samples to the European cluster are Maya
12 individuals who were found to have low levels of recent European admixture in previous
103 analyses(Bergstrom et al., 2019; Rosenberg et al., 2002) (Figure S6), suggesting popvae is
104 picking up on the signal of gene flow associated with European colonization of the Americas.
105 These patterns are similar to those seen in PCA, but many aspects of ancestry that are
ws difficult to see on the first two PC axes are conveniently summarized in popvae’s latent
17 space. For example, differentiation within the Americas and Oceania is not visible until
18 PC6 and PC7, respectively, but is clear in the 2D VAE latent space. This shows adjacent
109 clusters for the islands of Bougainville and Papua New Guinea, and a cline in Eurasian
20 ancestry from North through South America (Figure S6).

201 To highlight the flexibility of the VAE approach, we also trained a model with a 1-
22 dimensional latent space and used this to scale colors on a sampling map (Figure 3). This
203 results in a single latent dimension that approximates the diagonal of our 2D model, with
20s  African and East Asian samples on either end of the spectrum. A comparison using PCA but
25 summarizing only the first principal component emphasizes diversity within Africa (Figure
26 S7) and provides little resolution for out-of-Africa groups.

207 Finally, to emphasize the correspondence of the VAE latent space with geography, we
208 can also directly compare geographic and latent spaces by rescaling both sets of coordinates
20 with a z-normalization and plotting them together on a map (Figure 4). As can be seen, the
a0 visual correspondence between geographic and latent coordinates is striking in this case.
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an Inversions and Population Structure in Anopheles Mosquitoes

a2 We next applied popvae to DNA sequenced from the Anopheles gambiae / coluzzii complex
a3 across sub-saharan African by the AG1000G project (AG1000G Consortium, 2020; Miles
ae et al., 2017) (Figure 5). Using 100,000 randomly-selected SNPs from chromosome 3R we
25 again find that the VAE captures elements of population structure that are not apparent
26 by visualizing two PC axes at a time. For example, samples from Kenya and the island of
a7 Mayotte off East Africa are highly differentiated (Fs; > 0.18 relative to all other groups),
218 but are placed between clusters of primarily west-African coluzzii and gambiae samples on a
20 plot of PC1/2. The VAE instead places these populations on the opposite end of one latent
20 dimension from all other groups and closest to Ugandan samples — similar to their relative
a1 geographic position and positions on PC3/4. The VAE also captures the relatively high
2 differentiation of samples from Gabon and significant variation within Cameroon, which are
23 mnot visible until PC6 and PC8, respectively. Further details of population structure in this
24 species complex are discussed in AG1000G Consortium (2020).

25 A. gambiae / coluzzii genomes are characterized by a series of well-studied inversions on
26 chromosomes 2L and 2R (Coluzzi et al., 2002) which segregate within all populations and
27 are associated with both malaria susceptibility and ecological niche variation (Riehle et al.,
28 2017). The large 2La inversion contains at least one locus for insecticide resistance (Rdl),
29 and has experienced multiple hard sweeps and introgression events in its recent history
20 (Grau-Bové et al., 2020). Inversions have significant effects on local PCA (Li and Ralph,
2 2019) which often lead to samples clustering by inversion karyotype rather than geography
22 on the first two PC axes (Ma and Amos, 2012).

233 To test how our VAE responds to inversions we fit models to SNPs extracted from
234 200,000 bp non-overlapping windows across the 2LLA inversion in the AG1000G phase 2 data
25 (Figure 6, Figure S11). We took an approach similar to Li and Ralph (2019) to summarize
236 differences in latent spaces across windows while accounting for axis rotation and scaling.
237 Latent dimensions were first scaled to 0 - 1 and the pairwise Euclidean distance matrix
28 among individuals was calculated for each window to generate rotation- and scale-invariant
29 representations of the latent space. We then calculated Euclidean distances among all pairs
20 of per-window distance matrices, giving us a matrix representing relative differences in latent
a1 spaces across windows. Last, we used multi-dimensional scaling to compress this distance
22 matrix to a single dimension, and plotted this value against genomic position across the 2La
23 Inversion region.

214 This analysis found two clear classes of latent spaces inside and outside the inversion
x5 (Figure 6). Outside the inversion samples generally cluster by species and geography, while
26 inside the inversion samples form three clusters corresponding to the homozygous and het-
27 erozygous inversion karyotypes, similar to results found with PCA (Grau-Bové et al., 2020;
xs  Riehle et al., 2017). Interestingly the VAE retains geographic and species clustering within
uo inversion classes, but loads these aspects of structure on a different latent dimension than
»0  the karyotype clusters (e.g. LD1 reflects species clusters while LD2 reflects inversion kary-
251 otypes in the windows shown in Figure 6). Unlike PCA, latent dimensions from a VAE
2 are not ranked by variance explained and nothing in the loss function incentivizes splitting
»3  particular aspects of variation onto separate axes, so we found this pattern of partitioning
s geographic and karyotypic signals somewhat surprising.
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» Simulations and Sensitivity Tests

»6 In general a method’s ability to detect population structure in a sample of genotypes scales
7 with the degree of differentiation and the size of the genotype matrix. Patterson et al. (2006)
»s  found that there is a ”"phase change” phenomenon by which methods like PCA transition
20 from showing no evidence of structure to strong evidence of structure when Fy; ~ 1/y/nm,
%0 where n is the number of genotyped SNPs and m is the number of sampled individuals.

261 To compare the performance of PCA and VAE around this threshold we ran a series of
%2 two-population, isolation with migration model coalescent simulations in msprime (Kelleher
%3 et al., 2016) while varying the symmetric migration rate to produce an expected equilibrium
s Fyg ranging from 0.0001 to 0.05. We sampled 50 diploid genomes from each population and
s downsampled the resulting genotype matrix to 10,000 SNPs. Given this sample size we
26 expect the threshold for detecting structure to be approximately Fys; = 0.001.

267 With tuned hyperparameters the VAE appeared slightly more sensitive to weak structure
x%s than the first two axes of a PCA (Figure 7). Both popvae and PCA reflect some population
%0  structure at Fg; >= 0.005 (though this is clearer in the VAE) but none at Fy; <= 0.001,
a0 consistent with Patterson et al. (2006)’s "phase change” suggestion. However the VAE’s
on performance was highly sensitive to hyperparameter tuning on this dataset. At default
a2 settings popvae latent spaces reflect no clear structure until Fy; = 0.05 (Figure S12,Figure
a3 S13). In particular we found that increasing the ‘patience‘ parameter to 500 was necessary
o for even marginal performance in this case, and running a grid search across network sizes
a5 was needed to match PCA’s sensitivity to weak structure.
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Figure 7: VAE latent spaces and PCA run on two-population coalescent simulations with Fy;
varying from 0.0001 — 0.05. Points are colored by population. popvae was run with tuned
hyperparameters and patience set to 500. See Figure S12 for (much worse) performance
with default settings.

10


https://doi.org/10.1101/2020.08.12.248278
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.12.248278; this version posted October 19, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

2 Comparison with UMAP and t-SNE

o7 In addition to PCA we also compared the VAE’s latent spaces to t-SNE (Maaten and Hinton,
s 2008) and UMAP (Diaz-Papkovich et al., 2019) (Figure S14, Figure S15), both of which
a9 have been used recently for population genetic visualization. We first ran both methods on
20 the top 15 PC axes (following Diaz-Papkovich et al. (2019)) with default settings on the
s human and Anopheles datasets and used the R packages 'umap’ (Konopka, 2019) and "tsne’
22 (Donaldson, 2016) as our reference implementations.

283 For HGDP data both UMAP and t-SNE produce latent spaces that roughly correspond to
8¢ continental regions (Figure S14). Running both methods at default settings, UMAP’s latent
s space was much more tightly clustered — for example grouping all samples from Africa into
26 a single small region. Similar patterns were seen in the AG1000G data (Figure S15) — both
27 t-SNE and UMAP produce latent spaces that strongly cluster sample localities and species.
s  However, global geometry appeared to be poorly preserved in t-SNE and UMAP latent
20 spaces. That is, though clusters in latent space correspond to sampling localities, distances
20 among clusters do not appear to meaningfully reflect geography or genetic differentiation.
201 To compare how well different methods reflect geography we compared pairwise distances
22 among individuals in latent and geographic space for Eurasian human samples (HGDP
203 regions Europe, Central/South Asia, the Middle East, and East Asia). Geographic distances
2¢  were great-circle distance calculated on a WGS84 ellipse with the R package ‘sp‘ (Pebesma
25 et al., 2012). Distances were scaled to 0-1 for this analysis, and we calculated the coefficient
26 of determination (R?) across geographic and latent-space distance for each method as a
27 metric. VAE latent space distances have the strongest correlation with geographic distance
28 (Figure 8; R? = 0.659), followed by PCA (R? = 0.561), UMAP (R? = 0.529), and t-SNE
20 (R?=0.342).

300 Finally to test how parameter tuning of tSNE and UMAP impacts our results, we repro-
sn  duced our analysis of HGDP data using double and triple the default values for n_neighbors
52 (UMAP) and perplexity (tSNE). Though scatter plots are visually similar at these settings
w03 (Figure S16) the correlation between latent-space and geographic distances of Eurasian sam-
0 ples is improved in both methods at double default settings (t-SNE: R? = 0.631, UMAP:
05 R? = 0.611; Figure S17). At triple default settings we observed slightly better performance
ws  for tSNE and slightly worse for UMAP (Figure S18, Figure S19).

UMAP tSNE VAE PCA
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Figure 8: Comparing pairwise distances in geographic and latent space for Eurasian hu-
man genotypes across four dimensionality reduction methods run at default settings. All
distances are scaled to 0-1. Black lines show a 1:1 relationship.
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2 Run Times and Computational Resources

ws  We compared popvae’s run times to PCA, UMAP, and t-SNE using sets of 100,000 and
0 10,000 SNPs from the HGDP as described above. popvae was run using default settings
s (Le. fitting a single network rather than running a grid search over network sizes) using
su  a consumer GPU (Nvidia GeForce RTX 2070). PCAs were run in the python package
a2 scikit-allel (Miles and Harding, 2017), which in turn relies on singular-value decomposition
s functions from the numpy library (Oliphant, 2006-).

314 popvae was much slower than PCA or UMAP, but comparable to running t-SNE on
as  PC coordinates. However for datasets of the size we tested here none of these run times
a6 present significant challenges — all methods return sample latent coordinates in less than
a7 five minutes. We have not conducted exhaustive tests on CPU training times for popvae,
ais but in general find these to require at least twice as much time as GPU runs.

319 However for larger datasets we expect popvae’s run time performance would suffer fur-
a0 ther in comparison to PCA and UMAP. The major computational bottleneck is loading
s tensors holding weights for the input and output layers of the encoder and decoder net-
322 works into GPU memory. These tensors have dimensions n_snps x network_width so they
23 become extremely large when running on large genotype matrices. Our development ma-
24 chine has 8GB GPU RAM and can process up to roughly 700,000 SNPs in a single analysis
w25 using a 128-unit-wide network. Throughout this study we have limited our analysis to rela-
w6 tively small subsets of genome-wide SNPs to allow us to explore a range of network sizes in
a7 reasonable time. Scaling up to a single model fit to all genome-wide SNPs — on the order
22 of 107 for datasets like the HGDP — would require access to specialized hardware with very
29 large GPU memory pools.

run time (s) | SNPs | method

204.4 100,000 VAE
3.6 PCA

6 UMAP

124.8 t-SNE
78.8 10,000 VAE
0.5 PCA

2.7 UMAP
119.5 t-SNE

Table 1: Run times for VAE, PCA, UMAP, and t-SNE HGDP data. UMAP and t-SNE
were run on the top 20 PC axes (run times thus include running the PCA).

s (Generating Genotypes

s The VAE framework also allows us to generate genotypes characteristic of a given population
s by sampling from the latent space of a trained model. Simulated genotypes generated by
a3 process-based models like the coalescent are a key tool in population genetics, because they
s allow us to explore the impact of various generative processes — demography, selection, etc —
35 on observed genetic variation (Adrion et al., 2020a). In contrast popvae’s generative model
36 provides essentially no mechanistic insight beyond the strong observed correlation of latent
a7 and geographic spaces. However, if the VAE accurately reproduces characteristics of real
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s genotypes it could be a fast alternative to simulation that does not require parameterizing
3 a custom demographic model.

30 We compared these approaches by analyzing empirical data from European (CEU), Han
sa (CHB), and Yaruban (YRI) human genotypes in the 1000 Genomes Project data (Con-
s sortium et al., 2015). We first subset 50 samples from each population and then fit a
a3 2-dimensional popvae model to all SNPs from chromosome 22. To generate genotypes we
ue  drew a sample from the latent distribution of each individual and passed these coordinates
us  to the trained decoder network. We interpret the sigmoid activation output of our decoder
us  as the probability of observing a derived allele at each site, and generate derived allele counts
w7 by taking two draws from a binomial distribution with p = g¢; ; where g; ; is the decoder
us output for individual 7 at site j.

39 As a baseline comparison we used coalescent simulations from the standardpopsim li-
30 brary (Adrion et al., 2020a) of the 3-population out-of-Africa model (OutOfAfrica 3G09) —
1 a rigorously tested implementation of the demographic model fit to the joint site frequency
52 spectrum in Gutenkunst et al. (2009) using the msprime coalescent simulator (Kelleher
33 et al., 2016). For this comparison we changed standardpopsim’s default human mutation
s rate of 1.29 x 1078 to 2.35 x 1078 to match the rate used in Gutenkunst et al. (2009), used
35 the HapMapII_GRCh37 recombination map for chromosome 22, and sampled 100 haploid
36 chromosomes from each population.

357 Last, we examined three facets of population genetic variation on real, VAE-generated,
s and simulated genotype matrices: the site frequency spectrum, the decay of linkage disequi-
30 librium with distance along the chromosome, and embeddings from a PCA. These analyses
0 were conducted in scikit-allel (Miles and Harding, 2017) after masking genotypes to retain
s1  only sites with the most stringent site accessibility filter (”P”) in the 1000 genome project’s
2 phase 3 site accessibility masks. LD statistics were calculated only for YRI samples using
35 SNPs between positions 2.5 x 107 and 2.6 x 107 in the hgl8 reference genome and summa-
e rized by calculating the mean LD for all pairs of alleles in 25 distance bins (similar results
35 in three different genomic windows are shown in figure S20). Results are plotted in figure 9.
366 In general we found all methods produce similar results in a plot of the first two PC axes,
w7 suggesting they capture broad patterns of allele frequency variation created by population
w8 structure. The site frequency spectrum is also very similar for the VAE and real data, while
w0 the simulated genotypes suffer from a scaling issue. This could reflect differences in the
s input data — Gutenkunst et al. (2009) fit models to an SFS calculated from a set of sanger-
asn sequenced loci in 1000 genomes samples, rather than the short-read resequenced SNPs from
sz the 1000 Genomes project we use — or an inaccuracy in one of the constants used to convert
sz scaled demographic model parameters to real values (accessible genome size, generation
s time, or mutation rate). LD decay shows the largest difference among methods. Simulation
a5 and real data both reflect higher LD among nearby SNPs which decays with distance, while
s the VAE genotypes produced no correlation between distance along a chromosome and
a7 pairwise LD.

378 These differences reflect the strengths and weaknesses of each method. The VAE decoder
30 doesn’t require a pre-defined demographic model and by design exactly fits the matrix size
0 of input empirical data, so it should not suffer from the scaling issues that frequently impact
s population genetic models. But the lack of mechanistic biological knowledge in its design
2 means it misses obvious and important features of real sequence data like the decline of
3 LD with distance. In this case the lack of LD decay in VAE decoder sequences means this
s implementation should not be used for testing properties of analyses like GWAS, in which
s LD among a subset of sequenced loci and an unknown number of truly causal loci is a crucial
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Figure 9: Comparing real, VAE-generated, and simulated genotype matrices for three popu-
lations from the 1000 genomes project. The VAE decoder and coalescent simulation produce
similar results in genotype PCA (A), but the VAE fails to reproduce the decay of LD with
distance along the chromosome seen in real data (B). The site frequency spectrum is very
similar for real and VAE-generated genotypes, but suffers from scaling issues in the coales-
cent simulation (C).
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s parameter. Though other network designs (e.g. a convolutional neural network Flagel et al.
s (2019) or a recurrent neural network Adrion et al. (2020b)) could potentially address the
ss  specific shortcoming of LD decay, the general problem of a non-mechanistic generator failing
3 to mimic features of the data produced by well-understood processes seems intrinsic to the
30 machine learning approach.

w  Discussion

sz Dimensionality reduction of genotypic variation is a key analytic tool in modern genomics
33 and their visualizations are often the central figure of a genetic study. For example, Antonio
3¢ et al. (2019) studied a 10,000-year transect of genotypes from Rome and extensively used
s PCA to visualize changes in ancestry in the city over time. In cases like this producing
s informative plots of population structure is a requisite step for the analysis and can shape
s7  the way data is interpreted both by authors and readers.

308 In this study we demonstrate how variational autoencoders can be used for visualization
0 and low dimensional summaries of genotype data. Variational autoencoders have at least
w0  two attractive properties for genetic data: they allow users to define the output dimension-
w0  ality, and they preserve global geometry (i.e., relative positions in latent space) better than
w2 competing methods. As we have shown in humans and mosquitoes, this allows users to gen-
w3 erate visualizations that summarize relationships among samples without either comparing
ws across several panels (as with PCA) or attempting to ignore possibly spurious patterns of
ws  global structure (as with t-SNE and UMAP).

406 An additional attractive property of VAEs is that they are generative models. That is
w7 to say that VAEs allow us to create genotypes that capture aspects of population genetic
ws variation characteristic of the training set. This is done by taking samples from the estimated
w0 latent space and passing forward into data space. Though in theory this could be used as an
a0 alternative to simulation, our implementation fails to replicate at least one important aspect
a  of real genomes — the decay of linkage disequilibrium with distance along a chromosome — and
a2 thus offers limited utility for tasks such as boosting GWAS sample sizes or as a substitute
a3 for simulation. We point researchers interested in generating genotypes via deep learning
sa  approaches to recent work by Yelmen et al. (2019) and Montserrat et al. (2019), which
a5 describe similar, deep learning based methods more tightly aimed at generating realistic
46 genotypes.

a7 The are also several significant limitations of our method as a visualization tool. One
ss  issue is that we lack a principled understanding of how the VAE output maps to parameters
a0 of idealized population models like the coalescent (Kingman, 1982). This is in contrast to
w20 PCA, which was first applied to genetic data with little theoretical background (Menozzi
= et al., 1978) but is now fairly well characterized in reference to population genetic models
2 (McVean, 2009; Novembre and Stephens, 2008).

23 Hyperparameter tuning is another challenge. As we showed, popvae has many hyperpa-
22 rameters that significantly affect the output latent space and no principled way to set them
s a priori. Though we include a grid-search function for network sizes, this is slow and is
a6 still dependent on other hyperparameters — like the patience used for early stopping, or the
w27 learning rate of the optimizer — which we have set to defaults that may not be optimal for
w8 all datasets. This is not a unique issue to VAEs; opaque hyperperameters of methods like
20 t-SNE and UMAP can significantly affect embeddings (Kobak and Linderman, 2019), and
a0 preprocessing choices such as how to scale allele counts prior to PCA dramatically vary the
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= appearance of final plots (Patterson et al., 2006). However it does require extra work on
a2 the part of users interested in exploring the full parameter space.

233 A parallel issue is stochasticity in the output. Stochasticity is introduced by the random
¢ test/train split, parameter initialization states, and even the execution order of operations
ss  run in parallel on GPU during model training. Though all but the last of these can be fixed
s6 by setting a random seed, which itself could be (unfortunately) seen as a hyperparameter,
a7 there is no obvious way to compare models fit to different validation sets in a world of limited
a8 training examples. This introduces noise which could potentially allow users to cherry-pick
a0 a preferred latent space.

440 For example, one run of our best-performing network architecture on the HGDP data
s produced a latent space with in which samples Papua New Guinea and Bougainville are
a2 separated by roughly the same distance as samples from north Africa and East Asia. In
w3 contrast all other fits of the same network architecture cluster these samples (Figure S2,
ws  see the top middle panel). We chose a latent space for the main text that lacked this
s feature because it occurred in only one training run, but acknowledge this procedure is
wus  sub-optimal. Developing a method to summarize across multiple latent spaces, perhaps via
w7 ensemble learning approaches, would be useful for postprocessing VAE output when latent
ms  spaces vary.

449 The last major shortcoming is computational effort. popvae is much slower and more
w0 computationally intensive than PCA, and requires specialized and expensive GPU or TPU
s hardware to run on large sets of SNPs. Future developments in both hardware and software
2 will likely alleviate this issue somewhat, but at present it may make the method difficult
ss3 to apply to the increasingly common whole genome resequencing data now being generated
ssa for many species.

455 One important question we did not explore in this study is whether VAFE latent space co-
s6  ordinates offer any improvement over PCA when used as covariates to correct for population
s7 structure in GWAS (Price et al., 2006). UMAP and t-SNE are generally thought to be inap-
w8 propriate for this use because of their failure to preserve global geometry (Diaz-Papkovich
w0 et al., 2019), but because the VAE appears to strongly reflect geography in humans it may
w0 be useful for this task. Testing this aspect of the VAE could be done in simulation but would
w1 benefit from empirical investigations in large human datasets — a task which is beyond the
w2 scope of the present study, but perhaps fruitful for further investigation.

463 Here we have shown that our implementation of a VAE, popvae , can produce informative
ws  visualizations of population genetic variation and offers some benefits relative to competing
s  methods. However our approach is just one implementation of a huge class of potential
w6 models falling under the VAE umbrella. Altering the prior on the latent space (Davidson
w7 et al., 2018), the weighting of the loss function (Higgins et al., 2017), or the type of neural
ws  mnetwork used in either the encoder or decoder all offer avenues for further research and
w0 potential improvement (see also Appendix 1, where we briefly describe alternate approaches
o  we experimented with). Entirely different methods of visualizing population structure which
an focus on genetic variants rather than individuals, like that proposed in Biddanda et al.
a2 (2020), also offer a complementary perspective on the nature of genetic differentiation.
a3z As population genetic data becomes increasingly common across evolutionary biology we
aa  anticipate visualization techniques will receive increased attention from researchers in many
a5 areas, and believe VAEs offer a promising avenue for research.
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« Appendix 1
s Other Things We Tried That Didn’t Work

s7  We tried a bunch of things while developing popvae. Here we document some of our dead-
es ends in the hope they may be useful to others developing similar methods.

o0 0.0.1 A Convolutional Neural Network

s We first developed popvae using convolutional neural networks (CNNs) for both the encoder
en and decoder. The feed-forward network we use here was originally intended as a naive
ez baseline for comparing our CNN performance, but it turned out to be faster and more
o3 accurate (that is, lower validation loss), and had much lower memory requirements than
era any CNN we tried. These included 2D CNNs run on phased haplotypes, 1D CNNs run on
o5 unphased genotype counts, hybrid CNN+feed-forward networks stacking convolutional and
e dense layers in succession, and restricting the CNN to either the encoder or the decoder.

ez 0.0.2 A Recurrent Neural Network

os  We also tested recurrent neural networks (using the cudnnGRU( ) layer in keras) as one or
s both of the encoder/decoder pair. Due to memory limitations we were only able to test
s relatively small, shallow networks with this approach (width 32, depth up to 3). Like the
ess  CNNs these were slower, less accurate, and more resource-intensive than the dense network
62 we describe in the main text.

63 0.0.3 Skipping the Validation Set

e« It would be nice to not need a validation set. The train/test split introduces extra stochas-
65 ticity and you have to ignore some hard-earned data in training.

686 Unfortunately we couldn’t find a good way of setting the learning rate scheduler or
e7 establishing a good stopping time for model training without a validation set. Training
es on all samples leads to constantly decreasing loss so all training runs go to the maximum
e0 number of epochs. FExamining the progress of latent spaces through model training for
e0 these runs, the encoder seems to quickly identify and then refine structure in the input
s1 samples, but eventually samples begin to cluster in a ring around the origin at 0,0. This
ez appears to reflect the Gaussian prior on the latent space dominating the loss function as the
63 reconstruction error approaches some lower bound. In runs with validation sets we observed
s0¢ that validation loss typically increases once points begin circling the origin (Figure S1),
ss suggesting it reflects a typical overfitting behavior. Unfortunately the number of epochs
es needed for this to occur is different for every dataset and we found no general solution for
s7 estimating its location other than a validation set.

698 So we recommend using a validation set of at least 10%, and comparing latent spaces
o0 from runs with multiple starting seeds (and so different train/validation splits). In a pinch,
70 users can set ——train_prop 1 to train on all samples and heuristically examine latent spaces
o1 output during training to figure out a good stopping point.

02 0.0.4 Batch Normalization

703 Putting a batch normalization layer anywhere in either the encoder or decoder made vali-
s dation loss worse in all of our tests.
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s  0.0.5 Dropout

06 As above, dropout layers either made no difference or yielded slightly higher validation losses
707 Nno matter where we put it.

s 0.0.6 Reweighting the Loss Function

0 Higgins et al. (2017) proposed a modification of the standard VAE loss function which
7m0 amounts to multiplying the KL divergence by a factor 8. This puts extra weight on the
m  normal prior of the latent space and on the MNIST dataset delivered more clustered and
n2  interpretable latent spaces. Unfortunately the only suggested method for estimating
73 in a truly unsupervised setting like ours is heuristic examination of model output. We
na  experimented with several values and found no consistent benefits either in latent space
ns or validation loss relative to our baseline approach. However this seems like a productive
n6 area for further investigation and we plan to continue experimenting along these lines (and
nr  encourage others to do so as well).

24


https://doi.org/10.1101/2020.08.12.248278
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.12.248278; this version posted October 19, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

REFERENCES REFERENCES
= Supplementary Figures and Tables
epoch 0 epoch 5 epoch 10 epoch 20
254
11 24
05
0 14 0.0
] 0.0 od e
' & 25 2
. . -0.5 4 14 .
2 o -2 -5.0 -
-3 4 -1.0 ° ' ‘ \
T T T T T T T -3 T T T T T T T T T T
0 1 -25 0.0 25 5.0 7.5 -50 -25 00 25 50 75 -5 5 10
epoch 30 epoch 40 epoch 60 epoch 80
Qo
50 . \ 5
‘ o 44 ‘
L, 257 Y 088§ 0 s ® 0 N
a ®
7 o.o-% -5 b -4 .Q -5 2
-2.5 1 n. -10 1 \ . @ &%
| . (A B
-15 o 9 o
-5 0 5 10 -50 -25 00 25 50 7.5  -50 -25 00 25 50 7.5 5 0 5 10
epoch 100 epoch 160 epoch 320 Region
@0, 27 °© ° ° © Africa
54 10 1 © America
o 107 ° @© centralisouth Asia
. 7 ° @ Easthsia
54 10 O Europe
e @ widdle East
<] -10 4
-10 i. R o w0 o -204 ° @ Oceania

10

-LD2

Figure S1: Latent spaces output during model training for HGDP data. Here patience
was increased to 500 to show the overfitting behavior of popvae’s latent space. In this run
validation loss was minimized at epoch 59.
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Figure S2: popvae latent spaces from runs with default hyperparameters and different
random seeds.

26


https://doi.org/10.1101/2020.08.12.248278
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.12.248278; this version posted October 19, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

REFERENCES REFERENCES
10,000 SNPs
AG1000G HGDP
S o © »© o o 8 o o
§ 0% gos © o feo) 2 o 1500 1 o ® o 88 8
, 8107 go 0 o o Bg " 000068
7] %] (o]
3 S 14504 & °0§
c c oD o
g 780 4 g @ (W
© ©
k! T 1400 A S o
s 9 S ek : °
750 1 5 ._v - oo 8 g%ﬁﬁéc(‘é;%@@o
1350
@ 5 88608, ©§8° pog
IIII! L L IIIIII! L L IIIIII L L IIIIII| IIII! L IIIIIII| L L IIIIIIl L L IIIIII| L ]
10 100 1000 10000 10 100 1000 10000
Hidden Units Hidden Units
100,000 SNPs
AG1000G HGDP
8200 4
<} o] o o 15500 A 1o o
888 g © oo S o oo
8000 A
2 2 150004 © 8o 8 o
- - 0o
5 5 ©
g 78001 g 14500 ’
E s : -
7600 1 14000 8
Fos% chQ)O@
IIII! L L IIIIII| L L IIIIIIl L L IIIIII| L ] IIII! L L IIIIII! L L IIIIII| L L IIIIII| L ]
10 100 1000 10000 10 100 1000 10000
Hidden Units Hidden Units

Figure S3: Validation loss as a function of the number of hidden units in a network for
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fits.
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Figure S7: The first PC axis for HGDP SNPs summarized on a map as in Figure 3. Points
show approximate population locations and are colored by the mean PC1 coordinate for
each HGDP population. Densities show the distribution of PC1 scores for each HGDP

region.
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Figure S9: popvae latent spaces from runs with the same random seed and the top five
network sizes by validation loss. Network sizes are listed as ‘depth x width'.

32


https://doi.org/10.1101/2020.08.12.248278
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.12.248278; this version posted October 19, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

REFERENCES REFERENCES

2x32 4 x 64

-15 -10

LD2

Region

Africa

America
Central/South Asia
East Asia

Europe

Middle East
Oceania

-5

0000000

Figure S10: popvae latent spaces from models across the range of sizes tested. Network
sizes are listed as ‘depth x width‘.
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Figure S11: Latent spaces reflect inversion karyotypes at the 2La inversion in A. gambiae /
coluzzii. A: VAE latent spaces for AG1000G phase 2 samples from windows near the 2La
inversion breakpoints, with shapes indicating species and colors the country of origin. ”Un-
known” species localities include populations from Kenya, Guinea-Bissau, and the Gambia,
for which diagnostic PCR markers are inconsistent or fail to amplify. B: Multi-dimensional
scaling values showing difference in the relative position of individuals in latent space across
windows — high values reflect windows in which samples cluster by inversion karyotype, and
low values by species/region.
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Figure S12: VAE latent spaces from the simulations shown in Figure 7, with popvae run at
default settings.
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Figure S13: VAE latent spaces from the simulations shown in Figure 7, with popvae run
with default network size (width 128, depth 6) and patience set to 500.
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Figure S14: UMAP and t-SNE plots of HGDP samples using 100,000 or 10,000 SNPs. Both
methods were run with default settings on the top 15 PC axes.
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Figure S15: UMAP and t-SNE plots of AG1000G phase 2 samples using 100,000 or 10,000
SNPs at default settings. Both methods were run with default settings on the top 15 PC
axes.
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Figure S16: UMAP and t-SNE plots with parameters n_ neighbors=30 and perplexity=60.
These settings are double the default values and are intended to improve global relative to

local structure.
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Figure S17: Comparison of relative pairwise distance for Eurasian HGDP samples, with
UMAP parameter n neighbors=30 and t-SNE parameter perplexity=60. These settings
are double the default values and are intended to improve global relative to local structure.
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Figure S18: UMAP and t-SNE plots with parameters n_ neighbors=30 and perplexity=60.
These settings are double the default values and are intended to improve global relative to
local structure.
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Figure S19: Comparison of relative pairwise distance for Eurasian HGDP samples, with
UMAP parameter n neighbors=45 and t-SNE parameter perplexity=90. These settings
are triple the default values and are intended to improve global relative to local structure.
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Figure S20: Comparing LD decay curves across real, simulated, and VAE decoder genotypes
for four different regions of the genome. Points show the mean LD for all pairs of variants
in each of 25 distance bins.
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REFERENCES REFERENCES

HGDP AG1000G

SNPs Depth Width Loss Depth Width Loss

10,000 4 256 1394.231 | 3 256 750.677
6 128 1394.48 | 6 128 750.859
6 64 1394.504 | 4 128 751.0646
10 64 1394.663 | 4 256 751.1514
3 256 1394.976 | 6 64 751.7088

100,000 | 6 128 13955.76 | 4 256 7603.105
3 256 13968.39 | 6 128 7606.528
4 256 13971.75 | 3 256 7613.279
3 512 13980.04 | 6 256 7614.232
3 128 13992.27 | 4 128 7615.816

500,000 | 6 128 70087.32 | 10 128 37836.90
10 64 7019143 | 6 128 37848.67
10 128 70203.22 | 6 64 37860.76
6 64 70221.66 | 10 64 37872.49
4 128 70357.73 | 4 128 37888.68

Table S1: Comparing validation loss across network sizes. Depth is the number of layers,
width is the number of hidden units per layer, and loss is the mean validation loss across
5 random starting seeds for each network. Networks are ranked by loss for each dataset.
SNPs were selected randomly from human chromosome 1 and Anopheles chromosome 3R.
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