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Abstract 

There is significant interest in using brain imaging data to predict non-brain-imaging 

phenotypes in individual participants. However, most prediction studies are underpowered, 

relying on less than a few hundred participants, leading to low reliability and inflated 

prediction performance. Yet, small sample sizes are unavoidable when studying clinical 

populations or addressing focused neuroscience questions. Here, we propose a simple 

framework – “meta-matching” – to translate predictive models from large-scale datasets to 

new unseen non-brain-imaging phenotypes in boutique studies. The key observation is that 

many large-scale datasets collect a wide range inter-correlated phenotypic measures. 

Therefore, a unique phenotype from a boutique study likely correlates with (but is not the 

same as) some phenotypes in some large-scale datasets. Meta-matching exploits these 

correlations to boost prediction in the boutique study. We applied meta-matching to the 

problem of predicting non-brain-imaging phenotypes using resting-state functional 

connectivity (RSFC). Using the UK Biobank (N = 36,848), we demonstrated that meta-

matching can boost the prediction of new phenotypes in small independent datasets by 100% 

to 400% in many scenarios. When considering relative prediction performance, meta-

matching significantly improved phenotypic prediction even in samples with 10 participants. 

When considering absolute prediction performance, meta-matching significantly improved 

phenotypic prediction when there were least 50 participants. With a growing number of large-

scale population-level datasets collecting an increasing number of phenotypic measures, our 

results represent a lower bound on the potential of meta-matching to elevate small-scale 

boutique studies. 
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1. Introduction 

Individual-level prediction is a fundamental goal in systems neuroscience and is 

important for precision medicine (Gabrieli et al., 2015; Woo et al., 2017; Eickhoff and 

Langner, 2019; Varoquaux and Poldrack, 2019). Therefore, there is growing interest in 

leveraging brain imaging data to predict non-brain-imaging phenotypes (e.g., fluid 

intelligence or clinical outcomes) in individual participants. To date however, most prediction 

studies are underpowered, including less than a few hundred participants. This has led to 

systemic issues related to low reproducibility and inflated prediction performance 

(Arbabshirani et al., 2017; Bzdok and Meyer-Lindenberg, 2018; Masouleh et al., 2019; 

Poldrack et al., 2020). Prediction performance can dramatically improve when training 

models with well-powered samples (Chu et al., 2012; Cui and Gong, 2018; He et al., 2020; 

Schulz et al., 2020). The advent of large-scale population-level human neuroscience datasets 

(e.g., UK Biobank, ABCD) is therefore critical to improving the performance and 

reproducibility of individual-level prediction. However, when studying clinical populations 

or addressing focused neuroscience topics, small-scale datasets are unavoidable. Here, we 

proposed a simple framework to effectively translate predictive models from large-scale 

datasets to new non-brain-imaging phenotypes (shortened as phenotypes) in small data.  

More specifically, given a large-scale brain imaging dataset (N > 10,000) with 

multiple phenotypes, we seek to translate models trained from the large dataset to new unseen 

phenotypes in a small independent dataset (N ≤ 200). We emphasize that the large and small 

datasets are independent. Furthermore, phenotypes in the small independent dataset do not 

have to overlap with those in the large dataset. In machine learning, this problem is known as 

meta-learning or learning-to-learn (Andrychowicz et al., 2016; Finn et al., 2017; Ravi and 

Larochelle, 2017; Vanschoren, 2019). For example, meta-learning can be applied to a large 

dataset (e.g., one million natural images) to train a deep neural network (DNN) to recognize 

multiple object categories (e.g., furniture and humans). The DNN can then be adapted to 

recognize a new unseen object category (e.g., birds) with few samples (Nichol et al., 2018; X. 

Li et al., 2019; Mahajan et al., 2020). By learning a common representation across many 

object categories, meta-learning is able to adapt the DNN to a new object category with 

relatively few examples (Rusu et al., 2019; X. Li et al., 2019; Mahajan et al., 2020).  

The key observation underpinning our meta-learning approach is that the vast 

majority of phenotypes are not independent, but are inter-correlated (Figure 1). Indeed, 

previous studies have discovered a relatively small number of components linking brain 

imaging data and an entire host of non-brain-imaging phenotypes, such as, cognition, mental 
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health, demographics and other health attributes (Smith et al., 2015; Miller et al., 2016; 

Alnæs et al., 2020). Therefore, a unique phenotype X examined by a small-scale boutique 

study is probably correlated with (but not the same as) a particular phenotype Y in some pre-

existing large-scale population dataset. Consequently, a machine learning model that has 

been trained on phenotype Y in the large-scale dataset might be readily translated to 

phenotype X in the boutique study. In other words, meta-learning can be instantiated in 

human neuroscience by exploiting this existing correlation structure, a process we refer to as 

“meta-matching”.  

Meta-matching can be broadly applied to different types of magnetic resonance 

imaging (MRI) data. Here, we focused on the use of resting-state functional connectivity 

(RSFC) to predict non-brain-imaging phenotypes. RSFC measures the synchrony of resting-

state functional MRI signals between brain regions (Biswal et al., 1995; Fox and Raichle, 

2007; Buckner et al., 2013), while participants lie at rest without any “extrinsic” task. RSFC 

has provided important insights into human brain organization across health and disease 

(Smith et al., 2009; Yeo et al., 2011; Fornito et al., 2015; Xia et al., 2018; Kebets et al., 

2019). Given any brain parcellation atlas (e.g., Shen et al., 2013; Glasser et al., 2016; Gordon 

et al., 2016; Eickhoff et al., 2018), a whole brain RSFC matrix can be computed for each 

participant. Each entry in the RSFC matrix reflects the functional coupling strength between 

two brain parcels. In recent years, there is increasing interest in the use of RSFC for 

predicting non-brain-imaging phenotypes (e.g., age or cognition) of individual participants, 

i.e., functional connectivity fingerprint (Dosenbach et al., 2010; Finn et al., 2015; Rosenberg 

et al., 2016; Reinen et al., 2018; J. Li et al., 2019; Weis et al., 2020). Thus, our study will 

utilize RSFC-based phenotypic prediction to illustrate the power and field-wide utility of 

meta-matching. 

To summarize, we proposed meta-matching, a simple framework to exploit large-

scale brain imaging datasets for boosting RSFC-based prediction of new, unseen phenotypes 

in small datasets. The meta-matching framework is highly flexible and can be coupled with 

any machine learning algorithm. Here, we considered kernel ridge regression (KRR) and 

fully connected deep neural network (DNN), which we have previously demonstrated to 

work well for RSFC-based behavioral and demographics prediction (He et al., 2020). We 

developed two classes of meta-matching algorithms: basic and advanced. Evaluation of our 

meta-matching approach using almost 40,000 participants from the UK Biobank (Sudlow et 

al., 2015; Miller et al., 2016) suggests that meta-matching can outperform classical 

approaches with 100% to 400% improvement in most scenarios. 
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Figure 1. Non-brain-imaging phenotypes are inter-correlated. Here, we show the top  
top five absolute Pearson’s correlations of three phenotypes in the UK Biobank. (A) Top five 
phenotypes correlated with "Alcohol 3" (average weekly beer plus cider intake) (B) Top five 
phenotypes correlated with "Digit-o C1" (symbol digit substitution online principal 
component 1) (C) Top five phenotypes correlated with "Breath C1" (spirometry principal 
component 1). In selecting these examples, "Alcohol 3", "Digit-o C1" and "Breath C1" were 
selected from the test meta-set, while the top five correlated phenotypes were constrained to 
be from the training meta-set (Figure 2). "Sex G C2" denotes genotype sex inference 
principal component 2.  "Body C1" denotes anthropometry principal component 1. "Grip C1" 
denotes hand grip strength principal component 1. "ECG C1" denotes ECG measures 
principal component 1. "Matrix C2" denotes matrix pattern completion principal component 
2. "Fluid Int." denotes fluid intelligence. "Matrix C1" denotes matrix pattern completion 
principal component 1. "ECG C6" denotes ECG measures principal component 6. "Illness 
C1" denotes non-cancer illness principal component 1. 
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2. Results 

 

Figure 2. Experimental setup for meta-matching. The goal of meta-matching is to translate 
predictive models from big datasets to new unseen non-brain-imaging phenotypes in 
independent small datasets. (A) UK Biobank dataset (Jan 2020 release) was divided into a 
training meta-set comprising 26,848 participants and 33 non-brain-imaging phenotypes, and a 
test meta-set comprising independent 10,000 participants and 34 other phenotypes. It is 
important to emphasize that no participant and phenotype overlapped between training and 
test meta-sets. The test meta-set was in turn split into K participants (K = 10, 20, 50, 100, 
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200) and remaining 10,000-K participants. The group of K participants mimicked studies 
with traditionally common sample sizes. This split was repeated 100 times for robustness. (B) 
Absolute Pearson’s correlations between phenotypes in training and test metasets. Each row 
represents one test meta-set phenotype. Each column represents one training meta-set 
phenotype. Figures S1 and S2 show correlation plots for phenotypes within training and test 
meta-sets. Dictionary of phenotypes is found in Tables S1 and S2.  
 

 

2.1 Experimental setup and classical machine learning baseline 

Our study utilized 55 x 55 resting-state functional connectivity (RSFC) matrices from 

36,848 participants and 67 non-brain-imaging phenotypes from the UK Biobank (Sudlow et 

al., 2015). The 67 phenotypes were winnowed down from an initial list of 3,937 phenotypes 

by a systematic procedure that excluded brain variables, binary variables (except sex), 

repeated measures and measures missing from too many participants. Phenotypes that were 

not predictable even with 1000 participants were also excluded; note that these 1000 

participants were excluded from the 36,848 participants. See Section 4.4 for more details.  

The data was randomly divided into training (N = 26,848; 33 phenotypes) and test (N 

= 10,000; 34 phenotypes) meta-sets (Figure 2A). No participant or phenotype overlapped 

across the training and test meta-sets. Figure 2B shows the absolute Pearson’s correlations 

between the training and test phenotypes. The test meta-set was further split into K 

participants (K-shot; K = 10, 20, 50, 100, 200) and remaining 10,000-K participants. The 

group of K participants served to mimic traditional small-N studies.  

For each phenotype in the test meta-set, a classical machine learning baseline (kernel 

ridge regression; KRR) was trained on the RSFC matrices of the K participants and applied to 

the remaining 10,000 – K participants. Hyperparameters were tuned on the K participants. 

We note that small-N studies obviously do not have access to the remaining 10,000 – K 

participants. However, in our experiments, we utilized a large sample of participants (10,000 

– K), so as to accurately establish the performance of the classical machine learning baseline. 

We repeated this procedure 100 times (each with different sample of K participants) to ensure 

robustness of the results (Varoquaux et al., 2017).  

KRR was chosen as a baseline because of the small number of hyperparameters, 

which made it suitable for small-N studies. We have also previously demonstrated that KRR 

and deep neural networks can achieve comparable prediction performance in functional 

connectivity prediction of behavior and demographics in both small-scale and large-scale 

datasets (He et al., 2020).  
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Figure 3. Application of basic and advanced meta-matching to the UK Biobank. The 
meta-matching framework can be instantiated using different machine learning algorithms. 
Here, we incorporated kernel ridge regression (KRR) and fully-connected feedforward deep 
neural network (DNN) within the meta-matching framework. We proposed two classes of 
meta-matching algorithms: basic and advanced. In the case of basic meta-matching, we 
considered two variants: basic meta-matching (KRR) and basic meta-matching (DNN). In the 
case of advanced meta-matching, we considered two variants: advanced meta-matching 
(finetune) and advanced meta-matching (stacking). Both advanced meta-matching variants 
utilized the DNN. See text for more details. 
 

 

2.2 Basic meta-matching dramatically outperforms classical machine learning baseline 

The meta-matching framework is highly flexible and can be instantiated with different 

machine learning algorithms. Here, we considered kernel ridge regression (KRR) and fully 
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connected deep neural network (DNN), which we have previously demonstrated to work well 

for RSFC-based behavioral and demographics prediction (He et al., 2020). We considered 

two classes of meta-matching algorithms: basic and advanced (Figure 3).  

In “basic meta-matching (KRR)”, for each non-brain-imaging phenotype in the 

training meta-set, we trained a kernel ridge regression (KRR) model to predict the phenotype 

from the RSFC matrices. We then applied the 33 trained KRR models to the RSFC of the K 

participants (from the test meta-set), yielding 33 predictions per participant. For each test 

meta-set phenotype, we picked the prediction (out of 33 predictions) that predicted the test 

meta-set phenotype the best in the K participants. The corresponding KRR model (yielding 

this best prediction) was used to predict the test phenotype in the remaining 10,000 – K 

participants. We also repeated the above procedure using a generic fully connected 

feedforward deep neural network (DNN) instead of KRR, yielding the “basic meta-matching 

(DNN)” algorithm. The only difference is that instead of training 33 DNNs (which would 

require too much computational time), a single 33-output DNN was utilized. See Section 4.7 

for details.  

Figure 4A shows the prediction accuracies (Pearson's correlation coefficient) 

averaged across 34 phenotypes and 10,000 – K participants in the test meta-set. The boxplots 

represent 100 random repeats of K participants (K-shot). Bootstrapping was utilized to derive 

p values (Figure 4B; Figure S3; see Methods). Multiple comparisons were corrected using 

false discovery rate (FDR, q < 0.05). Both basic meta-matching algorithms were significantly 

better than the classical (KRR) approach across all sample sizes (Figure 4B). The 

improvements were large. For example, in the case of 20-shot (a typical sample size for many 

fMRI studies), basic meta-matching (DNN) was more than 100% better than classical (KRR): 

0.124 ± 0.016 (mean ± std) versus 0.052 ± 0.007. Indeed, classical (KRR) required 200 

participants before achieving an accuracy (0.120 ± 0.005) comparable to basic meta-matching 

(DNN) with 20 participants.  

When utilizing coefficient of determinant (COD) as a metric of prediction 

performance (Figures S4 and S5), all algorithms performed poorly (COD ≤ 0) when there 

were less than 50 participants (K < 50), suggesting worse than chance prediction. When there 

were at least 50 participants (K ≥ 50), basic meta-matching algorithms became substantially 

better than classical (KRR) approach. However, the improvement was only statistically 

significant starting from around 100-200 participants.  

To summarize, basic meta-matching performed well even with 10 participants if the 

goal was “relative” prediction (i.e., Pearson’s correlation; Scheinost et al., 2019). However, if 
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the goal was “absolute” prediction (i.e., COD; Poldrack et al., 2020), then basic meta-

matching required at least 100 participants to work well.  

 

 

 

Figure 4. Meta-matching reliably outperforms predictions from classical kernel ridge 

regression (KRR). (A) Prediction performance (Pearson's correlation) averaged across 34 
non-brain-imaging phenotypes in the test meta-set (N = 10,000 – K). The K participants were 
used to train and tune the models (Figure 3). Boxplots represent variability across 100 
random repeats of K participants (Figure 2A). Whiskers represent 1.5 inter-quartile range. (B) 
Statistical difference between the prediction performance (Pearson’s correlation) of classical 
(KRR) baseline and meta-matching algorithms. "*" indicates p < 0.05 and statistical 
significance after multiple comparisons correction (FDR q < 0.05). "**" indicates p < 0.001 
and statistical significance after multiple comparisons correction (FDR q < 0.05). "***" 
indicates p < 0.00001 and statistical significance after multiple comparisons correction (FDR 
q < 0.05). The actual p values and statistical comparisons among all algorithms are found in 
Figure S3. Prediction performance measured using coefficient of determination (COD) is 
found in Figure S4. 
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2.3 Advanced meta-matching provides further improvement  

 We have demonstrated that basic meta-matching led to significant improvement over 

the classical (KRR) baseline. However, in practice, there might be significant differences 

between the training and test meta-sets, so simply picking the best non-brain-imaging 

phenotypic prediction model from the training meta-set might not generalize well to the test 

meta-set. Thus, we proposed two additional meta-matching approaches: “advanced meta-

matching (finetune)” and “advanced meta-matching (stacking)”.  

 As illustrated in Figure 3, the procedure for advanced meta-matching (finetune) is 

similar to basic meta-matching (DNN). Briefly, we trained a single DNN (with 33 outputs) on 

the training meta-set. We then applied the 33-output DNN to the K participants and picked 

the best DNN model for each test phenotype (out of 34 phenotypes). We then finetuned the 

top two layers of the DNN using the K participants before applying the finetuned model to 

the remaining 10,000 – K participants. See Section 4.8 for details.  

 In the case of advanced meta-matching (stacking), we trained a single DNN (with 33 

outputs) on the training meta-set. We then applied the 33-output DNN to the K participants, 

yielding 33 predictions per participant. The top M predictions are then used as features for 

predicting the phenotype of interest in the K participants using KRR. To reduce overfitting, 

M is set to be the minimum of 33 and K. For example, for the 10-shot scenario, M is set to be 

10. For the 50-shot scenario, M is set to be 33. The DNN (which was trained on the training 

meta-set) and KRR models (which were trained on the K participants) were then applied to 

the remaining 10,000 – K participants. See Section 4.8 for details. 

 Figure 4A shows the prediction accuracies (Pearson's correlation coefficient) 

averaged across 34 phenotypes and 10,000 – K participants in the test meta-set. Both 

advanced meta-matching algorithms exhibited large and statistically significant 

improvements over classical (KRR) approach across all sample sizes (Figure 4B). For 

example, in the case of 20-shot, advanced meta-matching (stacking) was more than 100% 

better than classical (KRR): 0.133 ± 0.014 (mean ± std) versus 0.053 ± 0.007. Among the 

meta-matching algorithms, the advanced meta-matching algorithms were numerically better 

than the basic meta-matching algorithms from 20-shot onwards, but statistical significance 

was not achieved until around 100-shot onwards (Figure S3B).  

When utilizing coefficient of determinant (COD) as a metric of prediction 

performance (Figures S4 and S5), all algorithms performed poorly (COD ≤ 0) when there 

were less than 50 participants (K < 50), suggesting chance or worse than chance prediction. 

From 50-shot onwards, advanced meta-matching algorithms became statistically better than 
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classical (KRR) approach (Figures S4B and S5B). The improvements were substantial. For 

example, in the case of 100-shot, advanced meta-matching (stacking) was 400% better than 

classical (KRR): 0.053 ± 0.005 (mean ± std) versus 0.010 ± 0.004. Among the meta-matching 

algorithms, the advanced meta-matching algorithms were numerically better than the basic 

meta-matching algorithms from 100-shot onwards, but statistical significance was not 

achieved until 200-shot (Figure S5B). 

To summarize, advanced meta-matching performed well even with 10 participants if 

the goal was “relative” prediction (i.e., Pearson’s correlation; Scheinost et al., 2019). 

However, if the goal was “absolute” prediction (i.e., COD; Poldrack et al., 2020), then 

advanced meta-matching required at least 50 participants to work well. 

  

2.4 Prediction improvements were driven by correlations between training and test meta-set 

non-brain-imaging phenotypes 

Figures 5 illustrates the 100-shot prediction performance (Pearson's correlation 

coefficient) of four test meta-set non-brain-imaging phenotypes across all approaches. Figure 

S6 shows the same plot for COD. For three of the phenotypes (average weekly beer plus 

cider intake, symbol digit substitution and matrix pattern completion), meta-matching 

demonstrated substantial improvements over classical (KRR). In the case of the last 

phenotype (time spent driving per day), meta-matching did not yield any statistically 

significant improvement.  

Given that meta-matching exploits correlations among phenotypes, we hypothesized 

that variability in prediction improvements were driven by inter-phenotype correlations 

between the training and test meta-sets. Figure 6 shows the performance improvement 

(Pearson’s correlation) as a function of the maximum correlation between each test 

phenotype and training phenotypes. Figure S7 shows the same plot for COD. As expected, 

test phenotypes with stronger correlations with at least one training phenotype led to greater 

prediction improvement with meta-matching. Interestingly, phenotypes that were better 

predicted by classical (KRR) also benefited more from meta-matching (Figure S8).  
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Figure 5. Examples of non-brain-imaging phenotypic prediction performance in the test 

meta-set in the case of 100-shot learning. Here, prediction performance was measured 
using Pearson’s correlation. "Alcohol 3" (average weekly beer plus cider intake) was most 
frequently matched to "Bone C3" (bone-densitometry of heel principal component 3). "Digit-
o C1" (symbol digit substitution online principal component 1) was most frequently matched 
to "Matrix C1" (matrix pattern completion principal component 1). "Breath C1" (spirometry 
principal component 1) was most frequently matched to "Grip C1" (hand grip strength 
principal component 1). "Time drive" (Time spent driving per day) was most frequently 
matched to "BP eye C3" (blood pressure & eye measures principal component 3). Figure S6 
shows an equivalent figure using coefficient of determination (COD) as the prediction 
performance measure. 
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Figure 6. Prediction improvements were driven by correlations between training and 

test meta-set phenotypes. Vertical axis shows the prediction improvement of advanced 
meta-matching (stacking) with respect to classical (KRR) baseline under the 100-shot 
scenario. Prediction performance was measured using Pearson’s correlation. Each dot 
represents a test meta-set phenotype. Horizontal axis shows each test phenotype’s top 
absolute Pearson’s correlation with phenotypes in the training meta-set. Test phenotypes with 
stronger correlations with at least one training phenotype led to greater prediction 
improvement with meta-matching. Similar conclusions were obtained with coefficient of 
determination (Figure S7).  
 

 

2.5 Computational costs of meta-matching 

Meta-matching comprises two stages: training on the training meta-set and meta-

matching on new non-brain-imaging phenotypes in the K participants (K-shot). Training and 

hyperparameter tuning on the training meta-set is slow, but only has to be performed once. 

For example, in our study, training the DNN with automatic hyperparameter tuning using the 

HORD algorithm (Regis and Shoemaker, 2013; Ilievski et al., 2017; Eriksson et al., 2019) on 

a single graphics processing unit (GPU) took about 2 days. In the case of both basic meta-

matching algorithms, meta-matching on new non-brain-imaging phenotypes is extremely fast 

because it only requires forward passes through a neural network (in the case of DNN) or 

matrix multiplications (in the case of KRR). More specifically, the second stage for basic 

meta-matching algorithms took less than 0.1 second for a single test meta-set phenotype and 

one K-shot.  In the case of advanced meta-matching (stacking), there is an additional step of 

training a KRR model on the K participants. Nevertheless, the second stage for advanced 

meta-matching (stacking) only took 0.5 second for a single meta-set phenotype and one K-

shot. On the other hand, the computational cost for finetuning the DNN for advanced meta-

matching (finetune) is a lot more substantial, requiring about ~30 seconds for a single test 

meta-set phenotype and one K-shot. Although 30 seconds might seem quite fast, repeating 

the K-shot 100 times for all values of K and 34 meta-set phenotypes required 6 full days of 

computational time. 
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3. Discussion 

In this study, we proposed “meta-matching”, a simple framework to effectively 

translate predictive models from large-scale datasets to new non-brain-imaging phenotypes in 

small data. Using a large sample of almost 40,000 participants from the UK Biobank, we 

demonstrated that meta-matching can dramatically boost prediction performance in the small-

sample scenario. Overall, our results suggest that meta-matching will be extremely helpful for 

boosting the predictive power in small-scale boutique studies focusing on specific 

neuroscience questions or clinical populations.   

We note that a variety of prediction performance measures have been utilized in the 

literature. For studies interested in relative ranking (Finn et al., 2015; Scheinost et al., 2019), 

Pearson’s correlation is a common performance metric. We showed that if Pearson’s 

correlation was used as a performance metric, meta-matching performed very well even with 

as few as 10 participants (Figure 4). Thus, if the experimenter’s goal is relative ranking, then 

our experiments suggest that meta-matching is superior regardless of sample sizes.  

However, others have strongly argued in favor of absolute prediction performance 

(Poldrack et al., 2020). In this scenario, coefficient of determination (COD) is a common 

performance metric. We showed that if COD was used as a performance metric, meta-

matching dramatically outperformed classical (KRR) where there were more than 50 

participants (Figure S4). However, when there were only 10-20 participants, meta-matching 

was statistically worse than classical (KRR). However, we note that in this small sample 

scenario, COD was less than or equal to zero even with classical (KRR). Thus, our 

experiments suggest that absolute prediction is unlikely to be successful in the case of 10-20 

participants and should not be considered a realistic goal.  

A major limitation of meta-matching is that it exploits correlations between training 

and test meta-sets, so the amount of prediction improvement strongly relied on the strongest 

correlations between the test phenotype and training phenotypes (Figure 6). However, we 

note that this limitation will ameliorate with increasing number of large-scale population-

level datasets collecting an increasing number of phenotypes, which would increase the 

probability of some phenotypes in some large-scale datasets being correlated with a new 

phenotype of interest in a smaller dataset. Both advanced meta-matching (finetune) and 

advanced meta-matching (stacking) seek to address this limitation by further adaptation to the 

K participants in the test meta-set. However, when considering absolute prediction 

performance, the more advanced adaptation procedures required sufficient number of 

participants to work well. For example, advanced meta-matching (stacking) was statistically 
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better than simple meta-matching (KRR) only when there were at least 50-100 participants 

when considering COD as a performance metric.  

Finally, it might be worthwhile to differentiate our approach from transfer learning, 

which is a lot more common in brain imaging studies (Koppe et al., 2020). In transfer 

learning applications, DNNs are typically pre-trained using a large-scale dataset (source 

domain), which might or might not comprise brain imaging data. The pretrained DNN is then 

finetuned for a prediction problem in another dataset (target domain; Cheng et al., 2015; Kim 

et al., 2016; Heinsfeld et al., 2018; Chen et al., 2020). In transfer learning, the pretraining in 

the source domain typically involves no prediction problem or a problem that is very similar 

to the target domain. By contrast, meta-learning involves training a machine learning model 

from a wide range of prediction problems in the source domain, which can then be adapted to 

a new prediction problem in the target domain. 

 

Conclusion 

In this study, we proposed a simple framework, meta-matching, that allowed the 

translation of phenotypic predictive models from large-scale datasets to new phenotypes in 

small-scale datasets. Using a large sample of almost 40,000 participants, we demonstrated 

that meta-matching could dramatically boost phenotypic prediction performance in as few as 

10 participants. We believe that meta-matching will be extremely useful for small-scale 

boutique studies focusing on clinical populations or specific neuroscience questions.  
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4. Methods 

4.1 Datasets 

This study utilized data from the UK Biobank (Sudlow et al., 2015; Miller et al., 

2016) under UK Biobank resource application 25163. The UK Biobank is a population 

epidemiology study with 500,000 adults (age 40-69) recruited between 2006 and 2010 

(Sudlow et al., 2015). A subset of 100,000 participants is being recruited for multimodal 

imaging, including brain MRI, e.g., structural MRI and resting-state fMRI (rs-fMRI) from 

2016 to 2022 (Miller et al., 2016). A wide range of non-brain-imaging phenotypes was 

acquired for each participant. Here, we considered the January 2020 release of 37,848 

participants with structural MRI and rs-fMRI. Structural MRI (1.0mm isotropic) and rs-fMRI 

(2.4mm isotropic) were acquired at four imaging centers (Bristol, Cheadle Manchester, 

Newcastle, and Reading) with harmonized Siemens 3T Skyra MRI scanners. Each subject has 

one rs-fMRI run with 490 frames (6 minutes) and a TR of 0.735s. More details of the UK 

Biobank dataset can be found elsewhere (Elliott and Peakman, 2008; Sudlow et al., 2015; 

Miller et al., 2016; Alfaro-Almagro et al., 2018). 

 

4.2 Brain imaging data 

Our study utilized the 55 x 55 RSFC (partial correlation, Smith et al., 2011) matrices 

from data-field 25753 of the UK Biobank (Miller et al., 2016; Alfaro-Almagro et al., 2018). 

Details about rs-fMRI preprocessing can be found elsewhere (Alfaro-Almagro et al., 2018). 

Data-field 25753 RSFC had 100 whole-brain spatial independent component analysis (ICA) 

derived components (Beckmann and Smith, 2004). After the removal of 45 artifactual 

components, as indicated by the UKB team, 55 components were left (Miller et al., 2016). 

Data-field 25753 contains two instances, first imaging visit (instance 2) and first repeat 

imaging visit (instance 3). The first imaging visit (instance 2) had RSFC data for 37,848 

participants, while the first repeat imaging visit (instance 3) only had RSFC data for 1,493 

participants. Here, we only considered RSFC from the first imaging visit (instance 2). 

 

4.3 RSFC-based prediction setup 

Our meta-matching framework is highly flexible and can be instantiated with different 

machine learning algorithms. Here, we considered kernel ridge regression (KRR) and fully-

connected feedforward deep neural network (DNN), which we have previously demonstrated 

to work well for RSFC-based behavioral and demographics prediction (He et al., 2020). As 

discussed in the previous section, each RSFC matrix was a symmetric 55 x 55 matrix, where 
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55 is the number of independent components. Each element represented the degree of 

statistical dependencies between two brain components. The lower triangular elements of the 

RSFC matrix of each participant were then vectorized and used as input features for KRR and 

DNN to predict individuals’ phenotypes. 

Kernel ridge regression (Murphy, 2012) is a non-parametric machine learning 

algorithm. This method is a natural choice as we previously demonstrated that KRR achieved 

similar prediction performance as several deep neural networks (DNNs) for the goal of 

RSFC-based behavioral and demographics prediction (He et al., 2020). Roughly speaking, 

KRR predicts the phenotype (e.g., fluid intelligence) of a test participant by the weighted 

average of all training participants' phenotypes (e.g., fluid intelligence). The weights in the 

weighted average is determined by the similarity (i.e., kernel) between the test participant and 

training participants. In this study, similarity between two participants was defined as the 

Pearson's correlation between the vectorized lower triangular elements of their RSFC 

matrices. KRR also contains an 끫殲2 regularization term as part of the loss function to reduce 

overfitting. The hyperparameter λ is used to control the strength of the 끫殲2 regularization. 

More details can be found elsewhere (Murphy, 2012; He et al., 2020). 

A fully-connected feedforward deep neural network (DNN) is one of the most 

classical DNNs (Lecun et al., 2015). We previously demonstrated that the feedforward DNN 

and KRR could achieve similar performance for RSFC-based behavioral and demographics 

prediction (He et al., 2020). In this study, the DNN was trained based on the vectorized lower 

triangular elements of the RSFC matrix as input features and output the prediction of one or 

more non-brain-imaging phenotypes. The DNN consists of several fully connected layers. 

Each node (except input layer nodes) is connected to all nodes in the previous layer. The 

values at each node is the weighted sum of node values from the previous layer. The outputs 

of the hidden layer nodes go through a nonlinear activation function, Rectified Linear Units 

(ReLU; 끫殦(끫毊) = 끫殴끫殴끫毊(0, 끫毊)). The output layer is linear. More details about hyperparameter 

tuning (e.g., number of layers and number of nodes per layer) are found in Supplemental 

Methods S1. 

 

4.4 Non-brain-imaging phenotype selection and processing 

To obtain the final set of 67 non-brain-imaging phenotypes, we began by extracting 

all 3,937 unique phenotypes available to us under UK Biobank resource application 25163. 

We then performed three stages of selection and processing: 
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1. In the first stage, we 

• Removed non-continuous and non-integer data fields (date and time converted to 

float), except for sex.  

• Removed Brain MRI phenotypes (category ID 100). 

• Removed first repeat imaging visit (instance 3).  

• Removed first two instances (instance 0 and 1) if first imaging visit (instance 2) 

exists and first imaging visit (instance 2) participants were more than double of 

participants from instance 0 or 1.  

• Removed first instance (instance 0) if only the first two instances (instance 0 and 

1) exist, and instance 1 participants were more than double of participants from 

instance 0.  

• Removed phenotypes for which less than 2000 participants had RSFC data.  

• Removed behaviors with the same value for more than 80% of participants.  

After the first stage of filtering, we were left with 701 phenotypes. 

2. We should not expect every phenotype to be predictable by RSFC. Therefore, in the 

second stage, our goal was to remove phenotypes that could not be well predicted 

even with large number of participants. More specifically,  

• We randomly selected 1000 participants from 37,848 participants. These 1000 

participants were completely excluded from the main experiments (Figure 2A). 

• Using these 1000 participants, Kernel ridge regression (KRR) was utilized to 

predict each of the 701 phenotypes using RSFC. To ensure robustness, we 

performed 100 random repeats of training, validation, and testing (60%, 20%, and 

20%). For each repeat, KRR was trained on the training set and hyperparameters 

were tuned on the validation set. We then evaluated the trained KRR on the test 

set. phenotypes with an average test prediction performance (Pearson's 

correlation) less than 0.1 were removed.  

At the end of this second stage, 265 phenotypes were left. 

3. Many of the remaining phenotypes were highly correlated. For example, the bone 

density measurements of different body parts were highly correlated. Principal 

component analysis (PCA) was performed separately on each subgroup of highly 

similar phenotypes in the 1000-participant sample. Similarity was evaluated based on 

the UK Biobank-provided categories of item sets (i.e., items under the same category 

were considered highly similar). PCAs were not applied to 18 phenotypes (out of 265 
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phenotypes), which were not similar to other phenotypes. For the purpose of carrying 

out PCA, missing values were filled in with the EM algorithm (Seabold and Perktold, 

2010). For each PCA, we kept enough components to explain 95% of the variance in 

the data or 6 components, whichever is lower. Overall, the PCA step reduced the 247 

phenotypes (out of 265 phenotypes) to 93 phenotypes. We then repeated the previous 

step (stage 2) on these 93 phenotypes, resulting in 49 phenotypes with prediction 

performance (Pearson’s correlation) larger than 0.1. Adding back the 18 phenotypes 

that were not processed by PCA, we ended up with 67 phenotypes utilized in the main 

experiment (Figure 2A). This PCA procedure was also applied separately to the 

training and test meta-sets defined in the next section. 

Final list of the phenotypes is found in Tables S1 and S2. 

 

4.5 Data split scheme 

After the non-brain-imaging phenotypes selection process in the previous section, we 

were left with 36,848 participants with RSFC matrices and 67 phenotypes. As illustrated in 

Figure 2A, we randomly split the data into two meta-sets: training meta-set with 26,848 

participants and 33 phenotypes, and test meta-set with 10,000 participants and 34 phenotype. 

There was no overlap between the participants and phenotypes across the two meta-set. 

Figure 2B shows the Pearson’s correlations between the training and test phenotypes. Figures 

S1 and S2 show correlation plots for phenotypes within training and test meta-sets. 

For the training meta-set, we further randomly split it into a training set with 21,478 

participants (80% of 26,848 participants) and validation set with 5370 participants (20% of 

26,848 participants). For the test meta-set, we randomly split 10,000 participants into K 

participants (K-shot) and 10,000 – K participants, where K had a value of 10, 20, 50, 100, 

and 200. The group of K participants mimicked traditional small-N studies. Each random K-

shot split was repeated 100 times to ensure stability. 

Z-normalization (transforming each variable to have zero mean and unit variance) 

was applied to the phenotypes. In the case of the training meta-set, z-normalization was 

performed by using the mean and standard deviation computed from the training set within 

the training meta-set. In the case of the test meta-set, for each of the 100 repeats of the K-shot 

learning, the mean and standard deviation were computed from the K participants and 

subsequently applied to the full test meta-set. 
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4.6 Classical Kernel Ridge Regression (KRR) Baseline 

For the classical (KRR) baseline, we performed K-shot learning for each non-brain-

imaging phenotype in the test meta-set, using K participants from the random split (Figure 

2A). More specifically, for each phenotype, we performed 5-fold cross-validation on the K 

participants using different values of the hyperparameter λ (that controlled the strength of the 끫殲2 regularization). For the purpose of choosing the best hyperparameter, prediction 

performance was evaluated using the coefficient of determination (COD). The best 

hyperparameter λ was used to train the KRR model using all K participants. The trained KRR 

model was then applied to the remaining test participants (N = 10,000 - K). Prediction 

performance in the 10,000 - K participants was measured using Pearson's correlation and 

COD. This procedure was repeated for each of the 100 random subsets of K participants.  

 

4.7 Basic meta-matching  

The meta-matching framework is highly flexible and can be instantiated with different 

machine learning algorithms. Here, we incorporated kernel ridge regression (KRR) and fully-

connected feedforward deep neural network (DNN) within the meta-matching framework. 

We proposed two classes of meta-matching algorithms: basic and advanced. In the case of 

basic meta-matching, we considered two variants: “basic meta-matching (KRR)” and “basic 

meta-matching (DNN)” (Figure 3).  

In the case of basic meta-matching (KRR), we first trained a KRR to predict each 

training non-brain-imaging phenotype from RSFC. We used the training set (N = 21478) 

within the training meta-set for training and validation set (N = 5370) within the training 

meta-set for hyperparameter tuning. The hyperparameter λ was selected via a simple grid 

search. There were 33 phenotypes, so we ended up with 33 trained KRR models from the 

training meta-set. Second, we applied the 33 trained KRR models to K participants (K-shot) 

from the test meta-set, yielding 33 predictions per participant. Third, for each test phenotype 

(out of 34 phenotypes), we picked the best KRR model (out of 33 models) that performed the 

best (as measured by COD) on the K participants. Finally, for each test phenotype, we 

applied the best KRR model to the remaining participants in the test meta-set (N = 10,000 – 

K). Prediction performance in the 10,000 – K participants was measured using Pearson's 

correlation and COD. To ensure robustness, the K-shot procedure was repeated 100 times, 

each with a different set of K participants.  

In the case of basic meta-matching (DNN), we first trained one single DNN to predict 

all 33 training phenotypes from RSFC. In other words, the DNN outputs 33 predictions 
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simultaneously. The motivation for a single multi-output DNN is to avoid the need to train 

and tune 33 single-output DNNs. We used the training set (N = 21478) within the training 

meta-set for training and validation set (N = 5370) within the training meta-set for 

hyperparameter tuning. Details of the hyperparameter tuning is found in Supplementary 

Methods S1. Second, we applied the trained DNN to the K participants (K-shot) from the test 

meta-set, yielding 33 different phenotypical predictions for each given participant. Third, for 

each test phenotype (out of 34 phenotypes), we picked the best output DNN node (out of 33 

output nodes) that generated the best prediction (as measured by COD) for the K participants. 

Finally, for each test phenotype, we applied the predictions from the best DNN output node 

on the remaining 10,000 – K participants in the test meta-set. Prediction performance in the 

10,000 – K participants was measured using Pearson's correlation and COD. To ensure 

robustness, the K-shot procedure was repeated 100 times, each with a different set of K 

participants.  

 

4.8 Advanced meta-matching  

There might be significant differences between the training and test meta-sets. 

Therefore, simply picking the best non-brain-imaging phenotypic prediction model estimated 

from the training meta-set might not generalize well to the test meta-set. Thus, we proposed 

two additional meta-matching approaches: “advanced meta-matching (finetune)” and 

“advanced meta-matching (stacking)” (Figure 2).  

In the case of advanced meta-matching (finetune), we used the same multi-output 

DNN from basic meta-matching (DNN). Like before, for each test phenotype (out of 34 

phenotypes), we picked the best output DNN node (out of 33 output nodes) that generated the 

best prediction (as measured by COD) for the K participants. We retained this best output 

node (while removing the remaining 32 nodes) and finetuned the DNN using the K 

participants (K-shot). More specifically, the K participants were randomly divided into 

training and validation sets using a 4:1 ratio. The training set was used to finetune the weights 

of the last two layers of the DNN, while the remaining weights were frozen. The validation 

set was used to determine the stopping criterion (in terms of the number of training epochs). 

The finetuned DNN was applied to the remaining 10,000 – K participants in the test meta-set. 

We note that the finetuning procedure was repeated separately for each of 33 test phenotypes. 

Prediction performance in the 10,000 – K participants was measured using Pearson's 

correlation and COD. To ensure robustness, the K-shot procedure was repeated 100 times, 
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each with a different set of K participants. More details about the finetuning procedure can be 

found in Supplementary Methods S2.  

In the case of advanced meta-matching (stacking), we used the same multi-output 

DNN from basic meta-matching (DNN). The DNN was applied to the K participants (K-shot) 

from the test meta-set, yielding 33 predictions per participant. For each test phenotype (out of 

34 phenotypes), the best M predictions (as measured by COD) were selected. To reduce 

overfitting, M was set to be the minimum of K and 33. Thus, if K was smaller than 33, we 

considered the top K outputs from the multi-output DNN. If K was larger than 33, we 

considered all 33 outputs of the multi-output DNN. We then trained a kernel ridge regression 

(KRR) model using the M DNN outputs to predict the phenotype of interest in the K 

participants. The hyperparameter λ was tuned using grid search and 5-fold cross-validation 

on the K participants. The optimal λ was then used to train a final KRR model using all K 

participants. Finally, the KRR model was applied to the remaining 10,000 – K participants in 

the test meta-set. We note that this “stacking” procedure was repeated separately for each of 

33 test phenotypes. Prediction performance in the 10,000 – K participants was measured 

using Pearson's correlation and COD. To ensure robustness, the K-shot procedure was 

repeated 100 times, each with a different set of K participants.  

 

4.9 DNN implementation 

 The DNN was implemented using PyTorch (Paszke et al., 2017) and computed on 

NVIDIA Titan Xp GPUs using CUDA. More details about hyperparameter tuning are found 

in Supplementary Methods S1. More details about DNN finetuning are found in 

Supplementary Methods S2. 

 

4.10 Statistical tests 

To evaluate whether differences between algorithms were statistically significant, we 

adapted a bootstrapping approach developed for cross-validation procedures (page 85 of 

Kuhn and Johnson, 2013). More specifically, we performed bootstrap sampling 1,000 times. 

For each bootstrap sample, we randomly picked K participants with replacement, while the 

remaining 10,000 – K participants were used as test participants. Thus, the main difference 

between our main experiments (100 repeats of K-shot learning in Figure 2A) and the 

bootstrapping procedure is that the bootstrapping procedure sampled participants with 

replacement, so the K bootstrapped participants might not be unique. For each of the 1,000 

bootstrapped samples, we applied classical (KRR) baseline, basic meta-matching (KRR), 
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basic meta-matching (DNN) and advanced meta-matching (stacking), thus yielding 1,000 

bootstrapped samples of COD and Pearson's correlation (computed from the remaining 

10,000 – K participants). Bootstrapping was not performed for advanced meta-matching 

(finetune) because 1000 bootstrap samples would have required 60 days of compute time (on 

a single GPU). 

Statistical significance for COD and Pearson's correlation were calculated separately. 

For ease of explanation, let us focus on COD. The procedure for Pearson's correlation was 

exactly the same, except we replaced COD with Pearson's correlation in the computation. To 

compute the statistical difference between advanced meta-matching (finetune) and another 

algorithm X, we first fitted a Gaussian distribution to the 1,000 bootstrapped samples of COD 

from algorithm X, yielding a cumulative distribution function (CDFX). Suppose the average 

COD of advanced meta-matching (finetune) across the 100 random repeats of K-shot learning 

was µ. Then the p value was given by 2 * CDF(µ) if µ is less than the mean of the bootstrap 

distribution, or 2 * (1 - CDF(µ)) if µ is larger than the mean of bootstrap distribution. 

When computing the statistical difference between two algorithms X and Y with 1000 

bootstrapped samples each, we first fitted a Gaussian distribution to the 1,000 bootstrapped 

samples of COD from algorithm X, yielding a cumulative distribution function (CDFX). This 

was repeated for algorithm Y, yielding a cumulative distribution function (CDFY). Let the 

average COD of algorithm X (and Y) across the 100 random repeats of K-shot learning be µX 

(and µY). We can then compute a p value by comparing µX with CDFX and a p value by 

comparing µY with CDFY. The larger of the two p values was reported.  

P values were computed between all pairs of algorithms. Multiple comparisons were 

corrected using false discovery rate (FDR, q < 0.05). FDR was applied to all K-shots and 

across all pairs of algorithms  

 

4.11 Data and code availability 

This study utilized publicly available data from the UK Biobank 

(https://www.ukbiobank.ac.uk/). Code for the classical (KRR) baseline and meta-matching 

algorithms can be found here (GITHUB_LINK). The trained models for meta-matching are 

available also in the GitHub link above. The code was reviewed by one of the co-authors 

(LA) before merging into the GitHub repository to reduce the chance of coding errors. 
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  Meta-matching, a simple way to boost small samples functional 

connectivity behavior prediction 

Supplementary Materials 

This supplemental material is divided into Supplemental Methods and Supplemental Results 

to complement the Methods and Results sections in the main text, respectively. 

 

Supplementary Methods 

This section provides additional implementation details of the meta-matching. Section S1 

provides details about meta-matching with DNN. Section S2 provides details about meta-

matching with DNN finetuning. 

 

S1. Details about basic meta-matching (DNN) 

In this section, we provide implementation details of DNN, which we utilized for basic meta-

matching (DNN), as well as both advanced meta-matching algorithms. 

• The DNN we considered is a generic feedforward neural network, which was 

implemented with default libraries (class "nn.Linear") in PyTorch (Paszke et al., 

2017).  

• The loss function was MSE (mean squared error) loss. The output layer has 33 nodes, 

which is the number of training meta-set non-brain-imaging phenotypes (phenotypes). 

• We used the HORD algorithm (Regis and Shoemaker, 2013; Ilievski et al., 2017; 

Eriksson et al., 2019) to automatically tune the hyperparameters using the validation 

set (N = 5370) within the training meta-set. By setting a specific search range for 

multiple hyperparameters, the HORD algorithm was able to tune these 

hyperparameters within these ranges automatically. HORD does not perform well 

when there are too many hyperparameters to tune. Therefore, several hyperparameters 

were set based on our manual tuning using the training meta-set. These 

hyperparameters were stochastic gradient descent (SGD) with 0.9 momentum, 128 for 

batch size and Xavier uniform for weight initialization.  

• Table S3 shows the search ranges of hyperparameters tuned by the HORD algorithm. 

We ran 200 HORD evaluation rounds. For each HORD evaluation round, 1000 

epochs were run. DNN was trained on the training set (within the training meta-set) 
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and evaluated on the validation set (within the training meta-set) for each epoch. The 

epoch with the best COD on the validation set was chosen as the optimal epoch. 

 

Hyperparameter tuned Range 
Number of layers 2 to 5 
Number of nodes for each layer (separately) 2 to 512 
Dropout rate 0 to 0.8 
Starting learning rate 1e-2 to 1e-4 
Epochs to decrease the learning rate 10 to 1000 
Weight decay rate 1e-3 to 1e-7 

 

Table S3. Search ranges of hyperparameters tuned by the HORD algorithm. 
 

• Table S4 shows the final set of hyperparameters estimated by the HORD algorithm. 

The final DNN structure is a 4-layer DNN. The optimal epoch on the validation set is 

118 epochs. After we obtained the best DNN on the training meta-set, we applied the 

trained DNN to the test meta-set. 

 

Hyperparameter Value 
Number of layers 4 
Number of nodes for each layer (separately) 87/386/313/33 
Dropout rate 0.242 
Starting learning rate 3.646e-03 
Epochs to decrease learning rate 312 
Weight decay rate 8.447e-04 

 
Table S4. Final DNN hyperparameters estimated by the HORD algorithm. 
 
 
S2. Details about advanced meta-matching (finetune) 

In this section, we provide implementation details of advanced meta-matching (finetune). The 

trained DNN (previous section) was applied to the K participants in the test meta-set. For a 

given test meta-set phenotype,  

• The best DNN output that gave the best prediction for the test phenotype (based on 

the K participants) was selected  

• We took the trained DNN and removed all output nodes except the best DNN output 

node (selected in the previous step). We then performed finetuning on this DNN 

using the K participants. The loss function was MSE (mean squared error) loss. The 

evaluation metric was COD. 
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• Finetuning was only performed on the weights of the last two layers. The weights of 

the earlier layers were frozen. We split the K subjects into training and validation sets 

(4:1 ratio). We ran the finetuning for 100 epochs using the training set and checked 

the performance in the validation set every 10 epochs. The DNN from the epoch with 

the best performance in the validation set was used for predicting the phenotype in 

the remaining 10,000 – K participants. If the performance in the validation set was 

worse than the original DNN (without finetuning), then we simply applied the 

original DNN to the remaining 10,000 – K participants. We did not perform cross-

validation like the classical (KRR) baseline, because the runtime would be increased 

multiple folds. 

• Furthermore, because of the small number of participants K, we decided not to 

optimize the hyperparameters of the finetuning procedure for fear of overfitting. 

Optimizing the hyperparameters would also be computationally too expensive. More 

specifically, it took 6 days (on one GPU) to run 34 meta-set phenotypes for 100 

repetition of K-shots across different values of K. Optimizing the hyperparameters 

using HORD would dramatically increase the runtime to 6 x 200 = 1200 days (since 

we utilized 200 HORD rounds).  

• Therefore, we simply set the hyperparameters to the following generic values: 

stochastic gradient descent (SGD) with 0.9 momentum. The learning rate was set to 

be 1e-3. The batch size was set to be the minimum of K and 32. So if K was less than 

32, the batch size was set to be K. Otherwise, the batch size was set to be 32. 
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Supplementary Results 

Label Description 

ECG C1 ECG measures principal component 1 

Sex sex 

Sex G C2 genotype sex inference principal component 2 

Body C2 anthropometry principal component 2 

Grip C1 hand grip strength principal component 1 

Body C1 anthropometry principal component 1 

Bone C3 bone-densitometry of heel principal component 3 

BP eye C4 blood pressure & eye measures principal component 4 

Matrix C1 matrix pattern completion principal component 1 

#Mem C1 numeric memory principal component 1 

Matrix C2 matrix pattern completion principal component 2 

Fluid Int. fluid intelligence 

Hearing hearing signal-to-noise-ratio (snr) of triplet (left) 

Illness C1 non-cancer illness principal component 1 

#household number of people in household 

Time TV time spent watching television (tv) per day 

BP eye C2 blood pressure & eye measures component 2 

Body C3 anthropometry principal component 3 

ECG C6 ECG measures principal component 6 

ECG C2 ECG measures principal component 2 

Illness C4 non-cancer illness principal component 4 

Smoke C1 smoke principal component 1 

BP eye C3 blood pressure & eye measures principal component 3 

BP eye C6 blood pressure & eye measures principal component 6 

Urine C1 urine assays principal component 1 

Sex G C1 genotype sex inference principal component 1 

Bone C1 bone-densitometry of heel principal component 1 

Matrix C3 matrix pattern completion principal component 3 

Time walk number of days walked 10+ minutes per week 

BP eye C5 blood pressure & eye measures principal component 5 

ECG C3 ecg measures principal component 3 

Genetic C1 genetic principal components and heterozygosity principal component 1 

Sleep sleep duration per day 

 

Table S1. Dictionary of 33 training meta-set non-brain-imaging phenotypes. For UK 
Biobank IDs, please see GITHUB_LINK. 
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Label Description 

Alcohol 3 average weekly beer plus cider intake 

Blood C2 blood assays principal component 2 

Breath C1 spirometry principal component 1 

Age age 

Cancer C1 cancer principal component 1 

Carotid C1 carotid ultrasound principal component 1 

Match-o pairs matching online 

Trail C1 trail making principal component 1 

Digit-o C1 symbol digit substitution online principal component 1 

Digit 1 symbol digit substitution principal component 1 

Match pairs matching 

ProMem C1 prospective memory principal component 1 

RT C1 reaction time principal component 1 

Trail-o C1 trail making online principal component 1 

Tower C1 tower rearranging principal component 1 

Family C1 family history (parent's age) principal component 1 

Blood C5 blood assays principal component 5 

Dur C4 process durations principal component 4 

Dur C2 process durations principal component 2 

Loc C1 location principal component 1 

Dur C1 process durations principal component 1 

Digit-o C6 symbol digit substitution online principal component 6 

Trail-o C4 trail making online principal component 4 

Blood C4 blood assays principal component 4 

Alcohol 2 average weekly champagne plus white wine intake 

Carotid C5 carotid ultrasound principal component 5 

Time drive time spent driving per day 

Travel frequency of travelling from home to job workplace per week 

Work weekly length of working hour for main job 

Age edu age completed full time education 

Deprive C1 multiple deprivation principal component 1 

Blood C3 blood assays principal component 3 

Alcohol 1 average monthly spirits intake 

Neuro neuroticism score 

 
Table S2. Dictionary of 34 test meta-set non-brain-imaging phenotypes. For UK Biobank 
IDs, please see GITHUB_LINK. 
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Figure S1. Absolute Pearson’s correlation among 33 non-brain-imaging phenotypes in 

the training meta-set.  
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2020. ; https://doi.org/10.1101/2020.08.10.245373doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.10.245373
http://creativecommons.org/licenses/by/4.0/


 
 
Figure S2. Absolute Pearson’s correlation among 34 non-brain-imaging phenotypes in 

the test meta-set. 
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Figure S3. Meta-matching outperformed classical kernel ridge regression (KRR) 

baseline. (A) Prediction performance (Pearson's correlation) with different number of 
participants. This plot is the same as Figure 4A, but the boxplots now show the bootstrap 
distribution of each approach based on 1000 bootstrapped samples. The triangles show the 
average performance (Pearson’s correlation) of 34 non-brain-imaging phenotypes using the 
original 100 random repeats (Figure 4A). We observe that the mean of the bootstrap 
distributions matches the mean of the original experiments (Figure 4A) quite well. 
Bootstrapping could not be performed for advanced meta-matching (finetune) because 1000 
bootstrap samples would have required 60 days of compute time. (B) Statistical differences 
among the different algorithms. For rows comparing advanced meta-matching (finetune) and 
another algorithm X, p values were derived by comparing the mean of advanced meta-
matching (finetune) with algorithm X’s bootstrap distribution (assuming Gaussanity). For 
other rows comparing algorithms X and Y, bootstrap distributions were available for both X 
and Y. Therefore, one p value was obtained by comparing the original mean of X with Y’s 
bootstrap distribution and another p value was obtained by comparing the original mean of Y 
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with X’s bootstrap distribution. The larger of the two p values were reported. Bold indicates 
statistical significance after FDR correction (q < 0.05). 
 

 
 
Figure S4. Meta-matching outperformed classical kernel ridge regression (KRR) 

baseline. (A) Prediction performance (coefficient of determination; COD) averaged across 34 
non-brain-imaging phenotypes in the test meta-set (N = 10,000 – K). The K participants were 
used to train and tune the models (Figure 3). Boxplots represent variability across 100 
random repeats of K participants (Figure 2A). Whiskers represent 1.5 inter-quartile range. (B) 
Statistical difference between the prediction performance (COD) of classical (KRR) baseline 
and meta-matching algorithms. “n.s.” indicates that difference was not statistically significant 
after multiple comparisons correction (FDR q < 0.05). "*" indicates p < 0.05 and statistical 
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significance after multiple comparisons correction (FDR q < 0.05). "**" indicates p < 0.001 
and statistical significance after multiple comparisons correction (FDR q < 0.05). "***" 
indicates p < 0.00001 and statistical significance after multiple comparisons correction (FDR 
q < 0.05). Green indicates that meta-matching outperforms classical (KRR) baseline. Red 
indicates that classical (KRR) baseline outperforms meta-matching. Observe that all 
algorithms performed poorly (COD ≤ 0) when there were less than 50 participants (K < 50), 
suggesting chance or worse than chance prediction for all algorithms. 
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Figure S5. Meta-matching outperformed classical kernel ridge regression (KRR) 

baseline. (A) Prediction performance (coefficient of determination; COD) with different 
number of participants. This plot is the same as Figure S4A, but the boxplots now show the 
bootstrap distribution of each approach based on 1000 bootstrapped samples. The triangles 
show the average performance (COD) of 34 non-brain-imaging phenotypes using the original 
100 random repeats (Figure S4A). We observe that the mean of the bootstrap distributions 
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matches the mean of the original experiments (Figure S4A) quite well. Bootstrapping could 
not be performed for advanced meta-matching (finetune) because 1000 bootstrap samples 
would have required 60 days of compute time. (B) Statistical differences among the different 
algorithms. For rows comparing advanced meta-matching (finetune) and another algorithm 
X, p values were derived by comparing the mean of advanced meta-matching (finetune) with 
algorithm X’s bootstrap distribution (assuming Gaussanity). For other rows comparing 
algorithms X and Y, bootstrap distributions were available for both X and Y. Therefore, one 
p value was obtained by comparing the original mean of X with Y’s bootstrap distribution 
and another p value was obtained by comparing the original mean of Y with X’s bootstrap 
distribution. The larger of the two p values were reported. Bold indicates statistical 
significance after FDR correction (q < 0.05). 
 
 

 
 
Figure S6. Examples of non-brain-imaging phenotypic prediction performance in the 

test meta-set in the case of 100-shot learning. Here, prediction performance was measured 
using coefficient of determination (COD). "Alcohol 3" (average weekly beer plus cider 
intake) was most frequently matched to "Bone C3" (bone-densitometry of heel principal 
component 3). "Digit-o C1" (symbol digit substitution online principal component 1) was 
most frequently matched to "Matrix C1" (matrix pattern completion principal component 1). 
"Breath C1" (spirometry principal component 1) was most frequently matched to "Grip C1" 
(hand grip strength principal component 1). "Time drive" (Time spent driving per day) was 
most frequently matched to "BP eye C3" (blood pressure & eye measures principal 
component 3). 
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Figure S7. Prediction improvements were driven by correlations between training and 

test meta-set phenotypes. Vertical axis shows the prediction improvement of advanced 
meta-matching (stacking) with respect to classical (KRR) baseline under the 100-shot 
scenario. Prediction performance was measured using coefficient of determination (COD). 
Each dot represents a test meta-set phenotype. Horizontal axis shows each test phenotype’s 
top absolute Pearson’s correlation with phentoypes in the training meta-set. Test phenotypes 
with stronger correlations with at least one training phenotype led to greater prediction 
improvement with meta-matching.  
 

 
Figure S8. Phenotypes better predicted by classical kernel ridge regression benefited 

more from meta-matching. Vertical axis shows the prediction improvement of advanced 
meta-matching (stacking) with respect to classical (KRR) baseline under the 100-shot 
scenario. Prediction performance was measured using Pearson’s correlation. Each dot 
represents a test meta-set phenotype. Horizontal axis shows the prediction performance with 
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the classical (KRR) baseline under the 100-shot scenario. Similar conclusions were obtained 
with coefficient of determination (Figure S9).  
 

 
Figure S9. Phenotypes better predicted by classical kernel ridge regression benefited 

more from meta-matching. Vertical axis shows the prediction improvement of advanced 
meta-matching (stacking) with respect to classical (KRR) baseline under the 100-shot 
scenario. Prediction performance was measured using coefficient of determination (COD). 
Each dot represents a test meta-set phenotype. Horizontal axis shows the prediction 
performance with the classical (KRR) baseline under the 100-shot scenario.  
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