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Abstract 

Coronavirus disease 2019 (COVID-19) manifests with a range of severities, but immune 

signatures of mild and severe disease are still not fully understood. Excessive 

inflammation has been postulated to be a major factor in the pathogenesis of severe 

COVID-19 and innate immune mechanisms are likely to be central in the inflammatory 

response. We used 40-plex mass cytometry and targeted serum proteomics to profile 

innate immune cell populations from peripheral blood of patients with mild or severe 

COVID-19 and healthy controls. Sampling at different stages of COVID-19 allowed us to 

reconstruct a pseudo-temporal trajectory of the innate immune response. Despite the 

expected patient heterogeneity, we identified consistent changes during the course of the 

infection. A rapid and early surge of CD169+ monocytes associated with an IFNγ+MCP-

2+ signature quickly followed symptom onset; at symptom onset, patients with mild and 

severe COVID-19 had a similar signature, but over the course of the disease, the 

differences between patients with mild and severe disease increased. Later in the disease 

course, we observed a more pronounced re-appearance of intermediate/non-classical 

monocytes and mounting systemic CCL3 and CCL4 levels in patients with severe 

disease. Our data provide new insights into the dynamic nature of the early inflammatory 

response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection 

and identifies sustained pathological innate immune responses as a likely key mechanism 

in severe COVID-19, further supporting investigation of targeted anti-inflammatory 

interventions in severe COVID-19. 

 

Introduction 

Coronavirus disease 2019 (COVID-19) was first identified in December 2019 in Wuhan, 

China (Zhu et al., 2020). The disease developed into a global pandemic with over 15 

million confirmed cases and over 600,000 confirmed deaths as of July 24th 2020 (Dong, 

Du and Gardner, 2020). The clinical presentation of COVID-19 can vary from 

asymptomatic or mild cases to an acute respiratory distress syndrome (ARDS) requiring 

mechanical ventilation (Wu and McGoogan, 2020). About 5% of those clinically 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.04.236315doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.04.236315
http://creativecommons.org/licenses/by-nc-nd/4.0/


diagnosed with COVID-19 develop ARDS; these patients generally experience a sudden 

deterioration after around 1 week of symptom onset (Wiersinga et al., 2020). 

 

SARS-CoV-2, a positive-sense, single-stranded RNA virus, has been identified as the 

causative pathogen of COVID-19. This virus shows a tropism for cells that express the 

angiotensin-converting enzyme 2 (ACE2), which serves as an entry receptor for SARS-

CoV-2 into cells of the respiratory tract, kidneys, liver, heart, brain, and blood vessels 

(Puelles et al., 2020). Upon infection of epithelial cells, pattern recognition receptors that 

sense viral RNA, such as TLR7 and 8, initiate interferon (IFN) production and innate 

immune cell recruitment, triggering an inflammatory response that, in COVID-19, has also 

been linked to inflammasome activation (Iwasaki and Medzhitov, 2015; Yap, Moriyama 

and Iwasaki, 2020). 

 

Early data from China indicated that patients with severe disease mount a strong 

inflammatory response as shown by increased levels of proinflammatory cytokines, such 

as tumor necrosis factor (TNF), monocyte chemoattractant protein 1 (MCP-1, also known 

as CCL2), and macrophage inflammatory protein 1α (MIP-1α, also known as CCL3) 

(Huang et al., 2020). These data have been confirmed in other studies, which also 

revealed a distinct cytokine response with activated IL-1 and IL-6 pathways and 

chemokine enriched signatures (Blanco-Melo et al., 2020; Veerdonk et al., 2020). The 

type I IFN response during SARS and SARS-CoV-2 infection has gained particular 

attention; a suppressed or delayed type I IFN response may be associated with a severe 

disease course, potentially through the recruitment of proinflammatory monocytes to 

lungs even though the data are currently not conclusive (Channappanavar et al., 2016; 

Hadjadj et al., 2020; Lee et al., 2020; Park and Iwasaki, 2020). 

 

Myeloid cells have been implicated in the pathophysiology of COVID-19 by contributing 

to local tissue damage and as potential producers of the cytokines that lead to the 

systemic inflammatory state seen in patients with severe disease (McKechnie and Blish, 

2020; Merad and Martin, 2020; Vabret et al., 2020). Several studies have shown distinct 

changes within the monocytic compartment in patients with severe COVID-19 that were 
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similar to an immune paralysis phenotype described in sepsis. Thus, monocytes were 

shown to downregulate HLA-DR while retaining the ability to secrete proinflammatory 

cytokines (Giamarellos-Bourboulis et al., 2020). A recent single-cell RNA-sequencing 

study of bronchioalveolar lavage fluid showed changes in the local myeloid environment 

toward a proinflammatory, peripheral monocyte-derived phenotype and a depletion of 

alveolar macrophages in severe COVID-19 patients (Liao et al., 2020). Using the same 

approach, others demonstrated a phenotypic shift of the CD14+ population and a 

depletion of CD16+ cells in the myeloid compartment in peripheral blood of COVID-19 

patients compared to healthy individuals (Wilk et al., 2020). 

 

These data suggest a distinct role of the myeloid compartment in the pathogenesis of 

COVID-19; however, these studies have relied on relatively small sample sizes lacking 

patients with mild disease, and data regarding the cellular innate immune response and 

the underlying cytokine and chemokine network, at high phenotypic- and temporal 

resolution, is still missing. Here we describe an in-depth characterization of the myeloid 

compartments of 66 patients with mild to severe COVID-19 and 22 healthy controls by 

using 40-parameter mass cytometry and targeted proteomics of serum samples. Using 

this systems approach, we could reconstruct phenotypic changes arising throughout the 

course of the disease. At an early stage, the innate immune response was relatively 

similar in patients with mild and severe disease, characterized by an increase in CD169+ 

monocytes, which correlated with a strong pro-inflammatory cytokine signature. At a later 

stage, while patients with mild COVID-19 showed a normalization of their innate immune 

signature, patients with severe disease exhibited an ongoing inflammatory state 

dominated by a chemokine enriched signature and a higher frequency of CD16+ 

monocytes. 

 

Results 

Clinicopathological assessment of mild versus severe COVID-19 patients 

To better understand the role of the myeloid compartment in the pathophysiology of 

COVID-19, we established a multicenter cohort of 66 COVID-19 patients. We have 

previously described the SARS-CoV-2-specific antibody response in a subset of this  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.04.236315doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.04.236315
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1: Clinical and laboratory characteristics of the healthy controls and the COVID-19 patients 

 Healthy Mild cases Severe cases 

Number at sampling 22 28 38 

Median age (median (IQRa) [yrs]) 32.50 (29.25-48) 50.5 (34.50-60.25) 67.5 (59.0-79.0)** 

Gender (m/f) 11/11 12/16 24/14 

Time since symptom onset (days) - 12.86 ± 10.71 20.21 ± 11.96* 

COVID-19 disease severity sampling / max severityb 

Mild illness– no. - 18 / 16 - 

Mild pneumonia – no. - 10 / 8 - 

Severe pneumonia – no. - - 20 / 19 

Mild ARDS – no. - - 7 / 7 

Moderate ARDS – no. - - 7 / 8 

Severe ARDS – no. - - 4 / 8 

Laboratory values    

C-reactive protein  
(mean ± SD)  

1.21 ± 1.61 29.87 ± 51.60* 89.46 ± 81.23** 

Lactate dehydrogenase  
(% > upper limit of normal) 

0% 28% 73.53 %* 

Hemoglobin  
(mean ± SD, [g/l]) 

139.88 ± 13.31 132.36 ± 28.33 128.18 ± 24.62 

Absolute platelet count  
(mean ± SD, [G/l]) 

257.25 ± 60.50 203 ± 67.97 219.74 ± 117.14 

Total white blood cell count  
(mean ± SD, [G/l]) 

5.74 ± 1.52 5.83 ± 2.90 6.65 ± 3.49 

Monocytes  
(mean ± SD, [G/l]) 

0.42 ± 0.15 0.50 ± 0.36 0.45 ± 0.34 

Neutrophils 
(mean ± SD, [G/l]) 

3.17 ± 1.03 3.74 ± 2.70 5.28 ± 3.36** 

Eosinophils 
(mean ± SD, [G/l]) 

0.13 ± 0.08 0.04 ± 0.05* 0.03 ± 0.07** 

Basophils 
(mean ± SD, [G/l]) 

0.04 ± 0.02 0.02 ± 0.03* 0.01 ± 0.02* 

Lymphocytes 
(mean ± SD, [G/l]) 

1.95 ± 0.74 1.50 ± 0.69* 0.81 ± 0.44** 

CD3- CD56bright CD16dim NK cells 
(mean ± SD, [cells/ul]) 

11.14 ± 5.65 8.19 ± 4.98 6 ± 4.39* 

CD3- CD56dim CD16bright NK cells 
(mean ± SD, [cells/ul]) 

206.29 ± 107.13 165.96 ± 147.96 162.16 ± 103.69 

Level of care at blood sampling timepoint 

Outpatient – no. (%) - 14 (50) - 

Hospitalized – no. (%) - 14 (50) 38 (100) 

Comorbidities 

Hypertension – no. (%) - 7 (25) 22 (57.9)* 

Diabetes – no. (%) 1 (4.5) 4 (14.3) 12 (31.6) 

Heart disease – no. (%) - 3 (10.7) 17 (44.7)* 

Cerebrovascular disease – no. (%) - 1 (3.6) 4 (10.5) 

Lung disease – no. (%) - 3 (10.7) 6 (15.8) 

Kidney disease – no. (%) - 7 (25) 10 (26.3) 

Malignancy – no. (%) - - 4 (10.5) 

Systemic Immunosuppression – no. (%) - 3 (10.7) 4 (10.5) 

* Indicates significance (p-value threshold <0.05) compared to the healthy, ** in the severe indicates significance in comparison 
to the healthy and the mild. 
a IQR denotes the interquartile range 
b COVID-19 severity at sampling according to WHO guidelines (World Health Organization, 2020) 
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cohort (Cervia et al., 2020). According to the WHO definition (World Health Organization, 

2020) 28 of these patients experienced a mild disease course with either mild illness or  

mild pneumonia, whereas 38 experienced a severe disease course consisting of severe  

pneumonia or acute respiratory distress syndrome (ARDS) (Figure 1A, Table 1). 

We also evaluated samples from 22 healthy controls. Patients suffering from severe 

disease were on average older than those with mild disease (median age mild 50.5 (IQR 

34.5-60.25) years, severe 67.5 (IQR 59.0-79.0) years p = 0.00032), consistent with 

previously published results (Wu and McGoogan, 2020) (Figure 1B, Table 1). 

Furthermore, hypertension (p = 0.0118) and heart disease (p = 0.0032) were significantly 

associated with a severe disease course.  

The laboratory findings at admission revealed a prominent inflammatory state for patients 

with both mild and severe disease, as evidenced by high levels of C-reactive protein 

(healthy controls vs. mild p < 0.0001, mild vs. severe p < 0.0001) and pathological values 

of lactate dehydrogenase in mild (28%) and severe COVID-19 patients (75.53%) (p = 

0.0007). The complete differential blood count showed increased neutrophil counts in 

patients with severe disease compared to healthy controls (5.28 ± 3.36 G/l vs. 3.17 ± 1.03 

G/l, respectively (p = 0.039)). Moreover, eosinophil (healthy controls vs. mild p = 0.0004, 

healthy controls vs. severe p < 0.0001) and basophil counts (healthy controls vs. mild p 

< 0.0001, healthy controls vs. severe p < 0.0001) were significantly reduced in COVID-

19 patients compared to healthy controls. Natural killer cell (NK) cytopenia in the CD3-

CD56brightCD16dim population was also associated with severe disease course (healthy 

controls vs. severe p = 0.0023), confirming previous publications (Kuri-Cervantes et al., 

2020; Rodriguez et al., 2020; Zhang et al., 2020). The strong inflammatory state, the 

changes in the differential blood count and the reported prolonged clinical course before 

deterioration make COVID-19 a distinct disease (Giamarellos-Bourboulis et al., 2020). 

 

Systems-wide profiling of innate compartment of patients with COVID-19 

To comprehensively characterize the innate immune response against SARS-CoV-2 we 

took a systems-level approach (Figure 1A). We used a 40-plex mass cytometry (CyTOF) 

panel designed to identify the main immune cell types, including T cells, B cells, plasma 

cells, NK cells, monocytes, basophils, and neutrophils, which further allowed an in-depth 
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characterization of myeloid cell markers and subsets (Table S1). In parallel, the serum 

levels of 92 inflammation-related proteins were quantified by targeted proteomics (Figure 

1A). The mass cytometry dataset was acquired in two batches, using a 60-well barcoding 

scheme and a frozen antibody panel to minimize batch effects (Figure S1A-D).  

 

 

Figure 1: Experimental approach and identification of the main immune cell types in COVID-19 patients based 

on mass cytometry. 

(A) Schematic of the study design of a cohort of total 22 healthy controls, 28 patients with mild symptoms, and 

38 COVID-19 patients with severe disease course. PBMCs of 22 healthy controls, 27 mild and 29 severe COVID-19 

patients were isolated and analyzed by high-dimensional phenotypic and functional single-cell analysis by mass 

cytometry, and serum of 17 healthy controls, 26 mild and 36 severe COVID-19 patients was analyzed using a high-

throughput multiplexed proteomics assay (Olink) detecting 92 inflammation related serum proteins. 

(B) Boxplots showing the age distribution in the patient cohort relative to gender, disease severity, care at 

sampling, and disease grade (Pneu, pneumonia; Sev Pneu, severe pneumonia; Mod ARDS, moderate ARDS; Sev 

ARDS, severe ARDS). 

(C) t-SNE plot of a random subset of 1000 immune cells from each sample colored by main cell types. 

(D) Heatmap of the normalized marker expression in the main cell types. Clustering was based on Euclidean 

distance and the Ward.D2 aggregation method. Relative abundances of each cell type are plotted to the right of 

the heatmap. 

(E) Boxplots comparing the frequencies of the indicated myeloid subsets in healthy controls and patients with 

mild and severe disease. p-values were calculated with a Mann-Whitney-Wilcoxon test corrected for multiple 

testing and are shown if the results were significant p<0.05. 
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The main cell types were identified using a random forest classifier trained on manually 

gated cells from a representative subset of data (Figure S1E). The cell annotation was 

consistent with the t-SNE map visualization (Figure 1C, Figure S1F) and the expression 

of canonical markers (Figure 1D). We observed that the frequencies of monocytes and 

basophils were increased in severe cases in comparison to mild cases and healthy 

controls (Figure 1E). Since peripheral blood mononuclear cells (PBMCs) were isolated 

following a density gradient separation, only low-density neutrophils were included in the 

analysis. Consistent with a previous report (Morrissey et al., 2020) this subset was 

present at very low frequency in healthy controls but increased in patients infected with 

SARS-CoV-2, accounting for more than 50% of the PBMCs in some patients (Figure 1E). 

  

Different myeloid landscape in patients with mild and severe COVID-19 

Neutrophils have been previously reported to play a key role in the development of severe 

forms of SARS-CoV-2 infection. In particular, a high neutrophil-to-lymphocyte ratio is 

associated with poor clinical outcomes, and a CD16intCD44lowCD11bint low-density 

neutrophil population, associated with high IL-6 and TNF levels, was increased in severe 

COVID-19 patients compared to healthy controls (Morrissey et al., 2020). To assess the 

low-density neutrophil subsets in our cohort, we used t-SNE to visualize the expression 

of relevant markers on this cell type (Figure 2A). Although all cells were positive for the 

canonical neutrophil markers CD15 and CD66ace, differences in abundance of CD11b, 

CD11c, and CD16 were observed. Visualizing the disease status on the t-SNE map 

revealed an enrichment of CD16low neutrophils in patients with severe disease (Figure 

2B). To confirm this observation, we classified neutrophils into CD16hi, CD16int, and 

CD16low populations based on manual annotation of PhenoGraph clusters (Figure S2A-

B). The proportion of CD16low neutrophils was much higher in patients with severe 

disease than in the other two groups (Figure 2C), also consistent with previous 

observations (Morrissey et al., 2020). The CD16low subset was associated with an 

increased proliferation rate, based on Ki-67 positivity (Figure 2A). Since mature 

neutrophils do not proliferate in the periphery, this observation indicates the release of 

immature or pre-mature neutrophils into the circulation, consistent with their 

CD11blowCD16low phenotype (Scapini et al., 2016; Ng, Ostuni and Hidalgo, 2019). 
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Figure 2: In-depth characterization of the myeloid cells in the peripheral blood of COVID-19 patients. 

(A) t-SNE plots of normalized expression of the indicated markers across a maximum of 1000 neutrophils per 

patient. 

(B) t-SNE plot of normalized expression of the indicated markers across a maximum of 1000 neutrophils per 

patient colored by disease severity.  

(C) Left: t-SNE plot colored by CD16 expression level based on manual assignment of PhenoGraph clusters. Right: 

Histogram of the proportions of CD16hi, CD16Int, and CD16low neutrophils in COVID-19 patients and healthy 

controls. 

(D) t-SNE plots of normalized expression of the indicated markers across a maximum of 1000 monocytes per 

patient. 

(E) t-SNE plots as in (D) colored by disease severity (top) and by clusters identified with the PhenoGraph algorithm 

(bottom). 

(F) Heatmap of the normalized marker expression in PhenoGraph monocyte clusters. The frequency of each 

cluster in patients with mild and severe disease and in healthy controls is indicated. Cell numbers for each cluster 

are plotted to the right of the heatmap. Clusters were manually annotated to indicate phenotypes (classical, non-

classical, intermediate, and activated) based on marker expression. 
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To characterize the phenotypic diversity in the monocytic compartment across the cohort, 

we visualized all myeloid-related markers included in our panel on the corresponding t-

SNE map of the monocyte population (Figure 2D). Based on this approach, CD169, 

CCR2, CD14, and CD16 distinguished different monocyte subsets. We further performed 

automated clustering using the PhenoGraph algorithm to identify monocyte subsets in an 

unsupervised way, identifying 13 distinct cell communities (Figure 2E). Clusters M1-7 

were characterized by high abundance of CD14 and CCR2 and absence of CD16, 

corresponding to classical monocytes, clusters M8 and M9 were CD16+ and M10 to M13 

all showed an activated CD169+ phenotype.  

Clusters M1-3 were found predominantly in healthy controls and were characterized by 

relatively low abundance of HLA-DR, CD68, and granzyme B, indicating a non-activated 

phenotype (Figure 2E-F). Clusters M4-6 were found mainly in SARS-CoV-2-infected 

patients and had higher levels of granzyme B compared to other classical monocytes; 

granzyme B production has been suggested upon TLR8 activation and enhancing FcγR-

mediated antibody dependent cellular cytotoxicity (ADCC) in monocytes (Elavazhagan et 

al., 2015). M4 additionally showed decreased levels of CCR2, TIM-3 and VISTA, which 

has been implicated in chemotactic paralysis in a murine model (Broughton et al., 2019). 

Cluster M7, which expressed intermediate levels of CD169, could constitute a stage 

between classical monocytes and CD169+ classical monocytes. Cluster M9, which 

represented intermediate monocytes (CD14+CD16+), were found both in healthy subjects 

and patients with severe COVID-19, as were cluster M8 non-classical monocytes 

(CD14dim CD16+).  

Strikingly, CD169+ activated monocytes (clusters M10-13) were found exclusively in 

SARS-CoV-2-infected patients (Figure 2D-E). Cells in cluster M10 expressed CD16 and 

had reduced abundance of CD14 and CCR2 compared to M11-M13; these cells could be 

transitioning between non-classical/intermediate monocytes and the CD169+ 

compartment (Figure 2F). This hypothesis is further supported by a diffusion map 

analysis (Haghverdi, Buettner and Theis, 2015), which aligns cells along putative 

developmental trajectories and suggests that CD169+ could derive from both the CD16+ 

and the CD16- compartment (Figure S2C, D). Most markers, including CD64, CD169, 

CD4, and HLA-DR were progressively decreasing in clusters M11 to M13, suggesting that 
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these clusters were part of a phenotypic continuum rather than representing distinct cell 

subsets. These clusters were also characterized by increased Ki-67 positivity, especially 

M12, compared to non-classical, intermediate or classical monocytes (Figure 2F). In 

summary, high-dimensional single-cell mass cytometry analysis allowed us to 

characterize the monocyte compartments of COVID-19 patients and healthy controls with 

unprecedented depth and to uncover profound changes upon SARS-CoV-2 infection. 

 

Stratification of COVID-19 patients based on monocyte composition 

We next assessed the distribution of the 13 identified monocyte clusters across patients. 

We calculated the frequencies of each of the 13 clusters on a per sample basis and 

performed hierarchical clustering to order the patients by compositional similarities 

(Figure 3A). This analysis revealed three main groups, which were enriched for mild 

cases (Figure 3A, left), healthy controls (middle), and severe cases of COVID-19 (right). 

In the group that included mostly mild cases, the monocyte compartment consisted 

almost exclusively of the CD169+ clusters (M10-13) in different ratios, with only a minor 

fraction of cells from clusters M4-7. The healthy controls were relatively homogenous: 

About 80% of cells consisted of classical monocytes (clusters M1-3) and about 15-20% 

of cells were intermediate and non-classical monocytes (clusters M9 and M8, 

respectively) consistent with the literature (Thomas et al., 2017). The group dominated by 

patients with severe COVID-19 was characterized by a high frequency of distinct classical 

monocyte subsets (clusters M4-7), with frequencies of intermediate and non-classical 

monocytes slightly higher than in the group dominated by healthy controls.  

 

We observed similar patterns when we directly compared frequency differences of the 

different monocyte clusters in healthy subjects and patients with mild and severe disease 

(Figure 3B). Most strikingly, the CD169+ clusters M10-13 were completely absent in 

healthy controls and were significantly higher in patients with mild disease than those with 

severe disease, with the exception of cluster M12 where the significance level was not 

reached. Conversely, the classical monocyte clusters M1-3 were present at high levels in 

healthy donors, at lower levels in the patients with mild disease, and at intermediate levels 

in patients with severe disease. Clusters M4-6, also defined as classical monocytes, were  
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Figure 3: Patient stratification based on myeloid signature. 

(A) Stacked histogram of the PhenoGraph monocyte clusters per patient, ordered by cluster composition 

similarities based on Euclidean distance. Disease severity and grade for each patient are shown.  

(B) Boxplots of frequencies of the indicated monocyte clusters in the different disease severities. p-values were 

calculated with a Mann -Whitney-Wilcoxon test corrected for multiple testing and are shown if the results were 

significant p<0.05. 

(C) Top: Principal component analysis (PCA) of monocyte and neutrophil cluster frequencies and myeloid immune 

cell subset frequencies across the cohort. The PCA plot (top) shows the two first principal components (PCs) 

separating the samples. Each dot represents a patient, colored by disease status. Bottom: Biplot of parameters 

contributing to the separation. Arrow lengths and directions in the biplot indicate the importance of the 

parameter to the PCs.  
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virtually absent in healthy controls and were present at higher levels in patients with 

severe than mild disease. The non-classical (M8) and the intermediate monocytes (M9) 

were significantly reduced in patients with mild disease compared to healthy controls and 

were present at higher levels in a subset of patients with severe disease than in healthy 

controls.  

 

To gain more insight into the relationship between the innate immune signature and 

disease status, we performed a principal component analysis (PCA) of monocyte and 

neutrophil cluster frequencies and myeloid immune cell subset frequencies across the 

cohort and asked whether these innate immune signatures varied with disease severity. 

Indeed, the first two principal components enabled the stratification of subjects based on 

disease status (Figure 3C, left panel). A biplot graph displaying simultaneously the 

subjects and the eigenvectors of the different cell subsets revealed a strong association 

between clusters M1-M3 and healthy controls (Figure 3C, right panel). A group 

dominated by mild patients was characterized by high levels of M10 to M13 clusters. A 

more heterogeneous set of predominantly severe COVID-19 cases were defined by 

higher levels of M4-M6 and M8-M9 clusters and by CD16low low-density neutrophils. A 

correlative analysis performed across innate cell subsets and patients confirmed the 

pattern observed based on the PCA analysis (Figure S3A). Thus, despite the expected 

diversity across individuals, these multiparametric analysis identified innate immune 

signatures that allowed a stratification of healthy donors, patients with mild COVID-19, 

and patients with severe disease. 

 

Changes in innate cell frequencies over the course of SARS-CoV-2 infection 

We used the fact that the patients presented to hospitals at different times after symptom 

onset to examine cell cluster frequencies over the disease course. This allowed us to gain 

an understanding of the temporal dynamics of the different immune subsets present 

during SARS-CoV-2 infection. The total monocyte compartment remained relatively 

constant over the disease course, but monocytes were present at higher frequencies in 

patients with severe compared to mild disease (Figure 4A). The low-density neutrophils 
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were present at higher frequency in COVID-19 patients compared to healthy controls 

early after symptom onset and decreased at later stages of the disease. These changes 

were accompanied by a decrease of CD16hi neutrophils over disease course in patient 

with severe disease, whereas CD16low neutrophils remained consistently high (Figure 

4B). 

 

 

Figure 4: Myeloid cell frequencies over the course of the SARS-CoV-2 infection. 

(A) Scatter plot of monocyte and granulocyte frequencies relative to the time after symptom onset. The dots are 

colored by disease grade at sampling time. The frequencies in healthy controls are shown as a reference on the 

left. The pseudo-time course was modeled using a general additive model for the disease severities separately 

(mild, blue lines; severe, red lines). 

(B) Scatter plot of indicated neutrophil subset frequencies relative to the time after symptom onset. The cluster 

frequency is given in relation to the total neutrophils in the PBMCs. 

(C) Scatter plot of indicated monocyte subset frequencies relative to the time after symptom onset. The cluster 

frequency is given in relation to the total monocytes in the PBMCs. The clusters associated with non-classical, 

classical, and activated monocytes are indicated by purple, green, and orange boxes, respectively. 
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The monocyte subsets (clusters M1-13) also showed distinct changes over the disease 

course. Compared to healthy controls, clusters M1, M2 and M3 were observed at very 

low frequencies in mild and severe cases sampled early during the disease course but 

gradually increased in patients sampled later during their disease course (Figure 4C, 

purple box). The frequencies of these clusters tended to remain at lower levels than in 

the healthy controls even at time points as late as 47 days after symptom onset. (Figure 

4C, purple box). In contrast, frequencies of clusters M4 and M6, which were not present 

in the healthy controls, increased during the disease course, more notably in severe 

cases of COVID-19, with a peak around three weeks after symptom onset. (Figure 4C, 

purple box). Intriguingly, mild COVID-19 cases with increased frequencies of cluster M4 

were mostly hospitalized, further progressed to severe COVID-19 at a later time point or 

showed prolonged symptoms for more than two months (Figure S4A). 

 

The activated CD169+ monocyte clusters M10-M13 were present at high frequencies 

early during the disease course (Figure 4C, orange box). Within the first 20 days after 

symptom onset, the monocyte compartment was strongly dominated by this phenotype, 

which decreased thereafter and was undetectable in most patients sampled more than 

20 days after symptom onset. This pattern was similar in both groups with mild and severe 

COVID-19. 

 

The CD16+CD14dim M8 (non-classical) and CD16+CD14+ M9 (intermediate) monocyte 

clusters were virtually absent at early stage upon viral infection (Figure 4C, green box), 

consistent with data from single cell-RNA sequencing studies on PBMCs (Wilk et al., 

2020). The initial reduction was followed by their recovery at later stages of disease, 

showing a trend towards higher frequencies in patients with severe compared to mild 

disease for both M8 and M9.  

In summary, the analysis of cluster frequencies in COVID-19 patients in relation to the 

time since symptom onset revealed distinct dynamic patterns of monocyte frequencies in 

patients with mild and severe disease. At early stages in all patients, the monocyte 

compartment was dominated by activated monocytes (cluster M10-13), which was 

characteristic for COVID-19 patients. Despite a normalization of the CD14+ monocyte 
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compartment in the blood thereafter, the composition of the monocyte compartment 

differed from that of healthy subjects 40 days after symptom onset in both groups with 

mild and severe COVID-19. 

 

Temporal correlation of cytokine signatures and innate cell subsets 

Monocyte development, homeostasis, and fate are strongly interlinked with the cytokine 

and chemokine environment. To probe potential correlates to the changes seen in the 

myeloid compartment during COVID-19 progression, we used the targeted proteomics 

Olink assay to measure 92 inflammation-associated serum proteins in samples from 17 

healthy controls, 26 patients with mild disease, and 36 patients with severe disease who 

were concomitantly analyzed by mass cytometry. The comparison of data from healthy 

controls and patients with severe COVID-19 showed a strong upregulation of 

proinflammatory cytokines and chemokines (Figure 5A). IL-6, TNF, IFNγ, and IL-18 were 

significantly upregulated (significance cut-off false discovery rate (FDR) 1%) in patients 

with severe disease as shown by the proteomics measurements (Figure 5A) consistent 

with previous reports (Blanco-Melo et al., 2020; Veerdonk et al., 2020). The elevated 

levels of IL-18 and increased LDH we observed might indicate a contribution of 

inflammasome activation (Lee et al., 2020; Merad and Martin, 2020; Yap, Moriyama and 

Iwasaki, 2020), although we did not detect an elevation of IL-1β (Figure S5A).  

 

Several chemokines important for myeloid cell trafficking were significantly upregulated 

in patients with severe COVID-19. These chemokines included MCP-1 (also known as 

CCL2), MCP-2 (also known as CCL8), MCP-3 (also known as CCL7), CX3CL1 

(chemotactic for non-classical monocytes), CXCL1 (a potent neutrophil-recruiting 

chemokine), and the more promiscuous CCL3 and CCL4. M-CSF, which is crucial for 

myeloid precursor survival and lineage commitment (Mossadegh-Keller et al., 2013; 

Boettcher and Manz, 2017), was significantly increased in severe as well as mild COVID-

19 patients compared to healthy controls (Figure 5A, Figure S5B). 
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Figure 5: Cytokine signature shift between early and late stages of disease correlates with innate cell subsets. 

(A) Volcano plot of the Olink proteomics data comparing the healthy control data to that from patients with severe 

COVID-19. An FDR of 1% was taken as significance cut-off. 

(B) Scatter plot of serum protein expression levels relative to the time after symptom onset. Plotted is normalized 

protein expression (NPX) on a log2 scale. The dots are colored by disease grade at sampling time. The expression 

levels of the healthy controls are shown as a reference on the left. The pseudo-time course was modeled using a 

general additive model for the disease severities separately (mild, blue lines; severe, red lines).  

Legend continues on next page 
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Distinct expression patterns emerged by plotting cytokine expression versus time after 

symptom onset. The relation was modeled using a general additive model as in Figure 4. 

In comparison to healthy controls, IFNγ and MCP-2 were present at significantly higher  

concentrations in patients with severe disease sampled early after symptom onset but 

returned to near-normal values at later stages of the disease course. Consistent with 

confirmatory ELISA measurements, M-CSF, IL-6 and TNF, which were all present at 

higher levels in patients with severe disease than mild disease, tended to be present at 

high levels throughout the disease course in patients with severe disease, whereas a 

decrease was observed in patients with mild symptoms as the disease progressed 

(Figure 5B, Figure S5A). The chemokines CXCL1, CX3CL1, MCP-1, and MCP-3 had 

significantly increased levels compared to healthy controls in patients with severe COVID-

19 independent of time after symptom onset (Figure S5B). In striking contrast, CCL3 and 

CCL4 were not induced in patients in the first days of the disease but were significantly 

increased at later stages in patients with severe disease (Figure 5B). This is suggestive 

of a more exacerbated inflammatory phenotype late during the disease course in patients 

with severe disease than in those with mild symptoms. Differential expression analysis 

confirmed this observation (Figure S5C). 

 

To better understand the interplay between these serum proteins and cell subsets of the 

myeloid compartment, we performed a hierarchical clustering on a correlation map of all 

significantly changed (FDR 1%) serum proteins and immune cell subsets and myeloid 

clusters (Figure S5D). This approach demonstrated a strong association between the 

(C) Biplot of the first two PCs of monocyte and neutrophil cluster frequencies, myeloid immune cell subset 

frequencies, and expression values of selected serum proteins. Dots represent the COVID-19 patients and healthy 

controls, and the arrow lengths and directions indicate the importance of the parameter to the PCs. 

(D) Scatter plot of the first two PCs of monocyte and neutrophil cluster frequencies, and myeloid immune cell 

subset frequencies, and expression values of selected serum proteins colored by the time since symptom onset. 

(E) Scatter plots of frequencies of the indicated clusters versus expression of selected serum proteins in individual 

patients. The dots indicate data for individual patients colored by disease grade. Relationship between the two 

variables is visualized with a linear regression line and quantified using a Spearman’s correlation coefficient (Rho) 

with the corresponding p value. 

(F) Scatter plots of frequencies of the indicated monocyte clusters in individual patients who were sampled twice 

during the course of the study. Dots are colored by patient number, and lines connect paired samples. 

(G) Scatter plots of NPX on a log2 scale of the indicated soluble factors in patients who were sampled twice during 

the course of the study. Dots are colored by patient number, and lines connect paired samples. 
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activated CD169+ monocyte clusters M10-13 with pro-inflammatory cytokines, including 

IFNγ, MCP-2, IL-18, and IL-6, and an association between the classical monocyte 

clusters M4 and M5 with TGF-α, CCL3, and CCL4. To further understand these 

relationships in the context of the patients in our cohort, we performed PCA. This analysis 

revealed that certain combinations of cellular and soluble factors stratified patients and 

healthy controls (Figure 5C, D). One group, dominated by patients with mild symptoms 

and patients sampled early in the disease course, was defined by the clusters M10-13 in 

combination with the cytokines MCP-2 and IFNγ. A second group of patients, enriched 

for more severe, late-stage cases, was defined primarily by the non-classical clusters M4-

6 in combination with the cytokines CCL3, CCL4, and CCL23 (Figure 5C, D). The healthy 

donors were defined by the clusters M1-3 and were located close to the majority of late-

stage mild patients. The intermediate and non-classical clusters M8 and M9 contributed 

to both the healthy and the severe groups. These data strongly suggest an innate 

signature shift between the early and the late stage of the disease, leading to a divergence 

of patients with mild and severe COVID-19 over the disease course. While the former 

became similar to healthy controls, the latter exhibited signs of hyper-inflammation. 

 

To further characterize the relationships between cell clusters and soluble factors 

identified in the PCA, we performed a direct correlation between the cluster frequencies 

and cytokine levels. There was a strong correlation between cluster M12 and M-CSF, 

IFNγ, IL-6, and TNF, which was most evident in early-stage patients (Figure 5E, Figure 

S5E). We also found that the non-classical monocytes M8 and the intermediate monocyte 

cluster M9 were strongly correlated with CCL3 and CCL4, but in this case the correlation 

was most prominent in late-stage patients (Figure 5E, right panels, Figure S5F). These 

results suggest that the inflammatory environment found in late stages of COVID-19 is 

predominantly associated with the presence of the intermediate monocytes.  

 

To determine whether the signature switch observed in our pseudo-temporal analysis 

was observed in individual patients over time, we compared the cluster frequencies and 

cytokine levels in four patients who were sampled twice. We confirmed that the 

frequencies of the activated CD169+ clusters M10-13 were reduced over time, and the 
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frequencies of the non-classical monocyte cluster M8 and the intermediate monocyte 

cluster M9 were increased (Figure 5F). Similarly, we again observed decreases of IFNγ 

and MCP-2 over time in these re-sampled patients, accompanied by increases in CCL3 

and CCL4, providing strong support to the findings made based on the pseudo-temporal 

analysis (Figure 5G). Overall, these data suggest that there is a coordinated change from 

a CD169+, IFNγ, and MCP-2 phenotype to an intermediate monocyte, CCL3, and CCL4 

phenotype in the first two weeks after SARS-CoV-2 infection and that patients with severe 

COVID-19, who show long-lasting high levels of CCL3 and CCL4, show a more dramatic 

phenotypic switch. 

 

Discussion 

Early in the COVID-19 pandemic, data began to suggest that patients with severe disease 

have hyperinflammatory immune responses with changes in the myeloid compartment 

toward a pro-inflammatory phenotype (Huang et al., 2020; Liao et al., 2020; Wilk et al., 

2020). Employing a systems-wide immune characterization on a multicenter cohort of 

COVID-19 patients and healthy controls we identified marked changes in the innate 

immune signature in SARS-CoV-2 infected individuals. 

We discovered that the myeloid compartment undergoes profound phenotype changes 

during a SARS-CoV-2 infection with a decrease in the classical monocyte clusters M1, 

M2 and M3, a depletion of the intermediate and non-classical monocyte clusters M9 and 

M8, toward a CD169+ activated monocyte phenotype and a surge of low-density 

neutrophils early in the disease course. The immature phenotype of the neutrophils is in 

accordance with data in whole blood (Carissimo et al., 2020).  

CD169 is a sialoadhesin involved in pathogen uptake, which is quickly induced in a type 

I IFN dependent manner on the surface of monocytes upon Epstein–Barr virus (EBV) or 

human immunodeficiency virus (HIV) infection (Rempel et al., 2008; Farina et al., 2017). 

Consistent with our findings, CD169 has been reported on circulating monocytes in 

COVID-19 patients (Bedin et al., 2020; Carissimo et al., 2020), while type I IFNs have 

been shown to be a hallmark of SARS-CoV-2 infection and an impaired type I IFN 

response has been linked with severe disease (Hadjadj et al., 2020; Wilk et al., 2020). 
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Our data suggest that CD169+ monocytes arise from classical, intermediate and non-

classical monocytes, similarly to what was reported upon simian immunodeficiency virus 

(SIV) or HIV infection (van der Kuyl et al., 2007; Kim et al., 2015). The fate of these 

CD169+ monocytes, which disappear quickly from the blood, remain elusive. 

Bronchioalveolar lavage fluid and SARS-CoV mouse models have shown that 

inflammatory monocyte-derived macrophages play crucial roles in local inflammation and 

tissue damage (Channappanavar et al., 2016; Liao et al., 2020). Recruitment of these 

activated CD169+CCR2+ monocytes to the lung through the CCR2-CCL2 axis is possible 

as MCP-1 (CCL2) is significantly upregulated in COVID-19 patients. These cells could 

then contribute to the lung damage observed in patients with severe disease. 

Analyzing the inflammatory cytokine and chemokine response to SARS-CoV-2 we 

identified a TNF and IL-6-dominated inflammatory response in COVID-19 patients in 

agreement with a previous report (Veerdonk et al., 2020). The initial inflammatory 

response was dominated by IFNγ, MCP-2, M-CSF, and IL-6, which were coregulated with 

the CD169+ monocyte subsets, most prominently the M12 cluster, and the low-density 

granulocytes as evidenced by an unsupervised correlation matrix. IL-6 and M-CSF 

contribute to increased hematopoiesis under inflammatory conditions (Boettcher and 

Manz, 2017), potentially explaining the initial increase of activated monocytes and 

granulocytes after SARS-CoV-2 infection. Monocytes and neutrophils are generally 

considered to lose their proliferative capacity once they leave the bone marrow, a process 

driven by the chemokines MCP-1 and MCP-3 (Swirski, Hilgendorf and Robbins, 2014). A 

small subset of monocytes has been shown to retain proliferative capacity especially 

under inflammatory conditions. These cells might contribute to the initial monocyte wave 

as we detected increased Ki-67 positivity in these cells. However, this might also be 

explained by a more immature phenotype of these cells (Clanchy, 2006; Patel et al., 

2017). Our proteomics panel did not include G-CSF and GM-CSF, two other cytokines 

crucially involved in myeloid homeostasis (Lang et al., 2020). 

Late in the disease course, COVID-19 patients with severe disease continued to show 

signs of ongoing inflammation, including abnormally high levels of TNF. The innate 

signature at this stage was driven by a surge of the disease specific clusters M4-M6, the 
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reappearance of intermediate and non-classical monocytes, which reached particularly 

high levels in severe COVID-19 patients, and the chemokines CCL3 and CCL4. These 

CCR5 ligands drive the recruitment of a variety of immune cells such as neutrophils and 

monocytes, but also adaptive immune cells, and are frequently increased in acute 

respiratory viral infections (Glass, Rosenberg and Murphy, 2003; Nuriev and Johansson, 

2019). Both have been shown to be produced on a transcriptomic level by monocytes in 

COVID-19 patients (Lee et al., 2020; Liao et al., 2020). It could be hypothesized that the 

production of these chemokines at late disease stages in severe COVID-19 is a correlate 

of ongoing local viral replication leading subsequently to a continuous systemic 

inflammatory state (Lucas et al., 2020), potentially as a result of an inadequate T cell 

response (Adamo et al., 2020). 

CD16+ monocytes have gained considerable attention in the pathophysiology of COVID-

19 as they are critical for viral sensing and the subsequent inflammatory response, 

including via the production of CCL3 and CCL4 (Cros et al., 2010; Kwissa et al., 2014; 

Zhou et al., 2020). The strong reduction of CD16+ monocytes M8 and M9 early in the 

disease course is striking. Several mechanisms such as differentiation, ie. acquisition of 

an inflammatory phenotype, or migration, potentially dependent on CX3CL1 (Thomas et 

al., 2015), could be involved. A recent study in bronchoscopy samples from COVID-19 

patients in the ICU found an enrichment of CD16+ monocytes in the lung (Sanchez-

Cerrillo et al., 2020). 

This raises a caveat of our study, as we analyzed only peripheral blood samples. Another 

limitation is that only four patients were analyzed longitudinally, whereas the cellular 

trajectories during the acute infection rely on samples collected from multiple individuals 

who presented at different times after symptom onset. However, our time course analysis 

also highlights the importance of the sampling time point in analyzing the immune 

response. Notably, the paired sample analysis confirmed the patterns observed at the 

cohort level, providing strong support to the pseudo-time analysis.  

In summary, our systems-level analysis of the innate immune response to SARS-CoV-2 

shows that there are profound changes in the peripheral monocyte compartment that are 
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largely similar in cases of mild and severe disease. However, the patients with severe 

symptoms have a markedly stronger inflammatory phenotype throughout the disease 

course and most prominently show a distinct innate signature at later stages of the 

disease. These results provide evidence for a strong inflammatory response to SARS-

CoV-2 infection, further supporting investigation of targeted anti-inflammatory 

interventions in severe cases of COVID-19 (Merad and Martin, 2020). The distinct time-

dependent change in immune signatures indicate that specific interventions might benefit 

from precise timing to maximize therapeutic efficacy (Lang et al., 2020). 

 

Methods 

Human subjects and patient characteristics 

Patients were recruited at the Hospital Uster, Hospital Limmattal, Triemli Hospital, and 

the University Hospital Zurich (Switzerland) from an outpatient as well as inpatient setting. 

The patients were eligible if they were symptomatic at the time of inclusion, had a newly 

diagnosed SARS-CoV-2 infection confirmed by quantitative reverse-transcriptase 

polymerase chain reaction (RT-qPCR), and were more than 18 years old. Healthy donors 

(n=22) were recruited as controls. All participants, patients and healthy controls, signed 

a written informed consent. The study was approved by the Cantonal Ethics Committee 

of Zurich (BASEC #2016-01440) and performed in accordance with the Declaration of 

Helsinki.  

 

Standard clinical laboratory data (CRP, LDH, complete blood count with differential) was 

collected from the first day of hospitalization until the end of hospitalization. Patients were 

classified according to WHO criteria (World Health Organization, 2020) into mild cases 

(those with mild illness and mild pneumonia) and (b) severe cases (those with severe 

pneumonia and ARDS, as defined by the Berlin definition (Ranieri et al., 2012)). A blood 

sample was collected from each patient, if possible coordinated with the usual care. For 

longitudinal analysis of SARS-CoV-2-specific immune responses two subjects with mild 

COVID-19 and two subjects with severe COVID-19 were sampled twice during their 

disease course. All samples were processed in the same hospital laboratory. 
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In total 70 COVID-19 patients and 22 healthy subjects were recruited. Four patients were 

excluded from analysis (two due to chronic lymphocytic leukemia and two because it was 

unclear whether the current disease was the primary infection). All healthy controls were 

tested for SARS-CoV-2 specific IgA and IgG antibodies and all were below the diagnostic 

reference value. The complete characteristics of the cohort are given in Table 1. 

All patients received a standard clinical laboratory sampling and cytokines were 

measured. Furthermore, samples from 27 COVID-19 patients with mild, 29 with severe 

disease and all healthy subjects were processed for CyTOF. Samples from 26 COVID-

19 patients with mild, 36 with severe disease and 17 healthy patients were evaluated with 

Olink proteomics. 54 patients could be analyzed by CyTOF and Olink. Longitudinal 

samples from patient COV2-A0013 homogeneously failed the Olink incubation control, 

and could thus only be compared with each other, but were excluded from other analysis, 

together with one other sample which was not correctly processed prior to analysis. 

Routine flow cytometry for NK cell quantification was performed on all samples in the 

accredited immunological laboratory at the University Hospital Zurich, as previously 

described (Adamo et al., 2020). The cohort characteristics and a selection of the Olink 

dataset are also shown in Adamo et al. describing the T cell response of this cohort. 

  

Blood collection and sample preparation for CyTOF 

Venous blood samples were collected in BD vacutainer EDTA tubes, centrifuged, plasma 

removed, and the remaining blood diluted with an equal amount of PBS. This mixture was 

then layered into a SepMate tube (STEMCELL, Cat. #85460) filled with lymphodex (Inno-

Train Diagnostik GmBH, Cat. #002041500) solution. The tube was centrifuged, and the 

PBMCs were washed with PBS and re-centrifuged. Aliquots of 1x106 PBMCs were then 

centrifuged, resuspended in 200 µL 1.6% PFA (Electron Microscopy Sciences) diluted 

with RPMI 1640 medium, and fixed at room temperature for 10 min. Subsequently the 

reaction was stopped by adding 1 mL of cell staining medium (CSM, PBS with 0.5% 

bovine serum albumin and 0.02% sodium azide). The cells were centrifuged and the 

disrupted pellet was frozen at -80 °C. The remaining PBMCs were frozen and stored in 

1.5 mL 90% FBS, 10% DMSO at -80 °C for at least 4 h. For long-term storage, the frozen 

cells were moved to the liquid nitrogen. The reference cells for the CyTOF analysis, 
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PBMCs from a healthy donor, were stimulated with either 0.1 µg/mL phytohemagglutinin 

for 24 h or 1 µg/mL lipopolysaccharide and 1.5 µg/mL monensin for 48 h. One-third of the 

PBMCs were unstimulated. After stimulation or not, the PBMCs were fixed and frozen as 

described above. 

 

Mass cytometry barcoding 

We ensured homogenous staining by barcoding 1 x 106 PBMCs from each patient using 

a 60-well barcoding scheme consisting of unique combinations of four out of eight 

barcoding reagents as previously described (Zunder et al., 2015). Six palladium isotopes 

(102Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd, Fluidigm) were chelated to 1-(4-

isothiocyanatobenzyl)ethylenediamine-N,N,N’,N’ tetraacetic acid (Dojino). Two indium 

isotopes (113In and 115In, Fluidigm) were chelated to 1,4,7,10-tetraazacy-clododecane-

1,4,7-tris-acetic acid 10-maleimide ethylacetamide (Dojino) following standard 

procedures (Zivanovic, Jacobs and Bodenmiller, 2014). We titrated mass tag barcoding 

reagents to ensure equivalent staining for each reagent; final concentrations were 

between 50 nM and 200 nM. We used the previously described transient partial 

permeabilization approach to barcode the cells (Behbehani et al., 2014). PBMCs from all 

samples were randomly loaded into wells of two 96-well plates and were analyzed in two 

independent experiments. Three standard samples were loaded onto each plate to 

enable assessment of inter-run variability. Cells were washed with 0.03% saponin in PBS 

(PBS-S, Sigma Aldrich) and incubated for 30 min with 200 μL of mass tag barcoding 

reagents diluted in PBS-S. After washing three times with CSM, samples from each plate 

were pooled and then split into two tubes for staining with the two antibody panels. 

 

Antibodies and antibody labeling 

The antibodies used in this study, including provider, clone, and metal tag, are listed in 

Table S1. Antibody conjugation was performed using the MaxPAR antibody labelling kit 

(Fluidigm). Upon conjugation, the yield of recovered antibody was assessed on a 

Nanodrop (Thermo Scientific) and then supplemented each antibody with Candor 

Antibody Stabilizer. We performed titrations to determine optimal concentrations of all 
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conjugated antibodies. All antibodies used in this study were managed using the cloud-

based platform AirLab (Catena et al., 2016). 

 

Sample staining and data acquisition 

After barcoding, pooled cells were incubated with FcR blocking reagent (Miltenyi Biotec) 

for 10 min at 4 °C. Cells were stained with 400 µL of the antibody panel per 107 cells for 

45 min at 4 °C. Cells were washed three times in CSM, once in PBS, resuspended in 0.4 

ml of 0.5 µM nucleic acid Ir- labeled intercalator (Fluidigm) and incubated overnight at 4 

°C. Samples were then prepared for CyTOF acquisition by washing the cells once in 

CSM, once in PBS, and once in water. Cells were then diluted to 0.5 x 106 cells/mL in 

Cell Acquisition Solution (Fluidigm) containing 10% EQ™ Four Element Calibration 

Beads (Fluidigm). Samples were acquired on a Helios upgraded CyTOF 2. Individual .fcs 

files collected from each set of samples were pre-processed using an semi-automated R 

pipeline based on CATALYST to perform individual file concatenation, bead based 

normalization, compensation, debarcoding, and batch correction as previously described 

(Crowell et al., 2020). Spillover matrix for CyTOF compensation was assessed on all 

antibodies used in this study as previously suggested (Chevrier et al., 2018). 

 

Mass cytometry data analysis 

Upon pre-processing, a subset of 1,000 randomly selected cells from each sample were 

exported as FCS files and loaded on Cytobank. Immune cell subsets were manually gated 

according to the scheme described in Figure S1D. FCS files corresponding to each gate 

were exported and used to train a random forest classifier (R package randomForest), 

based on 500 trees and 6 variables tried at each split, leading to an OOB estimate of error 

rate of 0.43%. The resulting random forest model was used to assign each cell of the 

dataset to the predefined cell types. Based on a 40% assignment probability cutoff and a 

20% delta cutoff, 98% of the cells were retained in the analysis. To visualize the high-

dimensional data in two dimensions, the t-SNE algorithm was applied on data from a 

maximum of 1,000 randomly selected cells from each sample, with a perplexity set to 80, 

using the implementation of t-SNE available in CATALYST (Nowicka et al., 2019). 

Channels which were not relevant for these cell subsets or which were affected by 
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different background stainings across batches were excluded (CD15, CD66ace, CD3, 

CD45, CD8a, CD20, CXCR2, GranzymeB). Data were displayed using the ggplot2 R 

package or the plotting functions of CATALYST (Nowicka et al., 2019). 

Visualization of marker expression on t-SNE maps was performed upon data 

normalization between 0 and 1. The maximum intensity was defined as the 99th 

percentile. In order to perform hierarchical clustering, pairwise distances between 

samples were calculated using the Spearman correlation or euclidean distance, as 

indicated in the figure legend. Dendrograms were generated using Ward.2’s method. 

Heatmaps were generated based on the pheatmap package. Clustering analysis of the 

myeloid and neutrophil subsets was performed using the R implementation of 

PhenoGraph run on all samples simultaneously, with the parameter k, defining the 

number of nearest neighbors, set to 100 (Levine et al., 2015). For the myeloid subset, 

clusters with less than 600 cells were excluded from the analysis. 

To identify putative single-cell trajectories among monocyte clusters, we used the 

implementation of the diffusion map algorithm available in the R package scater using the 

default parameters and the same channels used to perform the t-SNE analysis. A 

maximum of 1,000 cells randomly selected from each cluster were included in the 

analysis.  

The principal component analysis to identify the variations in the data described by the 

cluster frequencies or the combination of cluster frequencies and cytokine levels was 

performed based on the FactoMineR package. Data were visualized using the factoextra 

R package. 

Cytokine ELISA 

Serum was collected in BD vacutainer tubes. The samples were processed in the 

accredited immunological laboratory at the University Hospital Zurich. IL-1β, IL-2, IL-6, 

IFNγ, TNFα were quantified using R&D Systems ELISA kits.  

  

Proteomics analysis using Olink 
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For serum proteomics, the commercially available proximity extension assay-based 

technology from Olink® Proteomics was used. Heat-inactivated plasma samples were 

sent to the Olink analysis laboratory in Davos, Switzerland for analysis using the 

inflammation panel. The Olink technology has been described previously (Lundberg et 

al., 2011). Briefly, binding of paired cDNA-tagged antibodies directed against the targeted 

serum proteins lead to hybridization of the corresponding DNA oligonucleotides allowing 

subsequent extension by a DNA polymerase. The protein level is quantified using real-

time PCR. Only samples that passed the quality control tests are reported. If expression 

was below the detection limit, the value reported is the lower limit of detection. Only 

proteins that were detectable in at least 50% of samples were used for subsequent 

analysis. 

 

Statistical analysis 

The statistical analysis was performed using GraphPad Prism (version 8.4.3, GraphPad 

Software, La Jolla California USA) and R software (version 4.0.1) using the package 

"mgcv". Mann-Whitney Wilcoxon test was used to test for differences between continuous 

variables and p-values were adjusted for multiple testing using the Holm method. 

Categorical variables were compared using Fisher’s exact test. Generalized additive 

models were used to evaluate relationships between time since symptom onset and 

different variables, with the number of knots used to represent the smooth term set at 

three.  

The correlations between cellular subsets and the serum protein expressions were 

analyzed using non-parametric Spearman correlations. The significance threshold was 

set at an alpha < 0.05. For the differential expression analysis, a false-discovery rate 

(Benjamini, Krieger and Yekutieli, 2006) of 1% was used as significance threshold, except 

for the late vs early comparison where 5% was used as indicated. 
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