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Abstract

Coronavirus disease 2019 (COVID-19) manifests with a range of severities, but immune
signatures of mild and severe disease are still not fully understood. Excessive
inflammation has been postulated to be a major factor in the pathogenesis of severe
COVID-19 and innate immune mechanisms are likely to be central in the inflammatory
response. We used 40-plex mass cytometry and targeted serum proteomics to profile
innate immune cell populations from peripheral blood of patients with mild or severe
COVID-19 and healthy controls. Sampling at different stages of COVID-19 allowed us to
reconstruct a pseudo-temporal trajectory of the innate immune response. Despite the
expected patient heterogeneity, we identified consistent changes during the course of the
infection. A rapid and early surge of CD169" monocytes associated with an IFNy*MCP-
2" signature quickly followed symptom onset; at symptom onset, patients with mild and
severe COVID-19 had a similar signature, but over the course of the disease, the
differences between patients with mild and severe disease increased. Later in the disease
course, we observed a more pronounced re-appearance of intermediate/non-classical
monocytes and mounting systemic CCL3 and CCL4 levels in patients with severe
disease. Our data provide new insights into the dynamic nature of the early inflammatory
response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection
and identifies sustained pathological innate immune responses as a likely key mechanism
in severe COVID-19, further supporting investigation of targeted anti-inflammatory
interventions in severe COVID-19.

Introduction

Coronavirus disease 2019 (COVID-19) was first identified in December 2019 in Wuhan,
China (Zhu et al., 2020). The disease developed into a global pandemic with over 15
million confirmed cases and over 600,000 confirmed deaths as of July 24th 2020 (Dong,
Du and Gardner, 2020). The clinical presentation of COVID-19 can vary from
asymptomatic or mild cases to an acute respiratory distress syndrome (ARDS) requiring
mechanical ventilation (Wu and McGoogan, 2020). About 5% of those clinically
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diagnosed with COVID-19 develop ARDS; these patients generally experience a sudden
deterioration after around 1 week of symptom onset (Wiersinga et al., 2020).

SARS-CoV-2, a positive-sense, single-stranded RNA virus, has been identified as the
causative pathogen of COVID-19. This virus shows a tropism for cells that express the
angiotensin-converting enzyme 2 (ACEZ2), which serves as an entry receptor for SARS-
CoV-2 into cells of the respiratory tract, kidneys, liver, heart, brain, and blood vessels
(Puelles et al., 2020). Upon infection of epithelial cells, pattern recognition receptors that
sense viral RNA, such as TLR7 and 8, initiate interferon (IFN) production and innate
immune cell recruitment, triggering an inflammatory response that, in COVID-19, has also
been linked to inflammasome activation (lwasaki and Medzhitov, 2015; Yap, Moriyama
and lwasaki, 2020).

Early data from China indicated that patients with severe disease mount a strong
inflammatory response as shown by increased levels of proinflammatory cytokines, such
as tumor necrosis factor (TNF), monocyte chemoattractant protein 1 (MCP-1, also known
as CCL2), and macrophage inflammatory protein 1a (MIP-1a, also known as CCL3)
(Huang et al., 2020). These data have been confirmed in other studies, which also
revealed a distinct cytokine response with activated IL-1 and IL-6 pathways and
chemokine enriched signatures (Blanco-Melo et al., 2020; Veerdonk et al., 2020). The
type | IFN response during SARS and SARS-CoV-2 infection has gained particular
attention; a suppressed or delayed type | IFN response may be associated with a severe
disease course, potentially through the recruitment of proinflammatory monocytes to
lungs even though the data are currently not conclusive (Channappanavar et al., 2016;
Hadjadj et al., 2020; Lee et al., 2020; Park and Iwasaki, 2020).

Myeloid cells have been implicated in the pathophysiology of COVID-19 by contributing
to local tissue damage and as potential producers of the cytokines that lead to the
systemic inflammatory state seen in patients with severe disease (McKechnie and Blish,
2020; Merad and Martin, 2020; Vabret et al., 2020). Several studies have shown distinct

changes within the monocytic compartment in patients with severe COVID-19 that were
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similar to an immune paralysis phenotype described in sepsis. Thus, monocytes were
shown to downregulate HLA-DR while retaining the ability to secrete proinflammatory
cytokines (Giamarellos-Bourboulis et al., 2020). A recent single-cell RNA-sequencing
study of bronchioalveolar lavage fluid showed changes in the local myeloid environment
toward a proinflammatory, peripheral monocyte-derived phenotype and a depletion of
alveolar macrophages in severe COVID-19 patients (Liao et al., 2020). Using the same
approach, others demonstrated a phenotypic shift of the CD14* population and a
depletion of CD16" cells in the myeloid compartment in peripheral blood of COVID-19
patients compared to healthy individuals (Wilk et al., 2020).

These data suggest a distinct role of the myeloid compartment in the pathogenesis of
COVID-19; however, these studies have relied on relatively small sample sizes lacking
patients with mild disease, and data regarding the cellular innate immune response and
the underlying cytokine and chemokine network, at high phenotypic- and temporal
resolution, is still missing. Here we describe an in-depth characterization of the myeloid
compartments of 66 patients with mild to severe COVID-19 and 22 healthy controls by
using 40-parameter mass cytometry and targeted proteomics of serum samples. Using
this systems approach, we could reconstruct phenotypic changes arising throughout the
course of the disease. At an early stage, the innate immune response was relatively
similar in patients with mild and severe disease, characterized by an increase in CD169*
monocytes, which correlated with a strong pro-inflammatory cytokine signature. At a later
stage, while patients with mild COVID-19 showed a normalization of their innate immune
signature, patients with severe disease exhibited an ongoing inflammatory state
dominated by a chemokine enriched signature and a higher frequency of CD16+

monocytes.

Results

Clinicopathological assessment of mild versus severe COVID-19 patients

To better understand the role of the myeloid compartment in the pathophysiology of
COVID-19, we established a multicenter cohort of 66 COVID-19 patients. We have
previously described the SARS-CoV-2-specific antibody response in a subset of this
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Table 1: Clinical and laboratory characteristics of the healthy controls and the COVID-19 patients

Healthy Mild cases Severe cases
Number at sampling 22 28 38
Median age (median (IQR?) [yrs]) 32.50 (29.25-48) 50.5 (34.50-60.25) 67.5 (59.0-79.0)**
Gender (m/f) 11/11 12/16 24/14
Time since symptom onset (days) - 12.86 + 10.71 20.21 £ 11.96*
COVID-19 disease severity sampling / max severity®
Mild illness— no. - 18/16 -
Mild pneumonia — no. - 10/8 -
Severe pneumonia — no. - - 20/19
Mild ARDS — no. - - 717
Moderate ARDS — no. - - 718
Severe ARDS - no. - - 4/8
Laboratory values
C-reactive protein 121+ 1.61 29.87 + 51.60* 89.46 + 81.23*
(mean £ SD)
e )
?rﬁ;‘;gfg'g o) 139.88 + 13.31 132.36 + 28.33 128.18 + 24.62
(Ant]’::'n“fggt?gl]‘)’oum 257.25 + 60.50 203 £ 67.97 219.74 + 117.14
(Trgf;r‘]"’:igeg,"f’gﬁ])ce" count 5.74+1.52 5.83 £ 2.90 6.65 + 3.49
?"r;’;‘::f%st) ) 0.42+0.15 0.50 +0.36 0.45 + 0.34
?‘rj:;rr?ihgg ) 317+1.03 3.74£2.70 5.28 + 3.36™
Frr?::r?ihélsD ) 0.13£0.08 0.04 £ 0.05% 0.03 £ 0.07**
?ﬁ::ghinsso, ) 0.04 +0.02 0.02 +0.03* 0.01 +0.02*
(Lm;’:‘;cgtg,s[@l]) 1.95+0.74 1,50 + 0.69* 0.81 +0.44**
(Cn?e?;ncfggb‘";:eﬁglﬁ;'m NK cells 11.14 + 5.65 8.19+4.98 6+ 4.39*
?n?;ncfggi'"EC(;'”DS}S:’]”;N NK cells 206.29 + 107.13 165.96 + 147.96 162.16 + 103.69
Level of care at blood sampling timepoint
Outpatient — no. (%) - 14 (50) -
Hospitalized — no. (%) - 14 (50) 38 (100)
Comorbidities
Hypertension — no. (%) - 7 (25) 22 (57.9)"
Diabetes — no. (%) 1(4.5) 4 (14.3) 12 (31.6)
Heart disease — no. (%) - 3(10.7) 17 (44.7)"
Cerebrovascular disease — no. (%) - 1(3.6) 4 (10.5)
Lung disease — no. (%) - 3(10.7) 6 (15.8)
Kidney disease — no. (%) - 7 (25) 10 (26.3)
Malignancy — no. (%) - - 4 (10.5)
Systemic Immunosuppression — no. (%) - 3(10.7) 4 (10.5)
* Indicates significance (p-value threshold <0.05) compared to the healthy, ** in the severe indicates significance in comparison
to the healthy and the mild.
2|1QR denotes the interquartile range
® COVID-19 severity at sampling according to WHO guidelines (World Health Organization, 2020)
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cohort (Cervia et al., 2020). According to the WHO definition (World Health Organization,
2020) 28 of these patients experienced a mild disease course with either mild iliness or
mild pneumonia, whereas 38 experienced a severe disease course consisting of severe
pneumonia or acute respiratory distress syndrome (ARDS) (Figure 1A, Table 1).

We also evaluated samples from 22 healthy controls. Patients suffering from severe
disease were on average older than those with mild disease (median age mild 50.5 (IQR
34.5-60.25) years, severe 67.5 (IQR 59.0-79.0) years p = 0.00032), consistent with
previously published results (Wu and McGoogan, 2020) (Figure 1B, Table 1).
Furthermore, hypertension (p = 0.0118) and heart disease (p = 0.0032) were significantly
associated with a severe disease course.

The laboratory findings at admission revealed a prominent inflammatory state for patients
with both mild and severe disease, as evidenced by high levels of C-reactive protein
(healthy controls vs. mild p < 0.0001, mild vs. severe p <0.0001) and pathological values
of lactate dehydrogenase in mild (28%) and severe COVID-19 patients (75.53%) (p =
0.0007). The complete differential blood count showed increased neutrophil counts in
patients with severe disease compared to healthy controls (5.28 + 3.36 G/l vs. 3.17 £ 1.03
G/, respectively (p = 0.039)). Moreover, eosinophil (healthy controls vs. mild p = 0.0004,
healthy controls vs. severe p < 0.0001) and basophil counts (healthy controls vs. mild p
< 0.0001, healthy controls vs. severe p < 0.0001) were significantly reduced in COVID-
19 patients compared to healthy controls. Natural killer cell (NK) cytopenia in the CD3"
CD56*19"MCD169™ population was also associated with severe disease course (healthy
controls vs. severe p = 0.0023), confirming previous publications (Kuri-Cervantes et al.,
2020; Rodriguez et al., 2020; Zhang et al., 2020). The strong inflammatory state, the
changes in the differential blood count and the reported prolonged clinical course before
deterioration make COVID-19 a distinct disease (Giamarellos-Bourboulis et al., 2020).

Systems-wide profiling of innate compartment of patients with COVID-19

To comprehensively characterize the innate immune response against SARS-CoV-2 we
took a systems-level approach (Figure 1A). We used a 40-plex mass cytometry (CyTOF)
panel designed to identify the main immune cell types, including T cells, B cells, plasma

cells, NK cells, monocytes, basophils, and neutrophils, which further allowed an in-depth
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characterization of myeloid cell markers and subsets (Table S1). In parallel, the serum
levels of 92 inflammation-related proteins were quantified by targeted proteomics (Figure
1A). The mass cytometry dataset was acquired in two batches, using a 60-well barcoding
scheme and a frozen antibody panel to minimize batch effects (Figure S1A-D).
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Figure 1: Experimental approach and identification of the main immune cell types in COVID-19 patients based
on mass cytometry.

(A) Schematic of the study design of a cohort of total 22 healthy controls, 28 patients with mild symptoms, and
38 COVID-19 patients with severe disease course. PBMCs of 22 healthy controls, 27 mild and 29 severe COVID-19
patients were isolated and analyzed by high-dimensional phenotypic and functional single-cell analysis by mass
cytometry, and serum of 17 healthy controls, 26 mild and 36 severe COVID-19 patients was analyzed using a high-
throughput multiplexed proteomics assay (Olink) detecting 92 inflammation related serum proteins.

(B) Boxplots showing the age distribution in the patient cohort relative to gender, disease severity, care at
sampling, and disease grade (Pneu, pneumonia; Sev Pneu, severe pneumonia; Mod ARDS, moderate ARDS; Sev
ARDS, severe ARDS).

(C) t-SNE plot of a random subset of 1000 immune cells from each sample colored by main cell types.

(D) Heatmap of the normalized marker expression in the main cell types. Clustering was based on Euclidean
distance and the Ward.D2 aggregation method. Relative abundances of each cell type are plotted to the right of
the heatmap.

(E) Boxplots comparing the frequencies of the indicated myeloid subsets in healthy controls and patients with
mild and severe disease. p-values were calculated with a Mann-Whitney-Wilcoxon test corrected for multiple
testing and are shown if the results were significant p<0.05.
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The main cell types were identified using a random forest classifier trained on manually
gated cells from a representative subset of data (Figure S1E). The cell annotation was
consistent with the t-SNE map visualization (Figure 1C, Figure S1F) and the expression
of canonical markers (Figure 1D). We observed that the frequencies of monocytes and
basophils were increased in severe cases in comparison to mild cases and healthy
controls (Figure 1E). Since peripheral blood mononuclear cells (PBMCs) were isolated
following a density gradient separation, only low-density neutrophils were included in the
analysis. Consistent with a previous report (Morrissey et al., 2020) this subset was
present at very low frequency in healthy controls but increased in patients infected with
SARS-CoV-2, accounting for more than 50% of the PBMCs in some patients (Figure 1E).

Different myeloid landscape in patients with mild and severe COVID-19

Neutrophils have been previously reported to play a key role in the development of severe
forms of SARS-CoV-2 infection. In particular, a high neutrophil-to-lymphocyte ratio is
associated with poor clinical outcomes, and a CD16MCD44°*CD11b™ low-density
neutrophil population, associated with high IL-6 and TNF levels, was increased in severe
COVID-19 patients compared to healthy controls (Morrissey et al., 2020). To assess the
low-density neutrophil subsets in our cohort, we used t-SNE to visualize the expression
of relevant markers on this cell type (Figure 2A). Although all cells were positive for the
canonical neutrophil markers CD15 and CD66ace, differences in abundance of CD11b,
CD11c, and CD16 were observed. Visualizing the disease status on the t-SNE map
revealed an enrichment of CD16'°" neutrophils in patients with severe disease (Figure
2B). To confirm this observation, we classified neutrophils into CD16", CD16™, and
CD16'°¥ populations based on manual annotation of PhenoGraph clusters (Figure S2A-
B). The proportion of CD16'°" neutrophils was much higher in patients with severe
disease than in the other two groups (Figure 2C), also consistent with previous
observations (Morrissey et al., 2020). The CD16'°% subset was associated with an
increased proliferation rate, based on Ki-67 positivity (Figure 2A). Since mature
neutrophils do not proliferate in the periphery, this observation indicates the release of
immature or pre-mature neutrophils into the circulation, consistent with their
CD11b'°"CD16'"" phenotype (Scapini et al., 2016; Ng, Ostuni and Hidalgo, 2019).
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Figure 2: In-depth characterization of the myeloid cells in the peripheral blood of COVID-19 patients.

(A) t-SNE plots of normalized expression of the indicated markers across a maximum of 1000 neutrophils per
patient.

(B) t-SNE plot of normalized expression of the indicated markers across a maximum of 1000 neutrophils per
patient colored by disease severity.

(C) Left: t-SNE plot colored by CD16 expression level based on manual assignment of PhenoGraph clusters. Right:
Histogram of the proportions of CD16", CD16™, and CD16" neutrophils in COVID-19 patients and healthy

controls.

(D) t-SNE plots of normalized expression of the indicated markers across a maximum of 1000 monocytes per
patient.

(E) t-SNE plots as in (D) colored by disease severity (top) and by clusters identified with the PhenoGraph algorithm
(bottom).

(F) Heatmap of the normalized marker expression in PhenoGraph monocyte clusters. The frequency of each
cluster in patients with mild and severe disease and in healthy controls is indicated. Cell numbers for each cluster
are plotted to the right of the heatmap. Clusters were manually annotated to indicate phenotypes (classical, non-
classical, intermediate, and activated) based on marker expression.
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To characterize the phenotypic diversity in the monocytic compartment across the cohort,
we visualized all myeloid-related markers included in our panel on the corresponding t-
SNE map of the monocyte population (Figure 2D). Based on this approach, CD169,
CCR2, CD14, and CD16 distinguished different monocyte subsets. We further performed
automated clustering using the PhenoGraph algorithm to identify monocyte subsets in an
unsupervised way, identifying 13 distinct cell communities (Figure 2E). Clusters M1-7
were characterized by high abundance of CD14 and CCR2 and absence of CD16,
corresponding to classical monocytes, clusters M8 and M9 were CD16* and M10 to M13
all showed an activated CD169* phenotype.

Clusters M1-3 were found predominantly in healthy controls and were characterized by
relatively low abundance of HLA-DR, CD68, and granzyme B, indicating a non-activated
phenotype (Figure 2E-F). Clusters M4-6 were found mainly in SARS-CoV-2-infected
patients and had higher levels of granzyme B compared to other classical monocytes;
granzyme B production has been suggested upon TLR8 activation and enhancing FcyR-
mediated antibody dependent cellular cytotoxicity (ADCC) in monocytes (Elavazhagan et
al., 2015). M4 additionally showed decreased levels of CCR2, TIM-3 and VISTA, which
has been implicated in chemotactic paralysis in a murine model (Broughton et al., 2019).
Cluster M7, which expressed intermediate levels of CD169, could constitute a stage
between classical monocytes and CD169" classical monocytes. Cluster M9, which
represented intermediate monocytes (CD14*CD16"), were found both in healthy subjects
and patients with severe COVID-19, as were cluster M8 non-classical monocytes
(CD149m CD16%).

Strikingly, CD169* activated monocytes (clusters M10-13) were found exclusively in
SARS-CoV-2-infected patients (Figure 2D-E). Cells in cluster M10 expressed CD16 and
had reduced abundance of CD14 and CCR2 compared to M11-M13; these cells could be
transitioning between non-classical/intermediate monocytes and the CD169*
compartment (Figure 2F). This hypothesis is further supported by a diffusion map
analysis (Haghverdi, Buettner and Theis, 2015), which aligns cells along putative
developmental trajectories and suggests that CD169* could derive from both the CD16*
and the CD16 compartment (Figure S2C, D). Most markers, including CD64, CD169,
CD4, and HLA-DR were progressively decreasing in clusters M11 to M13, suggesting that


https://doi.org/10.1101/2020.08.04.236315
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.04.236315; this version posted August 4, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

these clusters were part of a phenotypic continuum rather than representing distinct cell
subsets. These clusters were also characterized by increased Ki-67 positivity, especially
M12, compared to non-classical, intermediate or classical monocytes (Figure 2F). In
summary, high-dimensional single-cell mass cytometry analysis allowed us to
characterize the monocyte compartments of COVID-19 patients and healthy controls with

unprecedented depth and to uncover profound changes upon SARS-CoV-2 infection.

Stratification of COVID-19 patients based on monocyte composition

We next assessed the distribution of the 13 identified monocyte clusters across patients.
We calculated the frequencies of each of the 13 clusters on a per sample basis and
performed hierarchical clustering to order the patients by compositional similarities
(Figure 3A). This analysis revealed three main groups, which were enriched for mild
cases (Figure 3A, left), healthy controls (middle), and severe cases of COVID-19 (right).
In the group that included mostly mild cases, the monocyte compartment consisted
almost exclusively of the CD169* clusters (M10-13) in different ratios, with only a minor
fraction of cells from clusters M4-7. The healthy controls were relatively homogenous:
About 80% of cells consisted of classical monocytes (clusters M1-3) and about 15-20%
of cells were intermediate and non-classical monocytes (clusters M9 and MS,
respectively) consistent with the literature (Thomas et al., 2017). The group dominated by
patients with severe COVID-19 was characterized by a high frequency of distinct classical
monocyte subsets (clusters M4-7), with frequencies of intermediate and non-classical

monocytes slightly higher than in the group dominated by healthy controls.

We observed similar patterns when we directly compared frequency differences of the
different monocyte clusters in healthy subjects and patients with mild and severe disease
(Figure 3B). Most strikingly, the CD169" clusters M10-13 were completely absent in
healthy controls and were significantly higher in patients with mild disease than those with
severe disease, with the exception of cluster M12 where the significance level was not
reached. Conversely, the classical monocyte clusters M1-3 were present at high levels in
healthy donors, at lower levels in the patients with mild disease, and at intermediate levels

in patients with severe disease. Clusters M4-6, also defined as classical monocytes, were
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Figure 3: Patient stratification based on myeloid signature.

(A) Stacked histogram of the PhenoGraph monocyte clusters per patient, ordered by cluster composition
similarities based on Euclidean distance. Disease severity and grade for each patient are shown.

(B) Boxplots of frequencies of the indicated monocyte clusters in the different disease severities. p-values were
calculated with a Mann -Whitney-Wilcoxon test corrected for multiple testing and are shown if the results were
significant p<0.05.

(C) Top: Principal component analysis (PCA) of monocyte and neutrophil cluster frequencies and myeloid immune
cell subset frequencies across the cohort. The PCA plot (top) shows the two first principal components (PCs)
separating the samples. Each dot represents a patient, colored by disease status. Bottom: Biplot of parameters
contributing to the separation. Arrow lengths and directions in the biplot indicate the importance of the
parameter to the PCs.
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virtually absent in healthy controls and were present at higher levels in patients with
severe than mild disease. The non-classical (M8) and the intermediate monocytes (M9)
were significantly reduced in patients with mild disease compared to healthy controls and
were present at higher levels in a subset of patients with severe disease than in healthy

controls.

To gain more insight into the relationship between the innate immune signature and
disease status, we performed a principal component analysis (PCA) of monocyte and
neutrophil cluster frequencies and myeloid immune cell subset frequencies across the
cohort and asked whether these innate immune signatures varied with disease severity.
Indeed, the first two principal components enabled the stratification of subjects based on
disease status (Figure 3C, left panel). A biplot graph displaying simultaneously the
subjects and the eigenvectors of the different cell subsets revealed a strong association
between clusters M1-M3 and healthy controls (Figure 3C, right panel). A group
dominated by mild patients was characterized by high levels of M10 to M13 clusters. A
more heterogeneous set of predominantly severe COVID-19 cases were defined by
higher levels of M4-M6 and M8-M9 clusters and by CD16'°¥ low-density neutrophils. A
correlative analysis performed across innate cell subsets and patients confirmed the
pattern observed based on the PCA analysis (Figure S3A). Thus, despite the expected
diversity across individuals, these multiparametric analysis identified innate immune
signatures that allowed a stratification of healthy donors, patients with mild COVID-19,

and patients with severe disease.

Changes in innate cell frequencies over the course of SARS-CoV-2 infection

We used the fact that the patients presented to hospitals at different times after symptom
onset to examine cell cluster frequencies over the disease course. This allowed us to gain
an understanding of the temporal dynamics of the different immune subsets present
during SARS-CoV-2 infection. The total monocyte compartment remained relatively
constant over the disease course, but monocytes were present at higher frequencies in

patients with severe compared to mild disease (Figure 4A). The low-density neutrophils
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were present at higher frequency in COVID-19 patients compared to healthy controls
early after symptom onset and decreased at later stages of the disease. These changes
were accompanied by a decrease of CD16" neutrophils over disease course in patient
with severe disease, whereas CD16'°" neutrophils remained consistently high (Figure
4B).
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Figure 4: Myeloid cell frequencies over the course of the SARS-CoV-2 infection.

(A) Scatter plot of monocyte and granulocyte frequencies relative to the time after symptom onset. The dots are
colored by disease grade at sampling time. The frequencies in healthy controls are shown as a reference on the
left. The pseudo-time course was modeled using a general additive model for the disease severities separately
(mild, blue lines; severe, red lines).

(B) Scatter plot of indicated neutrophil subset frequencies relative to the time after symptom onset. The cluster
frequency is given in relation to the total neutrophils in the PBMCs.

(C) Scatter plot of indicated monocyte subset frequencies relative to the time after symptom onset. The cluster
frequency is given in relation to the total monocytes in the PBMCs. The clusters associated with non-classical,
classical, and activated monocytes are indicated by purple, green, and orange boxes, respectively.
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The monocyte subsets (clusters M1-13) also showed distinct changes over the disease
course. Compared to healthy controls, clusters M1, M2 and M3 were observed at very
low frequencies in mild and severe cases sampled early during the disease course but
gradually increased in patients sampled later during their disease course (Figure 4C,
purple box). The frequencies of these clusters tended to remain at lower levels than in
the healthy controls even at time points as late as 47 days after symptom onset. (Figure
4C, purple box). In contrast, frequencies of clusters M4 and M6, which were not present
in the healthy controls, increased during the disease course, more notably in severe
cases of COVID-19, with a peak around three weeks after symptom onset. (Figure 4C,
purple box). Intriguingly, mild COVID-19 cases with increased frequencies of cluster M4
were mostly hospitalized, further progressed to severe COVID-19 at a later time point or
showed prolonged symptoms for more than two months (Figure S4A).

The activated CD169" monocyte clusters M10-M13 were present at high frequencies
early during the disease course (Figure 4C, orange box). Within the first 20 days after
symptom onset, the monocyte compartment was strongly dominated by this phenotype,
which decreased thereafter and was undetectable in most patients sampled more than
20 days after symptom onset. This pattern was similar in both groups with mild and severe
COVID-19.

The CD16*CD149™ M8 (non-classical) and CD16*CD14* M9 (intermediate) monocyte
clusters were virtually absent at early stage upon viral infection (Figure 4C, green box),
consistent with data from single cell-RNA sequencing studies on PBMCs (Wilk et al.,
2020). The initial reduction was followed by their recovery at later stages of disease,
showing a trend towards higher frequencies in patients with severe compared to mild
disease for both M8 and M9.

In summary, the analysis of cluster frequencies in COVID-19 patients in relation to the
time since symptom onset revealed distinct dynamic patterns of monocyte frequencies in
patients with mild and severe disease. At early stages in all patients, the monocyte
compartment was dominated by activated monocytes (cluster M10-13), which was

characteristic for COVID-19 patients. Despite a normalization of the CD14* monocyte
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compartment in the blood thereafter, the composition of the monocyte compartment
differed from that of healthy subjects 40 days after symptom onset in both groups with
mild and severe COVID-19.

Temporal correlation of cytokine signatures and innate cell subsets

Monocyte development, homeostasis, and fate are strongly interlinked with the cytokine
and chemokine environment. To probe potential correlates to the changes seen in the
myeloid compartment during COVID-19 progression, we used the targeted proteomics
Olink assay to measure 92 inflammation-associated serum proteins in samples from 17
healthy controls, 26 patients with mild disease, and 36 patients with severe disease who
were concomitantly analyzed by mass cytometry. The comparison of data from healthy
controls and patients with severe COVID-19 showed a strong upregulation of
proinflammatory cytokines and chemokines (Figure 5A). IL-6, TNF, IFNy, and IL-18 were
significantly upregulated (significance cut-off false discovery rate (FDR) 1%) in patients
with severe disease as shown by the proteomics measurements (Figure 5A) consistent
with previous reports (Blanco-Melo et al., 2020; Veerdonk et al., 2020). The elevated
levels of IL-18 and increased LDH we observed might indicate a contribution of
inflammasome activation (Lee et al., 2020; Merad and Martin, 2020; Yap, Moriyama and
lwasaki, 2020), although we did not detect an elevation of IL-133 (Figure S5A).

Several chemokines important for myeloid cell trafficking were significantly upregulated
in patients with severe COVID-19. These chemokines included MCP-1 (also known as
CCL2), MCP-2 (also known as CCL8), MCP-3 (also known as CCL7), CX3CL1
(chemotactic for non-classical monocytes), CXCL1 (a potent neutrophil-recruiting
chemokine), and the more promiscuous CCL3 and CCL4. M-CSF, which is crucial for
myeloid precursor survival and lineage commitment (Mossadegh-Keller et al., 2013;
Boettcher and Manz, 2017), was significantly increased in severe as well as mild COVID-
19 patients compared to healthy controls (Figure 5A, Figure S5B).
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Figure 5: Cytokine signature shift between early and late stages of disease correlates with innate cell subsets.
(A) Volcano plot of the Olink proteomics data comparing the healthy control data to that from patients with severe
COVID-19. An FDR of 1% was taken as significance cut-off.
(B) Scatter plot of serum protein expression levels relative to the time after symptom onset. Plotted is normalized
protein expression (NPX) on a log2 scale. The dots are colored by disease grade at sampling time. The expression
levels of the healthy controls are shown as a reference on the left. The pseudo-time course was modeled using a
general additive model for the disease severities separately (mild, blue lines; severe, red lines).

Legend continues on next page
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(C) Biplot of the first two PCs of monocyte and neutrophil cluster frequencies, myeloid immune cell subset
frequencies, and expression values of selected serum proteins. Dots represent the COVID-19 patients and healthy
controls, and the arrow lengths and directions indicate the importance of the parameter to the PCs.

(D) Scatter plot of the first two PCs of monocyte and neutrophil cluster frequencies, and myeloid immune cell
subset frequencies, and expression values of selected serum proteins colored by the time since symptom onset.
(E) Scatter plots of frequencies of the indicated clusters versus expression of selected serum proteins in individual
patients. The dots indicate data for individual patients colored by disease grade. Relationship between the two
variables is visualized with a linear regression line and quantified using a Spearman’s correlation coefficient (Rho)
with the corresponding p value.

(F) Scatter plots of frequencies of the indicated monocyte clusters in individual patients who were sampled twice
during the course of the study. Dots are colored by patient number, and lines connect paired samples.

(G) Scatter plots of NPX on a log2 scale of the indicated soluble factors in patients who were sampled twice during
the course of the study. Dots are colored by patient number, and lines connect paired samples.

Distinct expression patterns emerged by plotting cytokine expression versus time after
symptom onset. The relation was modeled using a general additive model as in Figure 4.
In comparison to healthy controls, IFNy and MCP-2 were present at significantly higher

concentrations in patients with severe disease sampled early after symptom onset but
returned to near-normal values at later stages of the disease course. Consistent with
confirmatory ELISA measurements, M-CSF, IL-6 and TNF, which were all present at
higher levels in patients with severe disease than mild disease, tended to be present at
high levels throughout the disease course in patients with severe disease, whereas a
decrease was observed in patients with mild symptoms as the disease progressed
(Figure 5B, Figure S5A). The chemokines CXCL1, CX3CL1, MCP-1, and MCP-3 had
significantly increased levels compared to healthy controls in patients with severe COVID-
19 independent of time after symptom onset (Figure S5B). In striking contrast, CCL3 and
CCL4 were not induced in patients in the first days of the disease but were significantly
increased at later stages in patients with severe disease (Figure 5B). This is suggestive
of a more exacerbated inflammatory phenotype late during the disease course in patients
with severe disease than in those with mild symptoms. Differential expression analysis

confirmed this observation (Figure S5C).

To better understand the interplay between these serum proteins and cell subsets of the
myeloid compartment, we performed a hierarchical clustering on a correlation map of all
significantly changed (FDR 1%) serum proteins and immune cell subsets and myeloid

clusters (Figure S5D). This approach demonstrated a strong association between the
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activated CD169* monocyte clusters M10-13 with pro-inflammatory cytokines, including
IFNy, MCP-2, IL-18, and IL-6, and an association between the classical monocyte
clusters M4 and M5 with TGF-a, CCL3, and CCL4. To further understand these
relationships in the context of the patients in our cohort, we performed PCA. This analysis
revealed that certain combinations of cellular and soluble factors stratified patients and
healthy controls (Figure 5C, D). One group, dominated by patients with mild symptoms
and patients sampled early in the disease course, was defined by the clusters M10-13 in
combination with the cytokines MCP-2 and IFNy. A second group of patients, enriched
for more severe, late-stage cases, was defined primarily by the non-classical clusters M4-
6 in combination with the cytokines CCL3, CCL4, and CCL23 (Figure 5C, D). The healthy
donors were defined by the clusters M1-3 and were located close to the majority of late-
stage mild patients. The intermediate and non-classical clusters M8 and M9 contributed
to both the healthy and the severe groups. These data strongly suggest an innate
signature shift between the early and the late stage of the disease, leading to a divergence
of patients with mild and severe COVID-19 over the disease course. While the former
became similar to healthy controls, the latter exhibited signs of hyper-inflammation.

To further characterize the relationships between cell clusters and soluble factors
identified in the PCA, we performed a direct correlation between the cluster frequencies
and cytokine levels. There was a strong correlation between cluster M12 and M-CSF,
IFNy, IL-6, and TNF, which was most evident in early-stage patients (Figure 5E, Figure
S5E). We also found that the non-classical monocytes M8 and the intermediate monocyte
cluster M9 were strongly correlated with CCL3 and CCL4, but in this case the correlation
was most prominent in late-stage patients (Figure 5E, right panels, Figure S5F). These
results suggest that the inflammatory environment found in late stages of COVID-19 is

predominantly associated with the presence of the intermediate monocytes.

To determine whether the signature switch observed in our pseudo-temporal analysis
was observed in individual patients over time, we compared the cluster frequencies and
cytokine levels in four patients who were sampled twice. We confirmed that the

frequencies of the activated CD169* clusters M10-13 were reduced over time, and the
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frequencies of the non-classical monocyte cluster M8 and the intermediate monocyte
cluster M9 were increased (Figure 5F). Similarly, we again observed decreases of IFNy
and MCP-2 over time in these re-sampled patients, accompanied by increases in CCL3
and CCL4, providing strong support to the findings made based on the pseudo-temporal
analysis (Figure 5G). Overall, these data suggest that there is a coordinated change from
a CD169+, IFNy, and MCP-2 phenotype to an intermediate monocyte, CCL3, and CCL4
phenotype in the first two weeks after SARS-CoV-2 infection and that patients with severe
COVID-19, who show long-lasting high levels of CCL3 and CCL4, show a more dramatic
phenotypic switch.

Discussion

Early in the COVID-19 pandemic, data began to suggest that patients with severe disease
have hyperinflammatory immune responses with changes in the myeloid compartment
toward a pro-inflammatory phenotype (Huang et al., 2020; Liao et al., 2020; Wilk et al.,
2020). Employing a systems-wide immune characterization on a multicenter cohort of
COVID-19 patients and healthy controls we identified marked changes in the innate

immune signature in SARS-CoV-2 infected individuals.

We discovered that the myeloid compartment undergoes profound phenotype changes
during a SARS-CoV-2 infection with a decrease in the classical monocyte clusters M1,
M2 and M3, a depletion of the intermediate and non-classical monocyte clusters M9 and
M8, toward a CD169* activated monocyte phenotype and a surge of low-density
neutrophils early in the disease course. The immature phenotype of the neutrophils is in

accordance with data in whole blood (Carissimo et al., 2020).

CD169 is a sialoadhesin involved in pathogen uptake, which is quickly induced in a type
| IFN dependent manner on the surface of monocytes upon Epstein—Barr virus (EBV) or
human immunodeficiency virus (HIV) infection (Rempel et al., 2008; Farina et al., 2017).
Consistent with our findings, CD169 has been reported on circulating monocytes in
COVID-19 patients (Bedin et al., 2020; Carissimo et al., 2020), while type | IFNs have
been shown to be a hallmark of SARS-CoV-2 infection and an impaired type | IFN
response has been linked with severe disease (Hadjadj et al., 2020; Wilk et al., 2020).
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Our data suggest that CD169* monocytes arise from classical, intermediate and non-
classical monocytes, similarly to what was reported upon simian immunodeficiency virus
(SIV) or HIV infection (van der Kuyl et al., 2007; Kim et al., 2015). The fate of these
CD169" monocytes, which disappear quickly from the blood, remain elusive.
Bronchioalveolar lavage fluid and SARS-CoV mouse models have shown that
inflammatory monocyte-derived macrophages play crucial roles in local inflammation and
tissue damage (Channappanavar et al., 2016; Liao et al., 2020). Recruitment of these
activated CD169*CCR2* monocytes to the lung through the CCR2-CCL2 axis is possible
as MCP-1 (CCL2) is significantly upregulated in COVID-19 patients. These cells could

then contribute to the lung damage observed in patients with severe disease.

Analyzing the inflammatory cytokine and chemokine response to SARS-CoV-2 we
identified a TNF and IL-6-dominated inflammatory response in COVID-19 patients in
agreement with a previous report (Veerdonk et al, 2020). The initial inflammatory
response was dominated by IFNy, MCP-2, M-CSF, and IL-6, which were coregulated with
the CD169* monocyte subsets, most prominently the M12 cluster, and the low-density
granulocytes as evidenced by an unsupervised correlation matrix. IL-6 and M-CSF
contribute to increased hematopoiesis under inflammatory conditions (Boettcher and
Manz, 2017), potentially explaining the initial increase of activated monocytes and
granulocytes after SARS-CoV-2 infection. Monocytes and neutrophils are generally
considered to lose their proliferative capacity once they leave the bone marrow, a process
driven by the chemokines MCP-1 and MCP-3 (Swirski, Hilgendorf and Robbins, 2014). A
small subset of monocytes has been shown to retain proliferative capacity especially
under inflammatory conditions. These cells might contribute to the initial monocyte wave
as we detected increased Ki-67 positivity in these cells. However, this might also be
explained by a more immature phenotype of these cells (Clanchy, 2006; Patel et al.,
2017). Our proteomics panel did not include G-CSF and GM-CSF, two other cytokines

crucially involved in myeloid homeostasis (Lang et al., 2020).

Late in the disease course, COVID-19 patients with severe disease continued to show
signs of ongoing inflammation, including abnormally high levels of TNF. The innate

signature at this stage was driven by a surge of the disease specific clusters M4-M6, the
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reappearance of intermediate and non-classical monocytes, which reached particularly
high levels in severe COVID-19 patients, and the chemokines CCL3 and CCL4. These
CCRS ligands drive the recruitment of a variety of immune cells such as neutrophils and
monocytes, but also adaptive immune cells, and are frequently increased in acute
respiratory viral infections (Glass, Rosenberg and Murphy, 2003; Nuriev and Johansson,
2019). Both have been shown to be produced on a transcriptomic level by monocytes in
COVID-19 patients (Lee et al., 2020; Liao et al., 2020). It could be hypothesized that the
production of these chemokines at late disease stages in severe COVID-19 is a correlate
of ongoing local viral replication leading subsequently to a continuous systemic
inflammatory state (Lucas et al., 2020), potentially as a result of an inadequate T cell

response (Adamo et al., 2020).

CD16™ monocytes have gained considerable attention in the pathophysiology of COVID-
19 as they are critical for viral sensing and the subsequent inflammatory response,
including via the production of CCL3 and CCL4 (Cros et al., 2010; Kwissa et al., 2014;
Zhou et al., 2020). The strong reduction of CD16" monocytes M8 and M9 early in the
disease course is striking. Several mechanisms such as differentiation, ie. acquisition of
an inflammatory phenotype, or migration, potentially dependent on CX3CL1 (Thomas et
al., 2015), could be involved. A recent study in bronchoscopy samples from COVID-19
patients in the ICU found an enrichment of CD16™ monocytes in the lung (Sanchez-
Cerrillo et al., 2020).

This raises a caveat of our study, as we analyzed only peripheral blood samples. Another
limitation is that only four patients were analyzed longitudinally, whereas the cellular
trajectories during the acute infection rely on samples collected from multiple individuals
who presented at different times after symptom onset. However, our time course analysis
also highlights the importance of the sampling time point in analyzing the immune
response. Notably, the paired sample analysis confirmed the patterns observed at the

cohort level, providing strong support to the pseudo-time analysis.

In summary, our systems-level analysis of the innate immune response to SARS-CoV-2

shows that there are profound changes in the peripheral monocyte compartment that are
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largely similar in cases of mild and severe disease. However, the patients with severe
symptoms have a markedly stronger inflammatory phenotype throughout the disease
course and most prominently show a distinct innate signature at later stages of the
disease. These results provide evidence for a strong inflammatory response to SARS-
CoV-2 infection, further supporting investigation of targeted anti-inflammatory
interventions in severe cases of COVID-19 (Merad and Martin, 2020). The distinct time-
dependent change in immune signatures indicate that specific interventions might benefit

from precise timing to maximize therapeutic efficacy (Lang et al., 2020).

Methods

Human subjects and patient characteristics

Patients were recruited at the Hospital Uster, Hospital Limmattal, Triemli Hospital, and
the University Hospital Zurich (Switzerland) from an outpatient as well as inpatient setting.
The patients were eligible if they were symptomatic at the time of inclusion, had a newly
diagnosed SARS-CoV-2 infection confirmed by quantitative reverse-transcriptase
polymerase chain reaction (RT-qPCR), and were more than 18 years old. Healthy donors
(n=22) were recruited as controls. All participants, patients and healthy controls, signed
a written informed consent. The study was approved by the Cantonal Ethics Committee
of Zurich (BASEC #2016-01440) and performed in accordance with the Declaration of
Helsinki.

Standard clinical laboratory data (CRP, LDH, complete blood count with differential) was
collected from the first day of hospitalization until the end of hospitalization. Patients were
classified according to WHO criteria (World Health Organization, 2020) into mild cases
(those with mild illness and mild pneumonia) and (b) severe cases (those with severe
pneumonia and ARDS, as defined by the Berlin definition (Ranieri et al., 2012)). A blood
sample was collected from each patient, if possible coordinated with the usual care. For
longitudinal analysis of SARS-CoV-2-specific immune responses two subjects with mild
COVID-19 and two subjects with severe COVID-19 were sampled twice during their

disease course. All samples were processed in the same hospital laboratory.
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In total 70 COVID-19 patients and 22 healthy subjects were recruited. Four patients were
excluded from analysis (two due to chronic lymphocytic leukemia and two because it was
unclear whether the current disease was the primary infection). All healthy controls were
tested for SARS-CoV-2 specific IgA and IgG antibodies and all were below the diagnostic
reference value. The complete characteristics of the cohort are given in Table 1.

All patients received a standard clinical laboratory sampling and cytokines were
measured. Furthermore, samples from 27 COVID-19 patients with mild, 29 with severe
disease and all healthy subjects were processed for CyTOF. Samples from 26 COVID-
19 patients with mild, 36 with severe disease and 17 healthy patients were evaluated with
Olink proteomics. 54 patients could be analyzed by CyTOF and Olink. Longitudinal
samples from patient COV2-A0013 homogeneously failed the Olink incubation control,
and could thus only be compared with each other, but were excluded from other analysis,
together with one other sample which was not correctly processed prior to analysis.
Routine flow cytometry for NK cell quantification was performed on all samples in the
accredited immunological laboratory at the University Hospital Zurich, as previously
described (Adamo et al., 2020). The cohort characteristics and a selection of the Olink

dataset are also shown in Adamo et al. describing the T cell response of this cohort.

Blood collection and sample preparation for CyTOF

Venous blood samples were collected in BD vacutainer EDTA tubes, centrifuged, plasma
removed, and the remaining blood diluted with an equal amount of PBS. This mixture was
then layered into a SepMate tube (STEMCELL, Cat. #85460) filled with lymphodex (Inno-
Train Diagnostik GmBH, Cat. #002041500) solution. The tube was centrifuged, and the
PBMCs were washed with PBS and re-centrifuged. Aliquots of 1x10° PBMCs were then
centrifuged, resuspended in 200 pyL 1.6% PFA (Electron Microscopy Sciences) diluted
with RPMI 1640 medium, and fixed at room temperature for 10 min. Subsequently the
reaction was stopped by adding 1 mL of cell staining medium (CSM, PBS with 0.5%
bovine serum albumin and 0.02% sodium azide). The cells were centrifuged and the
disrupted pellet was frozen at -80 °C. The remaining PBMCs were frozen and stored in
1.5mL 90% FBS, 10% DMSO at -80 °C for at least 4 h. For long-term storage, the frozen
cells were moved to the liquid nitrogen. The reference cells for the CyTOF analysis,
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PBMCs from a healthy donor, were stimulated with either 0.1 pg/mL phytohemagglutinin
for 24 h or 1 yg/mL lipopolysaccharide and 1.5 ug/mL monensin for 48 h. One-third of the
PBMCs were unstimulated. After stimulation or not, the PBMCs were fixed and frozen as

described above.

Mass cytometry barcoding

We ensured homogenous staining by barcoding 1 x 108 PBMCs from each patient using
a 60-well barcoding scheme consisting of unique combinations of four out of eight
barcoding reagents as previously described (Zunder et al., 2015). Six palladium isotopes
(92Pd, '%4pd, 195Pd, 106pq, 198pd, and '"9Pd, Fluidigm) were chelated to 1-(4-
isothiocyanatobenzyl)ethylenediamine-N,N,N’,N’ tetraacetic acid (Dojino). Two indium
isotopes ('"3In and "5In, Fluidigm) were chelated to 1,4,7,10-tetraazacy-clododecane-
1,4,7-tris-acetic acid 10-maleimide ethylacetamide (Dojino) following standard
procedures (Zivanovic, Jacobs and Bodenmiller, 2014). We titrated mass tag barcoding
reagents to ensure equivalent staining for each reagent; final concentrations were
between 50 nM and 200 nM. We used the previously described transient partial
permeabilization approach to barcode the cells (Behbehani et al., 2014). PBMCs from all
samples were randomly loaded into wells of two 96-well plates and were analyzed in two
independent experiments. Three standard samples were loaded onto each plate to
enable assessment of inter-run variability. Cells were washed with 0.03% saponin in PBS
(PBS-S, Sigma Aldrich) and incubated for 30 min with 200 uL of mass tag barcoding
reagents diluted in PBS-S. After washing three times with CSM, samples from each plate

were pooled and then split into two tubes for staining with the two antibody panels.

Antibodies and antibody labeling

The antibodies used in this study, including provider, clone, and metal tag, are listed in
Table S1. Antibody conjugation was performed using the MaxPAR antibody labelling kit
(Fluidigm). Upon conjugation, the yield of recovered antibody was assessed on a
Nanodrop (Thermo Scientific) and then supplemented each antibody with Candor

Antibody Stabilizer. We performed titrations to determine optimal concentrations of all
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conjugated antibodies. All antibodies used in this study were managed using the cloud-
based platform AirLab (Catena et al., 2016).

Sample staining and data acquisition

After barcoding, pooled cells were incubated with FcR blocking reagent (Miltenyi Biotec)
for 10 min at 4 °C. Cells were stained with 400 pL of the antibody panel per 107 cells for
45 min at 4 °C. Cells were washed three times in CSM, once in PBS, resuspended in 0.4
ml of 0.5 yM nucleic acid Ir- labeled intercalator (Fluidigm) and incubated overnight at 4
°C. Samples were then prepared for CyTOF acquisition by washing the cells once in
CSM, once in PBS, and once in water. Cells were then diluted to 0.5 x 10° cells/mL in
Cell Acquisition Solution (Fluidigm) containing 10% EQ™ Four Element Calibration
Beads (Fluidigm). Samples were acquired on a Helios upgraded CyTOF 2. Individual .fcs
files collected from each set of samples were pre-processed using an semi-automated R
pipeline based on CATALYST to perform individual file concatenation, bead based
normalization, compensation, debarcoding, and batch correction as previously described
(Crowell et al., 2020). Spillover matrix for CyTOF compensation was assessed on all

antibodies used in this study as previously suggested (Chevrier et al., 2018).

Mass cytometry data analysis

Upon pre-processing, a subset of 1,000 randomly selected cells from each sample were
exported as FCS files and loaded on Cytobank. Immune cell subsets were manually gated
according to the scheme described in Figure S1D. FCS files corresponding to each gate
were exported and used to train a random forest classifier (R package randomForest),
based on 500 trees and 6 variables tried at each split, leading to an OOB estimate of error
rate of 0.43%. The resulting random forest model was used to assign each cell of the
dataset to the predefined cell types. Based on a 40% assignment probability cutoff and a
20% delta cutoff, 98% of the cells were retained in the analysis. To visualize the high-
dimensional data in two dimensions, the t-SNE algorithm was applied on data from a
maximum of 1,000 randomly selected cells from each sample, with a perplexity set to 80,
using the implementation of t-SNE available in CATALYST (Nowicka et al., 2019).

Channels which were not relevant for these cell subsets or which were affected by
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different background stainings across batches were excluded (CD15, CD66ace, CD3,
CD45, CD8a, CD20, CXCR2, GranzymeB). Data were displayed using the ggplot2 R
package or the plotting functions of CATALYST (Nowicka et al., 2019).

Visualization of marker expression on t-SNE maps was performed upon data
normalization between 0 and 1. The maximum intensity was defined as the 99th
percentile. In order to perform hierarchical clustering, pairwise distances between
samples were calculated using the Spearman correlation or euclidean distance, as
indicated in the figure legend. Dendrograms were generated using Ward.2’s method.
Heatmaps were generated based on the pheatmap package. Clustering analysis of the
myeloid and neutrophil subsets was performed using the R implementation of
PhenoGraph run on all samples simultaneously, with the parameter k, defining the
number of nearest neighbors, set to 100 (Levine et al., 2015). For the myeloid subset,

clusters with less than 600 cells were excluded from the analysis.

To identify putative single-cell trajectories among monocyte clusters, we used the
implementation of the diffusion map algorithm available in the R package scater using the
default parameters and the same channels used to perform the t-SNE analysis. A
maximum of 1,000 cells randomly selected from each cluster were included in the

analysis.

The principal component analysis to identify the variations in the data described by the
cluster frequencies or the combination of cluster frequencies and cytokine levels was
performed based on the FactoMineR package. Data were visualized using the factoextra

R package.

Cytokine ELISA

Serum was collected in BD vacutainer tubes. The samples were processed in the
accredited immunological laboratory at the University Hospital Zurich. IL-1B, IL-2, IL-6,
IFNy, TNFa were quantified using R&D Systems ELISA kits.

Proteomics analysis using Olink
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For serum proteomics, the commercially available proximity extension assay-based
technology from Olink® Proteomics was used. Heat-inactivated plasma samples were
sent to the Olink analysis laboratory in Davos, Switzerland for analysis using the
inflammation panel. The Olink technology has been described previously (Lundberg et
al., 2011). Briefly, binding of paired cDNA-tagged antibodies directed against the targeted
serum proteins lead to hybridization of the corresponding DNA oligonucleotides allowing
subsequent extension by a DNA polymerase. The protein level is quantified using real-
time PCR. Only samples that passed the quality control tests are reported. If expression
was below the detection limit, the value reported is the lower limit of detection. Only
proteins that were detectable in at least 50% of samples were used for subsequent

analysis.

Statistical analysis

The statistical analysis was performed using GraphPad Prism (version 8.4.3, GraphPad
Software, La Jolla California USA) and R software (version 4.0.1) using the package
"mgcv". Mann-Whitney Wilcoxon test was used to test for differences between continuous
variables and p-values were adjusted for multiple testing using the Holm method.
Categorical variables were compared using Fisher's exact test. Generalized additive
models were used to evaluate relationships between time since symptom onset and
different variables, with the number of knots used to represent the smooth term set at
three.

The correlations between cellular subsets and the serum protein expressions were
analyzed using non-parametric Spearman correlations. The significance threshold was
set at an alpha < 0.05. For the differential expression analysis, a false-discovery rate
(Benjamini, Krieger and Yekutieli, 2006) of 1% was used as significance threshold, except

for the late vs early comparison where 5% was used as indicated.
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