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While computational methods have made substantial progress
in improving the accuracy and throughput of pathology work-
flows for diagnostic, prognostic, and genomic prediction, lack
of interpretability remains a significant barrier to clinical inte-
gration. In this study, we present a novel approach for predict-
ing clinically-relevant molecular phenotypes from histopathol-
ogy whole-slide images (WSIs) using human-interpretable im-
age features (HIFs). Our method leverages >1.6 million an-
notations from board-certified pathologists across >5,700 WSIs
to train deep learning models for high-resolution tissue clas-
sification and cell detection across entire WSIs in five cancer
types. Combining cell- and tissue-type models enables compu-
tation of 607 HIFs that comprehensively capture specific and
biologically-relevant characteristics of multiple tumors. We
demonstrate that these HIFs correlate with well-known markers
of the tumor microenvironment (TME) and can predict diverse
molecular signatures, including immune checkpoint protein ex-
pression and homologous recombination deficiency (HRD). Our
HIF-based approach provides a novel, quantitative, and inter-
pretable window into the composition and spatial architecture
of the TME.

B4 Correspondence: andy.beck@pathai.com

Introduction

While manual microscopic inspection of histopathology
slides remains the gold standard for evaluating the malig-
nancy, subtype, and treatment options for cancer', patholo-
gists and oncologists increasingly rely on molecular assays to
guide personalization of cancer therapy?. These assays can
be expensive and time-consuming?, and unlike histopathol-
ogy images, have not been historically and routinely col-
lected, limiting their use in retrospective and exploratory
research. Manual histological evaluation, on the other
hand, presents several clinical challenges. Careful inspec-
tion requires significant time investment by board-certified
anatomic pathologists and is often insufficient for prognos-
tic prediction. Several evaluative tasks, including diagnostic
classification, have also reported low inter-rater agreement

across experts and low intra-rater agreement across multiple
reads by the same expert*>.

Modern computer vision methods present the potential for
rapid, reproducible, and cost-effective clinical and molecular
predictions. Over the past decade, the quantity and resolution
of digitized histology slides has dramatically improved®. At
the same time, the field of computer vision has made sig-
nificant strides in pathology image analysis, including auto-
mated prediction of tumor grade’, mutational subtypes®, and
gene expression signatures across cancer types>!'?. In addi-
tion to achieving diagnostic sensitivity and specificity met-
rics that match or exceed those of human pathologists '!12,
automated computational pathology can also scale to ser-
vice resource-constrained settings where few pathologists are
available. As a result, there may be opportunities to integrate
these technologies into the clinical workflows of developing

countries 3.

However, end-to-end deep learning models that infer outputs
directly from raw images present significant risks for clini-
cal settings, including fragility of machine learning models to
dataset shift, adversarial attack, and systematic biases present
in training data'#-'®. Many of these risks stem from the well-
known problem of model interpretability '8, “Black-box”
model predictions are difficult for users to interrogate and
understand, leading to user distrust. Without reliable means
for understanding when and how vulnerabilities may become
failures, computational methods may face difficulty achiev-
ing widespread adoption in clinical settings '%-20.

One emerging solution has been the automated computation
of human-interpretable image features (HIFs) to predict clin-
ical outcomes. HIF-based prediction models often mirror
the pathology workflow of searching for distinctive, stage-
defining features under a microscope and offer opportuni-
ties for pathologists to validate intermediate steps and iden-
tify failure points. In addition, HIF-based solutions enable
incorporation of histological knowledge and expert pixel-
level annotations which increases predictive power. Studied
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HIFs span a wide range of visual features, including stro-
mal morphological structures?!, cell and nucleus morpholo-
gies??, shapes and sizes of tumor regions >3, tissue texture 4,
and the spatial distributions of tumor-infiltrating lymphocytes
(TILs)2>-26,

In recent years, the relationship between the TME and
patient response to targeted therapies has been made in-
creasingly clear?”-?®. For instance, immuno-supportive phe-
notypes, which exhibit greater baseline antitumor immu-
nity and improved immunotherapy response, have been
linked to the presence of TILs and elevated expression of
programmed death-ligand 1 (PD-L1) on tumor-associated
immune cells. In contrast, immuno-suppressive pheno-
types have been linked to the presence of tumor-associated
macrophages and fibroblasts, as well as reduced PD-L1 ex-
pression?®-30. HIF-based approaches have the potential to
provide an interpretable window into the composition and
spatial architecture of the TME in a manner complementary
to conventional genomic approaches. While prior HIF-based
studies have identified many useful feature classes, most have
been limited in scope. Studies to date often involve a single
cell or tissue type; none have explored features that combine
both cell and tissue properties. In addition, the majority of
reported HIFs have only been vetted on a single cancer type,
often non-small-cell lung cancer (NSCLC).

In this research study, we present a computational pathology
pipeline that can integrate high-resolution cell- and tissue-
level information from WSIs to predict treatment-relevant,
molecularly-derived phenotypes across five different cancer
types. In doing so, we introduce a diverse collection of 607
HIFs ranging from simple cell (e.g. density of lymphocytes
in cancer tissue) and tissue quantities (e.g. area of necrotic
tissue) to complex spatial features capturing tissue architec-
ture, tissue morphology, and cell-cell proximity. Notably, we
demonstrate that such features can generalize across cancer
types and provide a quantitative and interpretable link to spe-
cific and biologically-relevant characteristics of each TME.

Results

Dataset characteristics and fully-automated pipeline
design. In order to test our approach on a diverse array of
histopathology images, we obtained 2,917 hematoxylin and
eosin (H&E) stained, formalin-fixed and paraffin-embedded
(FFPE) WSIs from the The Cancer Genome Atlas (TCGA),
corresponding to 2,634 distinct patients. These images, each
scanned at either 20x or 40x magnification, represented pa-
tients with skin cutaneous melanoma (SKCM), stomach ade-
nocarcinoma (STAD), breast cancer (BRCA), lung adenocar-
cinoma (LUAD), and lung squamous cell carcinoma (LUSC)
from 95 distinct clinical sites. We summarize the character-
istics of TCGA patients in Supplemental Table 1. To sup-
plement the TCGA analysis cohort, we obtained 4,158 addi-
tional WSIs for the five cancer types to improve model ro-
bustness.

To maximize capture of this information, we excluded im-
ages (n = 91/2,917, 3.1%) if they failed basic quality con-
trol checks as determined by expert pathologists. Criteria for
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quality control were limited to mislabeling of tissue, exces-
sive blur, or insufficient staining. For both TCGA and addi-
tional WSIs, we collected cell- and tissue-level annotations
from a network of pathologists, amounting to >1.4 million
cell-type point annotations and >200 thousand tissue-type re-
gion annotations (Supplemental Table 2).

We used the resulting slides and annotations to design a fully
automated pipeline to extract HIFs from these slides (sum-
marized in Figure 1a). First, we trained deep learning mod-
els for cell detection (“cell-type models”) and tissue region
segmentation (“tissue-type models”). Training and valida-
tion of models was conducted on a development set of 1,561
TCGA WSIs, supplemented by the 4,158 additional WSIs
(n=5719) (Figure 1b). Next, we exhaustively generated cell-
and tissue-type model predictions for 2,826 TCGA WSIs,
which were then used to compute a diverse array of HIFs
for each WSI. Finally, we trained classical linear machine
learning models to predict treatment-relevant molecular ex-
pression phenotypes using these HIFs.

Cell- and tissue-type predictions yield a wide spec-
trum of HIFs. In the first step of our pipeline, we trained two
convolutional neural networks (CNNs) per cancer type: (1)
tissue-type models trained to segment cancer tissue, cancer-
associated stroma, and necrotic tissue regions, and (2) cell-
type models trained to detect lymphocytes, plasma cells, fi-
broblasts, macrophages, and cancer cells. These models were
improved iteratively through a series of quality control steps,
including significant input from board-certified pathologists
(Methods). These CNNs were then used to exhaustively gen-
erate cell-type labels and tissue-type segmentations for each
WSI. We visualized these predictions as colored heatmaps
projected onto the original WSIs (Figure lc; Supplemental
Figure 1). When quantified, these predictions capture broad
multivariate information about the spatial distribution of cells
and tissues in each slide.

Specifically, we used model predictions to extract 607 HIFs
(Figure 2), which can be understood in terms of six cate-
gories (Figure 3). The first category includes cell type counts
and densities across different tissue regions (e.g. density of
plasma cells in cancer tissue) (Figure 3i-ii). The next cat-
egory includes cell-level cluster features that capture inter-
cellular spatial relationships, such as cluster dispersion, size,
and extent (e.g. mean cluster size of fibroblasts in cancer-
associated stroma) (Figure 3iii-iv). The third category cap-
tures cell-level proportion and proximity features, such as the
proportional count of lymphocytes versus fibroblasts within
80 microns of the cancer-stroma interface (CSI) (Figure 3v-
vi). The fourth category includes tissue area (e.g. mm? of
necrotic tissue) and multiplicity counts (e.g. number of sig-
nificant regions of cancer tissue) (Figures Figure 3vii-viii).
The fifth category includes tissue architecture features, such
as the average solidity (“solidness”) of cancer tissue regions
or the fractal dimension (geometrical complexity) of cancer-
associated stroma (Figures Figure 3ix-x). The final cate-
gory captures tissue-level morphology using metrics such as
perimeter? over area (shape roughness), lacunarity (“gappi-
ness”), and eccentricity (Figure 3xi-xii). This broad enumer-
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STEP 1:
Train DL models to obtain tissue- and
cell-type spatial information
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Tissue-Type Prediction
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H&E-FFPE Cell-Type Predictions

Histology Slides

b
TCGA Datasets BRCA LUAD
Number of WSlIs 1119 501
Number of Distinct Patients 1044 444
Number of Cell-Level Annotations 57840 21958
Number of Tissue-Level Annotations 7637 5555
Additional Datasets
Number of WSls 698 1908
Number of Cell-Level Annotations 130474 257966
Number of Tissue-Level Annotations 23094 39195

STEP 2:
Extract human-interpretable image
features from model predictions

e— Cell-Level

STEP 3:
Train classical ML models to find
relationships with molecular information

——> Treatment-Relevant
Predictions
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Tissue-Level
Features

Features

LuUsC SKCM STAD Total
446 358 407 2831
412 327 407 2634

68548 105096 69598 323040

13826 19611 8917 55546
438 1002 112 4158

45061 658204 27999 1119704

14345 61254 8130 146018

Fig. 1. Dataset and pipeline overview. a) Methodology for extracting HIFs from high-resolution, digitized H&E images. b) Summary statistics on the number of WSlIs,
distinct patients, and annotations curated from TCGA and additional datasets. c) Unprocessed portions of STAD H&E-stained slides alongside corresponding heatmap
visualizations of cell- and tissue-type predictions. Slide regions are classified into tissue types: cancer tissue (red), cancer-associated stroma (orange), necrosis (black), or
normal (transparent). Pixels in cancer tissue or cancer-associated stroma areas are classified into cell types: lymphocyte (green), plasma cell (lime), fibroblast (orange),

macrophage (aqua), cancer cell (red), or background (transparent).

ation of biologically-relevant HIFs explores a wide range of
mechanisms underlying histopathology across diverse cancer

types.

HIFs capture sufficient information to stratify cancer
types. To visualize the global structure of the HIF feature
matrix, we used Uniform Manifold Approximation and Pro-
jection (UMAP) to reduce the 607-dimensional HIF space
into two dimensions (Figure 4a). The 2-D manifold projec-
tion of HIFs was able to separate BRCA, SKCM, and STAD
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into distinct clusters, while merging NSCLC subtypes LUAD
and LUSC into one overlapping cluster (V-measure score
= 0.47 using k-means with k = 4).

Cancer type differences could be traced to specific and inter-
pretable cell- and tissue-level features within the TME (Fig-
ure 4b). SKCM samples exhibited higher densities of can-
cer cells in cancer-associated stroma (pan-cancer median Z-
score = 0.55, P < 1073%) and greater cancer tissue area per
slide (Z-score = 0.72, P < 10730) relative to other cancer
types. These findings reflect biopsy protocols for SKCM, in
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Fig. 2. Human-interpretable image feature extraction workflow. Flow diagram of HIF extraction from model predictions for five example HIFs. For each HIF, an H&E
snapshot with the corresponding cell- or tissue-type heatmap overlaid and the associated quantity are shown.

which the excised region involves predominantly cancer tis-
sue and minimal normal tissue. NSCLC subtypes LUAD and
LUSC exhibited higher densities of macrophages in cancer-
associated stroma (Z-score = 0.54 and 0.91, respectively;
P < 10739), reflecting the large population of macrophages
infiltrating alveolar and interstitial compartments during lung
inflammation!. NSCLC subtypes also exhibited higher den-
sities of plasma cells (Z-score = 0.61 and 0.49; P < 10739)
in cancer-associated stroma, in agreement with prior find-
ings in which proliferating B cells were observed in 35%
of lung cancers3>33. STAD exhibited the highest density
of lymphocytes in cancer-associated stroma (Z-score = 0.11,
P =2.16 x 10~19), corroborating prior work which iden-
tified STAD as having the largest fraction of TIL-positive
patches per WSI among thirteen TCGA cancer types, includ-
ing the five examined here?>. Notably, HIFs are able to strat-
ify cancer types by known histological differences without
explicit tuning for cancer type detection.

HIFs are concordant with sequencing-based cell and
immune marker quantifications. To further validate our
deep learning-based cell quantifications, we compared the
abundance of the same cell type predicted by our cell-type
models with those based on RNA sequencing*. Image-
based cell quantifications were correlated with sequencing-
based quantifications across all patient samples and cancer
types (pan-cancer) in three cell types (Supplemental Fig-
ure 2): leukocyte fraction (Spearman correlation coefficient
(p) =0.55, P < 2.2 x 10716), lymphocyte fraction (p = 0.42,
P < 2.2x10716), and plasma cell fraction (p = 0.40, P <
2.2 x 10716). Notably, imperfect correlation is expected as
tissue samples used for RNA sequencing and histology imag-
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ing are extracted from different portions of the patient’s tu-
mor, and thus vary in TME due to spatial heterogeneity.

There is significant correlation structure among individual
HIFs due to the modular process by which feature sets are
generated, as well as inherent correlations in underlying bi-
ological phenomena. For example, proportion, density, and
spatial features of a given cell or tissue type all rely on
the same underlying model predictions. In order to iden-
tify mechanistically-relevant and inter-correlated groups of
HIFs, hierarchical agglomerative clustering was conducted
(Methods; Supplemental Data 1). This clustering also in-
creases the power of multiple-hypothesis-testing corrections
by accounting for feature correlation*>. Pan-cancer HIF clus-
ters strongly correlated with immune markers of leukocyte
infiltration, IgG expression, TGF-/3 expression, and wound
healing (Figure 5a), each quantified by scoring bulk RNA
sequencing reads for known immune expression signatures.
We conducted the same correlational analysis for each can-
cer type individually, and observed high concordance among
the top-correlated HIF clusters per immune marker (Supple-
mental Table 3).

Molecular quantification of leukocyte infiltration was con-
cordant with the density of leukocyte-lineage cells in can-
cer tissue plus cancer-associated stroma (CT+CAS) quanti-
fied by our deep learning pipeline, including lymphocytes
(median absolute Spearman correlation p for associated HIF
cluster= 0.48, P < 10~3°; Figure 5bi), plasma cells (cluster
p =0.46, P < 1073), and macrophages (cluster p = 0.40,
P < 10_30). Similarly, we observed associations between
IgG expression and the density of leukocyte-lineage cells in
CT+CAS, with plasma cells being the most strongly corre-
lated (cluster p = 0.58, P < 10739), as expected given their
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Fig. 3. Overview of HIFs. Graphical overview of the 607 HIFs grouped into six categories: cell-level count and density (n = 56 HIFs), cell-level cluster (n = 180), cell-level
proportion and proximity (n = 208), tissue-level area and multiplicity (n = 13), tissue-level architecture (n = 25), and tissue-level morphology (n = 125). For each HIF, a
histogram of the HIF quantified in all patient samples across the five cancer types and H&E snapshots corresponding to high and low values with the corresponding heatmap
are shown. Both snapshots are taken from patient samples of the same cancer type. Cell- and tissue-type heatmaps adhere to the same color scheme described in Figure
1c. In (iii), fibroblast clusters are annotated, contrasting one large cluster against multiple smaller clusters. In (iv), macrophage clusters and extents are annotated. Cluster
extent is defined as the maximum distance between a cluster exemplar (defined via Birch clustering) and a cell within that cluster. Significant regions (viii) are defined as
connected components (identified at the pixel-level) of a given tissue type with at least 10% the size of the largest connected component in the slide. A solidity (ix) of one
corresponds to a completely filled object, while values less than one correspond to objects containing holes or with irregular boundaries. Fractal dimension (x) can efficiently
estimate the geometrical complexity and irregularity of shapes and patterns, thus capturing tissue architecture. A fractal dimension of one corresponds to a perfectly smooth
tissue border, while higher fractal dimension corresponds to increasing roughness and irregularity, indicating more extensive physical contact between adjacent tissue types.
The fractal dimension of the CSI has been previously associated with dysfunction in antigen presentation 26 Perimeter? / Area (xi) is a unitless measure of shape roughness
(e.g. square = 16, circle = 47). Across all HIFs, tumor regions include cancer tissue (CT), cancer-associated stroma (CAS), and a combined CT+CAS.
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Fig. 4. HIF differences across cancer types. a) UMAP projection and visualization of five cancer types reduced from the 607-dimension HIF space into two dimensions.
Each point represents a patient sample colored by cancer type. b) Clustered heatmap of median Z-scores (computed pan-cancer) across cancer types for twenty HIFs,
each representing one HIF cluster (defined pan-cancer). Hierarchical clustering was performed using average linkage and Euclidean distance. Clusters are annotated with a
representative HIF chosen based on interpretability and high variance across cancer types.

role in producing immunoglobulins (Figure 5bii). TGF-$
expression was associated with the density of fibroblasts in
CT+CAS (cluster p = 0.28, P < 10~3°; Figure 5biii), build-
ing upon prior studies which found that TGF-/31 can promote
fibroblast proliferation3®3%. TGF-3 expression was also cor-
related with the area of cancer-associated stroma relative to
CT+CAS (cluster p = 0.31, P < 1073°), shedding further
light on the role of stromal proteins in modulating TGF-3
levels°. Wound healing signature was positively associated
with the density of fibroblasts in cancer-associated stroma
versus in cancer tissue (cluster p = 0.29, P < 10730; Fig-
ure Sbiv), which corroborates findings that both tumors and
healing wounds alike modulate fibroblast recruitment and
proliferation to facilitate extracellular matrix deposition’.
H&E snapshots corresponding to high expression of each of
the four immune markers are shown in Figure 5c with corre-
sponding cell-type heatmaps overlaid.

HIFs are predictive of clinically-relevant phenotypes.
To evaluate the capability of HIFs to predict expression
of clinically-relevant, immuno-modulatory genes, we con-
ducted supervised prediction of binarized classes for five
clinically-relevant phenotypes: (1) programmed cell death
protein 1 (PD-1) expression, (2) PD-L1 expression, (3) cy-
totoxic T-lymphocyte-associated protein 4 (CTLA-4) expres-
sion, (4) HRD score, and (5) T cell immunoreceptor with
Ig and ITIM domains (TIGIT) expression (Figure 6; Sup-
plemental Figure 3). Using the 607 HIFs computed per
WSI, predictions were conducted for cancer types individ-
ually as well as pan-cancer. SKCM predictions were con-
ducted only for TIGIT expression due to insufficient sample
sizes for the remainder of outcomes (Methods). To demon-
strate model generalizability across varying patient demo-
graphics and sample collection processes, area under the re-
ceiver operating characteristic (AUROC) and area under the
precision-recall curve (AUPRC) performance metrics were
computed on hold-out sets composed exclusively of patient
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samples derived from tissue source sites not seen in the train-
ing sets (Supplemental Table 4).

HIF-based models were not predictive for every phenotype in
each cancer type (hold-out AUROC < 0.6; see Supplemen-
tal Table 5 for all results including negatives). In the suc-
cessful prediction models (hold-out AUROC range = 0.601-
0.864; Figure 6a), precision-recall curves revealed that mod-
els were robust to class-imbalance, achieving AUPRC perfor-
mance surpassing positive class prevalence by 0.104-0.306
(Supplemental Figure 4). Notably, AUROC performance of
our HIF-based linear model for PD-L1 expression in LUAD
was comparable to that achieved by “black-box” deep learn-
ing models trained on hundreds of thousands of paired H&E
and PD-L1 example patches in NSCLC*!.

Predictive HIFs provide interpretable link to clinical-
ly-relevant phenotypes. Interpretable features enable in-
terrogation and further validation of model parameters as
well as generation of new biological hypotheses. Towards
this end, for each prediction task we identified the five most
important HIF clusters as determined by magnitude of model
coefficients (Figure 6b; Supplemental Figure 5) and com-
puted cluster-level P-values to evaluate significance (Supple-
mental Table 6; Methods).

As expected, prediction of PD-1 and PD-L1 involved simi-
lar HIF clusters (Pearson correlation between PD-1 and PD-
L1 expression = 0.53; Supplemental Figure 6). The count
of cancer cells within 80 microns of lymphocytes, as well
as the density of lymphocytes in CT+CAS, was significantly
selected during model fitting for both of PD-1 and PD-L1
expression in pan-cancer and BRCA models (Figure 6bi-ii;
Supplemental Figures 5i-ii). Furthermore, in both LUAD
and LUSC, the count of lymphocytes in CT+CAS was simi-
larly predictive of PD-1 and PD-L1 expression. The impor-
tance of these HIFs which capture lymphocyte infiltration be-
tween and surrounding cancer cells corroborates prior litera-
ture which demonstrated that TILs correlated strongly with
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Fig. 5. Validation of HIFs against immune markers. a) Clustered heatmap of median absolute Spearman correlation coefficients (p) computed across all patient samples
between eight HIF clusters (defined pan-cancer) and four canonical immune markers. Hierarchical clustering was done using average linkage and euclidean distance. Median
absolute Spearman correlation coefficients with a combined (via the Empirical Brown’s method) and corrected (via the Benjamini-Hochberg procedure) P value lower than the
machine precision level (10~3%) are annotated with an asterisk. Negative control analyses are included in Supplemental Table 3. Tumor regions include cancer tissue (CT),
cancer-associated stroma (CAS), and a combined CT+CAS. b) Correlation and kernel density estimation plots between representative HIFs and immune markers. Points are
colored by cancer type. X-axes are log-transformed (base ten). Trendlines are plotted on the log-transformed data. Cell densities are reported in count/mm? and tissue areas
are reported in mm?. ¢) Histogram of immune marker expression (Z-score) across all patients, alongside an H&E snapshot with its cell-type heatmap overlaid corresponding
to high expression of the given immune marker. Cell-type heatmaps adhere to the same color scheme described in Figure 1c.

higher expression levels of PD-1 and PD-L1 in early breast
cancer*? and NSCLC*3#,

The area, morphology, or multiplicity of necrotic tissue
proved predictive of PD-1 expression in LUAD, LUSC,
and STAD models and of PD-L1 expression in pan-cancer,
BRCA, and LUAD models, expanding upon prior findings
that tumor necrosis correlated positively with PD-1 and PD-
L1 expression in LUAD®. The density, proximity, or clus-
tering properties of plasma cells was predictive of PD-1 ex-
pression in all models excluding LUAD, suggesting a role
for plasma cells in modulating PD-1 expression. Recent
studies in SKCM, renal cell carcinoma, and soft-tissue sar-
coma have demonstrated that an enrichment of B-cells in
tertiary lymphoid structures was positively predictive of re-
sponse to immune checkpoint blockade therapy“®%. The
density of fibroblasts in cancer-associated stroma or within
80 microns of the CSI was predictive of PD-L1 expression in
LUAD and STAD, respectively, corroborating earlier discov-
eries that cancer-associated fibroblasts promote PD-L1 ex-
pression®’.

Less is known about the relationship between the TME and
CTLA-4 expression. By investigating predictive HIFs we
can begin to enumerate features of the TME that corre-
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late with CTLA-4 expression. The proximity of lympho-
cytes to cancer cells (pan-cancer and BRCA), morphology
of necrotic regions (LUAD and LUSC), and density of can-
cer cells in CT+CAS versus exclusively in cancer-associated
stroma (BRCA and STAD) were predictive of CTLA-4 ex-
pression across multiple models (Figure 6biii; Supplemental
Figure 5iii).

Area of necrotic tissue (pan-cancer and BRCA) as well as
various morphological properties of necrotic regions includ-
ing perimeter and lacunarity (BRCA and STAD) were predic-
tive of HRD (Figure 6biv; Supplemental 5iv). In HRD, inef-
fective DNA damage repair can result in the accumulation of
severe DNA damage and subsequent cell death through apop-
tosis as well as necrosis *>>!. The density and count of fibrob-
lasts near or in cancer-associated stroma was also predictive
of HRD in the pan-cancer and BRCA models, corroborating
prior findings that persistent DNA damage and subsequent
accumulation of unrepaired DNA strand breaks can induce
reprogramming of normal fibroblasts into cancer-associated
fibroblasts .

Like the three other immune checkpoint proteins (PD-1,
PD-L1, and CTLA-4), TIGIT expression was also asso-
ciated with markers of tumor inflammation, including the
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Fig. 6. HIF-based prediction of molecular phenotypes. a) ROC curves for (i) PD-1, (ii) PD-L1, (iii) CTLA-4, (iv) HRD, and (v) TIGIT hold-out predictions across cancer
types and pan-cancer. SKCM predictions were conducted only for TIGIT due to low sample sizes. Pan-cancer predictions use binary labels thresholded independently
by cancer type. For TIGIT predictions, pan-cancer includes all five cancer types. For the remainder of predictions, pan-cancer includes all cancer types excluding SKCM.
Random classifiers correspond to AUROC = 0.50. b) Visualization of predictive HIFs for each molecular phenotype. Boxplots show the top five most predictive HIF clusters
for each phenotype in pan-cancer models. For TIGIT predictions, pan-cancer models only included three non-zero HIF clusters. Clusters are ranked by the maximum
absolute ensemble beta across HIFs in a given cluster. Ensemble betas are computed per HIF as the average across the three models incorporated into the final ensemble
evaluated on the hold-out set. Each boxplot highlights the median and interquartile range for ensemble betas in each cluster. Each cluster is labeled with a representative
HIF corresponding to the maximum absolute ensemble beta value. In cases where that HIF is difficult to interpret, a more interpretable HIF within a five-fold difference of the
maximum ensemble beta is presented (indicated by a black asterisk). As absolute values were used for ranking, HIFs with negative ensemble betas are denoted by a red
asterisk. Boxplots of predictive HIF clusters for cancer type-specific models are included in Supplemental Figure 5. Radar charts show the normalized magnitude of ensemble
betas in pan-cancer models stratified across nine HIF axes, corresponding to the five cell types, three tissue types, and CSI. Normalized magnitudes were computed as the
sum of absolute ensemble betas for HIFs associated with each axis divided by the total number of HIFs associated with said axis (e.g. all HIFs involving fibroblasts). Multiple
predictive HIFs are visualized with overlaid cell- or tissue-type heatmaps in Figure 3. Tumor regions include cancer tissue (CT), cancer-associated stroma (CAS), and a

combined CT+CAS.

count of cancer cells within 80 microns of lymphocytes
(pan-cancer and BRCA), the total number of lymphocytes
in CT+CAS (pan-cancer and BRCA), and the proportional
count of lymphocytes to cancer cells within 80 microns of the
CSI (LUAD) (Figure 6bv; Supplemental Figure 5v). These
findings corroborate prior findings that TIGIT expression,
alongside PD-1 and PD-L1 expression (Pearson correlation
between TIGIT and PD-1 = 0.84; TIGIT and PD-L1 = 0.56;
Supplemental Figure 6), is correlated with TILs>3. HIF clus-
ters capturing morphology and architecture of necrotic tissue
(e.g. fractal dimension, lacunarity, extent, perimeter2 / area)
were associated with TIGIT expression in LUAD, LUSC,
SKCM, and STAD models, although these relationships have
yet to be investigated.

Discussion

Our study is the first to demonstrate the value of combin-
ing deep learning-based cell- and tissue-type classifications

8 | bioRxiv

to compute image features that are both biologically-relevant
and human-interpretable. We demonstrate that computed
HIFs can recapitulate sequencing-based cell quantifications,
capture canonical immune markers such as leukocyte infiltra-
tion and TGF-/ expression, and robustly predict five molec-
ular phenotypes relevant to oncology treatment efficacy and
response. We also demonstrate the generalizability of our as-
sociations, as evidenced by similarly predictive HIF clusters
across biopsy images derived from five different cancer types.
While prior studies have applied deep learning methodolo-
gies to capture cell-level information, such as the spatial con-
figuration of immune and stromal cells?®>*, or tissue-level
information™ alone, our combined cell plus tissue approach
enables quantification of increasingly complex and expres-
sive features of the TME, ranging from the mean cluster size
of fibroblasts in cancer-associated stroma to the proximity of
TILs or cancer-associated fibroblasts to the CSI. By train-
ing models to make six-class cell-type and four-class tissue-
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type classifications, our approach is also able to aggregate
more layers of information than prior studies. Indeed, while
TILs are emerging as a promising biomarker in solid tumors
such as triple-negative and HER2-positive breast cancer>,
TILs differ from stromal lymphocytes, and substantial signal
can be obtained by considering multiple cell-tissue combina-

tions2!.

Our approach of exhaustively generating cell- and tissue-type
predictions across entire WSIs at subcellular resolution (of
two and four microns, respectively) is novel to the best of our
knowledge, and improves upon previous tiling approaches
that downsample the image. The tissue visible in a WSl is al-
ready only a fraction of the tumor itself. Using the entire slide
(rather than selected tiles) reduces the probability of fixating
on non-generalizable local effects and enables quantification
of complex characteristics that span multiple tissue regions
(e.g. multiplicity, solidity, and fractal dimension of signifi-
cant necrotic regions).

In addition, our approach of capturing specific and inter-
pretable features of the tumor and its surroundings can facil-
itate hypothesis generation and enable a deeper understand-
ing of the TME’s influence on drug response. Indeed, re-
cent studies provide evidence that tumor immune architec-
ture can greatly dictate clinical efficacy of immune check-
point inhibitor>® and poly (ADP-ribose) polymerase (PARP)

inhibitor therapies>’.

Lastly, during both model development and evaluation, we
sought to emphasize robustness to real-world variability .
In particular, we supplemented TCGA WSIs with additional
diverse datasets during CNN training, integrated patholo-
gist feedback into model iterations, and evaluated HIF-based
model performance on hold-out sets composed exclusively
of samples from unseen tissue source sites, improving upon
prior approaches to predicting molecular outcomes from
TCGA H&E images?>°.

One major limitation of machine-learning approaches is the
quality of training data. While our cell and tissue classifica-
tion models were trained on a combination of TCGA and ad-
ditional datasets, molecular associations and predictions were
derived solely from TCGA. Biopsy images submitted to the
TCGA dataset suffer from selection bias towards more defini-
tive diagnoses and early-stage disease that may not generalize
well to ordinary clinical settings. Moreover, the images only
contain H&E staining, which limits the amount of informa-
tion available to us. It is possible that integrating multimodal
data containing stains against Ki-67 or immunohistological
targets may increase confidence in cell classifications®. In
addition to the quality of slide images, annotations are also
variable in reliability. Macrophages are particularly diffi-
cult for pathologists to identify solely under H&E staining.
While the accuracy of an individual pathologist identifying
macrophages may be poor, our models represent a consensus
across hundreds of pathologist annotators which may carry a
more reliable signal ®!-6%,

Furthermore, = morphologically  similar cells (e.g.
macrophages, dendritic cells, endothelial cells, pericytes,
myeloid derived suppressor cells, and atypical lymphocytes)
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may all be captured under a single cell-type prediction. Thus,
HIFs may, in reality, capture information about a mixture
of cell types. For example, in diffuse forms of STAD in
which cancer cells invade smooth muscle tissue, our models
misclassified certain smooth muscle cells as fibroblasts.
Therefore, fibroblast-label HIFs likely reflect a mixture of
these two cell types in STAD. Further disambiguation of
morphologically-similar cell types may decrease noise in
HIF estimates and improve performance.

These interpretable sets of HIFs, computed from tens-of-
thousands of deep learning-based cell- and tissue-type pre-
dictions per patient, improve upon conventional “black-box”
approaches which apply deep learning directly to WSIs,
yielding models with millions of parameters and limited in-
terpretability. Recent work has revealed the weaknesses of
low-interpretability models, including brittleness to dataset
shift, vulnerabilities to adversarial attack, and susceptibility
to the biases of the data-generative process. Unlike class acti-
vation maps utilized in prior studies as a heuristic to identify
predictive image regions®'?, HIFs can be interpreted in ag-
gregate across thousands of images and mapped directly onto
biological concepts.

Beyond suggesting interpretable hypotheses for causal mech-
anisms (e.g. the anti-tumor effect of high lymphocyte den-
sity), our HIF-based approach can be continually validated
at several points: pathologists can judge the quality of cell
and tissue-type predictions, estimate the values of each rel-
evant feature using traditional manual scoring, and observe
whether there is a significant failure given real-world vari-
ability in sample preparation and quality. Unlike “black-box”
models that may opaquely rely on features that are predictive
but disconnected from the outcome of interest, such as tissue
excision or preparation artifacts (e.g. surgical or pathologist
markings) '%!°, HIF-based predictions can be traced to ob-
servable features, allowing model failures to be explained and
addressed. While performance is vitally important in clini-
cal settings and additional studies comparing end-to-end and
HIF-based approaches are needed, the improved trust and re-
liability against unexpected failures make HIF-based models
a valuable alternative.

Finally, the ability to predict molecular phenotypes directly
from WSIs in an interpretable fashion has numerous poten-
tial benefits for clinical oncology. Hospitals, healthcare in-
stitutions, and pharmaceutical and biotechnology companies
have decades of archival histopathology data captured from
routine care and clinical trials®. HIF-based models capable
of capturing molecular information could supplement molec-
ular assays that are often expensive and time-consuming?,
enable the discovery of novel patient subpopulations with
specific disease processes and treatment susceptibilities, and
generate hypotheses for subsequent research.
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Methods

Dense, high-resolution prediction of cell and tissue
types using convolutional neural networks. In order to
compute histopathological image features for each slide, it
was necessary to first generate cell and tissue predictions
per WSI. To this end, we asked a network of board-certified
pathologists to label WSIs with both polygonal region anno-
tations based on tissue type (cancer tissue, cancer-associated
stroma, necrotic tissue, and normal tissue or background) and
point annotations based on cell type (cancer cells, lympho-
cytes, macrophages, plasma cells, fibroblasts, and other cells
or background). This collection of expert annotations was
then used to train six-class cell type and four-class tissue-type
classifiers.

Several steps were taken to ensure the accuracy and general-
izability of our models. First, it was important to recognize
that common cell and tissue types, such as cancer-associated
stroma or cancer cells, show morphological differences be-
tween BRCA, LUAD, LUSC, SKCM, and STAD. As a re-
sult, we trained separate cell- and tissue-type detection mod-
els for each of these five cancer types, for a total of ten mod-
els. Second, it was important to ensure that our models did
not overfit to the histological patterns found in the training
set. To avoid this, we followed the conventional protocol of
splitting our data into training, validation, and test sets, and
incorporated additional annotations of the same five cancer
types from PathAI’s databases into the model development
process. Together, these datasets represented a wide diversity
of examples for each class in each cancer type, thus improv-
ing the generalizability of these models beyond the TCGA
dataset.

Using the combined dataset of annotated TCGA and addi-
tional WSIs, we trained deep convolutional neural networks
(CNN) to output dense pixelwise cell- and tissue-type pre-
dictions at a subcellular spatial resolution of two and four
microns, respectively (spatial resolution dictated by stride).
To ensure that our models achieved sufficient accuracy for
feature extraction, models were trained in an iterative pro-
cess, with each updated model’s predictions visualized as
heatmaps to be reviewed by board-certified pathologists. In
heatmap visualizations, tissue categories were segmented
into colored regions, while cell types were identified as col-
ored squares. This process continued until there were mini-
mal systematic errors and the pathologists deemed the model
sufficiently trustworthy for feature extraction.

Pathologist validation of cell- and tissue-type predic-
tions. During the CNN training process, we worked itera-
tively with three board-certified pathologists to conduct sub-
jective evaluation of model predictions to inform multiple
rounds of training. CNN models were initially trained on
a set of primary annotations collected from the pathologist
network. Following the conclusion of each training round
(defined by model convergence), predicted cell and tissue
heatmaps were reviewed for systematic errors (e.g. overpre-
diction of fibroblasts, macrophages, and plasma cells, under-
prediction of necrotic tissue). New annotations would then

12 | bioRxiv

be collected from the pathologist network focusing on areas
of improvement (e.g. mislabeled macrophages) to initiate a
subsequent training round.

Tissue-based feature extraction. Using the tissue-type
predictions, we extracted 163 different region-based features
from each WSI in the TCGA dataset. Each of these features
belonged to one of three general categories.

The first category consisted of areas (n = 13 HIFs). By sim-
ple pixel summation, we computed the total areas (in mm?)
of cancer tissue, cancer-associated stroma, cancer tissue plus
cancer-associated stroma, regions at the cancer-stroma inter-
face, and necrosis in each slide. These features are inter-
pretable and technically attainable by human pathologists,
but would be prohibitively time-consuming and inconsistent
across pathologists to calculate in practice.

The second category, which contributed the bulk of
the features, made use of the publicly available scikit-
image.measure.regionprops module to find the connected
components of each of these tissue types at the pixel-level
using eight-connectivity. Once these connected compo-
nents were found, we used both library-provided and self-
implemented methods to extract a series of morphological
features (n = 125 HIFs), similar to the approach suggested
by Wang et al. in 201823, These HIFs measured a wide
variety of tissue characteristics, ranging from quantitative,
size-based measures like the number of connected compo-
nents, major and minor axis lengths, convex areas, and filled
areas, to more qualitative, shape-based measures like Euler
numbers, lacunarity, and eccentricity. Recognizing the log-
distribution of connected component size, we computed these
features not just across all connected components, but also
for both the largest connected component only and across the
most “significant” connected components, defined as com-
ponents larger than 10% the size of the largest connected
component. In aggregating metrics across considered com-
ponents, we incorporated both averages and standard devia-
tions of HIFs (e.g. standard deviation of eccentricities of sig-
nificant regions of necrosis), to capture both summary met-
rics and metrics of intratumor heterogeneity.

The third category of features captures tissue architecture
(n = 25 HIFs). Inspired by Lennon et al.>*, we calculated
the fractal dimensions and solidity measures of different tis-
sue types, capturing both the roundness and filled-ness of the
tissue, under the hypothesis that the ability for these measures
to separate different subtypes of lung cancer might translate
to a similar ability to predict clinically-relevant phenotypes.
These features allowed us to capture information about how
tissue filled up space, rather than just the summative sizes and
shapes captured by the first and second categories.

Cell- and tissue-based feature extraction. After obtain-
ing six-class cell-type predictions for each pixel of a WSI, we
generated five binary masks corresponding to each of the five
specified cell types. We then combined cell- and tissue-level
masks to compute properties of each cell type in each tissue
type (e.g. fibroblasts in cancer-associated stroma), extracting
444 HIFs.
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An initial group of features that were readily calculable from
our model predictions included simple counts and densities
of cell types in different tissue types. For example, an overlay
of a particular slide’s lymphocyte detection mask on top of
the same slide’s cancer-associated stroma mask could be used
to calculate the number of TILs on a given slide. We could
then divide this number by the area of cancer-associated
stroma to find the associated density of TILs on the slide.
By taking the “outer product” of cell and tissue types, we de-
rived a wide array of composite features. In particular, we
calculated counts, proportions, and densities of cells across
different tissue types (e.g. density of macrophages in cancer-
associated stroma versus in cancer tissue), under the hypoth-
esis that these measures capture information that raw counts
could not. To capture information regarding cell-cell prox-
imity and interactions, we also calculated counts and propor-
tions of each cell type within an 80 micron radius of each
other cell type (e.g. count of lymphocytes within an 80 mi-
cron radius of fibroblasts). Cell-level counts, densities, and
proportions comprised 264 HIFs. For each cell-tissue combi-
nation, we next applied the Birch clustering method (as im-
plemented in the sklearn.cluster Python module) to partition
cells into clusters®*. To fit clustering structures as closely as
possible to the spatial relationships found between cell types
on the slide, we set a threshold of 100, a branching factor
of 10, and allowed the algorithm to optimize the number of
clusters returned. We used the returned clusters to calculate
a series of features designed to capture spatial relationships
between individual cells types within a given tissue type, in-
cluding number of clusters, cluster size mean and standard
deviation (SD), within-cluster dispersion mean and SD, clus-
ter extent mean and SD, the Ball-Hall Index, and Calinski-
Harabasz Index (n = 180 HIFs). For metrics where cluster
exemplars were needed, the subcluster centers returned by
the Birch algorithm were used.

Patient-level aggregation. Patients with multiple tissue
samples were represented by the single sample with the
largest area of cancer tissue plus cancer-associated stroma,
computed during tissue-based feature extraction. All subse-
quent analyses were conducted at the patient level.

HIF clustering. Due to underlying biological relationships
as well as the HIF generation process, there is significant cor-
relation structure between many of the features. This presents
a challenge of feature selection as much of the information
contained in one feature will also be present in another. It
also makes it difficult to control for multiple hypothesis test-
ing, because the underlying number of tested hypotheses is
significantly fewer than the number of features computed.

To identify groups of correlated HIFs, we clustered fea-
tures via hierarchical agglomerative clustering using com-
plete linkage, a cluster cutoff of 0.95, and pairwise correla-
tion distance (1— absolute Spearman correlation) as the dis-
tance metric. We defined a set of HIF clusters for each can-
cer type independently, as well as another set for pan-cancer
analyses (Supplemental Data 1). Clustering correlated fea-
tures allows us to summarize the true underlying number of
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tested hypotheses.

Visualization of cancer types in HIF space. Uniform
Manifold Approximation and Projection (UMAP) was ap-
plied for dimensionality reduction and visualization of pa-
tient samples from the 607-dimension HIF space into two
dimensions (using parameters: number of neighbors = 15,
training epochs = 500, distance metric = euclidean). The V-
Measure was computed to compare BRCA, STAD, SKCM,
and NSCLC (LUAD and LUSC combined) classes against
clusters generated by k-means (k = 4) applied to the 2-D
UMAP projection %0, To quantify differences between can-
cer types, HIF values were normalized pan-cancer into Z-
scores. Median Z-scores were then computed per cancer type
across twenty HIFs, each representing one of twenty HIF
clusters defined pan-cancer. Representative HIFs were se-
lected based on subjective interpretability and high variance
across cancer types. To determine the statistical significance
of median Z-scores that were greater in one cancer type rel-
ative to others, P-values were estimated with the one-sided
Mann-Whitney U-test, considering NSCLC subtypes LUAD
and LUSC as one type.

Validation of HIFs against molecular markers. To vali-
date the ability of HIFs to capture meaningful cell- and tissue-
level information, we computed Spearman correlations be-
tween HIFs and four canonical immune markers from the
PanImmune dataset®’: (1) leukocyte infiltration, (2) IgG ex-
pression, (3) TGF-g expression, and (4) wound healing. Im-
mune markers were quantified by mapping mRNA sequenc-
ing reads against gene sets associated with known immune
expression signatures. To estimate the correlation between
HIF clusters and immune markers, we computed the median
absolute Spearman correlation per cluster and combined de-
pendent P-values associated with individual correlations via
the Empirical Brown’s method>. To control the false dis-
covery rate, combined P-values per cluster were then cor-
rected using the Benjamini-Hochberg procedure®®. Corre-
lation analyses were conducted for cancer types collectively
and individually, using HIF clusters defined across all cancer
types for assessment of concordance.

In addition, image-based cell quantifications for leukocyte
fraction, lymphocyte fraction, and plasma cell fraction were
validated by Spearman correlation to their sequencing-based
equivalents from matched TCGA tumor samples, computed
using CIBERSORT®’. CIBERSORT (cell-type identification
by estimating relative subsets of RNA transcripts) uses an im-
mune signature matrix for deconvolution of observed RNA-
Seq read counts into estimates of relative contributions be-
tween 22 immune cell profiles*.

Molecular phenotype label curation. PD-1, PD-L1, and
CTLA-4 expression data for each cancer type were collected
from the PanImmune dataset®’, while TIGIT expression data
was collected from the National Cancer Institute Genomic
Data Commons®. PD-1, PD-L1, CTLA-4, and TIGIT ex-
pression levels were quantified from mapped mRNA reads
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against genes PDCD1, CD274, CTLA-4, and TIGIT, respec-
tively, and normalized as Z-scores across all cancer types in
TCGA. Homologous recombination deficiency (HRD) scores
were collected from Knijnenburg et al’®. The HRD score was
calculated as the sum of three components: 1) number of sub-
chromosomal regions with allelic imbalance extending to the
telomere, 2) number of chromosomal breaks between adja-
cent regions of least 10 Mb (mega base pairs), and 3) number
of loss of heterozygosity regions of intermediate size (at least
15 Mb but less than whole chromosome length). Continuous
immune checkpoint protein expression and HRD scores were
binarized to high versus low classes using gaussian mixture
model (GMM) clustering with unequal variance (Supplemen-
tal Figure 3). The binary threshold was defined as the in-
tersection of the empirical densities between the two GMM-
defined clusters. To evaluate the extent to which prediction
tasks were correlated, Pearson correlation and percentage
agreement metrics were computed pan-cancer (n = 1,893 pa-
tients) between the five molecular phenotypes in continuous
and binarized form, respectively (Supplemental Figure 6).

Hold-out set definition by TCGA tissue source site.
TCGA provides tissue source site information, which de-
notes the medical institution or company that provided the
patient sample. For each prediction task (described below), a
hold-out set was defined as approximately 20-30% of patient
samples obtained from sites not seen in the training set (Sup-
plemental Table 4). This validation methodology enables us
to demonstrate model generalizability across varying patient
demographics and tissue collection processes intrinsic to dif-
ferent tissue source sites. Patient barcodes corresponding to
hold-out and training sets are provided in Supplemental Data
2.

Supervised prediction of molecular phenotypes. We
conducted supervised prediction of binarized high versus low
expression of five clinically-relevant phenotypes: (1) PD-1
expression, (2) PD-L1 expression, (3) CTLA-4 expression,
(4) HRD score, and (5) TIGIT expression. Predictions were
conducted pan-cancer as well as for cancer types individu-
ally. SKCM was excluded from prediction tasks 1-4 due to
insufficient outcome labels (number of observations < 100
for tasks 1-3; number of positive labels < 10 for task 4). For
each prediction task, we trained a logistic sparse group lasso
(SGL) model’! tuned by nested cross validation (CV) with
three outer folds and five inner folds using the correspond-
ing training set. SGL provides regularization at both an in-
dividual covariate (as in traditional lasso) and user-defined
group level, thus encouraging group-wise and within group
sparsity. The HIF clusters defined per cancer type and pan-
cancer (previously described) were inputted as groups. HIFs
were normalized to mean = 0 and SD = 1. In accordance
with nested CV, hyper-parameter tuning was conducted us-
ing the inner loops and mean generalization error and vari-
ance were estimated from the outer loops. The three tuned
models, each trained on two of the three outer folds and eval-
uated on the third outer fold, were ensembled by averaging
predicted probabilities for final evaluation (reported in Fig-
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ure 6a; Supplemental Table 5) on the hold-out set. Hold-
out performance was evaluated by AUROC and AUPRC. To
identify predictive features, beta values from the three outer
fold models were averaged to obtain ensemble beta values
per HIF (see Figure 6b caption for more details).

Statistical analysis. To compute 95% confidence intervals
for each prediction task, we generated empirical distribu-
tions of AUROC and AUPRC metrics each consisting of 1000
bootstrapped metrics. Bootstrapped metrics were obtained by
sampling with replacement from matched model predictions
(probabilities) and true labels for the corresponding hold-out
set, and re-computing AUROC and AUPRC on these two
bootstrapped vectors. P-values for ensemble beta values of
predictive HIFs were computed using a permutation test with
1000 iterations. During each iteration, labels in the training
set were permuted and the previously described training pro-
cess of nested CV and ensembling was re-applied to gener-
ate a new set of ensemble beta values per HIF. P-values for
individual HIFs were then obtained by comparing beta val-
ues in the original ensemble model against the corresponding
null distribution of ensemble beta values. Individual HIF P-
values were combined into cluster-level P-values via the Em-
pirical Brown’s method > and corrected using the Benjamini-

Hochberg procedure 8.

Data availability. The Cancer Genome Atlas dataset
may be accessed at https://www.cancer.gov/
about-nci/organization/ccg/research/
structural-genomics/tcga. The relevant data con-
sists of 2,917 hematoxylin and eosin-stained WSIs of breast
cancer, non-small cell lung adenocarcinoma, non-small cell
lung squamous cell carcinoma, gastric adenocarcinoma, and
skin cutaneous melanoma specimens from 2,634 patients.

Code availability. The source code used to generate figures

in this work can be downloaded from: https://github.
com/Path-AI/hif2gene.
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