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Abstract

Motivation: The wealth of data resources on human phenotypes, risk factors, molecular traits and
therapeutic interventions presents new opportunities for population health sciences. These opportuni-
ties are paralleled by a growing need for data integration, curation and mining to increase research
efficiency, reduce mis-inference and ensure reproducible research.

Results: We developed EpiGraphDB (https://epigraphdb.org/), a graph database containing an array
of different biomedical and epidemiological relationships and an analytical platform to support their use
in human population health data science. In addition, we present three case studies that illustrate the
value of this platform. The first uses EpiGraphDB to evaluate potential pleiotropic relationships, ad-
dressing mis-inference in systematic causal analysis. In the second case study we illustrate how pro-
tein-protein interaction data offer opportunities to identify new drug targets. The final case study inte-
grates causal inference using Mendelian randomization with relationships mined from the biomedical
literature to “triangulate” evidence from different sources.

Availability: The EpiGraphDB platform is openly available at https://epigraphdb.org. Code for replicating
case study results is available at https://github.com/MRCIEU/epigraphdb as Jupyter notebooks using
the API, and https://mrcieu.qgithub.io/epigraphdb-r using the R package.

Contact: yi6240.liu@bristol.ac.uk, ben.elsworth@bristol.ac.uk, Tom.Gaunt@bristol.ac.uk

Smith and Ebrahim, 2003) has risen to prominence as a key causal infer-

1 Introduction

The wealth and diversity of population data now available to epidemiolo-
gists is enabling new discoveries and methods development in population
health data science. However, harmonisation and integration of data pre-
sents a challenge to researchers aiming to “triangulate” evidence from dif-
ferent sources or uncover potential mechanistic pathways. This challenge
can be tackled through the development of data integration platforms
which curate and combine data sources to enable integrative analyses.

One area in which data integration offers potential value is causal infer-
ence. Over the last two decades Mendelian randomization (MR) (Davey

ence method. MR exploits genetic variants as causal “anchors” (randomly
allocated and invariant from conception) to estimate causal effects be-
tween an “exposure” (risk factor) influenced by the genetic variant(s) and
a health outcome. The approach has various assumptions, of which a key
constraint is that the genetic variants should not pleiotropically affect the
health outcome through a pathway other than the risk factor in question.
The two-sample MR approach enables MR to be performed in situations
where a risk factor (exposure) and an outcome are analysed for genetic
association in separate studies (Pierce and Burgess, 2013), enabling the
thousands of published genome-wide association study (GWAS) datasets
(MacArthur ef al., 2016) to be leveraged for causal inference.
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Database resources such as the IEU OpenGWAS database
(https://gwas.mrcieu.ac.uk) (Elsworth, Lyon, et al., 2020), and the linked
MR-Base analytical platform (Hemani ez al., 2018) now enable systematic

MR using approaches such as the MR Mixture of Experts (Hemani et al.,
2017). Such systematic MR analyses offer the potential to take a “sys-
tems” approach to the evaluation of potential intervention targets, as we
have recently demonstrated with the plasma proteome (Zheng, Haberland,
et al., 2019). However, such systematic approaches raise new challenges
in interpretation of the wealth of causal estimates generated. The integra-
tion of causal estimates with data from other sources is one way to tackle
such challenges. Combining evidence with different biases (such as MR
estimates, observational correlations and literature-mined experimental
results) can provide more robust causal interpretation in an approach de-
scribed as “triangulation” (Lawlor et al., 2017). Agreement between
sources strengthens the case for causality, whilst disagreement helps iden-
tify sources of bias.

Integration of data also offers the scope to gain more mechanistic in-
sight into complex networks of association. Linking phenotypic data with
genetic variants and molecular pathway data may make it easier to identify
potential intervention targets once a causal relationship has been estab-
lished. Similarly, an extensive network of associations provides the op-
portunity to identify drug repositioning opportunities and on-target side
effects for pharmaceutical targets.

Here we describe EpiGraphDB (https://epigraphdb.org/), a database
and analytical platform, that integrates trait relationships (causal, observa-

tional or genetic), literature-mined relationships, biological pathways, pro-
tein-protein interactions, drug-target relationships and other data sources
to support data mining of risk factor/disease relationships. In the following
sections, we describe the EpiGraphDB platform and its epidemiological
resources, and then illustrate some potential applications of this platform
through specific case studies.

2 Implementation

31 The EpiGraphDB platform
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Fig. 1. Architecture of the EpiGraphDB platform. Source datasets are integrated into
a graph database using Neo4j that uses Neo4j Cypher as query language (which can also
be queried by end users). Standard HTTP queries are processed through a RESTful API
service which can be called from any REST API client, including our R package
epigraphdb. The web UI showcases main topics of the epidemiological evidence in
EpiGraphDB and demonstrates the example API queries to get the underlying data.

! Documentation on the endpoint can be found at
https://docs.epigraphdb.org/api/api-endpoints/ - post-cypher.

EpiGraphDB integrates data from a range of bioinformatic and epidemi-
ological sources. The database can be accessed using a variety of meth-
ods aimed at different needs: programmatically through a custom appli-
cation programming interface (API) web service, a user-friendly web
user interface (UI), an R package, or by directly querying the database
via the Neo4j Cypher query language. Figure 1 shows the main compo-
nents of the EpiGraphDB platform and the overall architecture.

EpiGraphDB Graph: EpiGraphDB is implemented using the Neo4j
graph database platform. The graph database paradigm supports interpret-
able representation of biomedical information by storing data as relation-
ships (e.g. associations, causal estimates, mappings) between entities (e.g.
genes, proteins, diseases, genetic variants). The use of Neo4j and the as-
sociated Cypher query language also enables more natural representation
of hypotheses as queries, in comparison to a relational database architec-
ture using structured query language (SQL). For example, in Neo4j a hy-
pothetical query for the causal effect of a risk factor on disease could be
represented in the Cypher query language as (r:RiskFactor)-
[c:CausalEffect]-(d:Disease), which illustrates a sub-graph
comprising a risk factor node, a disease node and a causal relationship
between them. While we recommend most users interface with the
EpiGraphDB API regular endpoints or R package for ease of use, we pro-
vide a POST /cypher endpoint in the EpiGraphDB API’ (and an inter-
face in the Web UI?) where users can directly query the Neo4j database
using the Cypher query language.

EpiGraphDB API: The API provides direct access to pre-defined que-
ries within EpiGraphDB (e.g. MR evidence between phenotypic traits via
GET /mr, or literature evidence relating to phenotypes via GET /Liter-
ature/gwas), supporting user-specified parameters to select and filter
the data. The EpiGraphDB API is a RESTful API service with which users
can programmatically retrieve data in commonly used HTTP clients or
libraries (e.g. cURL, Requests in Python, httr in R, Postman, etc.) via
methods such as HTTP GET and HTTP POST, without the user having to
be proficient in Neo4j Cypher queries. At the same time, for most data
queries the API provides the underlying Cypher query to enable users to
extend the query to better suit their use cases. This flexible approach ena-
bles users to fully utilise rich resources of integrated evidence provided in
EpiGraphDB. Online documentation is provided as part of the API
(https://api.epigraphdb.org/ via a Swagger Ul) to enable users to explore

the API functionality and test their queries.

EpiGraphDB Web UI: The Web UI provides a selection of exemplar
queries from the API and supports interactive visualisations of sub-graphs
generated using those queries. For example, the confounder topic view
https://epigraphdb.org/confounder demonstrates the use of EpiGraphDB

in investigating the potential confounders, mediators and colliders be-
tween exposures and outcomes. In addition to viewing the returned data
from EpiGraphDB in tabular format and its visualisation in network dia-
grams, user can also use the “Query” tab to see the underlying API call
and Cypher query to assist their further use of EpiGraphDB using the API
or Cypher interfaces. In addition, users can use the Explore views
https://epigraphdb.org/explore to browse and search EpiGraphDB and

visit the Gallery https://epigraphdb.org/gallery for exemplar use cases.

R package epigraphdb: This R package provides convenient program-
matic access to the major functionalities of the API, enabling users to in-
corporate EpiGraphDB directly into their analytical pipelines in R for ease
of use. Access to API endpoints are wrapped inside R functions and data
is returned by default as R tidyverse tibble dataframes, saving users the

2 https://epigraphdb.org/cypher.
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additional complexity of handling web requests or parsing JSON format
response data. Nevertheless, users are able to use the R package as a fully
featured API client to EpiGraphDB by sending REST requests to the API,
retrieving data in JSON data structures (represented as lists in R) if they
wish. They can also use the POST /cypher endpoint with the
query_epigraphdb function if they wish to perform queries not directly
represented as R functions.

3.2 Integration of epidemiological evidence

EpiGraphDB contains data from a range of biomedical sources, with these
data represented as nodes and relationships® in a graph database. The re-
lationships broadly represent: epidemiological relationships (e.g. genetic
correlations, genetic associations, phenotypic associations and causal es-
timates from MR) between phenotypes, mappings (e.g. mapping of ge-
netic variants to genes, genes to protein and pathways, genes to drug tar-
gets, protein-protein interactions) and relationships derived from the bio-
medical literature. Table 1 reports a summary of the epidemiological evi-
dence available in EpiGraphDB.

We combined data from over 20 independent sources. All datasets re-
quired some level of processing in preparation for loading into
EpiGraphDB. Detailed information including sources of data, processing
steps and data ingest method are described in the supplementary materials
(Appendix 2).

Table 1. Summary of epidemiological evidence in EpiGraphDB. De-
tailed discussion on data integration and how these biomedical entities
and associations are represented in EpiGraphDB are available in the sup-
plementary materials (Appendices 1 and 2).

Cate- R
Description Sources
gory
Pairwise MR  between | MR-EVE (Hemani et al.,
Causal .
. traits. 2017)
relation- QTL (Zh B "
. X eng, Brumpton,
h TL / eQTL MR.
Sips PQTL/eQ et al., 2019)
. . Neale Lab (Abbot et al.,
Genetic correlations.
2020)
Observational correlations. | EpiGraphDB inhouse?
OpenGWAS El th,
GWAS top hits. pen (Elswor
Lyon, et al., 2020)
Polygenic risk score asso- | PRS Atlas (Richardson et
Associa- | ciations al., 2019)
tion rela- . . . IntAct (Orchard et al.,
. . Protein-protein interac-
tionships tions 2014), STRING (Szklar-
) czyk et al., 2019)
Open Targets (Carvalho-
Silva et al., 2019), CPIC
Drug targets. (Relling and Klein, 2011),
Druggable genome (Finan
etal.,2017)

3 We refer to a type of biomedical entity as a meta node (e.g. (Gwas) in

Cypher notation) and a type of association as a meta relationship (e.g.
[MR]), whereas a specific entity is referred to as a node (e.g. (Gwas

{id: “ieu-a-2”, trait: “Body mass index”})) and a specific

association as a relationship (e.g. (Gwas {trait: “Body mass

Pathway ontologies and | Reactome (Jassal et al.,
Molecu-
Jar path- molecular ever.lts. : 2019)
ways Gene expression for tis- | GTEx (The GTEx Consor-
sues. tium et al., 2015)
Litera- Literature evidence of bio- | SemMedDB (Kilicoglu et
ture medical entities and mech- | al., 2012), MELODI (Els-
. anisms. worth et al., 2018), Met-
mined /
derived Mapping of biomedical en- aMap - (Demner-Fushman
evidence | tities to literature terms. et al, 2017), Monarch
(Mungall et al., 2017)
EFO (Malone et al., 2010),
Ontol- SemMedDB (Kilicoglu et
Mapping of biomedical en- | al., 2012), Vectology (Els-
o8y ar-1d tities to ontology terms. worth, Liu, et al., 2020),
semantic MELODI (Elsworth et al.,
r;:ll-atlon- 2018),
SHps Semantic similarities of bi- | Vectology (Elsworth, Liu,
omedical entities. et al., 2020)
Entity Meta Meta rela- | Nodes Relation-
metrics’ | nodes tionships ships
14 42 32,969,103 | 84,181,124

3 Case studies

The data integrated within EpiGraphDB offer a wide array of potential
opportunities for data mining and analysis. Here we present three case
studies which illustrate some of the potential for new knowledge discovery
using EpiGraphDB. These do not, however, represent the full extent of the
data or potential of the platform, which is provided as an open resource
for the reader to use for their own novel research investigations.

In case study 1 we explore the potential of pathway data to characterise
pleiotropy of genetic instruments used to generate causal estimates of the
effect of protein levels on disease outcomes. Case study 2 seeks to identify
alternative drug targets using protein-protein interaction data in conjunc-
tion with causal estimates of protein levels on disease outcomes as well as
literature mined / derived evidence. Case study 3 uses knowledge ex-
tracted from the scientific literature to identify potential mechanistic path-
ways linking causal risk factors to diseases. We discuss the general steps
to replicate these case studies in Appendix 5 in the supplementary materi-
als and users are encouraged to use the Jupyter notebooks and R package
to replicate and modify the analyses.

31 Distinguishing vertical and horizontal pleiotropy
for SNP-protein associations

A key MR assumption is that the genetic variant (e.g. SNP) is only re-
lated to the outcome of interest through the exposure under study (the
“exclusion restriction” assumption). This assumption is potentially vio-
lated under horizontal pleiotropy, where a SNP is associated with multi-
ple phenotypes (e.g. proteins) independently of the exposure of interest.
In contrast, vertical pleiotropy, where a SNP is associated with multiple

phenotypes on the causal pathway to the outcome, does not violate the

index”})-[MR {beta, se, pval}]->(Gwas {trait: “Coro-
nary heart disease™})).

* Further details on the inhouse results by EpiGraphDB members are
available from Appendix 2 in the supplementary materials.

* Information and metrics are based on latest version of EpiGraphDB
platform (version 0.3.0, 21 April 2020).
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“exclusion restriction criterion” of MR (Figure 2 A). For molecular phe-
notypes, where the number of genetic instruments is typically limited, it
is almost impossible to distinguish vertical and horizontal pleiotropy us-
ing established statistical approaches (van Kippersluis and Rietveld,
2018).

Here, by integrating SNP-protein associations with biological pathway
and protein-protein interaction (PPI) information implemented in
EpiGraphDB, we have developed an approach to assess potential horizon-
tal pleiotropy. As demonstrated in Figure 2 B, for a SNP associated with
a group of proteins, we check the number of biological pathways and PPIs
that are shared across this group of proteins. If these proteins are mapped
to the same biological pathway and/or a PPI exists between them, then the
SNP is more likely to act through vertical pleiotropy and therefore be a
valid instrument for MR.

Protein 1
SNP

/N
/ N shared biological
NG pathway
N
-~
/ Protein 2

% protein-protein

e *  interaction
\\ H
SNP Protein 3

Protein 1 Protein 2

Proteinl  =———s  Protein 2

Vertical pleiotropy

Protein 4

Horizontal pleiotropy

Fig. 2. Distinguishing vertical and horizontal pleiotropy using EpiGraphDB. (A)
Concept of vertical and horizontal pleiotropy using proteins as an example. We have a
valid instrument for MR when a SNP affects proteins in a single path; in contrast, if an in-
strument is associated with proteins participating in different pathways, it violates the
“exclusion restriction criterion” and our instrument is invalid. (B) Integration of SNP-
protein associations with pathway information and PPI data to distinguish vertical and
horizontal pleiotropy using EpiGraphDB. All four proteins are associated with the same
SNP. Protein 1 and protein 2 share the same biological pathway. Protein 2 and 3 are in
PPI. Protein 4 shares no links with other proteins. Therefore, the SNP association on pro-
tein 1, 2 and 3 are likely to act through vertical pleiotropy, where the SNP association on
protein 4 verse other three proteins are likely to be horizontal pleiotropy.

3.1.1 Assessing the pleiotropy of an autoimmune-related variant

In this case study we assessed the pleiotropy of rs12720356, a SNP located
in TYK2 gene that is associated with Crohn’s disease and psoriasis
(Solovieff et al., 2013), by exploring the relationships between genes (and
their products) to which this SNP can be mapped using expression QTL
data. We used the GTEx database (The GTEx Consortium ef al., 2015) to
identify single-tissue eQTL effects, gathering a set of genes whose expres-
sion level is associated with rs12720356 in different tissues: FDXIL,
ICAML1, ICAMS, KRI1, MRPL4, GRAP2, TMEDI, TYK2 and ZGLP6.
We then proceeded querying EpiGraphDB to extract pathway and PPI data
as described in the methods section.

The results were then converted to a graph that shows two small con-
nected components and a few isolated nodes (Figure 3). ICAM1 shares
pathways with ICAMS, the interactions of integrin cell surface and be-
tween lymphoid and non-lymphoid cells. Integrin expression has been
shown to be altered in psoriasis (Creamer et al., 1995), and integrins also
have an important pro-inflammatory role in Crohn's disease, where they
facilitate the movement of leukocytes from the systemic circulation (note
that the association is detected in whole blood) to the intestinal mucosa

® Details on the list of pleiotropic genes are reported in Supplementary
Table 4.

(Park and Jeen, 2018). ICAM1 also participates with TYK2 in the regula-
tion of Interleukin-4 (IL4) and Interleukin-13 (IL3) signalling, important
actors that drive a predominantly humorally mediated hypersensitivity re-
sponse (Sartor, 1994). In terms of PPIs, the above pairs of genes are still
connected, and we retrieved a triple formed by ICAM1, RAVER1 and
TYK2, and the pair KRI1-MRPL4 that is associated with sun exposure, a
well-established beneficial factor for psoriasis and Crohn’s disease (Seoy-
land et al., 2011; Jantchou et al., 2014). However, here the results depict
that some single-tissue eQTLs with a strong association, like ZGLP1 and
FDX2, remain unconnected in our network. This shows that they poten-
tially work along different molecular pathways, acting in horizontal plei-
otropy. It would be important to consider their potential biological role in
the outcome phenotypes of any MR analyses using this instrument.

ICAM1

IL-4 and t=13.signaling
Immunoregulatory interactions
between Lyrfiphoid &
non-Lyfphoid cell TYK2

Integrin cell sufface
interdctions
14 5
ICAMS o

MRPL4
RAVER1

TMED1 ZGLP1 FDX2 KRI1

Fig. 3. Network diagram with the evidence to assess the pleiotropy of genetic vari-
ant rs12720356. The network has one node for each protein regulated by the eQTL
1512720356, and their size is inversely proportional to their P-value (see Supplementary
Table 4 for details). Dashed pink edges depict the participation in common biological
pathways, and blue edges represent the number of shared PPIs (value indicated).

3.1.2 An exemplar valid instrument

We recently used the same approach to explore potential vertical and hor-
izontal pleiotropy for a number of pleiotropic protein associated SNPs
(Zheng, Haberland, et al., 2019). In one example, a specific set of three
proteins (IL6ST, ICAM1 and TIMP1) were associated with the same SNP
(rs144276707). The pair ICAM1 and TIMP1 were found to participate in
two common pathways, and there were 4 shared PPIs among all three pro-
teins. These results supported the hypothesis that rs144276707 is more
likely to influence these proteins via the same biological pathway (acting
through vertical pleiotropy), strengthening the evidence that this SNP is a
valid instrument for MR analysis.

3.2 Identification of potential drug targets

Systematic MR of molecular phenotypes such as proteins and levels of
transcript expression offers important potential to prioritise drug targets
for pharmacological investigation. However, many potential targets are
not easily druggable. A parallel problem is that current GWAS of plasma
proteins have limited sample size, are not available in many tissues, and
only represent a subset of all proteins. A potential way to address these
problems is to use protein-protein interaction (PPI) information to identify
druggable targets linked to a non-druggable, but robustly causal gene.
Their relationship to the causal gene increases our confidence in their po-
tential causal role even if the initial evidence of their causal effect is below
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our multiple-testing threshold. Here we have developed an approach using
PPI data to prioritise potential alternative drug targets. As a proof of prin-
ciple, we illustrate this approach using IL23R as an example.

3.2.1 [Integrating MR evidence with PPI networks for alternative drug
targets search

IL23R is a well-established disease-susceptibility gene for inflammatory
bowel disease (IBD) (de Lange ef al., 2017). The protein-disease associa-
tion information retrieved from EpiGraphDB suggests that IL23R has a
robust causal effect on IBD” (beta = 1.50, P-value = 2.21 x 10, colo-
calization probability = 75%) (Zheng, Haberland, et al., 2019). The drug
PTG-200, acting as an antagonist of IL23R has just passed Phase I and is
in Phase II trials for IBD treatment (Cheng et al., 2019), which aligns well
with the genetic/MR evidence implemented in EpiGraphDB. Whilst
IL23R is druggable, we illustrate how our approach can identify potential
alternative targets using pathway data.

We used PPI information (Orchard et al., 2014; Szklarczyk et al., 2019)
and data on druggability (Finan et al., 2017) to identify a set of proteins
which are the target of approved drugs and clinical-phase drug candidates
and have direct PPI with IL23R. Table 2 shows a subset of this list with
strong MR evidence (P-value < 1 X 10) to IBD®.

This list of proteins includes IL12B, which is the target protein for an
existing drug Ustekinumab, which is currently under Phase 3 and 4 trials
for IBD treatment’. Although there is strong MR evidence for IL12B (beta
=0.42, P-value = 9.59 x 107*), there is little evidence for genetic colocal-
ization’ (colocalization probability < 1%), which prevents us prioritizing
this target based on MR evidence alone. However, the PPI between IL12B
and IL23R (which does have reliable MR and colocalization results) in-

creases our confidence that IL12B is a valid target.

3.2.2 Using literature evidence for results enrichment and triangula-
tion

A further source of useful evidence is the literature-derived knowledge
from SemMedDB (Kilicoglu et al., 2012) available in EpiGraphDB. Inte-
grating this literature evidence with the evidence described above can fur-
ther enhance confidence in the findings (as well as identify potential alter-
native drug targets). Table 2 also reports the gene-to-trait literature evi-
dence regarding IL23R and interacting proteins and IBD, where each entry
“IL23R”
“Inflammatory Bowel Diseases”), as well as

shows a literature-derived
“ASSOCIATED WITH” —
the study articles from which each triple was extracted. For the list of
genes including IL23R and IL12B that were identified with strong MR
evidence, we were also able to find abundant literature evidence support-

semantic  triple (e.g.

ing the genetic causal evidence with derived mechanisms involving pred-
icates such as ASSOCIATED_WITH, AFFECTS and CAUSES.

Table 2. Triangulation of MR and literature evidence on the effects
of IL23R and associated genes to IBD. The MR evidence is the QTL
MR estimates of IL23R and the associated druggable genes (via direct
protein-protein interaction with Tier 1 druggability) to GWAS ieu-a-249:
Inflammatory bowel disease. The literature evidence is the SemMed
predicates derived by SemMedDB and the numbers of PubMed articles
identified to support the predicate mechanism. Here we report the subset

7 https://epigraphdb.org/pgtl/IL23R
8 Supplementary Table 5 reports the full list of identified proteins with
druggability information,

of genes that are identified to contain both MR evidence (P-value <1 X
10-5).

Effect .
. SemMed predicate
Gene size P-value QTL
(SE) (count)
150 | 221 x 10° AFFECTS (1),
(0.05) | 166 pQTL | ASSOCIATED_WITH
21
IL23R ;E)C’} ASSOCIATED
0.89 4.16 x 10 — -
0.06) | eQTL | WITH ),
’ PREDISPOSES (1)
0.42 9.59 x 107 ASSOCIATED WITH
LB | S| pQTL |
(0.03) 5
-1.42 5.53 x 10 ASSOCIATED WITH
IL15 00y | «QTL |
0.20) @
0.46 4.47 x 10 ASSOCIATED WITH
L4 o eQTL
(0.08) (3), DISRUPTS (1)
AFFECT 1
-1.90 1.32 x 107 TS ),
JAK2 ©20) | eQTL | ASSOCIATED WITH
i 3
0.97 2.16 x 10 ASSOCIATED WITH
NFKBI 017 | eQTL o
-1.00 1.21 x 10 ASSOCIATED WITH
RORC 012 | v eQTL 0 -
AFFECTS ),
0.60 2.96 x 107 AUGMENTS 1),
STAT3 p eQTL ()
(0.08) ASSOCIATED WITH
(9), CAUSES (1)
33 Triangulating causal estimates with literature evi-
dence

Previously, we have demonstrated that existing literature can be used to
derive relationships and mechanisms between defined biomedical traits
(Elsworth et al., 2018). By integrating this knowledge with causal esti-
mates in EpiGraphDB, we can triangulate evidence, identifying where
these two sources of evidence are in agreement, and where they are not
(Lawlor et al., 2017). In this case study we explore the literature connect-
ing traits with pre-defined causal relationships. From here we can summa-
rise the key mechanisms defined in the literature, and also potentially de-
rive novel mechanisms.

3.3.1 Sleep duration and coronary heart disease as an example

Starting with an exposure trait of “Sleep duration”, existing MR data, and
connections between traits and diseases in EpiGraphDB, we extracted a
set of potentially causally related traits (Table 3).

% Drug trial information available via Open Targets https://www target-

validation.org/evi-
dence/ENSG00000113302/EFO _0000540?view=sec:known drug

19 http://epigraphdb.org/pqtl/IL12B
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Table 3. Summary of disease traits identified with causal association
to “Sleep duration”. We searched for MR evidence associated with trait
“Sleep duration” with P-value to be under 1 x 10"'°, and map the out-
come trait to a disease term via mappings through EFO terms.

MR MR P- .
Exposure Outcome Disease
beta value
ukb-a-107: - 38 X
ieu-a-1088: | Non-cancer | 0.00257 | 102
Sleep dura- | illness code “gout”
tion self-re-
ported: gout
ieu-a-1088: | ieu-a-6: Cor- | - 23 x|
coronai ar-
Sleep dura- | onary heart | 1.03933 | 107 ey ,
. . tery disease
tion disease
ukb-a-548: - 80 X
) Diagnoses - | 0.00671 | 107
ieu-a-1088: )
Sleep dura- tart “appendicitis”
<P ICD10: K35 PP
tion
Acute  ap-
pendicitis
ukb-a-54: - 1.1 X
ieu-a-1088: | Cancer code | 0.00191 | 107¢ “cancer”,
Sleep dura- | self-re- “lung  carci-
tion ported: lung noma”
cancer
kb-a-13: - 1.1 X
ukb-a-9: e n . .
Sleepless- 0.32167 | 10 “insomnia
Sleep dura- . .
. ness / in- (disease)”
tion .
somnia

Multiple disease entries arise from the mapping between the trait name
and EFO terms, each of which maps to a disease term. In this case we
treated each as a single relationship and extracted the literature data con-
necting a pair of traits. For this example, we selected the outcome trait
“Coronary heart disease” to explore in more detail the potential mecha-
nisms linking this to sleep duration. To do this we queried EpiGraphDB
to extract the semantic triples associated with each trait and searched for
overlapping terms, identifying 839 overlapping triples (Supplementary
Table 6 reports the top 10 items by enrichment P-value).

We then generated frequency counts for the overlapping terms (Figure
4), which identified many different overlapping terms and types'', includ-
ing 6 proteins (aapp), 2 genes (gngm) and 11/ organic chemicals (orch).
Each of these represents a key point in a potential mechanism, connecting
the exposure and outcome traits. Terms of particular interest are those with
high counts (e.g. Ethanol) as these represent terms with large numbers of
supporting publications in the literature. However, in this case, Ethanol
may be present in such numbers due to its inclusion in many publications
as a co-factor when describing the functionality and efficacy of drugs,
highlighting the importance of reviewing a selection of papers underpin-
ning each mechanism.

3.3.2 Investigation of one overlapping term in detail

Figure 5 suggests the main route from Sleep Duration to Coronary Heart
Disease via the intermediate term Leptin involves only one term on the
exposure side (“ghrelin”) and 10 on the outcome side.

' https:/mmtx.nlm .nih.gov/MMTx/semanticTypes.shtml

Leptin

Somatotropin
Adrenergic Receptor
Glutathione
apolipoprotein E-4
Monoamine Oxidase

Cytochrome P450 10
E Glycoproteins
s Melatonin | 28
_g Hormones
§ Oral anticoagulants 10
b Metoprolol
3 Propofol

Acetaldehyde
Benzodiazepines

Luteolin Term Type
Morphine - aapp
Neostigmine ¥ gngm
; horm

Thiopental
B orch

gamma hydroxybutyrate

T T T T

0 5 10 15 20 25
Term frequency

Fig. 4. Literature-mined/derived evidence on the intermediates between “Sleep dura-
tion” and “Coronary heart disease”. Counts of overlapping SemMed terms grouped by
the SemMed term type.
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Fig. 5. Literature derived mechanisms between “Sleep duration”, “Leptin”, and
“Coronary Heart Disease”. Network diagram displaying the literature connections be-
tween “Sleep Duration” and “Coronary Heart Disease” through the intermediate term
“Leptin”. Predicates connecting two semantic terms and their frequencies are labelled on
the edges. Red nodes represent the exposure (SLEEP DURATION) and outcome
(CORONARY HEART DISEASE) traits, blue nodes represent intermediate semantic lit-
erature nodes.

3.3.3 Check the original publication text

Finally, EpiGraphDB provides a PubMed identifier to enable us to check
the validity of these connections in the original text. For example, we
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found evidence of two statements that “Leptin PREDISPOSES Coronary

heart disease”. These were derived from the following two sentences:
“CONCLUSIONS: Consumption of sugar-sweetened bever-
ages was associated with increased risk of CHD and some ad-
verse changes in lipids, inflammatory factors, and leptin.” (de
Koning et al., 2012)
“Leptin, one of the earlier adipocytokines, is known to play a
major role in cardiovascular disease and recent observations
suggest that leptin is an independent risk factor for coronary
heart disease.” (Amasyali et al., 2010)

The contrasting causal interpretation of these two sentences highlights
the importance of manual review of the original articles to validate the
semantic triples.

4 Discussion

EpiGraphDB is a new database and platform for data integration in health
data science, with a particular focus on understanding the relationships
between risk factors, intermediate phenotypes and disease outcomes de-
scribed by epidemiological analyses. Whilst we present three specific case
studies, we anticipate a much wider array of uses and support this through
an open API and R package. It is, however, important to recognise that
there are several existing platforms for data integration in the health, bio-
medical and pharmaceutical domains (Supplementary Table 3).

The Open Targets platform (Koscielny et al., 2017; Carvalho-Silva et
al., 2019) (https://www.targetvalidation.org/) integrates a wealth of ge-

nomic, phenotypic, ontology and drug target data into a single platform
aimed for users in the pharmaceutical industry and research community.
Their platform has a well-developed web interface in addition to a com-
prehensive API and Python package to support use of the APIL. This open
approach has enabled EpiGraphDB to utilise drug/target mappings with
Open Targets. However, whilst there is some overlap in this context, the
Open Targets platform lacks MR estimates (although it does include ge-
netic association data). Open Targets also includes some literature data,
and their LINK platform (https://link.opentargets.io/) extracts semantic re-

lationships from PubMed. However, despite some of the conceptual simi-
larities to EpiGraphDB, their focus is primarily on drug target prioritisa-
tion, whilst EpiGraphDB also aims to support evaluation of lifestyle risk
factors.

The Hetionet platform (https://het.io/) is a graph database integrating
data from more than 29 different databases, which was initially set up to
prioritize drugs for repurposing using an innovative approach to predict
gene/disease associations (“Project Rephetio”) (Himmelstein and Baran-
zini, 2015; Himmelstein et al., 2017), but now aims to have a broader re-
mit. The platform is very accessible, with a web application, data down-
loads in multiple formats and open access to their Neo4j database. The
primary focus of the platform is for molecular mechanisms and pharma-
cologic data while EpiGraphDB additionally encompasses epidemiologi-
cal relationships (MR causal estimates, genetic correlation, etc) and liter-
ature data. However, the open nature of the platform enables users to eas-
ily work with Hetionet in parallel with EpiGraphDB.

The Monarch (Mungall et al., 2017)
(https://monarchinitiative.org/) is focused on the integration of genotypic

Initiative

and phenotypic data across species with the aim of identifying related phe-
notypes and potential animal models of disease. This contrasts with the
human-centric epidemiological focus of EpiGraphDB. The Monarch Ini-
tiative platform has an open source approach to software development and
offers web interfaces powered by an open API. In common with Hetionet
and EpiGraphDB, the platform uses the Neo4j database. Users can easily

integrate data from the Monarch Initiative with EpiGraphDB given their
open design principles.

Wikidata (https://wikidata.org) is a general knowledge base which con-
tains an array of biomedical data sources that have recently been reported
(Waagmeester et al., 2020). In contrast to curated knowledge bases such
as EpiGraphDB, Wikidata is developed through community driven efforts
and bot automation, and incorporates extensive knowledge across a wide
array of fields, including (but not limited to) a range of biomedical entities,
with duplication and redundancy of entities inevitable. This much broader
approach also distinguishes Wikidata from specialist platforms such as
EpiGraphDB, which is focused on epidemiological and biomedical
knowledge. In common with other platforms listed above, the open design
of this platform supports cross-platform data integration.

Various other platforms (Gaspar et al., 2018; Coker et al., 2019; Abbot
et al., 2020) exist with some conceptual overlaps with EpiGraphDB (Sup-
plementary Table 3). These represent a range of different types of data
based on molecular and genetic interactions and drug targets. However, in
contrast to the platforms described above these platforms don’t appear to
have accessible API or software packages. Although several are open ac-
cess and available to the wider community, the lack of programmatic in-
teroperability limits their scope.

As with all similar platforms, EpiGraphDB is constrained by the avail-
able data and subject to any errors or quality issues that exist in original
sources. However, by integrating data from a range of sources (e.g.
STRING, IntAct and Reactome for interactions between proteins) we en-
sure the user can evaluate consistency between data sources.

5 Conclusions

The EpiGraphDB platform provides an integrated data resource to support
data mining and interpretation of the relationships between disease risk
factors, intervention targets and disease outcomes. We present three illus-
trative case studies that demonstrate the functionality and utility of the
platform, but it is important to note that much more extensive capabilities
are available and will continue to expand as the platform is developed fur-
ther. We aim to support open science by making the data freely accessible,
both programmatically and through a web interface, and by providing
open source code and exemplar Jupyter notebooks.
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