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Abstract 
Motivation: The wealth of data resources on human phenotypes, risk factors, molecular traits and 

therapeutic interventions presents new opportunities for population health sciences. These opportuni-

ties are paralleled by a growing need for data integration, curation and mining to increase research 

efficiency, reduce mis-inference and ensure reproducible research. 
Results: We developed EpiGraphDB (https://epigraphdb.org/), a graph database containing an array 

of different biomedical and epidemiological relationships and an analytical platform to support their use 

in human population health data science. In addition, we present three case studies that illustrate the 

value of this platform. The first uses EpiGraphDB to evaluate potential pleiotropic relationships, ad-

dressing mis-inference in systematic causal analysis. In the second case study we illustrate how pro-

tein-protein interaction data offer opportunities to identify new drug targets. The final case study inte-
grates causal inference using Mendelian randomization with relationships mined from the biomedical 

literature to “triangulate” evidence from different sources. 

Availability: The EpiGraphDB platform is openly available at https://epigraphdb.org. Code for replicating 

case study results is available at https://github.com/MRCIEU/epigraphdb as Jupyter notebooks using 

the API, and https://mrcieu.github.io/epigraphdb-r using the R package. 
Contact: yi6240.liu@bristol.ac.uk, ben.elsworth@bristol.ac.uk, Tom.Gaunt@bristol.ac.uk 
 

 

 

1 Introduction  

The wealth and diversity of population data now available to epidemiolo-

gists is enabling new discoveries and methods development in population 

health data science. However, harmonisation and integration of data pre-

sents a challenge to researchers aiming to <triangulate= evidence from dif-

ferent sources or uncover potential mechanistic pathways. This challenge 

can be tackled through the development of data integration platforms 

which curate and combine data sources to enable integrative analyses. 

One area in which data integration offers potential value is causal infer-

ence. Over the last two decades Mendelian randomization (MR) (Davey 

Smith and Ebrahim, 2003) has risen to prominence as a key causal infer-

ence method. MR exploits genetic variants as causal <anchors= (randomly 

allocated and invariant from conception) to estimate causal effects be-

tween an <exposure= (risk factor) influenced by the genetic variant(s) and 

a health outcome. The approach has various assumptions, of which a key 

constraint is that the genetic variants should not pleiotropically affect the 

health outcome through a pathway other than the risk factor in question. 

The two-sample MR approach enables MR to be performed in situations 

where a risk factor (exposure) and an outcome are analysed for genetic 

association in separate studies (Pierce and Burgess, 2013), enabling the 

thousands of published genome-wide association study (GWAS) datasets 

(MacArthur et al., 2016) to be leveraged for causal inference. 
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Database resources such as the IEU OpenGWAS database 

(https://gwas.mrcieu.ac.uk) (Elsworth, Lyon, et al., 2020), and the linked 

MR-Base analytical platform (Hemani et al., 2018) now enable systematic 

MR using approaches such as the MR Mixture of Experts (Hemani et al., 

2017). Such systematic MR analyses offer the potential to take a <sys-

tems= approach to the evaluation of potential intervention targets, as we 

have recently demonstrated with the plasma proteome (Zheng, Haberland, 

et al., 2019). However, such systematic approaches raise new challenges 

in interpretation of the wealth of causal estimates generated. The integra-

tion of causal estimates with data from other sources is one way to tackle 

such challenges. Combining evidence with different biases (such as MR 

estimates, observational correlations and literature-mined experimental 

results) can provide more robust causal interpretation in an approach de-

scribed as <triangulation= (Lawlor et al., 2017). Agreement between 

sources strengthens the case for causality, whilst disagreement helps iden-

tify sources of bias. 

Integration of data also offers the scope to gain more mechanistic in-

sight into complex networks of association. Linking phenotypic data with 

genetic variants and molecular pathway data may make it easier to identify 

potential intervention targets once a causal relationship has been estab-

lished. Similarly, an extensive network of associations provides the op-

portunity to identify drug repositioning opportunities and on-target side 

effects for pharmaceutical targets. 

Here we describe EpiGraphDB (https://epigraphdb.org/), a database 

and analytical platform, that integrates trait relationships (causal, observa-

tional or genetic), literature-mined relationships, biological pathways, pro-

tein-protein interactions, drug-target relationships and other data sources 

to support data mining of risk factor/disease relationships. In the following 

sections, we describe the EpiGraphDB platform and its epidemiological 

resources, and then illustrate some potential applications of this platform 

through specific case studies. 

2 Implementation 

3.1 The EpiGraphDB platform 

  
1 Documentation on the endpoint can be found at 

https://docs.epigraphdb.org/api/api-endpoints/ - post-cypher. 

EpiGraphDB integrates data from a range of bioinformatic and epidemi-

ological sources. The database can be accessed using a variety of meth-

ods aimed at different needs: programmatically through a custom appli-

cation programming interface (API) web service, a user-friendly web 

user interface (UI), an R package, or by directly querying the database 

via the Neo4j Cypher query language. Figure 1 shows the main compo-

nents of the EpiGraphDB platform and the overall architecture. 

EpiGraphDB Graph: EpiGraphDB is implemented using the Neo4j 

graph database platform. The graph database paradigm supports interpret-

able representation of biomedical information by storing data as relation-

ships (e.g. associations, causal estimates, mappings) between entities (e.g. 

genes, proteins, diseases, genetic variants). The use of Neo4j and the as-

sociated Cypher query language also enables more natural representation 

of hypotheses as queries, in comparison to a relational database architec-

ture using structured query language (SQL). For example, in Neo4j a hy-

pothetical query for the causal effect of a risk factor on disease could be 

represented in the Cypher query language as (r:RiskFactor)-

[c:CausalEffect]-(d:Disease), which illustrates a sub-graph 

comprising a risk factor node, a disease node and a causal relationship 

between them. While we recommend most users interface with the 

EpiGraphDB API regular endpoints or R package for ease of use, we pro-

vide a POST /cypher endpoint in the EpiGraphDB API1 (and an inter-

face in the Web UI2) where users can directly query the Neo4j database 

using the Cypher query language. 

EpiGraphDB API: The API provides direct access to pre-defined que-

ries within EpiGraphDB (e.g. MR evidence between phenotypic traits via 

GET /mr, or literature evidence relating to phenotypes via GET /liter-

ature/gwas), supporting user-specified parameters to select and filter 

the data. The EpiGraphDB API is a RESTful API service with which users 

can programmatically retrieve data in commonly used HTTP clients or 

libraries (e.g. cURL, Requests in Python, httr in R, Postman, etc.) via 

methods such as HTTP GET and HTTP POST, without the user having to 

be proficient in Neo4j Cypher queries. At the same time, for most data 

queries the API provides the underlying Cypher query to enable users to 

extend the query to better suit their use cases. This flexible approach ena-

bles users to fully utilise rich resources of integrated evidence provided in 

EpiGraphDB. Online documentation is provided as part of the API 

(https://api.epigraphdb.org/ via a Swagger UI) to enable users to explore 

the API functionality and test their queries. 

EpiGraphDB Web UI: The Web UI provides a selection of exemplar 

queries from the API and supports interactive visualisations of sub-graphs 

generated using those queries. For example, the confounder topic view 

https://epigraphdb.org/confounder demonstrates the use of EpiGraphDB 

in investigating the potential confounders, mediators and colliders be-

tween exposures and outcomes. In addition to viewing the returned data 

from EpiGraphDB in tabular format and its visualisation in network dia-

grams, user can also use the <Query= tab to see the underlying API call 

and Cypher query to assist their further use of EpiGraphDB using the API 

or Cypher interfaces. In addition, users can use the Explore views 

https://epigraphdb.org/explore to browse and search EpiGraphDB and 

visit the Gallery https://epigraphdb.org/gallery for exemplar use cases. 

R package epigraphdb: This R package provides convenient program-

matic access to the major functionalities of the API, enabling users to in-

corporate EpiGraphDB directly into their analytical pipelines in R for ease 

of use. Access to API endpoints are wrapped inside R functions and data 

is returned by default as R tidyverse tibble dataframes, saving users the 

2 https://epigraphdb.org/cypher. 

Fig. 1. Architecture of the EpiGraphDB platform. Source datasets are integrated into 

a graph database using Neo4j that uses Neo4j Cypher as query language (which can also 

be queried by end users). Standard HTTP queries are processed through a RESTful API 

service which can be called from any REST API client, including our R package 

epigraphdb. The web UI showcases main topics of the epidemiological evidence in 

EpiGraphDB and demonstrates the example API queries to get the underlying data. 
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additional complexity of handling web requests or parsing JSON format 

response data. Nevertheless, users are able to use the R package as a fully 

featured API client to EpiGraphDB by sending REST requests to the API, 

retrieving data in JSON data structures (represented as lists in R) if they 

wish. They can also use the POST /cypher endpoint with the 

query_epigraphdb function if they wish to perform queries not directly 

represented as R functions. 

3.2 Integration of epidemiological evidence 

EpiGraphDB contains data from a range of biomedical sources, with these 

data represented as nodes and relationships3 in a graph database. The re-

lationships broadly represent: epidemiological relationships (e.g. genetic 

correlations, genetic associations, phenotypic associations and causal es-

timates from MR) between phenotypes, mappings (e.g. mapping of ge-

netic variants to genes, genes to protein and pathways, genes to drug tar-

gets, protein-protein interactions) and relationships derived from the bio-

medical literature. Table 1 reports a summary of the epidemiological evi-

dence available in EpiGraphDB. 

We combined data from over 20 independent sources. All datasets re-

quired some level of processing in preparation for loading into 

EpiGraphDB. Detailed information including sources of data, processing 

steps and data ingest method are described in the supplementary materials 

(Appendix 2). 

Table 1. Summary of epidemiological evidence in EpiGraphDB. De-

tailed discussion on data integration and how these biomedical entities 

and associations are represented in EpiGraphDB are available in the sup-

plementary materials (Appendices 1 and 2). 

Cate-

gory 
Description Sources 

Causal 

relation-

ships 

Pairwise MR between 

traits. 

MR-EvE (Hemani et al., 

2017) 

pQTL / eQTL MR. 
xQTL (Zheng, Brumpton, 

et al., 2019) 

Associa-

tion rela-

tionships 

Genetic correlations. 
Neale Lab (Abbot et al., 

2020) 

Observational correlations. EpiGraphDB inhouse4 

GWAS top hits. 
OpenGWAS (Elsworth, 

Lyon, et al., 2020) 

Polygenic risk score asso-

ciations 

PRS Atlas (Richardson et 

al., 2019) 

Protein-protein interac-

tions. 

IntAct (Orchard et al., 

2014), STRING (Szklar-

czyk et al., 2019) 

Drug targets. 

Open Targets (Carvalho-

Silva et al., 2019), CPIC 

(Relling and Klein, 2011), 

Druggable genome (Finan 

et al., 2017) 

  
3 We refer to a type of biomedical entity as a meta node (e.g. (Gwas) in 

Cypher notation) and a type of association as a meta relationship (e.g. 

[MR]), whereas a specific entity is referred to as a node (e.g. (Gwas 

{id: <ieu-a-2=, trait: <Body mass index=})) and a specific 

association as a relationship (e.g. (Gwas {trait: <Body mass 

Molecu-

lar path-

ways 

Pathway ontologies and 

molecular events. 

Reactome (Jassal et al., 

2019) 

Gene expression for tis-

sues. 

GTEx (The GTEx Consor-

tium et al., 2015) 

Litera-

ture 

mined / 

derived 

evidence 

Literature evidence of bio-

medical entities and mech-

anisms. 

SemMedDB (Kilicoglu et 

al., 2012), MELODI (Els-

worth et al., 2018), Met-

aMap (Demner-Fushman 

et al., 2017), Monarch 

(Mungall et al., 2017) 

Mapping of biomedical en-

tities to literature terms. 

Ontol-

ogy and 

semantic 

relation-

ships 

Mapping of biomedical en-

tities to ontology terms. 

EFO (Malone et al., 2010), 

SemMedDB (Kilicoglu et 

al., 2012), Vectology (Els-

worth, Liu, et al., 2020), 

MELODI (Elsworth et al., 

2018),  

Semantic similarities of bi-

omedical entities. 

Vectology (Elsworth, Liu, 

et al., 2020) 

Entity 

metrics5  

Meta 

nodes 

Meta rela-

tionships 

Nodes Relation-

ships 

14 42 32,969,103 84,181,124 

3 Case studies 

The data integrated within EpiGraphDB offer a wide array of potential 

opportunities for data mining and analysis. Here we present three case 

studies which illustrate some of the potential for new knowledge discovery 

using EpiGraphDB. These do not, however, represent the full extent of the 

data or potential of the platform, which is provided as an open resource 

for the reader to use for their own novel research investigations. 

In case study 1 we explore the potential of pathway data to characterise 

pleiotropy of genetic instruments used to generate causal estimates of the 

effect of protein levels on disease outcomes. Case study 2 seeks to identify 

alternative drug targets using protein-protein interaction data in conjunc-

tion with causal estimates of protein levels on disease outcomes as well as 

literature mined / derived evidence. Case study 3 uses knowledge ex-

tracted from the scientific literature to identify potential mechanistic path-

ways linking causal risk factors to diseases. We discuss the general steps 

to replicate these case studies in Appendix 5 in the supplementary materi-

als and users are encouraged to use the Jupyter notebooks and R package 

to replicate and modify the analyses. 

3.1 Distinguishing vertical and horizontal pleiotropy 

for SNP-protein associations 

A key MR assumption is that the genetic variant (e.g. SNP) is only re-

lated to the outcome of interest through the exposure under study (the 

<exclusion restriction= assumption). This assumption is potentially vio-

lated under horizontal pleiotropy, where a SNP is associated with multi-

ple phenotypes (e.g. proteins) independently of the exposure of interest. 

In contrast, vertical pleiotropy, where a SNP is associated with multiple 

phenotypes on the causal pathway to the outcome, does not violate the 

index=})-[MR {beta, se, pval}]->(Gwas {trait: <Coro-

nary heart disease=})). 
4 Further details on the inhouse results by EpiGraphDB members are 

available from Appendix 2 in the supplementary materials. 
5 Information and metrics are based on latest version of EpiGraphDB 

platform (version 0.3.0, 21 April 2020). 
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<exclusion restriction criterion= of MR (Figure 2 A). For molecular phe-

notypes, where the number of genetic instruments is typically limited, it 

is almost impossible to distinguish vertical and horizontal pleiotropy us-

ing established statistical approaches (van Kippersluis and Rietveld, 

2018). 

Here, by integrating SNP-protein associations with biological pathway 

and protein-protein interaction (PPI) information implemented in 

EpiGraphDB, we have developed an approach to assess potential horizon-

tal pleiotropy. As demonstrated in Figure 2 B, for a SNP associated with 

a group of proteins, we check the number of biological pathways and PPIs 

that are shared across this group of proteins. If these proteins are mapped 

to the same biological pathway and/or a PPI exists between them, then the 

SNP is more likely to act through vertical pleiotropy and therefore be a 

valid instrument for MR. 

3.1.1  Assessing the pleiotropy of an autoimmune-related variant 

In this case study we assessed the pleiotropy of rs12720356, a SNP located 

in TYK2 gene that is associated with Crohn9s disease and psoriasis 

(Solovieff et al., 2013), by exploring the relationships between genes (and 

their products) to which this SNP can be mapped using expression QTL 

data. We used the GTEx database (The GTEx Consortium et al., 2015) to 

identify single-tissue eQTL effects, gathering a set of genes whose expres-

sion level is associated with rs12720356 in different tissues: FDX1L, 

ICAM1, ICAM5, KRI1, MRPL4, GRAP2, TMED1, TYK2 and ZGLP6. 

We then proceeded querying EpiGraphDB to extract pathway and PPI data 

as described in the methods section. 

The results were then converted to a graph that shows two small con-

nected components and a few isolated nodes (Figure 3). ICAM1 shares 

pathways with ICAM5, the interactions of integrin cell surface and be-

tween lymphoid and non-lymphoid cells. Integrin expression has been 

shown to be altered in psoriasis (Creamer et al., 1995), and integrins also 

have an important pro-inflammatory role in Crohn's disease, where they 

facilitate the movement of leukocytes from the systemic circulation (note 

that the association is detected in whole blood) to the intestinal mucosa 

  
6 Details on the list of pleiotropic genes are reported in Supplementary 

Table 4. 

(Park and Jeen, 2018). ICAM1 also participates with TYK2 in the regula-

tion of Interleukin-4 (IL4) and Interleukin-13 (IL3) signalling, important 

actors that drive a predominantly humorally mediated hypersensitivity re-

sponse (Sartor, 1994). In terms of PPIs, the above pairs of genes are still 

connected, and we retrieved a triple formed by ICAM1, RAVER1 and 

TYK2, and the pair KRI1-MRPL4 that is associated with sun exposure, a 

well-established beneficial factor for psoriasis and Crohn9s disease (Søy-

land et al., 2011; Jantchou et al., 2014). However, here the results depict 

that some single-tissue eQTLs with a strong association, like ZGLP1 and 

FDX2, remain unconnected in our network. This shows that they poten-

tially work along different molecular pathways, acting in horizontal plei-

otropy. It would be important to consider their potential biological role in 

the outcome phenotypes of any MR analyses using this instrument. 

3.1.2  An exemplar valid instrument 

We recently used the same approach to explore potential vertical and hor-

izontal pleiotropy for a number of pleiotropic protein associated SNPs 

(Zheng, Haberland, et al., 2019). In one example, a specific set of three 

proteins (IL6ST, ICAM1 and TIMP1) were associated with the same SNP 

(rs144276707). The pair ICAM1 and TIMP1 were found to participate in 

two common pathways, and there were 4 shared PPIs among all three pro-

teins. These results supported the hypothesis that rs144276707 is more 

likely to influence these proteins via the same biological pathway (acting 

through vertical pleiotropy), strengthening the evidence that this SNP is a 

valid instrument for MR analysis. 

3.2 Identification of potential drug targets 

Systematic MR of molecular phenotypes such as proteins and levels of 

transcript expression offers important potential to prioritise drug targets 

for pharmacological investigation. However, many potential targets are 

not easily druggable. A parallel problem is that current GWAS of plasma 

proteins have limited sample size, are not available in many tissues, and 

only represent a subset of all proteins. A potential way to address these 

problems is to use protein-protein interaction (PPI) information to identify 

druggable targets linked to a non-druggable, but robustly causal gene. 

Their relationship to the causal gene increases our confidence in their po-

tential causal role even if the initial evidence of their causal effect is below 

Fig. 2. Distinguishing vertical and horizontal pleiotropy using EpiGraphDB. (A) 

Concept of vertical and horizontal pleiotropy using proteins as an example. We have a 

valid instrument for MR when a SNP affects proteins in a single path; in contrast, if an in-

strument is associated with proteins participating in different pathways, it violates the 

<exclusion restriction criterion= and our instrument is invalid. (B) Integration of SNP-

protein associations with pathway information and PPI data to distinguish vertical and 

horizontal pleiotropy using EpiGraphDB. All four proteins are associated with the same 

SNP. Protein 1 and protein 2 share the same biological pathway. Protein 2 and 3 are in 

PPI. Protein 4 shares no links with other proteins. Therefore, the SNP association on pro-

tein 1, 2 and 3 are likely to act through vertical pleiotropy, where the SNP association on 

protein 4 verse other three proteins are likely to be horizontal pleiotropy. 

Fig. 3. Network diagram with the evidence to assess the pleiotropy of genetic vari-

ant rs12720356. The network has one node for each protein regulated by the eQTL 

rs12720356, and their size is inversely proportional to their P-value (see Supplementary 

Table 4 for details). Dashed pink edges depict the participation in common biological 

pathways, and blue edges represent the number of shared PPIs (value indicated). 
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our multiple-testing threshold. Here we have developed an approach using 

PPI data to prioritise potential alternative drug targets. As a proof of prin-

ciple, we illustrate this approach using IL23R as an example. 

3.2.1 Integrating MR evidence with PPI networks for alternative drug 

targets search 

IL23R is a well-established disease-susceptibility gene for inflammatory 

bowel disease (IBD) (de Lange et al., 2017). The protein-disease associa-

tion information retrieved from EpiGraphDB suggests that IL23R has a 

robust causal effect on IBD7 (beta = 1.50, P-value = 2.21 × 10-166, colo-

calization probability = 75%) (Zheng, Haberland, et al., 2019). The drug 

PTG-200, acting as an antagonist of IL23R has just passed Phase I and is 

in Phase II trials for IBD treatment (Cheng et al., 2019), which aligns well 

with the genetic/MR evidence implemented in EpiGraphDB. Whilst 

IL23R is druggable, we illustrate how our approach can identify potential 

alternative targets using pathway data. 

We used PPI information (Orchard et al., 2014; Szklarczyk et al., 2019) 

and data on druggability (Finan et al., 2017) to identify a set of proteins 

which are the target of approved drugs and clinical-phase drug candidates 

and have direct PPI with IL23R. Table 2 shows a subset of this list with 

strong MR evidence (P-value < 1 × 10-5) to IBD8. 

This list of proteins includes IL12B, which is the target protein for an 

existing drug Ustekinumab, which is currently under Phase 3 and 4 trials 

for IBD treatment9. Although there is strong MR evidence for IL12B (beta 

= 0.42, P-value = 9.59 × 10-34), there is little evidence for genetic colocal-

ization10 (colocalization probability < 1%), which prevents us prioritizing 

this target based on MR evidence alone. However, the PPI between IL12B 

and IL23R (which does have reliable MR and colocalization results) in-

creases our confidence that IL12B is a valid target. 

3.2.2 Using literature evidence for results enrichment and triangula-

tion 

A further source of useful evidence is the literature-derived knowledge 

from SemMedDB (Kilicoglu et al., 2012) available in EpiGraphDB. Inte-

grating this literature evidence with the evidence described above can fur-

ther enhance confidence in the findings (as well as identify potential alter-

native drug targets). Table 2 also reports the gene-to-trait literature evi-

dence regarding IL23R and interacting proteins and IBD, where each entry 

shows a literature-derived semantic triple (e.g. <IL23R= 3 

<ASSOCIATED_WITH= 3 <Inflammatory Bowel Diseases=), as well as 

the study articles from which each triple was extracted. For the list of 

genes including IL23R and IL12B that were identified with strong MR 

evidence, we were also able to find abundant literature evidence support-

ing the genetic causal evidence with derived mechanisms involving pred-

icates such as ASSOCIATED_WITH, AFFECTS and CAUSES. 

Table 2. Triangulation of MR and literature evidence on the effects 

of IL23R and associated genes to IBD. The MR evidence is the QTL 

MR estimates of IL23R and the associated druggable genes (via direct 

protein-protein interaction with Tier 1 druggability) to GWAS ieu-a-249: 

Inflammatory bowel disease. The literature evidence is the SemMed 

predicates derived by SemMedDB and the numbers of PubMed articles 

identified to support the predicate mechanism. Here we report the subset 

  
7 https://epigraphdb.org/pqtl/IL23R 
8 Supplementary Table 5 reports the full list of identified proteins with 

druggability information. 

of genes that are identified to contain both MR evidence (P-value < 1 × 

10-5). 

Gene 

Effect 

size 

(SE) 

P-value QTL 
SemMed predicate 

(count) 

IL23R 

1.50 

(0.05) 

2.21 × 10-

166 
pQTL 

AFFECTS (1), 

ASSOCIATED_WITH 

(21), 

NEG_ASSOCIATED_

WITH (2), 

PREDISPOSES (1) 

0.89 

(0.06) 

4.16 × 10-

43 
eQTL 

IL12B 
0.42 

(0.03) 

9.59 × 10-

34 
pQTL 

ASSOCIATED_WITH 

(5) 

IL15 
-1.42 

(0.20) 

5.53 × 10-

13 
eQTL 

ASSOCIATED_WITH 

(2) 

IL4 
0.46 

(0.08) 

4.47 × 10-

08 
eQTL 

ASSOCIATED_WITH 

(3), DISRUPTS (1) 

JAK2 
-1.90 

(0.20) 

1.32 × 10-

20 
eQTL 

AFFECTS (1), 

ASSOCIATED_WITH 

(3) 

NFKB1 
0.97 

(0.17) 

2.16 × 10-

08 
eQTL 

ASSOCIATED_WITH 

(2) 

RORC 
-1.00 

(0.12) 

1.21 × 10-

17 
eQTL 

ASSOCIATED_WITH 

(1) 

STAT3 
0.60 

(0.08) 

2.96 × 10-

15 
eQTL 

AFFECTS (2), 

AUGMENTS (1), 

ASSOCIATED_WITH 

(9), CAUSES (1) 

3.3 Triangulating causal estimates with literature evi-

dence 

Previously, we have demonstrated that existing literature can be used to 

derive relationships and mechanisms between defined biomedical traits 

(Elsworth et al., 2018). By integrating this knowledge with causal esti-

mates in EpiGraphDB, we can triangulate evidence, identifying where 

these two sources of evidence are in agreement, and where they are not 

(Lawlor et al., 2017). In this case study we explore the literature connect-

ing traits with pre-defined causal relationships. From here we can summa-

rise the key mechanisms defined in the literature, and also potentially de-

rive novel mechanisms. 

3.3.1 Sleep duration and coronary heart disease as an example 

Starting with an exposure trait of <Sleep duration=, existing MR data, and 

connections between traits and diseases in EpiGraphDB, we extracted a 

set of potentially causally related traits (Table 3). 

9 Drug trial information available via Open Targets https://www.target-

validation.org/evi-

dence/ENSG00000113302/EFO_0000540?view=sec:known_drug 
10 http://epigraphdb.org/pqtl/IL12B 
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Table 3. Summary of disease traits identified with causal association 

to <Sleep duration=. We searched for MR evidence associated with trait 

<Sleep duration= with P-value to be under 1 × 10-10, and map the out-

come trait to a disease term via mappings through EFO terms. 

Exposure Outcome 
MR 

beta 

MR P-

value 
Disease 

ieu-a-1088: 

Sleep dura-

tion 

ukb-a-107: 

Non-cancer 

illness code 

self-re-

ported: gout 

-

0.00257 

3.8 × 

10-24 

<gout= 

ieu-a-1088: 

Sleep dura-

tion 

ieu-a-6: Cor-

onary heart 

disease 

-

1.03933 

2.3 × 

10-21 
<coronary ar-

tery disease= 

ieu-a-1088: 

Sleep dura-

tion 

ukb-a-548: 

Diagnoses - 

main 

ICD10: K35 

Acute ap-

pendicitis 

-

0.00671 

8.0 × 

10-15 

<appendicitis= 

ieu-a-1088: 

Sleep dura-

tion 

ukb-a-54: 

Cancer code 

self-re-

ported: lung 

cancer 

-

0.00191 

1.1 × 

10-14 <cancer=, 

<lung carci-

noma= 

ukb-a-9: 

Sleep dura-

tion 

ukb-a-13: 

Sleepless-

ness / in-

somnia 

-

0.32167 

1.1 × 

10-11 <insomnia 

(disease)= 

 

Multiple disease entries arise from the mapping between the trait name 

and EFO terms, each of which maps to a disease term. In this case we 

treated each as a single relationship and extracted the literature data con-

necting a pair of traits. For this example, we selected the outcome trait 

<Coronary heart disease= to explore in more detail the potential mecha-

nisms linking this to sleep duration. To do this we queried EpiGraphDB 

to extract the semantic triples associated with each trait and searched for 

overlapping terms, identifying 839 overlapping triples (Supplementary 

Table 6 reports the top 10 items by enrichment P-value). 

We then generated frequency counts for the overlapping terms (Figure 

4), which identified many different overlapping terms and types11, includ-

ing 6 proteins (aapp), 2 genes (gngm) and 11/ organic chemicals (orch). 

Each of these represents a key point in a potential mechanism, connecting 

the exposure and outcome traits. Terms of particular interest are those with 

high counts (e.g. Ethanol) as these represent terms with large numbers of 

supporting publications in the literature. However, in this case, Ethanol 

may be present in such numbers due to its inclusion in many publications 

as a co-factor when describing the functionality and efficacy of drugs, 

highlighting the importance of reviewing a selection of papers underpin-

ning each mechanism. 

3.3.2 Investigation of one overlapping term in detail 

Figure 5 suggests the main route from Sleep Duration to Coronary Heart 

Disease via the intermediate term Leptin involves only one term on the 

exposure side (<ghrelin=) and 10 on the outcome side. 

  
11 https://mmtx.nlm.nih.gov/MMTx/semanticTypes.shtml 

3.3.3 Check the original publication text 

Finally, EpiGraphDB provides a PubMed identifier to enable us to check 

the validity of these connections in the original text. For example, we 

Fig. 4. Literature-mined/derived evidence on the intermediates between <Sleep dura-

tion= and <Coronary heart disease=. Counts of overlapping SemMed terms grouped by 

the SemMed term type. 

Fig. 5. Literature derived mechanisms between <Sleep duration=, <Leptin=, and 

<Coronary Heart Disease=. Network diagram displaying the literature connections be-

tween <Sleep Duration= and <Coronary Heart Disease= through the intermediate term 

<Leptin=. Predicates connecting two semantic terms and their frequencies are labelled on 

the edges. Red nodes represent the exposure (SLEEP DURATION) and outcome 

(CORONARY HEART DISEASE) traits, blue nodes represent intermediate semantic lit-

erature nodes. 
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found evidence of two statements that <Leptin PREDISPOSES Coronary 

heart disease=. These were derived from the following two sentences: 

<CONCLUSIONS: Consumption of sugar-sweetened bever-

ages was associated with increased risk of CHD and some ad-

verse changes in lipids, inflammatory factors, and leptin.= (de 

Koning et al., 2012) 

<Leptin, one of the earlier adipocytokines, is known to play a 

major role in cardiovascular disease and recent observations 

suggest that leptin is an independent risk factor for coronary 

heart disease.= (Amasyali et al., 2010) 

The contrasting causal interpretation of these two sentences highlights 

the importance of manual review of the original articles to validate the 

semantic triples. 

4 Discussion 

EpiGraphDB is a new database and platform for data integration in health 

data science, with a particular focus on understanding the relationships 

between risk factors, intermediate phenotypes and disease outcomes de-

scribed by epidemiological analyses. Whilst we present three specific case 

studies, we anticipate a much wider array of uses and support this through 

an open API and R package. It is, however, important to recognise that 

there are several existing platforms for data integration in the health, bio-

medical and pharmaceutical domains (Supplementary Table 3).  

The Open Targets platform (Koscielny et al., 2017; Carvalho-Silva et 

al., 2019) (https://www.targetvalidation.org/) integrates a wealth of ge-

nomic, phenotypic, ontology and drug target data into a single platform 

aimed for users in the pharmaceutical industry and research community. 

Their platform has a well-developed web interface in addition to a com-

prehensive API and Python package to support use of the API. This open 

approach has enabled EpiGraphDB to utilise drug/target mappings with 

Open Targets. However, whilst there is some overlap in this context, the 

Open Targets platform lacks MR estimates (although it does include ge-

netic association data). Open Targets also includes some literature data, 

and their LINK platform (https://link.opentargets.io/) extracts semantic re-

lationships from PubMed. However, despite some of the conceptual simi-

larities to EpiGraphDB, their focus is primarily on drug target prioritisa-

tion, whilst EpiGraphDB also aims to support evaluation of lifestyle risk 

factors. 

The Hetionet platform (https://het.io/) is a graph database integrating 

data from more than 29 different databases, which was initially set up to 

prioritize drugs for repurposing using an innovative approach to predict 

gene/disease associations (<Project Rephetio=) (Himmelstein and Baran-

zini, 2015; Himmelstein et al., 2017), but now aims to have a broader re-

mit. The platform is very accessible, with a web application, data down-

loads in multiple formats and open access to their Neo4j database. The 

primary focus of the platform is for molecular mechanisms and pharma-

cologic data while EpiGraphDB additionally encompasses epidemiologi-

cal relationships (MR causal estimates, genetic correlation, etc) and liter-

ature data. However, the open nature of the platform enables users to eas-

ily work with Hetionet in parallel with EpiGraphDB. 

The Monarch Initiative (Mungall et al., 2017) 

(https://monarchinitiative.org/) is focused on the integration of genotypic 

and phenotypic data across species with the aim of identifying related phe-

notypes and potential animal models of disease. This contrasts with the 

human-centric epidemiological focus of EpiGraphDB. The Monarch Ini-

tiative platform has an open source approach to software development and 

offers web interfaces powered by an open API. In common with Hetionet 

and EpiGraphDB, the platform uses the Neo4j database. Users can easily 

integrate data from the Monarch Initiative with EpiGraphDB given their 

open design principles. 

Wikidata (https://wikidata.org) is a general knowledge base which con-

tains an array of biomedical data sources that have recently been reported 

(Waagmeester et al., 2020). In contrast to curated knowledge bases such 

as EpiGraphDB, Wikidata is developed through community driven efforts 

and bot automation, and incorporates extensive knowledge across a wide 

array of fields, including (but not limited to) a range of biomedical entities, 

with duplication and redundancy of entities inevitable. This much broader 

approach also distinguishes Wikidata from specialist platforms such as 

EpiGraphDB, which is focused on epidemiological and biomedical 

knowledge. In common with other platforms listed above, the open design 

of this platform supports cross-platform data integration. 

Various other platforms (Gaspar et al., 2018; Coker et al., 2019; Abbot 

et al., 2020) exist with some conceptual overlaps with EpiGraphDB (Sup-

plementary Table 3). These represent a range of different types of data 

based on molecular and genetic interactions and drug targets. However, in 

contrast to the platforms described above these platforms don9t appear to 

have accessible API or software packages. Although several are open ac-

cess and available to the wider community, the lack of programmatic in-

teroperability limits their scope. 

As with all similar platforms, EpiGraphDB is constrained by the avail-

able data and subject to any errors or quality issues that exist in original 

sources. However, by integrating data from a range of sources (e.g. 

STRING, IntAct and Reactome for interactions between proteins) we en-

sure the user can evaluate consistency between data sources. 

5 Conclusions 

The EpiGraphDB platform provides an integrated data resource to support 

data mining and interpretation of the relationships between disease risk 

factors, intervention targets and disease outcomes. We present three illus-

trative case studies that demonstrate the functionality and utility of the 

platform, but it is important to note that much more extensive capabilities 

are available and will continue to expand as the platform is developed fur-

ther. We aim to support open science by making the data freely accessible, 

both programmatically and through a web interface, and by providing 

open source code and exemplar Jupyter notebooks. 
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