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Abstract

While thousands of loci have been associated with human phenotypes, the role of gene-
environment (GXE) interactions in determining individual risk of human diseases remains
unclear. This is partly due to the severe erosion of statistical power resulting from the massive
number of statistical tests required to detect such interactions. Here, we focus on improving the
power of GXE tests by developing a statistical framework for assessing quantitative trait loci
(QTLs) associated with the trait means and/or trait variances. When applying this framework to
body mass index (BMI), we find that GXE discovery and replication rates are significantly higher
when prioritizing genetic variants associated with the variance of the phenotype (vQTLs)
compared to assessing all genetic variants. Moreover, we find that vQTLs are enriched for
associations with other non-BMI phenotypes having strong environmental influences, such as
diabetes or ulcerative colitis. We show that GxE effects first identified in quantitative traits such
as BMI can be used for GxXE discovery in disease phenotypes such as diabetes. A clear
conclusion is that strong GXE interactions mediate the genetic contribution to body weight and

diabetes risk.

Introduction

In Cappadocia, Turkey, traces of an asbestos-like, cancer-causing fiber was found in the
materials of villagers’ homes and was prevalent in the air. However, this alone could not explain
an epidemic where 50% of all Cappadocia villagers died from mesothelioma, compared to only
4.6% of asbestos miners with at least 10 consecutive years of work'. After nearly three years of
living amongst the villagers, Roushdy-Hammady et al. documented a Cappadocia villager
pedigree and described a highly penetrant Mendelian transmission of disease?. Once the
pathogenic BAP1 mutations were found?, follow-up experimental studies*® illuminated how
BAP1 and asbestos exposure synergistically cause dangerous oncogenic effects in a gene-
environment interaction (GxE)’.

This example is one of only a few well-characterized GxE interactions in humans, which
have mostly appeared as modulators of Mendelian disorders’ penetrance. In human genetics,
the primary focus has been characterizing the average relationship between individual genetic
variants and a phenotype. While we have identified thousands of associations across a

spectrum of human phenotypes at the single variant level®, research in model organisms and
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cell cultures have constantly shown that genetic effects are context-dependent®®. As one
example, the genetic effects governing lifespan in Drosophila melanogaster within one

environment do not alter lifespan within another environment'®

. The incomplete penetrance for
many common human diseases, such as the APOE E4 allele on Alzheimer’s disease risk or
smoking on lung cancer risk, imply important genetic and environmental modifiers of disease
onset™".

While GxE interactions are expected to be numerous, it is debated how important these
interactions are to human genetics'®?'. If they play a significant role, identifying these
interactions can enable more accurate genetic prediction'?, especially at the individual level.
Current state-of-the-art prediction models use polygenic scores (PGS)?2, which combine
additive effects of genetic variants into a single risk measure. Clinical and environmental factors
are used to improve model prediction, but potential interactions with genetic information are not
commonly considered. Additionally, PGS have poor transferability across populations23, possibly
driven by environmental factors. If genetic effects on human phenotypes vary from person-to-
person due to interactions, then more individualized prediction could be realized by first
identifying genetic interactions and estimating their effects.

Because there is modest power to detect interactions in large human population cohorts,
efficiently identifying the interactions remains an important statistical and computational
challenge. To address these difficulties, we make use of a previously characterized observation
that most GxE interactions with large effect size can be revealed as a change in the variance of
a quantitative phenotype during a one-SNP-at-a-time genome-wide association study (GWAS)
(Fig 1)**%. This insight lets us identify strong GXE interactions associated with a given
quantitative trait using a two-step approach. First, we look for genome-wide SNPs that are
associated with the variance of the trait, thus identifying what are known as variance
Quantitative Trait Loci (vQTLs). Second, we use these vQTLs to screen for potentially strong
GxE interactions associated with the same phenotype. Scanning for vQTLs involves just a
single test per SNP, so it provides a powerful inroad for discovering genetic interactions by
nominating loci as promising candidates for an interaction.

In the present study, we introduce a statistical framework to nominate SNPs for GxE
interaction testing by leveraging differences in the means (muQTLs) and the variances (vQTLS)
of a phenotype. We apply these methods to study the genetic basis of variation in body mass

index levels (BMI)2728, We further explore the role for interactions across human disease and
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Figure 1: vQTLs could arise from a genetic interaction. (a) We refer to a genetic variant associated with the variance of the
phenotype as a variance QTL (vQTL). The orange line, representing the line of best fit, has slope = 0 and indicates that the mean
of the phenotype does not change with a difference in genotype. (b) A vQTL could also arise from a genetic interaction. The
displayed data in (b) is the same data as in (a), except the points are colored to reflect the genotype at a second locus or the
level of an environmental variable. This second factor interacts with Locus 1 to create a mean-based interaction effect, and this
mean-based interaction effect gives the appearance of a variance QTL at Locus 1. Data in both figures are simulated.
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perform in silico functional analyses for implicating relevant cell types and pathways, providing

new insights into the architecture of human phenotypes.

Results

Deviation Regression Model discovers vQTLs that are due to GxE interactions

To identify genetic variants associated with the variance of quantitative phenotypes, we
considered several tests (see Methods)?°-33, including a new approach that we refer to as the
Deviation Regression Model (DRM). In the DRM, a linear regression is performed on a single
SNP and phenotype, where the minor allele count is used as the independent variable and the
absolute difference between an individual’s phenotypic value and the phenotype medians within
each genotype is used as the dependent variable (after covariate adjustment) (Fig 2a)
(Methods). The effect sizes and P-values are used to estimate the variance effect of a SNP and
assess VQTL significance, similar to a standard GWAS.

We first used simulation to quantify the false positive rate (FPR) for the different variance
tests. We tested the FPR using a scenario where a single SNP affects the mean of the
phenotype, and thus a variance effect should not be detected except by random chance. We
generated a SNP genotype and a phenotype value for 10,000 individuals. Across 1,000
simulations, we tested for a variance effect, and calculated the FPR as the proportion of
simulations where the nominal P < 0.05. We found that the DRM maintained FPR near the
expected 5% across trait distributions, demonstrating robustness of the DRM test to a SNP with
only a mean effect on the phenotype. Levene’s test3? (LT) had similar performance. However,
our simulations found extensive false positive rates for several other variance tests?9-32,
including the Fligner-Killeen test or the double generalized linear model (Fig 2b; Supp Fig 1a).

We further used simulations to test the ability of vQTLs to reveal SNP-by-factor pairs
with an interaction effect on the phenotype. We repeated the previous FPR simulations, except
generated an environmental factor that interacts with the SNP to influence the mean of the
phenotype. As the interaction became stronger (variance explained by the interaction, Vg,
increases from 1% to 10%), the DRM’s power across 1000 simulations to detect an interaction
effect at a SNP increased from less than 10% to 100% (Fig 2c-d). Additionally, we found an

11.9% power increase for the DRM compared to LT at smaller interaction effects (Vg < 5%) (Fig
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Figure 2: Assessing a variance test for finding SNPs with interaction effects. (a) The Deviation Regression Model uses the
absolute difference between an individual’s phenotype Y; (for each genotype i and individual j) (y-axis) and the within-genotype
phenotype median (Y,) as a dependent variable. The absolute difference, Z;, is modeled in a linear regression across genotypes (x-axis).
Simulated data shown. (b) False positive rates for different variance tests at SNPs with varied mean effects in a non-normal phenotype:
Deviation Regression Model (DRM), Levene’s test (LT), Bartlett’s test (BT), Fligner Killeen test (FK), double generalized linear models
(DGLM), and a two-step squared residual approach (TSSR). (c-d) Power of the DRM and LT in normally distributed phenotypes (c) and
chi-squared phenotypes (d). (e) vQTL test power, quantified by the DRM, stratified by whether the SNPs are detected by a muQTL test
(linear regression). By using a 2-by-2 contingency table representing the counts of muQTL and vQTL test rejection across 1000
simulations, Fisher’s exact test assessed whether muQTL power and vQTL power show non-random association. P-values displayed.
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2c-d). Therefore, in our simulated data, vQTLs could identify SNPs with large-effect interactions
and the DRM had superior power and improved FPR compared to other variance tests (Supp
Note 1; Supp Fig 1-2).

Finally, we contrasted the use of vQTLs for identifying SNPs involved in an interaction
with the use of mean-associated loci (mMuQTLs, as first identified using linear regression). Using
a similar testing procedure, we simulated SNP-by-factor interactions where the direction of the
SNP effect changes depending on the interacting factor (Methods). Across 1,000 simulations,
we found that muQTL test power and vQTL test power were not positively correlated. For
example, a vQTL test’s power at non-muQTLs was 62.9% when Vg = 2%, compared to 14.7%
at muQTLs (Fig 2e). Our results show that positive and negative effects from a single SNP due
to an interaction can remove a muQTL signal, and thus vQTL methods provide a
complementary and robust approach to discover interactions (such as shown in Fig 1). Finally,
although the muQTL approach had increased power to detect the causal SNPs compared to the
vQTL approach (Supp Fig 1d), we note that muQTL approaches will pick up variants that
directly impact the trait, but which are not involved in an interaction (leading to a high FPR).
Therefore, our vQTL approach can identify SNPs involved in GxE interactions with higher

specificity than using muQTLs.

Genome-wide association studies in UK Biobank

Hundreds of variants have been associated with body mass index (BMI), highlighting
that diverse pathways regulate body weight, from immune system activation to leptin signaling
to the central nervous system?7.28, Furthermore, environmental influences and lifestyle choices
such as diet, exercise, and gut microbiome composition34 also have a major influence on BMI.
Therefore, we hypothesized that there may be strong GxE interactions that regulate BMI, and
these interactions may appear as a change in the BMI variance at a SNP. In 275,361 unrelated
British European individuals from UK Biobank (UKB), we searched for genetic variants
associated with the means (muQTLs) and variances (vQTLs) in untransformed body mass index
(BMI) values (P< 5 x 108) (Fig 3a; Supp Note 2).

We discovered a strong correlation between mean and variance effects, which we refer
to as the mean-variance relationship (Fig 3b-c). The mean-variance relationship could be

explained in a number of ways. Since the sample means and sample variances are correlated in
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non-normal distributions and BMI is non-normally distributed, variance effects could be a
consequence of a SNP’s mean effect and therefore any observed associations with phenotypic
variance are not indicative of underlying interactions?> (Supp Note 3). Alternatively, we
hypothesized that a SNP associated with the mean value of a phenotype is also more likely to
be involved within interactions, thus creating the correlation we observe. Biologically, SNPs with
a main effect (directly impacting the studied trait) may have a greater likelihood of having an
interaction effect. Statistically, variance estimates have larger standard errors than mean
estimates in a population sample; thus, interactions must have larger effect sizes to detect a
change in variance and consequently mean effects would be detected too (Supp Note 4; Supp
Fig 3). Therefore, a correlation between mean and variance effects might be due to both real
biological and statistical causes.

To disentangle the mean-variance relationship, Young et al. described how analysis of a
phenotype with a rank inverse normal transformation (RINT) decorrelates mean and variance
effects?® and proposed a dispersion effect test to identify differences in variances not driven by
the mean effects (known as dispersion effects). We sought to find SNPs associated with both
the variance and dispersion of BMI after a rank inverse normal transformation. We used the
DRM to identify variance effects and Young et al.’s dispersion effect test to discover dispersion
effects. SNP associations were identified using a less-conservative P < 10-% threshold to
produce an expanded set of SNPs, since these analyses resulted in conservative P-value
distribution (Fig 3d-g; Supp Fig 4; Supp Notes 5-6).

We discovered 448 SNPs associated with the mean of untransformed BMI values (which
we refer to as “muQTLs”), 21 SNPs associated with the variance of untransformed BMI values
(“raw vQTLSs"), 27 SNPs associated with the variance of transformed BMI values (“RINT
vQTLs”) and 26 SNPs associated with the dispersion of transformed BMI values (“dQTLs”) (Fig
3h). As expected, the correlation with mean effects decreases from raw vQTLs to RINT vQTLs
to dQTLs; for example, 18 of 21 raw vQTLs are also muQTLs, 4 of 27 RINT vQTLs are
muQTLs, and 3 of 26 dQTLs are muQTLs. We combined the muQTLs, raw vQTLs, RINT
vQTLs, and dQTLs into a set of 502 unique QTLs. We next proceeded to the second step of our
sequential GXE discovery framework, where we searched for pairwise interactions between the
502 unique QTLs and with age, sex, and five environmental factors: smoking status, diet,
physical activity, sedentary behavior, and alcohol intake frequency (the details of these factors

are described within the Methods section).
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Figure 3: GWAS of body mass index levels in UK Biobank. (a) Data for imputed genotypes and BMI in unrelated British European individuals
were split into a discovery set, representing 80% of the data, and a replication set, representing 20% of the data. Within the discovery set, a GWAS
was performed on the means (muQTLs) and variances (raw vQTLs) of untransformed BMI and on the variances (RINT vQTLs) and dispersion
(dQTLs) of RINT BMI. Across SNPs, the effect sizes (b) and P-values (c) were highly correlated between muQTLs and raw vQTLs. The RINT
reduced mean-variance correlation (d) and identified a set of RINT vQTLs with smaller muQTL effects (e). Dispersion effects had the least
correlation with mean effects (f), and all dQTLs were not the most significant muQTLs (g). In (b-g), the red line represents the line of best fit. Points
are colored by the —log,, p-value of the y-axis analysis, with purple representing significant (P < 5 x 10-® with raw BMI, P < 10-5 with RINT BMI).
The GWAS results are summarized in (h), broken down into by the number of QTLs passing the different criteria (indicated by the red coloring and
grey counts).
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Discovery and replication of gene-environment interactions

To identify GXE interactions potentially explaining BMI, we used the same set of 275,361
unrelated European individuals. We tested for 3,514 GxE interactions, using the 502 unique
QTLs and seven factors, by applying 3,514 distinct linear models containing a single interaction
term. Overall, we identified 78 significant gene-environment interactions associated with BMI in
the discovery set (FDR < 0.1) (Fig 4a), a 155-times greater discovery rate over interaction
testing based on a genome-wide sampled set of SNPs (2.2% versus 0.014%; P = 9.8 x 10°40)
with no expected FPR increase (Figure 4b-c; Methods; Supp Note 7-8; Supp Fig 5a-d).

We used an independent and randomly selected replication set of 68,840 unrelated
British European individuals from UKB to evaluate our findings in the discovery cohort (Fig 3a).
We refer to effect size estimates and P-values from the discovery set as o and Pp, and those
from the replication set as r and Pr. We considered an interaction to be replicated if the
direction of effect was the same in both discovery and replication sets [ sign(Bp) = sign(pr) ] and
Pr < 0.05. Overall, 21.1% of significant GxE interactions (FDR < 0.1) replicated, compared to
7.8% of GxE at similar nominal Pp-values based on genome-wide SNPs (2.7-fold enrichment, P
= 2.2 x 104) (Fig 4f-g). The estimated replication rate increased as the significance threshold
became stricter, with all 9 FDR < 0.01 interactions replicating effect direction and 4 of the 9
passing Pr < 0.05 significance. Our data suggests that interactions using the 502 unique QTLs
had significantly greater replication rates compared to interactions from genome-wide SNPs,
despite similar nominal Pp-values (Supp Note 9; Supp Fig 5e).

We found that the increased discovery and replication rates are driven by raw variance
effects. 14.2% of tested GxE interactions using raw vQTLs were significant (FDR < 0.1), a 10.0-,
8.6-, and 7.7-fold higher GxE discovery rate than muQTLs, RINT vQTLs, and dQTLs in the
absence of a significant raw vQTL association (1.4%, 1.7%, and 1.9% respective discovery
rates, P < 102 for each; Fig 4d-e; Supp Fig 5f-i). Similarly, the interactions from vQTLs (FDR <
0.1) had 2.8-fold higher replication rate compared to muQTLs that were not raw vQTLs (38.1%
versus 13.5%; P = 4.3 x 10-3) (Fig 4h-i; Supp Note 10). Lastly, we found that the GxE effects
correlated best with the raw vQTL effects compared to the muQTL, RINT vQTL, or dQTL effects
(Supp Fig 6). Hence, we found that the ability to discover and replicate interactions was

primarily driven by a single-SNP’s marginal association with untransformed BMI variance.
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Figure 4: Discovery and replication of GXE interactions. (a) Heatmap of all QTLs with a FDR < 0.1 GxE interaction in the
discovery set. Each box colored by significance level in the discovery set. Raw vQTL SNPs are highlighted in orange. Smok =
smoking status; SB = sedentary behavior level; PA = physical activity level; Alc = alcohol intake frequency. (b-c) Quantile-quantile
plots for all GXE interactions across environmental factors and (b) 5016 matched genome-wide SNPs, (c) 502 QTLs, (d) 448
muQTLs that are not raw vQTLs, or (e) 21 raw vQTLs. The x-axis shows the —log,, p-values under the null distribution and the y-axis
shows the observed —log,, p-values, where each point represents a different GXE interaction. The red line represents the
expectation under the null, with intercept = 0 and slope = 1. (f-i) Replication rates of GXE interactions, as quantified by those with the
same direction of effect in both discovery and replication sets and Py < 0.05. Given a threshold x (x-axis), the replication rate (y-axis)
is calculated for all interactions with Pp < x. (f) GXE interactions using 5016 matched genome-wide SNPs. (g) GXE interactions using
all 502 QTL-nominated SNPs. (h) GXE interactions using 448 muQTLs that are not raw vQTLs. (i) GXE interactions using 21 raw
vQTLs. In (f-i), the confidence interval over replication rates is shown in grey and the expected replication rate under random
observations (2.5%) is shown in red. Red points are FDR < 0.1, < 0.05, and < 0.01 cut-offs. In (g) and (i), there are no FDR < 0.1
associations.
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Large gene-environment interactions influence BMI

The most significant interaction identified with respect to BMI was between the FTO
intronic region and alcohol intake frequency (P = 8.6 x 10-2). The FTO intron region harbors the
strongest muQTL (P = 1.3 x 10-'72), raw vQTL (P = 5.4 x 10-%%), and RINT vQTL (P=3.7 x 10'")
association with body mass index (rs56094641), has been functionally implicated as a key
obesity regulator in mouse experiments and CRISPR-Cas9 editing of human patient
samples3536, and was recognized as a gene-environment interaction hotspot in previous
studies®”. At this locus, we identified additional interactions (FDR < 0.1) with sedentary behavior
(Pp =1.2x10%), physical activity (Po =2.0 x 109), diet (Pob = 7.9 x 107), age (Po = 1.1 x 10%),
and smoking behavior (Po = 9.6 x 10-4), but not with sex (Pp = 0.39) (Table 1 and Fig 5a). We fit
a model containing each significant interaction with rs56094641 and found a significant effect for
each GxE term (P < 0.05), suggesting that each interaction is independent (Supp Table 1).

The most significant GXE interaction identified outside the FTO region was between the
rs7132908 variant and sedentary behavior level (Po = 8.4 x 10-). This variant lies in the 3-UTR
of the FAIM2 gene, with selective and functional constraint (as estimated by SiPhy3 and
GERP?9), 30 different bound proteins in ENCODE ChIP-Seq experiments*, and a high
prevalence of enhancer histone marks and DNAse sites across tissue types in the Roadmap
Epigenomics Consortium#'42. FAIMZ2 encodes an anti-apoptopic protein and exhibits a brain-
specific gene expression pattern across human tissues*3. Previously, it has been shown that
FAIMZ2 gene expression is regulated by dietary exposures* and FAIM2 promotor methylation is
regulated by sedentary behavior#>. Furthermore, the rs7132908 variant has another significant
GxE interaction (FDR < 0.1) with alcohol intake frequency on BMI (Pp = 1.7 x 104).

The four other FDR < 0.01 gene-environment interactions we discovered were between
rs58084604 (near MC4R) and diet (Pp = 7.2 x 107), rs539515 (SEC16B) or rs12467692
(UBEZ2E3) and alcohol intake frequency (Ppo = 1.1 x 10 and Pp = 6.8 x 106 respectively), and
rs12996547 (TMEM18) and age (Pp = 1.8 x 10-%). All 9 FDR < 0.01 interactions replicated with
the same direction of effect, and 4 of the 9 had Pr < 0.05 (Table 1). MC4R gain-of-function
mutations protect against obesity risk*¢ and have been functionally validated in obesity within
mice*’, while Sec16b knockout mice carry decreased cholesterol levels with higher body

weight*8. We found that age and the rs12996547 haplotype are associated with increased
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raw PRINT

rs539515 SEC16B Alc -0.045 1.1x10° -0.065 1.6 x

103
rs56094641 FTO Alc  -0.058 86x10"'2 -0.072 2.1x
10
rs56094641 FTO SB  0.025 25x10% 0011  0.26
rs56094641 FTO PA -0.103 20x107 -0.077  0.02
rs56094641 FTO Diet 0.078 9.6x108 0.091  3.5x
104

rs58084604 MC4R Diet 0.084 7.2x107 0.049 0.10

rs7132908 FAIM2 SB 0.030 84x10° 0.008 0.44

rs12467692 UBE2E3 Alc 0.040 6.8x10% 0.031 0.08

rs12996547 TMEM18  Age -0.007 1.8x10° -0.006 0.07

Table 1: GxE interactions with FDR < 0.01. From left to right: The SNP name, annotated gene (based on evidence in the Open
Targets database, see Methods), environmental factor (Smok = smoking status; SB = sedentary behavior level; PA = physical activity
level; Alc = alcohol intake frequency), estimated effect size and P-values in the discovery cohort, estimated effect size and P-values in
the replication cohort, and P-values from the four QTL studies: muQTLs, raw vQTLs, RINT vQTLs, and dQTLs (colored in red if
significant).


https://doi.org/10.1101/2020.07.28.225730
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.225730; this version posted July 28, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

TMEM18 gene expression in visceral adipose GTEXx tissue*® (age: r=0.22; P= 4.4 x 105, SNP:
B =0.155, P =3 x 10#), which may be one mechanism to jointly reduce BMI levels. Previously,
Tmem18 germline loss in mice led to increased body weight, while over-expression resulted in
weight loss by regulating appetite and energy balance*®. Our findings in UKB and GTEx lend
further evidence to support the role of TMEM18 in BMI.

GxE interactions have pleiotropic effects over BMI and diabetes risk

We aimed to determine whether gene-environment interactions influencing body mass
index levels exhibit pleiotropic effects and are shared across human diseases, possibly by
jointly influencing BMI and disease risk (Supp Fig 7a). From the set of 78 significant GXxE
interactions above (FDR < 0.1), we identified a set of 58 GxE interactions associated with the
same direction of effect on BMI in both discovery and replication sets. We then screened these
GxE interactions against three additional medical diagnoses: coronary artery disease, diabetes,
and high blood pressure diagnosis (Methods).

We found that GxE effects on BMI estimated in the discovery cohort significantly
correlated with GxE effects on diabetes risk within the held-out set (r=0.59, P = 1.3 x 10-) (Fig
5b), even after adjusting for BMI as a confounder (r=0.38, P = 3.3 x 10®) (Supp Fig 7b),
indicating that BMI GxE effects are predictive of GXE influences over diabetes risk. Furthermore,
we identified one significant disease interaction (FDR < 0.1), where physical activity regulated
the association of rs4743930 with diabetes risk (P= 8.7 x 10-%; FDR = 0.015). In a previous UKB
analysis®0, this variant is marginally associated with diabetes risk at P = 0.022, and
consequently would not appear as one of the most significant findings in a hypothesis-free
GWAS. Within low exercise individuals, the rs4743930 T allele was associated with increased
BMI levels (Bo = 0.19 kg/m? per T, Po = 8.5 x 10-") and increased diabetes risk (ORp = 1.10, or
a 10% risk increase per T, Pp = 2.7 x 10-%). Within moderate or high exercise individuals, there
was a minor association with BMI levels and no significant association with diabetes risk
(Figure 5c¢c-d). This interaction could be linked to decreased BMI levels and protective diabetes
effects in both discovery and replication sets (BMI: fp = -0.075, Br = -0.042; diabetes risk: pp = -
0.075, Br = -0.065), although Pr = 0.25 and Pr = 0.09 for BMI and diabetes risk in the

replication set (possibly due to lower sample size, as Table 1 shows that more than half of the
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Figure 5: GXE interactions across environmental factors, human phenotypes, and cell types. (a) The estimated marginal BMI effect of the
rs56094641 G allele conditioned on the different environmental co-variates. For visualization, age, sedentary behavior values, and diet (bottom 20%,
middle 60%, upper 20%) were grouped and "rarely” or “never” answers for alcohol intake frequency were combined. Significant GXE interactions
highlighted with an asterisk. (b) Estimated GxE effects in BMI within the 80% discovery set (x-axis) from linear regression were correlated with
estimated GxE effects on diabetes risk within the 20% replication set (y-axis) from logistic regression. Each data point represents a different SNP x co-
factor interaction. BMI GxE interactions appear predictive of diabetes GxE interactions. (c-d) The estimated marginal effect of the rs4743930 T allele
on (c) BMI and (d) diabetes risk, conditioned on physical activity levels. Estimated diabetes risk effect is in terms of the relative odds ratio (OR). In (a),
(c-d), the estimate is shown by the black dot, and the bars indicate the 95% confidence intervals. Smok = smoking status; SB = sedentary behavior
level; PA = physical activity level; Alc = alcohol intake frequency. (e) The proportion of pure muQTLs (those with no significant raw vQTL association)
associated with a phenotype were compared to the proportion of raw vQTLs that are associated. Each point is a different phenotype that is included in
the Open Targets database. Phenotype associations significantly enriched in the raw vQTL set (FDR < 0.1) are highlighted in red. (f) The -log;q(FDR)
describe the partitioned enrichment of BMI mean and BMI variance heritability in specifically expressed genes for a given cell type. Only cell-types
with FDR < 0.1 in the BMI variance analysis are shown. Dashed red lines drawn at FDR < 0.1.
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FDR < 0.01 interactions had Pr > 0.05 despite same effect direction). The observed
associations remained present after adjusting for BMI as a confounder (fp = -0.058, Pp = 2.5 x
103; Br = -0.066, Pr = 0.09) (Supp Fig 7c).

Leveraging the genomic (transcription start site proximity), transcriptomic (eQTL
studies), and epigenomic information (Promotor Capture Hi-C data) found in the Open Targets
database®', we inferred that rs4743930 likely regulates the BARX1 gene, which is part of the
homeobox transcription factor family integral to anatomical development. BARX1 exhibits a
noteworthy tissue-specific gene expression pattern across human tissues, with high expression
in visceral adipose, esophagus, and stomach tissue and very low expression in other GTEx
tissues*? (Supp Fig 7d). Previous research has shown that the Barx1 transcription factor protein
is a key regulator of stomach cell fate and organogenesis and Barx1-- knockout mice have
significantly altered stomach morphology due to inhibition of the Wnt signaling pathway523. As
the Wnt signaling pathway modulates the formation of adipose tissue and regulates the
sensitivity to insulin, it has been proposed that pathway malfunctioning could lead to high co-
morbidities of obesity and diabetes®*. Here, we provide novel human genetic evidence of a
pathway regulator, BARX1, to support Wnt signaling’s proposed pleiotropy over body weight

and diabetes risk.

Evidence for weak epistatic interactions associated with BMI

While the primary goal of this study was the discovery of GXE interactions, we
hypothesized that a similar approach could be used to discover gene-gene (GxQG) interactions in
relation to BMI. We first tested for GxG interactions associated with BMI levels by performing
all-pairwise interaction testing between 502 QTLs (125,751 tests). We found no departure from
the -log1o(p-values) expected under the null distribution and there was no correlation between
interaction effects estimated in the 80% discovery cohort versus 20% replication cohort (r = -
0.003, P =0.30) (Supp Fig 8a-b). Most importantly, unlike GxE interactions, leveraging mean,
variance, or dispersion effects did not provide a reliable inroad to discovering GxG interactions
(Supp Note 11; Supp Fig 8e). However, when considering the more significant interactions (Pp <
0.001), we observed a weak correlation between effects estimated in each cohort (r=0.17, P=

0.04) and found that statistical replication rates increased slightly above the theoretical null, 2.5-
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3% (Supp Fig 8c-d). Our results in BMI suggest that any potential underlying epistatic effects
are small and would be difficult to detect, concordant with a recent search for epistasis in three

biologically simpler molecular traits%®.

vQTLs are linked to environmentally-influenced pathways and phenotypes

Since SNPs associated with the variance of untransformed BMI acted as hotspots of
GxE interactions, we explored whether certain phenotypes and pathways were more likely to be
linked to raw vQTLs compared to SNPs only associated with the mean of BMI. These muQTLs
which are not significant vQTLs are referred to as “pure muQTLs”.

To evaluate this, we used the Open Targets database®' which contains a large catalog
of genotype-phenotype associations. We performed a (mean-based) phenotype-wide
association study (PheWAS) of 21 raw vQTLs and 448 pure muQTLs by querying all
phenotypes available in Open Targets. Using a binomial test, we assessed whether the group of
raw VQTLs were enriched for an association with a phenotype (nominal P < 0.05) compared to
the group of pure muQTLs (nominal P < 0.05) (Methods).

Overall, we found vQTLs were enriched for an association with many phenotypes that
have a strong environmental influence (whether from diet, exercise, infection, or microbiome).
These included several diabetes-, immune-, and hematological-related phenotypes (Table 2,
Fig 5e). Permutation analyses of the pure muQTLs showed that the PheWAS-based enrichment
test did not have inflation of false positives (Supp Fig 9a).

Next, we mapped non-MHC SNPs to single genes using genomic proximity and Open
Targets’ variant-to-gene pipeline, queried raw vQTL gene sets or pure muQTL gene sets in
GeneMania, and performed gene ontology (GO) enrichment analysis of the resulting gene
network (Methods; Supp Note 12; Supp Data 1-2). We found that the network of raw vQTL
genes was enriched for G protein coupled receptor-related (GPCR) signaling pathways and cell
growth processes (Supp Data 3-4). In contrast, the pure muQTL network was enriched for
developmental processes, particularly in the central nervous system (CNS) with no enrichment
in the GPCR-related GOs (Supp Data 5-6). GPCRs transduce extracellular signals and activate
downstream a cascade of intracellular proteins and pathways, which is essential for how cells

interact with the environment.
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Phenotypes muQTL vQTL Ratio P FDR
Diabetes diagnosed by doctor 0.47 0.86 1.83 2.64E-04 0.017
Diabetes mellitus 0.33 0.67 2.029 1.56E-03 0.047
Diabetic retinopathy 0.05 0.33 6.318 6.85E-05 0.010
Eosinophil counts 0.15 0.43 2.882 1.89E-03 0.055
Hypothyroidism 0.12 0.43 3.647 3.32E-04 0.020

Mean corpuscular haemoglobin 0.23 0.67 2.866 2.87E-05 0.009
Neutrophil percentage 0.23 0.52 2.299 2.98E-03 0.065

Osteoarthritis | non-cancer illness

0.17 0.57 3.310 4.36E-05 0.010
code, self-reported
fizel Flooel el (el IeeiE) 0.27 0.62 2305  7.89E-04  0.038
distribution width
Red blood cell count 0.20 0.57 2.906 1.64E-04 0.014
Reticulocyte fraction of red cells 0.18 0.62 3.536 7.18E-06  0.006
Type 1 diabetes 0.09 0.33 3.861 1.40E-03 0.047
Type 2 diabetes 0.41 0.71 1.762 4.13E-03 0.078
Type 2 diabetes with neurological ) s 0.38 6619  1.24E-05  0.006
manifestations
2 2 ElEISEs il GEMEliE @ ge 0.33 5148  247E-04 0.017
manifestations
Ulcerative colitis | non-cancer illness 0.05 024 4513 4 08E-03 0.078

code, self-reported

Table 2: PheWAS enrichment of raw vQTLs versus pure muQTLs. From left to right: the phenotype, the proportion of pure
muQTLs and raw vQTLs that are associated with the phenotype, the ratio between the two proportions, the binomial test P-
value to assess VQTL set enrichment, and the FDR corrected significance. These phenotypes represent a manually-curated
and incomplete list of all significant findings presented in Supp Data 9.
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Polygenic heritability analysis implicates stomach cell types in regulating BMI variance

We evaluated whether the genetic contribution to the variance of BMI, a potential proxy
for GXE interactions, might implicate different cell types in regulating BMI levels compared to
studies on the mean of BMI. In Drosophila, the variance of a phenotype can be heritable®. We
performed partitioned linkage disequilibrium score regression on mean and variance GWAS
summary statistics to find cell types enriched for mean or variance heritability. We used 205
functional annotations from GTEx“ and the Franke lab5” that describe tissue-specific genes in
each cell type.

Overall, we found that estimated cell type enrichment values were similar for BMI means
and variances (r=0.81; P= 1.4 x 10*8) (Supp Fig 9b-c). For example, the genetic signal for
both means and variances were clustered in genes uniquely expressed in the CNS, as
described previously%8. Notably, we discovered that the heritability of BMI variance was
significantly enriched (FDR < 0.1) at genes with the highest expression in stomach cell types (P
=1.2 x 10-3; FDR = 0.049), with no significant association in these regions for mean heritability
(P = 0.40) (Fig 5f; Supp Note 13). This preliminarily suggests that stomach cell types, in
addition to CNS cell types, have a critical role over BMI variance and regulating potential GXE

interactions, and that this would not be discovered in a mean-based analysis.

Discussion

We have identified SNPs associated with the variance of BMI (vQTLs), which are
enriched for gene-environment (GXE) interactions and for associations with phenotypes under
strong environmental influences. When functionally profiling the annotated genes of vQTLs, we
found enrichment for G protein coupled receptor-related signaling pathways, which are key to
cells’ responses to the external environment. We also discovered through a polygenic analysis
that a significant proportion of the heritability in BMI variance is clustered near genes highly
expressed in stomach cells, which were not revealed in an analysis of BMI means®8. Future
application of our methods across phenotypes has the potential to identify genes, pathways, or

cell types that serve as key regulators of the interplay between genetics and environment.
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Additionally, we showed how GXE interactions first identified in BMI were predictive of
the GxE effects on diabetes risk within a distinct set of individuals. We further discovered a
BARX1 regulatory locus that significantly increases BMI and diabetes risk in low exercise
individuals but does not have pleiotropic population effects in moderate to high exercise
individuals. This framework of screening for SNPs as interaction candidates within quantitative
phenotypes to subsequently discover interactions influencing complex disease can be broadly
applicable across the range of human phenotypes. Methods to deconvolute case-control
disease phenotypes into a quantitative scale that re-captures disease granularity and severity
will enable the application of vQTL testing directly to the disease phenotype of interest.

We explored multiple approaches to decouple mean and variance effects, evaluate the
relationship between the two, and find GxE interactions. While Young et al.?® introduced a test
for identifying SNPs associated with the variance of a phenotype independent of a mean effect
(which we referred to as dQTLs), we found that the strongest GXE signal came from the SNPs
associated with the variance of BMI prior to statistical transformations (raw vQTLs). If raw
vQTLs are a robust footprint of interactions and estimated raw vQTL effects correlated strongly
with mean-based effects, then this suggests that any SNP directly impacting BMI may be more
likely to have its BMI effect modified by another factor.

GWAS-type testing is not the only approach to limiting the number of potential
interactions to explore. Other previously used approaches for reducing vast genomic data are to
filter SNPs based on prior biological information®® or to combine SNPs into higher-order gene-
level data®®. Alternatively, a large number of environmental variables can be combined into a
single environmental score®’. A significant drawback of these methods is that they will not be a
hypothesis-free genome-wide approach to discover the epidemiological interaction between
SNPs and other factors. Prior information is biased to prior knowledge, and gene-level data or
an environmental score limits the search space for potential interactions.

One future research area is the evaluation of polygenic scores that consider interaction
effects. Polygenic scores are currently based on only marginal additive effects, and our
research identified strong GXE interactions influencing BMI variability. For example, variants in
the FTO intron region (the strongest genetic regulators of obesity) are associated with a nearly
double BMI increase in low exercise individuals compared to high exercise individuals (Fig 5a).
Interactions can perturb each individual from the expectation given a single genotype, and the

ideal individual prediction would accommodate these interaction effects.
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While the DRM vQTL approach that was applied in these analyses has advantages in
power, any detection of interaction effects will have lower power than tests of main effects. Itis
anticipated that the increasing sample sizes of GWAS will enable more sensitive detection of
significant loci and more precise estimation of their variance effects. This will in turn improve the
sensitivity of a variance test in detecting underlying GxE interactions. Furthermore, replication of
GxE interactions require special attention. Here we split UK Biobank individuals into two
mutually exclusive groups, but this approach is not the same as performing tests on two
completely independent population samples. There may be unmeasured confounding factors in
the UK Biobank samples that drive spurious associations. Interactions will need to be
independently replicated in other cohorts to weed out spurious signals, although any lack of
replication could be due to differences in allele frequencies, cultural behavior, and other
environmental variables. For our purposes, we used the study design to allow a comparison of
replication rates between two sets of GxE interactions.

Perhaps the most important requisite to improve our understanding of GxE interaction in
humans is the collection of accurate, high-quality measurements of relevant environmental
variables. Specialized wearable tracking devices and improvements in biomarker data are
being explored, and the hope is that these will deliver a quantum improvement in the availability
and accuracy of environmental data. In these settings, vQTLs can provide a promising approach
to reduce dimensionality of genetic data and increase statistical power to detect GxE
interactions. Overall, our work highlights the ability to discover significant environmental

influences that modulate the genetic contribution to human phenotypes.
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Methods

Description and implementation of the variance tests

In the DRM, each individual j with genotype i has phenotypic value Y;;. The genotype is
coded as i=0, 1, or 2, determined by the minor allele count. The median phenotype value is
calculated for all individuals with categorical genotype i, ¥;. The absolute value of the difference

between Y;; and Y; is calculated:
Zij =Y - ¥ (Eq. 1)

The Z;; values for each individual j represent the deviation from the within-genotype phenotype
medians. Next, SNPs are tested for association with Z;; values using linear regression and the
genotype indices as a numeric covariate. The effect size and P-values for the SNP covariate in
the regression are used as proxies for the variance effect size and significance of association
with phenotypic variance. The DRM is a similar approach to the Levene’s test, which allows for
non-linear associations through an ANOVA model instead of a linear model. In practice,
covariates are regressed out from Y;; prior to calculating Z;;.

In our study, we used a number of other variance tests. The two-step squared residual
approach was implemented as linear regression on the squared mean-centered phenotype. The
other variance tests were implemented in R using the dgim() function from the dg/im package,
the bartlett.test() and fligner.test() function from the stats package, and the leveneTest() function

with default arguments (median-centered) from the car®? package.

Simulations of genotypes and phenotypes for method comparison

The methods for identifying variance differences were compared using statistical power
and false positive rates (FPR) as the performance benchmarks. In the FPR scenario, a single
SNP was simulated with MAF = 0.4 using a W ~ Binom(2, 0.4) independent random variable.
The SNP value Wis set to be equal to the genetic component, Yg, of a phenotype. In the power
testing scenario, a SNP X; and an environmental factor X> were simulated using a binomial
distribution with probability of success = 0.4: X7 ~ Binom(2, 0.4) and X2~ Binom(2, 0.4). This

other factor can also be thought of as an environmental exposure with three levels (e.g., for
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physical activity: never exercise, rarely exercise, often exercise). The product X7 x Xz is the
genetic component, Yg, of a phenotype in the power scenario. When contrasting muQTL
approaches to vQTL approaches, the genetic component is equal to the product X7 x (Xz— 1).
This is so that Xs‘s marginal association with the phenotype is either positive or negative,
depending on the value of Xo.

Phenotypes were generated by summing a point genetic effect, Ys, and random
environmental noise, Ye. Yewas simulated from a normal distribution or a chi-squared
distribution with 4 degrees of freedom, and scaled appropriately such that Yz explains ¥
proportion of the variance in the phenotype and Ye explains 1 — W percent, as described below.

Given W, the proportion of the variation explained by the environmental component is
larger than W by a factor % After calculating the variance of the genetic component, Vg, the

variance of the environmental noise, Vg, can be calculated as:

VE: VGX 1-¥

(Eq. 2)

In practice, the normally distributed environmental noise can be simulated as Ye ~ N(O,
Ve ) for normally distributed phenotypes. Chi-square distributed noise can be simulated as the

following for chi-square distributed phenotypes:

Ve = Tz X k(2 (4) (Eq. 3)

K is the function that centers and scales the chi-square input to have mean equal to 0 and
variance equal to 1. The final phenotypic values were created by calculating the sum Yg + YE. In
all, genotypes and phenotypes were generated for 10,000 individuals.

The association between SNP and the variance in phenotype was tested using the
different variance methods. The null hypothesis (no association) was rejected when the nominal
P < 0.05. This was repeated across 1,000 simulations with distinct genotypes and phenotypes.
Power and FPR refer to the proportion of simulations where the null hypothesis was rejected. LT
and DRM effects were compared by analyzing the simulations where the interaction explained
less than or equal to 5% variance in the phenotype.

Linear regression was used to compare a muQTL approach to a vQTL approach (using

the DRM). A contingency table was calculated from count data across simulations that
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describes whether the muQTL method rejected the null hypothesis of no association or the
vQTL method rejected the null hypothesis of no association. A two-sided Fisher exact test was
performed for each variance explained value, Vg, separately to assess the relationship of vQTL

power with muQTL power.

UK Biobank data

UKB data was processed previously by the UK Biobank team® and accessed under
Application ID 47137. The individuals and SNPs used in analysis were limited to those in the
Neale lab’s analysis®® as the same quality control criteria were adopted for sample and
genotypes in this analysis. By doing so, individuals were removed based on whether they were
not used in the UKB team’s principal component analysis (removing related samples), not of
European British ancestry, or had sex chromosome aneuploidy, excess heterozygosity, or
outlier genotype missing rates. Genotypes were removed if INFO score < 0.8, MAF < 0.05, or
HWE P < 10-19. The full processed and quality-controlled data contained 344,201 individuals
and 6,701,215 SNPs.

Analysis was randomly split into two parts. A discovery set contained 80% of the data,
selected randomly from the full dataset, which was used for discovering associations between
SNPs and phenotypes. A replication set contained the remaining 20% of the data, which was

used for the replication of associations identified in the discovery set.

Genome-wide association study in UK Biobank

A genome-wide association study (GWAS) was performed within the discovery set
containing 80% of the data. Individuals with body mass index levels greater than 5 standard
deviations from the mean removed from analysis to prevent a large influence from outliers which
could be driven by non-modeled factors. Body mass index levels were adjusted for the following
covariates: sex, age, age x sex, age?, age? x sex, genotyping array, and principal components 1
— 20. This was performed by fitting a linear model and calculating the residuals.
Using the residuals, we performed a GWAS by using linear regression (mean effects) and the
DRM (variance effects) between a single SNP and adjusted, untransformed BMI. The findings
from these analyses were referred to, respectively, as muQTLs and raw vQTLs. We also

applied a rank inverse normal transformation (RINT) to the residuals to decorrelate mean and
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variance effects, and proceeded with a GWAS using the DRM and a dispersion effect test?®
(DET). The rank inverse normal transformation uses the ranks of phenotype values and inverse
transforms the ranks into a normal distribution. We refer to the DRM and DET outcome as RINT
vQTLs and dQTLs.

All genome-wide association analyses were implemented on sets of 5000 SNPs and
performed in parallel. Genome-wide linear regression was performed using plinké* and the DRM
was performed by employing the BEDMatrix R package
(https://github.com/QuantGen/BEDMatrix). The DET was implemented by first using a Python-

implemented heteroskedastic linear model?® (https://github.com/AlexTISYoung/hlmm). The

dispersion effects were then estimated by using the additive and log-linear variance effects as
described previously?5; this method is implemented in the estimate_dispersion_effects.R file in
the linked himm repository.

Results from these analyses were compared using correlations. Significance was
determined with the criterion P <5 x 108 for untransformed analyses and P < 1.0 x 10 for RINT
results. Significant QTLs were used as the nominated loci for identifying GxG and GxE

interactions. Previous GWAS results were downloaded from the Neale Lab webpage®.

Construction of a diet score

We computed a diet score to be used as an interaction factor in GXE analysis by
adapting a protocol described previously?537. First, we extracted 18 diet-related variables:
“Cooked vegetable intake”, “Salad / raw vegetable intake”, “Fresh fruit intake”, “Dried fruit
intake”, “Bread intake”, “Cereal intake”, “Tea intake”, “Coffee intake”, “Water intake”, “Oily fish
intake”, “Non-oily fish intake”, “Processed meat intake”, “Poultry intake”, “Beef intake”,
“Lamb/mutton intake”, “Pork intake”, “Cheese intake”, and “Salt added to food”. We next fit a
linear model using baseline model covariates plus the 18 diet variables. These baseline model
covariates included age, sex, age?, age x sex, age? x sex, genotyping array, and principal
components 1-2025. We fit a model to 25% of the UK Biobank discovery set (thus, 20% of the
full data set used in the study) (N = 68,840), and estimate 3 coefficients for each diet variable.
In the remaining 275,361 individuals (which include those from both the discovery and
replication sets), we used the estimated B coefficients for each diet variable to calculate a diet

score:


https://doi.org/10.1101/2020.07.28.225730
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.225730; this version posted July 28, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Diet score = BXT. (Eq. 4)

Above, B is the 1 x 18 vector of coefficients for diet variables and X is a 275,361 x 18 matrix of
diet variable values for the 275,361 individuals.

Low diet score values describe a diet predicted to be associated with low BMI
individuals, while high diet score values describe a diet predicted to be associated with high BMI
individuals. Potential interactions with genetic polymorphisms may describe a change in the
average relationship between diet score and BMI within the general population. This would
suggest that the effects of the different diet variables on BMI is synergistically higher or lower

than expected.

Making non-diet environmental variables

We used UKB fields 21022-0.0, 22001-0.0, and 1558-0.0 for age, sex, and alcohol
intake frequency. The alcohol intake frequency field was re-coded in the opposite direction,
such that a higher value indicates a higher alcohol intake frequency. Individuals with missing
data or preferred not to answer were removed. For smoking status, physical activity level (PA),
and sedentary behavior level (SB), we generated new variables using the methods described in
Wang et al.?s.

For smoking status, we used fields 1239-0.0 (“Current tobacco smoking”) and 1249-0.0
(“Past tobacco smoking”) to create a binary variable. Individuals were only coded as 0 if they do
not currently smoke, and they answer regarding their past history, “| have never smoked” or
“Just tried once or twice”. Individuals were classified as 1 if they currently or previously smoke
most days or occasionally. Individuals with missing data and who could not fill the criteria were
removed.

For PA, we used fields 864-0.0 (“Number of days/week walked 10+ minutes”, 874-0.0
(“Duration of walks”), 884-0.0 (“Number of days/week of moderate physical activity 10+
minutes”), 894-0.0 (“Duration of moderate activity”), 904-0.0 (“Number of days/week of vigorous
physical activity 10+ minutes”), 914-0.0 (“Duration of vigorous activity”), which we labeled
DayW, DurW, DayM, DurM, DayV, and DurV. According to the International Physical Activity
Questionnaire analysis guideline®®, the total metabolic equivalent minutes (METT) can be

approximated as:
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METT = 3.3 x DayW x DurW + 4.0 x DayM x DurM + 8.0 x DayV x DurvV (Eq. 5)

Next, PA for each individual was assigned 1, 2, or 3 for low, medium, or high activity as such:

High, DayV=3 &and METT=1500 OR DayW+DayM+DayV=7 and METT=3000
PA= { Medium, DayV=3 and DurV=20 OR DayM=5 and DurM=30 OR DayW=5 and DurW=30
Low, Other (not enough activity recorded to meet the other criteria)

For SB, we used fields 1090-0.0 (“Time spent driving”), 1080-0.0 (“Time spent using
computer”, and 1070-0.0 (“Time spent watching television (TV)”). For each variable, “Less than
an hour a day” (-10) was set equal to 0 and “Do not know” or “Prefer not to answer” (-1 or -3)
answers were imputed with the median of the remaining values. SB was set equal to the sum of
the three columns. Outlier individuals were removed, as defined by those with greater than 5

standard deviations from the mean.

Sampling random SNPs matched to QTLs

We calculated the frequency of homozygous minor genotypes (fminor), the minor allele
frequency (MAF), and the count of individuals with a non-missing genotype at each SNP (Niiss).
To identify the underlying null distribution of various statistics in our study, we sample 10
matched SNPs for each QTL. Each matched SNP must have a MAF and fuinor that is below a
1% margin from the QTL, an Nmiss Within 1% of the QTL’s Nmiss count, and be on a different

chromosome than the QTL.

Identification of genetic interactions

Pairwise interaction testing was performed between all SNP candidates and with each of
the seven environmental factors in the discovery and replication sets separately. For GXE
interactions with diet, only 75% of the discovery set (60% of full UKB set) was used for
association tests since 25% was used to fit the model for calculating the diet score variable.
GxE P-values were adjusted using false discovery rate and significance determined by FDR <
0.1. GxG P-values were separately adjusted using false discovery rate and significance
determined by FDR < 0.1.
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GxE discovery rate was compared between the QTL set and the genome-wide matched
SNP set. First, the same number of SNPs as the QTL set were sampled from the matched SNP
set. Second, the GXE P-values from the sampled genome-wide SNPs were adjusted using false
discovery rate. Third, the discovery rate within the set was calculated as the proportion of GXxE
interactions with FDR < 0.1. This was repeated across 10,000 iterations and the mean
discovery rate across the iterations was used as the expected probability in a one-sided

binomial test.

Statistical replication of genetic interactions

Genetic interactions discovered in the discovery cohort were tested for in the replication
set. Given a -logio(P) threshold equal to x, all more significant interactions (those with -logo(P) >
x) were identified. Within the replication cohort, an interaction is considered to have been
replicated if the direction of effect was the same as in the discovery set and if the P-value in the
replication set is P < 0.05. The replication rate is the proportion of interactions to have replicated
according to these two criteria. The genome-wide replication rate was computed by using the
matched and randomly sampled SNPs and testing for GxE interactions within both the 80% and
20% cohorts. The replication rate was calculated at x = [0.05, 0.01, 2.16 x 103, 0.005, 5.22 x 10
4,1.80 x 10%], where x =[2.16 x 103, 5.22 x 104, 1.80 x 10%] are FDR < [0.1, 0.05, 0.01]
thresholds; these were calculated by identifying the maximum GxE Pp within the QTL set that
pass the respective FDR thresholds. In displays, the grey confidence intervals are derived from
a binomial test with rate equal to 0.025, which is the theoretical replication rate under no true
association.

To test for differences in replication rate, a background set is specified and the
replication rate within this background set is used as the theoretical success rate in a one-sided
exact binomial test. The number of successes and number of trials is from the number of

replicated GxE interactions and total number of GXE interactions in the other GxE set.

Analyzing the rs12996547 x age interaction
The rs12996547 polymorphism was not used in GTEx consortium analyses*3.
Leveraging the 1000 Genomes Project® and the HaploReg database*?, we identified a nearby

SNP, rs7575617, in linkage disequilibrium (D’ = 0.89) that was used in the GTEx analyses and
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queried the GTEXx portal for eQTL associations. Using the GTEx v8 data release, we correlated
donor age (coded as a numerical variable with age in 10-year bins) and TMEM18 gene

expression within visceral adipose tissue samples.

Screening BMI GxE interactions for pleiotropic disease associations

To test whether GxE interactions associated with BMI are also associated with related
diseases, three binary disease phenotypes were assembled that represent diabetes diagnosis,
high blood pressure diagnosis (HBP), and coronary artery disease ascertainment (CAD).
Diabetes and HBP was coded using corresponding fields 2443-0.0 and 6150-0.0, which include
self-reported questionnaire information. The diabetes phenotype represents a self-reported
answer to the question, “Has a doctor ever told you that you have diabetes?” This would
represent a mix of diabetes subtypes, including Type 1 and Type 2 diabetes. For diabetes,
values less than 0 were removed from association testing. For HBP, value less than 0
represented controls and value equal to 4 represented a case. CAD was specified using criteria
from previous research??. The following individuals were listed as cases: field 20002-0.0 equal
to 1075; fields 41203-0.0 or 41205-0.0 equal to 410, 4109, 411, 4119, 412, 4129; fields 41202-
0.0 or 41204-0.0 equal to 121, 1210, 1211, 1212, 1213, 1214, 1219, 121X, 122, 1220, 1221, 1228,
1229, 123, 1230, 1231, 1232, 1233, 1234, 1235, 1236, 1241, 1252; fields 41200-0.0 or 41210-0.0
equal to K40, K401, K402, K403, K404, K41, K411, K412, K413, K414, K451, K452, K453,
K454, K455, K491, K492, K498, K499, K502, K751, K752, K753, K754, K758, K759. All other
individuals were listed as the controls for CAD.

GxE interactions with FDR < 0.1 and same direction of effect in discovery and replication
sets were tested for association with diabetes, HBP, and CAD risk. Ps < 0.05 in the replication
cohort was not required, because the limited sample size in the replication cohort (one quarter
the size of the discovery set) may reduce power to identify interaction associations at that level
of significance and typically implies that a larger effect needs to be observed within the smaller
cohort to reach that level of significance. (We found that only requiring direction of effect will still
show statistically significant differences in replication rate between QTLs and random genome-
wide SNPs.) Finally, the GxE interaction with disease was tested for by employing logistic
regression with identical covariates to the BMI analysis. This was repeated with adjustment for

BMI by using BMI as a covariate.
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PheWAS enrichment of vQTLs using Open Targets database queries

We identified all SNP-phenotype associations with P < 0.05 and tested whether raw
vQTLs were enriched for certain phenotype associations compared to pure muQTLs (Methods).

To determine whether variance QTLs were more likely to be associated with some
phenotypes, a phenotype-wide association study (PheWAS) leveraging the Open Targets
database was performed. For an input SNP, we identified all phenotypes within the database
that have been associated using a previous GWAS at P < 0.05. Across a set of queried SNPs,
we calculated the proportion that were associated with the phenotype. We repeated this for the
set of variance QTLs and the set of pure mean QTLs (no vQTL association). We trimmed the
phenotypes list using the Open Target categories that were relevant to our study (Supp Data 7).

Next, we used a statistical test to determine whether a given set of SNPs is enriched for
association with a phenotype compared to a background set. Given a test set of K SNPs, in
which m of the K SNPs are associated with the phenotype, and a background SNP set in which
p is the proportion of SNPs associated with phenotype, we employ an exact binomial test with m
successes, Ktrials, and p hypothetical probability of success. We test significance under a one-
sided alternative hypothesis that the observed success rate, m/ K, is greater than p. The P-
values from the test were calculated for every phenotype present in the test set. False discovery
rate correction was applied and significance assessed at FDR < 0.1.

We applied the described PheWAS enrichment test in two settings. First, we evaluated
whether the test was robust for use with the real data by randomly sampling 21 pure muQTLs
and using the remaining pure muQTLs as the background set. Next, we evaluated if some
associated phenotypes are enriched in the vQTL set compared to in the pure muQTLs by using

the pure muQTLs as the background set.

Annotating QTLs with protein coding genes

All protein coding genes were downloaded from Ensembl. A QTL was queried in the
Open Targets using the API, and the variant-to-gene (V2G) scores and the Ensembl Variant
Effect Predictor (VEP) scores were saved for all Ensembl protein coding genes. If a queried
SNP’s VEP score for a gene is greater than zero in Open Targets (e.g., the variant lies within an
intron, exon, or UTR region), than the SNP is annotated with the gene with the greatest VEP

score. Otherwise (for intergenic SNPs), the gene with the highest V2G score is used. If no
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protein coding genes have a V2G score (due to far proximity), the coding gene with the nearest
transcription start site was identified using the Open Targets API. Finally, if the queried SNP
was not present in Open Targets, then a SNP in LD was identified as a proxy (Supp Data 8).
rs550990127, rs562044398, rs772168224, and rs753789664 are four indels (3 muQTLs, 1
RINT vQTL) that were removed from functional enrichment and PheWAS analyses due to

annotation issues.

GeneMania network creation and GO enrichment analysis

GeneMania incorporates multiple biological databases to create a gene network, identify highly-
interconnected genes, and perform GO enrichment analysis. We used the browser platform with
default settings, except for the addition of the “Attributes” databases. We queried the list of

annotated genes for raw vQTLs, and separately the list of genes for pure muQTLs.

Stratified LD-score regression to infer cell-type relevance

Stratified LD score regression was performed with gene expression data using the
“Multi_tissue_gene_expr” flag and default settings. Summary statistics were transformed using
the munge_sumstats.py script. Only non-MHC HapMap3 SNPs were kept for LD score
regression analysis. Cell-type enrichment P-values across the 205 functional annotations were

adjusted using the Benjamini-Hochberg method for false discovery rate®’.


https://doi.org/10.1101/2020.07.28.225730
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.225730; this version posted July 28, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

End Notes

Acknowledgements
We would like to thanks members of the Clark Lab and members of the Elemento Lab for
helpful discussions surrounding this project. Support was provided for A.R.M. by the Tri-

Institutional Training Program in Computational Biology and Medicine.

Author Contributions

A.R.M,, O.E., and A.G.C. conceived and designed the study. A.R.M performed the analysis.
E.R.D., S.K., and C.V.V.H. aided in developing the methods. A.R.M., O.E., and A.G.C. wrote the
manuscript. A.G.C. and O.E. supervised the study. All the authors reviewed and approved the

manuscript.

Declaration of Interests
O.E. is scientific advisor and equity holder in Freenome, Owkin, Volastra Therapeutics and One

Three Biotech. C.V.V.H. is an employee of the Regeneron Genetics Center.

Data and Code Availability
UK Biobank data was accessed under application number 47137. Code to run a Deviation
Regression Model on any genome-wide association study data is available at

https://github.com/drewmard/DRM. Computer code to reproduce the analyses are available at

https://github.com/drewmard/ukb _vqtl.



https://doi.org/10.1101/2020.07.28.225730
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.225730; this version posted July 28, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC 4.0 International license.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Carbone, M. et al. A mesothelioma epidemic in Cappadocia: scientific developments and
unexpected social outcomes. Nature Reviews Cancer 7, 147-154 (2007).
Roushdy-Hammady, |., Siegel, J., Emri, S., Testa, J.R. & Carbone, M. Genetic-
susceptibility factor and malignant mesothelioma in the Cappadocian region of Turkey.
The Lancet 357, 444-445 (2001).

Testa, J.R. et al. Germline BAP1 mutations predispose to malignant mesothelioma.
Nature genetics 43, 1022-1025 (2011).

Bononi, A. et al. BAP1 regulates IP3R3-mediated Ca 2+ flux to mitochondria
suppressing cell transformation. Nature 546, 549-553 (2017).

Kadariya, Y. et al. Bap1 is a bona fide tumor suppressor: genetic evidence from mouse
models carrying heterozygous germline Bap1 mutations. Cancer research 76, 2836-
2844 (2016).

Napolitano, A. et al. Minimal asbestos exposure in germline BAP1 heterozygous mice is
associated with deregulated inflammatory response and increased risk of mesothelioma.
Oncogene 35, 1996-2002 (2016).

Carbone, M. et al. Tumour predisposition and cancer syndromes as models to study
gene—environment interactions. Nature Reviews Cancer, 1-17 (2020).

Claussnitzer, M. et al. A brief history of human disease genetics. Nature 577, 179-189
(2020).

Huang, W. et al. Epistasis dominates the genetic architecture of Drosophila quantitative
traits. Proceedings of the National Academy of Sciences 109, 15553-15559 (2012).
Huang, W. et al. Context-dependent genetic architecture of Drosophila life span. PLoS
biology 18, €3000645 (2020).

Wang, X., Fu, A.Q., McNerney, M.E. & White, K.P. Widespread genetic epistasis among
cancer genes. Nature communications 5, 1-10 (2014).

Domingo, J., Diss, G. & Lehner, B. Pairwise and higher-order genetic interactions during
the evolution of a tRNA. Nature 558, 117-121 (2018).

Romanoski, C.E. et al. Systems genetics analysis of gene-by-environment interactions in
human cells. The American Journal of Human Genetics 86, 399-410 (2010).

Zhang, A., Zhao, Q., Xu, D. & Jiang, S. Brain APOE expression quantitative trait loci-
based association study identified one susceptibility locus for Alzheimer’s disease by
interacting with APOE €4. Scientific reports 8, 1-5 (2018).

Zhang, R. et al. A genome-wide gene—environment interaction analysis for tobacco
smoke and lung cancer susceptibility. Carcinogenesis 35, 1528-1535 (2014).

Blue, E.E., Horimoto, A.R., Mukherjee, S., Wijsman, E.M. & Thornton, T.A. Local
ancestry at APOE modifies Alzheimer's disease risk in Caribbean Hispanics. Alzheimer's
& Dementia 15, 1524-1532 (2019).

Wirth, M., Villeneuve, S., La Joie, R., Marks, S.M. & Jagust, W.J. Gene—environment
interactions: lifetime cognitive activity, APOE genotype, and beta-amyloid burden.
Journal of Neuroscience 34, 8612-8617 (2014).

Huang, W. & Mackay, T.F. The genetic architecture of quantitative traits cannot be
inferred from variance component analysis. PLoS genetics 12, e1006421 (2016).

Hill, W.G., Goddard, M.E. & Visscher, P.M. Data and theory point to mainly additive
genetic variance for complex traits. PLoS genetics 4(2008).


https://doi.org/10.1101/2020.07.28.225730
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.225730; this version posted July 28, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

20.

21.

22.

23.

24.

25.

26.

27.

28.

20.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

available under aCC-BY-NC 4.0 International license.

Zuk, O., Hechter, E., Sunyaev, S.R. & Lander, E.S. The mystery of missing heritability:
Genetic interactions create phantom heritability. Proceedings of the National Academy of
Sciences 109, 1193-1198 (2012).

Wray, N.R., Wijmenga, C., Sullivan, P.F., Yang, J. & Visscher, P.M. Common disease is
more complex than implied by the core gene omnigenic model. Cell 173, 1573-1580
(2018).

Khera, A.V. et al. Genome-wide polygenic scores for common diseases identify
individuals with risk equivalent to monogenic mutations. Nature genetics 50, 1219
(2018).

Martin, A.R. et al. Human demographic history impacts genetic risk prediction across
diverse populations. The American Journal of Human Genetics 100, 635-649 (2017).
Ronnegard, L. & Valdar, W. Recent developments in statistical methods for detecting
genetic loci affecting phenotypic variability. BMC genetics 13, 63 (2012).

Young, A.l., Wauthier, F.L. & Donnelly, P. Identifying loci affecting trait variability and
detecting interactions in genome-wide association studies. Nature genetics 50, 1608-
1614 (2018).

Wang, H. et al. Genotype-by-environment interactions inferred from genetic effects on
phenotypic variability in the UK Biobank. Science advances 5, eaaw3538 (2019).

Willer, C.J. et al. Six new loci associated with body mass index highlight a neuronal
influence on body weight regulation. Nature genetics 41, 25 (2009).

Locke, A.E. et al. Genetic studies of body mass index yield new insights for obesity
biology. Nature 518, 197-206 (2015).

Snedecor, G.W. & Cochran, W.G. Statistical Methods, eight edition. lowa state
University press, Ames, lowa (1989).

Fligner, M.A. & Killeen, T.J. Distribution-free two-sample tests for scale. Journal of the
American Statistical Association 71, 210-213 (1976).

Smyth, G.K. & Verbyla, A.P. Adjusted likelihood methods for modelling dispersion in
generalized linear models. Environmetrics: The official journal of the International
Environmetrics Society 10, 695-709 (1999).

Yang, J. et al. FTO genotype is associated with phenotypic variability of body mass
index. Nature 490, 267-272 (2012).

Levene, H. Contributions to probability and statistics. Essays in honor of Harold
Hotelling, 278-292 (1960).

Goodrich, J.K. et al. Human genetics shape the gut microbiome. Cell 159, 789-799
(2014).

Claussnitzer, M. et al. FTO obesity variant circuitry and adipocyte browning in humans.
New England Journal of Medicine 373, 895-907 (2015).

Smemo, S. et al. Obesity-associated variants within FTO form long-range functional
connections with IRX3. Nature 507, 371-375 (2014).

Young, A.l., Wauthier, F. & Donnelly, P. Multiple novel gene-by-environment interactions
modify the effect of FTO variants on body mass index. Nature communications 7, 1-12
(2016).

Garber, M. et al. Identifying novel constrained elements by exploiting biased substitution
patterns. Bioinformatics 25, i54-i62 (2009).

Cooper, G.M. et al. Distribution and intensity of constraint in mammalian genomic
sequence. Genome research 15, 901-913 (2005).

Consortium, E.P. The ENCODE (ENCyclopedia of DNA elements) project. Science 306,
636-640 (2004).


https://doi.org/10.1101/2020.07.28.225730
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.225730; this version posted July 28, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

available under aCC-BY-NC 4.0 International license.

Consortium, R.E. et al. Integrative analysis of 111 reference human epigenomes. Nature
518, 317 (2015).

Ward, L.D. & Kellis, M. HaploReg v4: systematic mining of putative causal variants, cell
types, regulators and target genes for human complex traits and disease. Nucleic Acids
Res 44, D877-81 (2016).

Consortium, G. Genetic effects on gene expression across human tissues. Nature 550,
204-213 (2017).

Boender, A.J., Van Rozen, A.J. & Adan, R.A. Nutritional state affects the expression of
the obesity-associated genes Etv5, Faim2, Fto, and Negr1. Obesity 20, 2420-2425
(2012).

Wu, L. et al. Influence of lifestyle on the FAIM2 promoter methylation between obese
and lean children: a cohort study. BMJ open 5, e007670 (2015).

Lotta, L.A. et al. Human gain-of-function MC4R variants show signaling bias and protect
against obesity. Cell 177, 597-607. €9 (2019).

Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in
mice. Cell 88, 131-141 (1997).

Dickinson, M.E. et al. High-throughput discovery of novel developmental phenotypes.
Nature 537, 508-514 (2016).

Larder, R. et al. Obesity-associated gene TMEM18 has a role in the central control of
appetite and body weight regulation. Proceedings of the National Academy of Sciences
114, 9421-9426 (2017).

Lab., N. UK Biobank GWAS. (2018).

Carvalho-Silva, D. et al. Open Targets Platform: new developments and updates two
years on. Nucleic acids research 47, D1056-D1065 (2019).

Kim, B.-M., Buchner, G., Miletich, ., Sharpe, P.T. & Shivdasani, R.A. The stomach
mesenchymal transcription factor Barx1 specifies gastric epithelial identity through
inhibition of transient Wnt signaling. Developmental cell 8, 611-622 (2005).

Kim, B.-M. et al. Independent functions and mechanisms for homeobox gene Barx1 in
patterning mouse stomach and spleen. Development 134, 3603-3613 (2007).

Welters, H.J. & Kulkarni, R.N. Wnt signaling: relevance to B-cell biology and diabetes.
Trends in Endocrinology & metabolism 19, 349-355 (2008).

Sinnott-Armstrong, N., Naqvi, S., Rivas, M.A. & Pritchard, J.K. GWAS of three molecular
traits highlights core genes and pathways alongside a highly polygenic background.
BioRxiv (2020).

Ayroles, J.F. et al. Behavioral idiosyncrasy reveals genetic control of phenotypic
variability. Proceedings of the National Academy of Sciences 112, 6706-6711 (2015).
Hunt, K.A. et al. Newly identified genetic risk variants for celiac disease related to the
immune response. Nat Genet 40, 395-402 (2008).

Finucane, H.K. et al. Heritability enrichment of specifically expressed genes identifies
disease-relevant tissues and cell types. Nature genetics 50, 621 (2018).

Bush, W.S., Dudek, S.M. & Ritchie, M.D. Bidfilter: a knowledge-integration system for
the multi-locus analysis of genome-wide association studies. in Biocomputing 2009 368-
379 (World Scientific, 2009).

Ma, L., Clark, A.G. & Keinan, A. Gene-based testing of interactions in association
studies of quantitative traits. PLoS genetics 9(2013).

Kerin, M. & Marchini, J. Gene-environment interactions using a Bayesian whole genome
regression model. BioRxiv, 797829 (2019).

Fox, J. & Weisberg, S. An R Companion to Applied Regression (Third). (Sage, 2019).


https://doi.org/10.1101/2020.07.28.225730
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.225730; this version posted July 28, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

63.

64.

65.

66.

67.

available under aCC-BY-NC 4.0 International license.

Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data.
Nature 562, 203 (2018).

Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based
linkage analyses. The American journal of human genetics 81, 559-575 (2007).
Committee, I.R. Guidelines for data processing and analysis of the International Physical
Activity Questionnaire (IPAQ)-short and long forms. http.//www. ipaq. ki. se/scoring. pdf
(2005).

Consortium, G.P. An integrated map of genetic variation from 1,092 human genomes.
Nature 491, 56 (2012).

Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal statistical society: series B
(Methodological) 57, 289-300 (1995).


https://doi.org/10.1101/2020.07.28.225730
http://creativecommons.org/licenses/by-nc/4.0/

