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Abstract 

While thousands of loci have been associated with human phenotypes, the role of gene-

environment (GxE) interactions in determining individual risk of human diseases remains 

unclear. This is partly due to the severe erosion of statistical power resulting from the massive 

number of statistical tests required to detect such interactions. Here, we focus on improving the 

power of GxE tests by developing a statistical framework for assessing quantitative trait loci 

(QTLs) associated with the trait means and/or trait variances. When applying this framework to 

body mass index (BMI), we find that GxE discovery and replication rates are significantly higher 

when prioritizing genetic variants associated with the variance of the phenotype (vQTLs) 

compared to assessing all genetic variants. Moreover, we find that vQTLs are enriched for 

associations with other non-BMI phenotypes having strong environmental influences, such as 

diabetes or ulcerative colitis. We show that GxE effects first identified in quantitative traits such 

as BMI can be used for GxE discovery in disease phenotypes such as diabetes. A clear 

conclusion is that strong GxE interactions mediate the genetic contribution to body weight and 

diabetes risk. 

 

 

Introduction  

 

In Cappadocia, Turkey, traces of an asbestos-like, cancer-causing fiber was found in the 

materials of villagers9 homes and was prevalent in the air. However, this alone could not explain 

an epidemic where 50% of all Cappadocia villagers died from mesothelioma, compared to only 

4.6% of asbestos miners with at least 10 consecutive years of work1. After nearly three years of 

living amongst the villagers, Roushdy-Hammady et al. documented a Cappadocia villager 

pedigree and described a highly penetrant Mendelian transmission of disease2. Once the 

pathogenic BAP1 mutations were found3, follow-up experimental studies4-6 illuminated how 

BAP1 and asbestos exposure synergistically cause dangerous oncogenic effects in a gene-

environment interaction (GxE)7. 

This example is one of only a few well-characterized GxE interactions in humans, which 

have mostly appeared as modulators of Mendelian disorders9 penetrance. In human genetics, 

the primary focus has been characterizing the average relationship between individual genetic 

variants and a phenotype. While we have identified thousands of associations across a 

spectrum of human phenotypes at the single variant level8, research in model organisms and 
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cell cultures have constantly shown that genetic effects are context-dependent9-13. As one 

example, the genetic effects governing lifespan in Drosophila melanogaster within one 

environment do not alter lifespan within another environment10. The incomplete penetrance for 

many common human diseases, such as the APOE E4 allele on Alzheimer9s disease risk or 

smoking on lung cancer risk, imply important genetic and environmental modifiers of disease 

onset14-17.  

While GxE interactions are expected to be numerous, it is debated how important these 

interactions are to human genetics18-21. If they play a significant role, identifying these 

interactions can enable more accurate genetic prediction12, especially at the individual level. 

Current state-of-the-art prediction models use polygenic scores (PGS)22, which combine 

additive effects of genetic variants into a single risk measure. Clinical and environmental factors 

are used to improve model prediction, but potential interactions with genetic information are not 

commonly considered. Additionally, PGS have poor transferability across populations23, possibly 

driven by environmental factors. If genetic effects on human phenotypes vary from person-to-

person due to interactions, then more individualized prediction could be realized by first 

identifying genetic interactions and estimating their effects. 

Because there is modest power to detect interactions in large human population cohorts, 

efficiently identifying the interactions remains an important statistical and computational 

challenge. To address these difficulties, we make use of a previously characterized observation 

that most GxE interactions with large effect size can be revealed as a change in the variance of 

a quantitative phenotype during a one-SNP-at-a-time genome-wide association study (GWAS) 

(Fig 1)24-26. This insight lets us identify strong GxE interactions associated with a given 

quantitative trait using a two-step approach. First, we look for genome-wide SNPs that are 

associated with the variance of the trait, thus identifying what are known as variance 

Quantitative Trait Loci (vQTLs). Second, we use these vQTLs to screen for potentially strong 

GxE interactions associated with the same phenotype. Scanning for vQTLs involves just a 

single test per SNP, so it provides a powerful inroad for discovering genetic interactions by 

nominating loci as promising candidates for an interaction. 

In the present study, we introduce a statistical framework to nominate SNPs for GxE 

interaction testing by leveraging differences in the means (muQTLs) and the variances (vQTLs) 

of a phenotype. We apply these methods to study the genetic basis of variation in body mass 

index levels (BMI)27,28. We further explore the role for interactions across human disease and 
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a
A detected vQTL A genetic interaction

Interacting genetic or environmental 

factor in red/green/blue

Figure 1: vQTLs could arise from a genetic interaction. (a) We refer to a genetic variant associated with the variance of the 

phenotype as a variance QTL (vQTL). The orange line, representing the line of best fit, has slope j 0 and indicates that the mean 

of the phenotype does not change with a difference in genotype. (b) A vQTL could also arise from a genetic interaction. The 

displayed data in (b) is the same data as in (a), except the points are colored to reflect the genotype at a second locus or the

level of an environmental variable. This second factor interacts with Locus 1 to create a mean-based interaction effect, and this 

mean-based interaction effect gives the appearance of a variance QTL at Locus 1. Data in both figures are simulated.

b
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perform in silico functional analyses for implicating relevant cell types and pathways, providing 

new insights into the architecture of human phenotypes. 

 

 

Results 

 

Deviation Regression Model discovers vQTLs that are due to GxE interactions 

 

To identify genetic variants associated with the variance of quantitative phenotypes, we 

considered several tests (see Methods)29-33, including a new approach that we refer to as the 

Deviation Regression Model (DRM). In the DRM, a linear regression is performed on a single 

SNP and phenotype, where the minor allele count is used as the independent variable and the 

absolute difference between an individual’s phenotypic value and the phenotype medians within 

each genotype is used as the dependent variable (after covariate adjustment) (Fig 2a) 

(Methods). The effect sizes and P-values are used to estimate the variance effect of a SNP and 

assess vQTL significance, similar to a standard GWAS.  

We first used simulation to quantify the false positive rate (FPR) for the different variance 

tests. We tested the FPR using a scenario where a single SNP affects the mean of the 

phenotype, and thus a variance effect should not be detected except by random chance. We 

generated a SNP genotype and a phenotype value for 10,000 individuals. Across 1,000 

simulations, we tested for a variance effect, and calculated the FPR as the proportion of 

simulations where the nominal P < 0.05. We found that the DRM maintained FPR near the 

expected 5% across trait distributions, demonstrating robustness of the DRM test to a SNP with 

only a mean effect on the phenotype. Levene’s test33 (LT) had similar performance. However, 

our simulations found extensive false positive rates for several other variance tests29-32, 

including the Fligner-Killeen test or the double generalized linear model (Fig 2b; Supp Fig 1a). 

We further used simulations to test the ability of vQTLs to reveal SNP-by-factor pairs 

with an interaction effect on the phenotype. We repeated the previous FPR simulations, except 

generated an environmental factor that interacts with the SNP to influence the mean of the 

phenotype. As the interaction became stronger (variance explained by the interaction, VG, 

increases from 1% to 10%), the DRM’s power across 1000 simulations to detect an interaction 

effect at a SNP increased from less than 10% to 100% (Fig 2c-d). Additionally, we found an 

11.9% power increase for the DRM compared to LT at smaller interaction effects (VG f 5%) (Fig 
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Figure 2: Assessing a variance test for finding SNPs with interaction effects. (a) The Deviation Regression Model uses the 

absolute difference between an individual’s phenotype Yij (for each genotype i and individual j) (y-axis) and the within-genotype 

phenotype median (!Yi) as a dependent variable. The absolute difference, Zij, is modeled in a linear regression across genotypes (x-axis). 

Simulated data shown. (b) False positive rates for different variance tests at SNPs with varied mean effects in a non-normal phenotype: 

Deviation Regression Model (DRM), Levene’s test (LT), Bartlett’s test (BT), Fligner Killeen test (FK), double generalized linear models 

(DGLM), and a two-step squared residual approach (TSSR). (c-d) Power of the DRM and LT in normally distributed phenotypes (c) and 

chi-squared phenotypes (d). (e) vQTL test power, quantified by the DRM, stratified by whether the SNPs are detected by a muQTL test 

(linear regression). By using a 2-by-2 contingency table representing the counts of muQTL and vQTL test rejection across 1000 

simulations, Fisher’s exact test assessed whether muQTL power and vQTL power show non-random association. P-values displayed.
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2c-d). Therefore, in our simulated data, vQTLs could identify SNPs with large-effect interactions 

and the DRM had superior power and improved FPR compared to other variance tests (Supp 

Note 1; Supp Fig 1-2). 

Finally, we contrasted the use of vQTLs for identifying SNPs involved in an interaction 

with the use of mean-associated loci (muQTLs, as first identified using linear regression). Using 

a similar testing procedure, we simulated SNP-by-factor interactions where the direction of the 

SNP effect changes depending on the interacting factor (Methods). Across 1,000 simulations, 

we found that muQTL test power and vQTL test power were not positively correlated. For 

example, a vQTL test’s power at non-muQTLs was 62.9% when VG = 2%, compared to 14.7% 

at muQTLs (Fig 2e). Our results show that positive and negative effects from a single SNP due 

to an interaction can remove a muQTL signal, and thus vQTL methods provide a 

complementary and robust approach to discover interactions (such as shown in Fig 1). Finally, 

although the muQTL approach had increased power to detect the causal SNPs compared to the 

vQTL approach (Supp Fig 1d), we note that muQTL approaches will pick up variants that 

directly impact the trait, but which are not involved in an interaction (leading to a high FPR). 

Therefore, our vQTL approach can identify SNPs involved in GxE interactions with higher 

specificity than using muQTLs. 

 

 

Genome-wide association studies in UK Biobank 

 

 Hundreds of variants have been associated with body mass index (BMI), highlighting 

that diverse pathways regulate body weight, from immune system activation to leptin signaling 

to the central nervous system27,28. Furthermore, environmental influences and lifestyle choices 

such as diet, exercise, and gut microbiome composition34 also have a major influence on BMI. 

Therefore, we hypothesized that there may be strong GxE interactions that regulate BMI, and 

these interactions may appear as a change in the BMI variance at a SNP. In 275,361 unrelated 

British European individuals from UK Biobank (UKB), we searched for genetic variants 

associated with the means (muQTLs) and variances (vQTLs) in untransformed body mass index 

(BMI) values (P < 5 x 10-8) (Fig 3a; Supp Note 2).  

We discovered a strong correlation between mean and variance effects, which we refer 

to as the mean-variance relationship (Fig 3b-c). The mean-variance relationship could be 

explained in a number of ways. Since the sample means and sample variances are correlated in 
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non-normal distributions and BMI is non-normally distributed, variance effects could be a 

consequence of a SNP’s mean effect and therefore any observed associations with phenotypic 

variance are not indicative of underlying interactions25 (Supp Note 3). Alternatively, we 

hypothesized that a SNP associated with the mean value of a phenotype is also more likely to 

be involved within interactions, thus creating the correlation we observe. Biologically, SNPs with 

a main effect (directly impacting the studied trait) may have a greater likelihood of having an 

interaction effect. Statistically, variance estimates have larger standard errors than mean 

estimates in a population sample; thus, interactions must have larger effect sizes to detect a 

change in variance and consequently mean effects would be detected too (Supp Note 4; Supp 

Fig 3). Therefore, a correlation between mean and variance effects might be due to both real 

biological and statistical causes. 

To disentangle the mean-variance relationship, Young et al. described how analysis of a 

phenotype with a rank inverse normal transformation (RINT) decorrelates mean and variance 

effects25 and proposed a dispersion effect test to identify differences in variances not driven by 

the mean effects (known as dispersion effects). We sought to find SNPs associated with both 

the variance and dispersion of BMI after a rank inverse normal transformation. We used the 

DRM to identify variance effects and Young et al.’s dispersion effect test to discover dispersion 

effects. SNP associations were identified using a less-conservative P < 10-5 threshold to 

produce an expanded set of SNPs, since these analyses resulted in conservative P-value 

distribution (Fig 3d-g; Supp Fig 4; Supp Notes 5-6).  

We discovered 448 SNPs associated with the mean of untransformed BMI values (which 

we refer to as “muQTLs”), 21 SNPs associated with the variance of untransformed BMI values 

(“raw vQTLs”), 27 SNPs associated with the variance of transformed BMI values (“RINT 

vQTLs”) and 26 SNPs associated with the dispersion of transformed BMI values (“dQTLs”) (Fig 

3h). As expected, the correlation with mean effects decreases from raw vQTLs to RINT vQTLs 

to dQTLs; for example, 18 of 21 raw vQTLs are also muQTLs, 4 of 27 RINT vQTLs are 

muQTLs, and 3 of 26 dQTLs are muQTLs. We combined the muQTLs, raw vQTLs, RINT 

vQTLs, and dQTLs into a set of 502 unique QTLs. We next proceeded to the second step of our 

sequential GxE discovery framework, where we searched for pairwise interactions between the 

502 unique QTLs and with age, sex, and five environmental factors: smoking status, diet, 

physical activity, sedentary behavior, and alcohol intake frequency (the details of these factors 

are described within the Methods section).  

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 28, 2020. ; https://doi.org/10.1101/2020.07.28.225730doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.225730
http://creativecommons.org/licenses/by-nc/4.0/


Dataset: Unrelated British European individuals from UK Biobank (UKB)

[ 344,201 individuals and 6.7 million SNPs ] 
Phenotype: Body mass index (BMI)

20% UKB: replication set
68,840 individuals

80% UKB: discovery set
275,361 individuals

Figure 3: GWAS of body mass index levels in UK Biobank. (a) Data for imputed genotypes and BMI in unrelated British European individuals 

were split into a discovery set, representing 80% of the data, and a replication set, representing 20% of the data. Within the discovery set, a GWAS 

was performed on the means (muQTLs) and variances (raw vQTLs) of untransformed BMI and on the variances (RINT vQTLs) and dispersion 

(dQTLs) of RINT BMI. Across SNPs, the effect sizes (b) and P-values (c) were highly correlated between muQTLs and raw vQTLs. The RINT 

reduced mean-variance correlation (d) and identified a set of RINT vQTLs with smaller muQTL effects (e). Dispersion effects had the least 

correlation with mean effects (f), and all dQTLs were not the most significant muQTLs (g). In (b-g), the red line represents the line of best fit. Points 

are colored by the –log10 p-value of the y-axis analysis, with purple representing significant (P < 5 x 10-8 with raw BMI, P < 10-5 with RINT BMI). 

The GWAS results are summarized in (h), broken down into by the number of QTLs passing the different criteria (indicated by the red coloring and 

grey counts).
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Discovery and replication of gene-environment interactions  

 

To identify GxE interactions potentially explaining BMI, we used the same set of 275,361 

unrelated European individuals. We tested for 3,514 GxE interactions, using the 502 unique 

QTLs and seven factors, by applying 3,514 distinct linear models containing a single interaction 

term. Overall, we identified 78 significant gene-environment interactions associated with BMI in 

the discovery set (FDR < 0.1) (Fig 4a), a 155-times greater discovery rate over interaction 

testing based on a genome-wide sampled set of SNPs (2.2% versus 0.014%; P = 9.8 x 10-140) 

with no expected FPR increase (Figure 4b-c; Methods; Supp Note 7-8; Supp Fig 5a-d). 

We used an independent and randomly selected replication set of 68,840 unrelated 

British European individuals from UKB to evaluate our findings in the discovery cohort (Fig 3a). 

We refer to effect size estimates and P-values from the discovery set as bD and PD, and those 

from the replication set as bR and PR. We considered an interaction to be replicated if the 

direction of effect was the same in both discovery and replication sets [ sign(bD) = sign(bR) ] and 

PR < 0.05. Overall, 21.1% of significant GxE interactions (FDR < 0.1) replicated, compared to 

7.8% of GxE at similar nominal PD-values based on genome-wide SNPs (2.7-fold enrichment, P 

= 2.2 x 10-4) (Fig 4f-g). The estimated replication rate increased as the significance threshold 

became stricter, with all 9 FDR < 0.01 interactions replicating effect direction and 4 of the 9 

passing PR < 0.05 significance. Our data suggests that interactions using the 502 unique QTLs 

had significantly greater replication rates compared to interactions from genome-wide SNPs, 

despite similar nominal PD-values (Supp Note 9; Supp Fig 5e). 

We found that the increased discovery and replication rates are driven by raw variance 

effects. 14.2% of tested GxE interactions using raw vQTLs were significant (FDR < 0.1), a 10.0-, 

8.6-, and 7.7-fold higher GxE discovery rate than muQTLs, RINT vQTLs, and dQTLs in the 

absence of a significant raw vQTL association (1.4%, 1.7%, and 1.9% respective discovery 

rates, P < 10-12 for each; Fig 4d-e; Supp Fig 5f-i). Similarly, the interactions from vQTLs (FDR < 

0.1) had 2.8-fold higher replication rate compared to muQTLs that were not raw vQTLs (38.1% 

versus 13.5%; P = 4.3 x 10-3) (Fig 4h-i; Supp Note 10). Lastly, we found that the GxE effects 

correlated best with the raw vQTL effects compared to the muQTL, RINT vQTL, or dQTL effects 

(Supp Fig 6). Hence, we found that the ability to discover and replicate interactions was 

primarily driven by a single-SNP’s marginal association with untransformed BMI variance. 
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FDR > 0.1 FDR < 0.1

Figure 4: Discovery and replication of GxE interactions. (a) Heatmap of all QTLs with a FDR < 0.1 GxE interaction in the 

discovery set. Each box colored by significance level in the discovery set. Raw vQTL SNPs are highlighted in orange. Smok = 

smoking status; SB = sedentary behavior level; PA = physical activity level; Alc = alcohol intake frequency. (b-c) Quantile-quantile 

plots for all GxE interactions across environmental factors and (b) 5016 matched genome-wide SNPs, (c) 502 QTLs, (d) 448 

muQTLs that are not raw vQTLs, or (e) 21 raw vQTLs. The x-axis shows the –log10 p-values under the null distribution and the y-axis 

shows the observed –log10 p-values, where each point represents a different GxE interaction. The red line represents the 

expectation under the null, with intercept = 0 and slope = 1. (f-i) Replication rates of GxE interactions, as quantified by those with the 

same direction of effect in both discovery and replication sets and PR < 0.05. Given a threshold x (x-axis), the replication rate (y-axis) 

is calculated for all interactions with PD < x. (f) GxE interactions using 5016 matched genome-wide SNPs. (g) GxE interactions using 

all 502 QTL-nominated SNPs. (h) GxE interactions using 448 muQTLs that are not raw vQTLs. (i) GxE interactions using 21 raw 

vQTLs. In (f-i), the confidence interval over replication rates is shown in grey and the expected replication rate under random 

observations (2.5%) is shown in red. Red points are FDR < 0.1, < 0.05, and < 0.01 cut-offs. In (g) and (i), there are no FDR < 0.1 

associations.
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Large gene-environment interactions influence BMI 

 

 The most significant interaction identified with respect to BMI was between the FTO 

intronic region and alcohol intake frequency (P = 8.6 x 10-12). The FTO intron region harbors the 

strongest muQTL (P = 1.3 x 10-172), raw vQTL (P = 5.4 x 10-53), and RINT vQTL (P = 3.7 x 10-11) 

association with body mass index (rs56094641), has been functionally implicated as a key 

obesity regulator in mouse experiments and CRISPR-Cas9 editing of human patient 

samples35,36, and was recognized as a gene-environment interaction hotspot in previous 

studies37. At this locus, we identified additional interactions (FDR < 0.1) with sedentary behavior 

(PD = 1.2 x 10-6), physical activity (PD = 2.0 x 10-10), diet (PD = 7.9 x 10-7), age (PD = 1.1 x 10-4), 

and smoking behavior (PD = 9.6 x 10-4), but not with sex (PD = 0.39) (Table 1 and Fig 5a). We fit 

a model containing each significant interaction with rs56094641 and found a significant effect for 

each GxE term (P < 0.05), suggesting that each interaction is independent (Supp Table 1). 

 The most significant GxE interaction identified outside the FTO region was between the 

rs7132908 variant and sedentary behavior level (PD = 8.4 x 10-9). This variant lies in the 3’-UTR 

of the FAIM2 gene, with selective and functional constraint (as estimated by SiPhy38 and 

GERP39), 30 different bound proteins in ENCODE ChIP-Seq experiments40, and a high 

prevalence of enhancer histone marks and DNAse sites across tissue types in the Roadmap 

Epigenomics Consortium41,42. FAIM2 encodes an anti-apoptopic protein and exhibits a brain-

specific gene expression pattern across human tissues43. Previously, it has been shown that 

FAIM2 gene expression is regulated by dietary exposures44 and FAIM2 promotor methylation is 

regulated by sedentary behavior45. Furthermore, the rs7132908 variant has another significant 

GxE interaction (FDR < 0.1) with alcohol intake frequency on BMI (PD = 1.7 x 10-4). 

The four other FDR < 0.01 gene-environment interactions we discovered were between 

rs58084604 (near MC4R) and diet (PD = 7.2 x 10-7), rs539515 (SEC16B) or rs12467692 

(UBE2E3) and alcohol intake frequency (PD = 1.1 x 10-5 and PD = 6.8 x 10-6 respectively), and 

rs12996547 (TMEM18) and age (PD = 1.8 x 10-5). All 9 FDR < 0.01 interactions replicated with 

the same direction of effect, and 4 of the 9 had PR < 0.05 (Table 1). MC4R gain-of-function 

mutations protect against obesity risk46 and have been functionally validated in obesity within 

mice47, while Sec16b knockout mice carry decreased cholesterol levels with higher body 

weight48. We found that age and the rs12996547 haplotype are associated with increased 
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Table 1: GxE interactions with FDR < 0.01.  From left to right: The SNP name, annotated gene (based on evidence in the Open 

Targets database, see Methods), environmental factor (Smok = smoking status; SB = sedentary behavior level; PA = physical activity 

level; Alc = alcohol intake frequency), estimated effect size and P-values in the discovery cohort, estimated effect size and P-values in 

the replication cohort, and P-values from the four QTL studies: muQTLs, raw vQTLs, RINT vQTLs, and dQTLs (colored in red if 

significant).

SNP Gene E ³D PD ³R PR Pmean Praw PRINT Pdisp

rs539515 SEC16B Alc -0.045 1.1 x 10-5 -0.065 1.6 x 

10-3

10-44 10-8 0.26 0.42

rs56094641 FTO Alc -0.058 8.6 x 10-12 -0.072 2.1 x 

10-5

10-172 10-53 10-11 0.01

rs56094641 FTO SB 0.025 2.5 x 10-6 0.011 0.26 10-172 10-53 10-11 0.01

rs56094641 FTO PA -0.103 2.0 x 10-10 -0.077 0.02 10-172 10-53 10-11 0.01

rs56094641 FTO Diet 0.078 9.6 x 10-8 0.091 3.5 x 

10-4

10-172 10-53 10-11 0.01

rs58084604 MC4R Diet 0.084 7.2 x 10-7 0.049 0.10 10-73 10-19 10-4 0.21

rs7132908 FAIM2 SB 0.030 8.4 x 10-9 0.008 0.44 10-30 10-11 10-3 0.14

rs12467692 UBE2E3 Alc 0.040 6.8 x 10-6 0.031 0.08 10-10 10-3 0.26 0.96

rs12996547 TMEM18 Age -0.007 1.8 x 10-5 -0.006 0.07 10-16 10-7 10-3 0.05
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TMEM18 gene expression in visceral adipose GTEx tissue43 (age: r = 0.22; P = 4.4 x 10-5; SNP: 

³ = 0.155, P = 3 x 10-4), which may be one mechanism to jointly reduce BMI levels. Previously, 

Tmem18 germline loss in mice led to increased body weight, while over-expression resulted in 

weight loss by regulating appetite and energy balance49. Our findings in UKB and GTEx lend 

further evidence to support the role of TMEM18 in BMI. 

 

 

GxE interactions have pleiotropic effects over BMI and diabetes risk 

 

We aimed to determine whether gene-environment interactions influencing body mass 

index levels exhibit pleiotropic effects and are shared across human diseases, possibly by 

jointly influencing BMI and disease risk (Supp Fig 7a). From the set of 78 significant GxE 

interactions above (FDR < 0.1), we identified a set of 58 GxE interactions associated with the 

same direction of effect on BMI in both discovery and replication sets. We then screened these 

GxE interactions against three additional medical diagnoses: coronary artery disease, diabetes, 

and high blood pressure diagnosis (Methods).  

We found that GxE effects on BMI estimated in the discovery cohort significantly 

correlated with GxE effects on diabetes risk within the held-out set (r = 0.59, P = 1.3 x 10-6) (Fig 

5b), even after adjusting for BMI as a confounder (r = 0.38, P = 3.3 x 10-3) (Supp Fig 7b), 

indicating that BMI GxE effects are predictive of GxE influences over diabetes risk. Furthermore, 

we identified one significant disease interaction (FDR < 0.1), where physical activity regulated 

the association of rs4743930 with diabetes risk (P = 8.7 x 10-5; FDR = 0.015). In a previous UKB 

analysis50, this variant is marginally associated with diabetes risk at P = 0.022, and 

consequently would not appear as one of the most significant findings in a hypothesis-free 

GWAS. Within low exercise individuals, the rs4743930 T allele was associated with increased 

BMI levels (bD = 0.19 kg/m2 per T, PD = 8.5 x 10-11) and increased diabetes risk (ORD = 1.10, or 

a 10% risk increase per T, PD = 2.7 x 10-5). Within moderate or high exercise individuals, there 

was a minor association with BMI levels and no significant association with diabetes risk 

(Figure 5c-d). This interaction could be linked to decreased BMI levels and protective diabetes 

effects in both discovery and replication sets (BMI: bD = -0.075, bR = -0.042; diabetes risk: bD = -

0.075, bR = -0.065), although PR = 0.25 and PR = 0.09 for BMI and diabetes risk in the 

replication set (possibly due to lower sample size, as Table 1 shows that more than half of the 
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Figure 5: GxE interactions across environmental factors, human phenotypes, and cell types. (a) The estimated marginal BMI effect of the 

rs56094641 G allele conditioned on the different environmental co-variates. For visualization, age, sedentary behavior values, and diet (bottom 20%, 

middle 60%, upper 20%) were grouped and ”rarely” or “never” answers for alcohol intake frequency were combined. Significant GxE interactions 

highlighted with an asterisk. (b) Estimated GxE effects in BMI within the 80% discovery set (x-axis) from linear regression were correlated with 

estimated GxE effects on diabetes risk within the 20% replication set (y-axis) from logistic regression. Each data point represents a different SNP x co-

factor interaction. BMI GxE interactions appear predictive of diabetes GxE interactions. (c-d) The estimated marginal effect of the rs4743930 T allele 

on (c) BMI and (d) diabetes risk, conditioned on physical activity levels. Estimated diabetes risk effect is in terms of the relative odds ratio (OR). In (a), 

(c-d), the estimate is shown by the black dot, and the bars indicate the 95% confidence intervals. Smok = smoking status; SB = sedentary behavior 

level; PA = physical activity level; Alc = alcohol intake frequency. (e) The proportion of pure muQTLs (those with no significant raw vQTL association) 

associated with a phenotype were compared to the proportion of raw vQTLs that are associated. Each point is a different phenotype that is included in 

the Open Targets database. Phenotype associations significantly enriched in the raw vQTL set (FDR < 0.1) are highlighted in red. (f) The -log10(FDR) 

describe the partitioned enrichment of BMI mean and BMI variance heritability in specifically expressed genes for a given cell type. Only cell-types 

with FDR < 0.1 in the BMI variance analysis are shown. Dashed red lines drawn at FDR < 0.1.
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FDR < 0.01 interactions had PR > 0.05 despite same effect direction). The observed 

associations remained present after adjusting for BMI as a confounder (bD = -0.058, PD = 2.5 x 

10-3; bR = -0.066, PR = 0.09) (Supp Fig 7c). 

Leveraging the genomic (transcription start site proximity), transcriptomic (eQTL 

studies), and epigenomic information (Promotor Capture Hi-C data) found in the Open Targets 

database51, we inferred that rs4743930 likely regulates the BARX1 gene, which is part of the 

homeobox transcription factor family integral to anatomical development. BARX1 exhibits a 

noteworthy tissue-specific gene expression pattern across human tissues, with high expression 

in visceral adipose, esophagus, and stomach tissue and very low expression in other GTEx 

tissues43 (Supp Fig 7d). Previous research has shown that the Barx1 transcription factor protein 

is a key regulator of stomach cell fate and organogenesis and Barx1-/- knockout mice have 

significantly altered stomach morphology due to inhibition of the Wnt signaling pathway52,53. As 

the Wnt signaling pathway modulates the formation of adipose tissue and regulates the 

sensitivity to insulin, it has been proposed that pathway malfunctioning could lead to high co-

morbidities of obesity and diabetes54. Here, we provide novel human genetic evidence of a 

pathway regulator, BARX1, to support Wnt signaling’s proposed pleiotropy over body weight 

and diabetes risk. 

 

 

Evidence for weak epistatic interactions associated with BMI 

 

While the primary goal of this study was the discovery of GxE interactions, we 

hypothesized that a similar approach could be used to discover gene-gene (GxG) interactions in 

relation to BMI. We first tested for GxG interactions associated with BMI levels by performing 

all-pairwise interaction testing between 502 QTLs (125,751 tests). We found no departure from 

the -log10(p-values) expected under the null distribution and there was no correlation between 

interaction effects estimated in the 80% discovery cohort versus 20% replication cohort (r = -

0.003, P = 0.30) (Supp Fig 8a-b). Most importantly, unlike GxE interactions, leveraging mean, 

variance, or dispersion effects did not provide a reliable inroad to discovering GxG interactions 

(Supp Note 11; Supp Fig 8e). However, when considering the more significant interactions (PD < 

0.001), we observed a weak correlation between effects estimated in each cohort (r = 0.17, P = 

0.04) and found that statistical replication rates increased slightly above the theoretical null, 2.5-
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3% (Supp Fig 8c-d). Our results in BMI suggest that any potential underlying epistatic effects 

are small and would be difficult to detect, concordant with a recent search for epistasis in three 

biologically simpler molecular traits55. 

 

 

vQTLs are linked to environmentally-influenced pathways and phenotypes 

 

Since SNPs associated with the variance of untransformed BMI acted as hotspots of 

GxE interactions, we explored whether certain phenotypes and pathways were more likely to be 

linked to raw vQTLs compared to SNPs only associated with the mean of BMI. These muQTLs 

which are not significant vQTLs are referred to as “pure muQTLs”. 

To evaluate this, we used the Open Targets database51 which contains a large catalog 

of genotype-phenotype associations. We performed a (mean-based) phenotype-wide 

association study (PheWAS) of 21 raw vQTLs and 448 pure muQTLs by querying all 

phenotypes available in Open Targets. Using a binomial test, we assessed whether the group of 

raw vQTLs were enriched for an association with a phenotype (nominal P < 0.05) compared to 

the group of pure muQTLs (nominal P < 0.05) (Methods).  

Overall, we found vQTLs were enriched for an association with many phenotypes that 

have a strong environmental influence (whether from diet, exercise, infection, or microbiome). 

These included several diabetes-, immune-, and hematological-related phenotypes (Table 2, 

Fig 5e). Permutation analyses of the pure muQTLs showed that the PheWAS-based enrichment 

test did not have inflation of false positives (Supp Fig 9a). 

Next, we mapped non-MHC SNPs to single genes using genomic proximity and Open 

Targets’ variant-to-gene pipeline, queried raw vQTL gene sets or pure muQTL gene sets in 

GeneMania, and performed gene ontology (GO) enrichment analysis of the resulting gene 

network (Methods; Supp Note 12; Supp Data 1-2). We found that the network of raw vQTL 

genes was enriched for G protein coupled receptor-related (GPCR) signaling pathways and cell 

growth processes (Supp Data 3-4). In contrast, the pure muQTL network was enriched for 

developmental processes, particularly in the central nervous system (CNS) with no enrichment 

in the GPCR-related GOs (Supp Data 5-6). GPCRs transduce extracellular signals and activate 

downstream a cascade of intracellular proteins and pathways, which is essential for how cells 

interact with the environment. 
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Table 2: PheWAS enrichment of raw vQTLs versus pure muQTLs.  From left to right: the phenotype, the proportion of pure 

muQTLs and raw vQTLs that are associated with the phenotype, the ratio between the two proportions, the binomial test P-

value to assess vQTL set enrichment, and the FDR corrected significance. These phenotypes represent a manually-curated 

and incomplete list of all significant findings presented in Supp Data 9.

Phenotypes muQTL vQTL Ratio P FDR

Diabetes diagnosed by doctor 0.47 0.86 1.83 2.64E-04 0.017

Diabetes mellitus 0.33 0.67 2.029 1.56E-03 0.047

Diabetic retinopathy 0.05 0.33 6.318 6.85E-05 0.010

Eosinophil counts 0.15 0.43 2.882 1.89E-03 0.055

Hypothyroidism 0.12 0.43 3.647 3.32E-04 0.020

Mean corpuscular haemoglobin 0.23 0.67 2.866 2.87E-05 0.009

Neutrophil percentage 0.23 0.52 2.299 2.98E-03 0.065

Osteoarthritis | non-cancer illness 
code, self-reported

0.17 0.57 3.310 4.36E-05 0.010

Red blood cell (erythrocyte) 
distribution width

0.27 0.62 2.305 7.89E-04 0.038

Red blood cell count 0.20 0.57 2.906 1.64E-04 0.014

Reticulocyte fraction of red cells 0.18 0.62 3.536 7.18E-06 0.006

Type 1 diabetes 0.09 0.33 3.861 1.40E-03 0.047

Type 2 diabetes 0.41 0.71 1.762 4.13E-03 0.078

Type 2 diabetes with neurological 
manifestations

0.06 0.38 6.619 1.24E-05 0.006

Type 2 diabetes with ophthalmic 
manifestations

0.06 0.33 5.148 2.47E-04 0.017

Ulcerative colitis | non-cancer illness 
code, self-reported

0.05 0.24 4.513 4.08E-03 0.078
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Polygenic heritability analysis implicates stomach cell types in regulating BMI variance 

 

We evaluated whether the genetic contribution to the variance of BMI, a potential proxy 

for GxE interactions, might implicate different cell types in regulating BMI levels compared to 

studies on the mean of BMI. In Drosophila, the variance of a phenotype can be heritable56. We 

performed partitioned linkage disequilibrium score regression on mean and variance GWAS 

summary statistics to find cell types enriched for mean or variance heritability. We used 205 

functional annotations from GTEx43 and the Franke lab57 that describe tissue-specific genes in 

each cell type. 

Overall, we found that estimated cell type enrichment values were similar for BMI means 

and variances (r = 0.81; P = 1.4 x 10-48) (Supp Fig 9b-c). For example, the genetic signal for 

both means and variances were clustered in genes uniquely expressed in the CNS, as 

described previously58. Notably, we discovered that the heritability of BMI variance was 

significantly enriched (FDR < 0.1) at genes with the highest expression in stomach cell types (P 

= 1.2 x 10-3; FDR = 0.049), with no significant association in these regions for mean heritability 

(P = 0.40) (Fig 5f; Supp Note 13). This preliminarily suggests that stomach cell types, in 

addition to CNS cell types, have a critical role over BMI variance and regulating potential GxE 

interactions, and that this would not be discovered in a mean-based analysis. 

 

 

Discussion 

 

We have identified SNPs associated with the variance of BMI (vQTLs), which are 

enriched for gene-environment (GxE) interactions and for associations with phenotypes under 

strong environmental influences. When functionally profiling the annotated genes of vQTLs, we 

found enrichment for G protein coupled receptor-related signaling pathways, which are key to 

cells’ responses to the external environment. We also discovered through a polygenic analysis 

that a significant proportion of the heritability in BMI variance is clustered near genes highly 

expressed in stomach cells, which were not revealed in an analysis of BMI means58. Future 

application of our methods across phenotypes has the potential to identify genes, pathways, or 

cell types that serve as key regulators of the interplay between genetics and environment. 
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Additionally, we showed how GxE interactions first identified in BMI were predictive of 

the GxE effects on diabetes risk within a distinct set of individuals. We further discovered a 

BARX1 regulatory locus that significantly increases BMI and diabetes risk in low exercise 

individuals but does not have pleiotropic population effects in moderate to high exercise 

individuals. This framework of screening for SNPs as interaction candidates within quantitative 

phenotypes to subsequently discover interactions influencing complex disease can be broadly 

applicable across the range of human phenotypes. Methods to deconvolute case-control 

disease phenotypes into a quantitative scale that re-captures disease granularity and severity 

will enable the application of vQTL testing directly to the disease phenotype of interest. 

We explored multiple approaches to decouple mean and variance effects, evaluate the 

relationship between the two, and find GxE interactions. While Young et al.25 introduced a test 

for identifying SNPs associated with the variance of a phenotype independent of a mean effect 

(which we referred to as dQTLs), we found that the strongest GxE signal came from the SNPs 

associated with the variance of BMI prior to statistical transformations (raw vQTLs). If raw 

vQTLs are a robust footprint of interactions and estimated raw vQTL effects correlated strongly 

with mean-based effects, then this suggests that any SNP directly impacting BMI may be more 

likely to have its BMI effect modified by another factor.  

GWAS-type testing is not the only approach to limiting the number of potential 

interactions to explore. Other previously used approaches for reducing vast genomic data are to 

filter SNPs based on prior biological information59 or to combine SNPs into higher-order gene-

level data60. Alternatively, a large number of environmental variables can be combined into a 

single environmental score61. A significant drawback of these methods is that they will not be a 

hypothesis-free genome-wide approach to discover the epidemiological interaction between 

SNPs and other factors. Prior information is biased to prior knowledge, and gene-level data or 

an environmental score limits the search space for potential interactions. 

One future research area is the evaluation of polygenic scores that consider interaction 

effects. Polygenic scores are currently based on only marginal additive effects, and our 

research identified strong GxE interactions influencing BMI variability. For example, variants in 

the FTO intron region (the strongest genetic regulators of obesity) are associated with a nearly 

double BMI increase in low exercise individuals compared to high exercise individuals (Fig 5a). 

Interactions can perturb each individual from the expectation given a single genotype, and the 

ideal individual prediction would accommodate these interaction effects. 
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While the DRM vQTL approach that was applied in these analyses has advantages in 

power, any detection of interaction effects will have lower power than tests of main effects.  It is 

anticipated that the increasing sample sizes of GWAS will enable more sensitive detection of 

significant loci and more precise estimation of their variance effects. This will in turn improve the 

sensitivity of a variance test in detecting underlying GxE interactions. Furthermore, replication of 

GxE interactions require special attention. Here we split UK Biobank individuals into two 

mutually exclusive groups, but this approach is not the same as performing tests on two 

completely independent population samples. There may be unmeasured confounding factors in 

the UK Biobank samples that drive spurious associations. Interactions will need to be 

independently replicated in other cohorts to weed out spurious signals, although any lack of 

replication could be due to differences in allele frequencies, cultural behavior, and other 

environmental variables. For our purposes, we used the study design to allow a comparison of 

replication rates between two sets of GxE interactions. 

Perhaps the most important requisite to improve our understanding of GxE interaction in 

humans is the collection of accurate, high-quality measurements of relevant environmental 

variables.  Specialized wearable tracking devices and improvements in biomarker data are 

being explored, and the hope is that these will deliver a quantum improvement in the availability 

and accuracy of environmental data. In these settings, vQTLs can provide a promising approach 

to reduce dimensionality of genetic data and increase statistical power to detect GxE 

interactions. Overall, our work highlights the ability to discover significant environmental 

influences that modulate the genetic contribution to human phenotypes.  
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Methods 

 

Description and implementation of the variance tests 

In the DRM, each individual j with genotype i has phenotypic value !"#. The genotype is 

coded as i = 0, 1, or 2, determined by the minor allele count. The median phenotype value is 

calculated for all individuals with categorical genotype i, !$". The absolute value of the difference 

between !"# and !$" is calculated: 

 

%"#	=	'!"# 2 !$"'  (Eq. 1) 

 

The %"# values for each individual j represent the deviation from the within-genotype phenotype 

medians. Next, SNPs are tested for association with %"# values using linear regression and the 

genotype indices as a numeric covariate. The effect size and P-values for the SNP covariate in 

the regression are used as proxies for the variance effect size and significance of association 

with phenotypic variance. The DRM is a similar approach to the Levene’s test, which allows for 

non-linear associations through an ANOVA model instead of a linear model. In practice, 

covariates are regressed out from !"# prior to calculating %"#.  
 In our study, we used a number of other variance tests. The two-step squared residual 

approach was implemented as linear regression on the squared mean-centered phenotype. The 

other variance tests were implemented in R using the dglm() function from the dglm package, 

the bartlett.test() and fligner.test() function from the stats package, and the leveneTest() function 

with default arguments (median-centered) from the car62 package. 

 

 

Simulations of genotypes and phenotypes for method comparison 

The methods for identifying variance differences were compared using statistical power 

and false positive rates (FPR) as the performance benchmarks. In the FPR scenario, a single 

SNP was simulated with MAF = 0.4 using a W ~ Binom(2, 0.4) independent random variable. 

The SNP value W is set to be equal to the genetic component, YG, of a phenotype. In the power 

testing scenario, a SNP X1 and an environmental factor X2 were simulated using a binomial 

distribution with probability of success = 0.4: X1 ~ Binom(2, 0.4) and X2 ~ Binom(2, 0.4). This 

other factor can also be thought of as an environmental exposure with three levels (e.g., for 
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physical activity: never exercise, rarely exercise, often exercise). The product X1 × X2 is the 

genetic component, YG, of a phenotype in the power scenario. When contrasting muQTL 

approaches to vQTL approaches, the genetic component is equal to the product X1 × (X2 – 1). 

This is so that X1‘s marginal association with the phenotype is either positive or negative, 

depending on the value of X2.  

Phenotypes were generated by summing a point genetic effect, YG, and random 

environmental noise, YE. YE was simulated from a normal distribution or a chi-squared 

distribution with 4 degrees of freedom, and scaled appropriately such that YG explains « 

proportion of the variance in the phenotype and YE explains 1 – « percent, as described below.  

Given «, the proportion of the variation explained by the environmental component is 

larger than « by a factor 
)*	+	+ . After calculating the variance of the genetic component, VG, the 

variance of the environmental noise, VE, can be calculated as: 

 

,- =	,/ ×	)*	+	+      (Eq. 2) 

 

In practice, the normally distributed environmental noise can be simulated as YE ~ N(0, 

VE ) for normally distributed phenotypes. Chi-square distributed noise can be simulated as the 

following for chi-square distributed phenotypes: 

 

!- =	1,- × 	2(45(4))     (Eq. 3) 

 

» is the function that centers and scales the chi-square input to have mean equal to 0 and 

variance equal to 1. The final phenotypic values were created by calculating the sum YG + YE. In 

all, genotypes and phenotypes were generated for 10,000 individuals. 

 The association between SNP and the variance in phenotype was tested using the 

different variance methods. The null hypothesis (no association) was rejected when the nominal 

P < 0.05. This was repeated across 1,000 simulations with distinct genotypes and phenotypes. 

Power and FPR refer to the proportion of simulations where the null hypothesis was rejected. LT 

and DRM effects were compared by analyzing the simulations where the interaction explained 

less than or equal to 5% variance in the phenotype.  

 Linear regression was used to compare a muQTL approach to a vQTL approach (using 

the DRM). A contingency table was calculated from count data across simulations that 
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describes whether the muQTL method rejected the null hypothesis of no association or the 

vQTL method rejected the null hypothesis of no association. A two-sided Fisher exact test was 

performed for each variance explained value, VG, separately to assess the relationship of vQTL 

power with muQTL power. 

 

 

UK Biobank data 

UKB data was processed previously by the UK Biobank team63 and accessed under 

Application ID 47137. The individuals and SNPs used in analysis were limited to those in the 

Neale lab’s analysis50 as the same quality control criteria were adopted for sample and 

genotypes in this analysis. By doing so, individuals were removed based on whether they were 

not used in the UKB team’s principal component analysis (removing related samples), not of 

European British ancestry, or had sex chromosome aneuploidy, excess heterozygosity, or 

outlier genotype missing rates. Genotypes were removed if INFO score < 0.8, MAF < 0.05, or 

HWE P < 10-10. The full processed and quality-controlled data contained 344,201 individuals 

and 6,701,215 SNPs.  

Analysis was randomly split into two parts. A discovery set contained 80% of the data, 

selected randomly from the full dataset, which was used for discovering associations between 

SNPs and phenotypes. A replication set contained the remaining 20% of the data, which was 

used for the replication of associations identified in the discovery set. 

 

 

Genome-wide association study in UK Biobank 

 A genome-wide association study (GWAS) was performed within the discovery set 

containing 80% of the data. Individuals with body mass index levels greater than 5 standard 

deviations from the mean removed from analysis to prevent a large influence from outliers which 

could be driven by non-modeled factors. Body mass index levels were adjusted for the following 

covariates: sex, age, age × sex, age2, age2 × sex, genotyping array, and principal components 1 

– 20. This was performed by fitting a linear model and calculating the residuals.  

Using the residuals, we performed a GWAS by using linear regression (mean effects) and the 

DRM (variance effects) between a single SNP and adjusted, untransformed BMI. The findings 

from these analyses were referred to, respectively, as muQTLs and raw vQTLs. We also 

applied a rank inverse normal transformation (RINT) to the residuals to decorrelate mean and 
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variance effects, and proceeded with a GWAS using the DRM and a dispersion effect test25 

(DET). The rank inverse normal transformation uses the ranks of phenotype values and inverse 

transforms the ranks into a normal distribution. We refer to the DRM and DET outcome as RINT 

vQTLs and dQTLs.  

All genome-wide association analyses were implemented on sets of 5000 SNPs and 

performed in parallel. Genome-wide linear regression was performed using plink64 and the DRM 

was performed by employing the BEDMatrix R package 

(https://github.com/QuantGen/BEDMatrix). The DET was implemented by first using a Python-

implemented heteroskedastic linear model25 (https://github.com/AlexTISYoung/hlmm). The 

dispersion effects were then estimated by using the additive and log-linear variance effects as 

described previously25; this method is implemented in the estimate_dispersion_effects.R file in 

the linked hlmm repository. 

Results from these analyses were compared using correlations. Significance was 

determined with the criterion P < 5 x 10-8 for untransformed analyses and P < 1.0 x 10-5 for RINT 

results. Significant QTLs were used as the nominated loci for identifying GxG and GxE 

interactions. Previous GWAS results were downloaded from the Neale Lab webpage50. 

 

 

Construction of a diet score 

 We computed a diet score to be used as an interaction factor in GxE analysis by 

adapting a protocol described previously25,37. First, we extracted 18 diet-related variables: 

“Cooked vegetable intake”, “Salad / raw vegetable intake”, “Fresh fruit intake”, “Dried fruit 

intake”, “Bread intake”, “Cereal intake”, “Tea intake”, “Coffee intake”, “Water intake”, “Oily fish 

intake”, “Non-oily fish intake”, “Processed meat intake”, “Poultry intake”, “Beef intake”, 

“Lamb/mutton intake”, “Pork intake”, “Cheese intake”, and “Salt added to food”. We next fit a 

linear model using baseline model covariates plus the 18 diet variables. These baseline model 

covariates included age, sex, age2, age x sex, age2 x sex, genotyping array, and principal 

components 1-2025. We fit a model to 25% of the UK Biobank discovery set (thus, 20% of the 

full data set used in the study) (N = 68,840), and estimate ³ coefficients for each diet variable. 

In the remaining 275,361 individuals (which include those from both the discovery and 

replication sets), we used the estimated ³ coefficients for each diet variable to calculate a diet 

score:  
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Diet score = ³XT .  (Eq. 4)  

 

Above, ³ is the 1 x 18 vector of coefficients for diet variables and X is a 275,361 x 18 matrix of 

diet variable values for the 275,361 individuals.  

Low diet score values describe a diet predicted to be associated with low BMI 

individuals, while high diet score values describe a diet predicted to be associated with high BMI 

individuals. Potential interactions with genetic polymorphisms may describe a change in the 

average relationship between diet score and BMI within the general population. This would 

suggest that the effects of the different diet variables on BMI is synergistically higher or lower 

than expected. 

 

 

Making non-diet environmental variables 

 We used UKB fields 21022-0.0, 22001-0.0, and 1558-0.0 for age, sex, and alcohol 

intake frequency. The alcohol intake frequency field was re-coded in the opposite direction, 

such that a higher value indicates a higher alcohol intake frequency. Individuals with missing 

data or preferred not to answer were removed. For smoking status, physical activity level (PA), 

and sedentary behavior level (SB), we generated new variables using the methods described in 

Wang et al.26.  

For smoking status, we used fields 1239-0.0 (“Current tobacco smoking”) and 1249-0.0 

(“Past tobacco smoking”) to create a binary variable. Individuals were only coded as 0 if they do 

not currently smoke, and they answer regarding their past history, “I have never smoked” or 

“Just tried once or twice”. Individuals were classified as 1 if they currently or previously smoke 

most days or occasionally. Individuals with missing data and who could not fill the criteria were 

removed. 

For PA, we used fields 864-0.0 (“Number of days/week walked 10+ minutes”, 874-0.0 

(“Duration of walks”), 884-0.0 (“Number of days/week of moderate physical activity 10+ 

minutes”), 894-0.0 (“Duration of moderate activity”), 904-0.0 (“Number of days/week of vigorous 

physical activity 10+ minutes”), 914-0.0 (“Duration of vigorous activity”), which we labeled 

DayW, DurW, DayM, DurM, DayV, and DurV. According to the International Physical Activity 

Questionnaire analysis guideline65, the total metabolic equivalent minutes (METT) can be 

approximated as: 
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METT = 3.3 × DayW × DurW + 4.0 × DayM × DurM + 8.0 x DayV × DurvV  (Eq. 5) 

 

Next, PA for each individual was assigned 1, 2, or 3 for low, medium, or high activity as such:  

 

PA= 8 9:;/,  DayVg3 &and METTg1500 OR DayW+DayM+DayVg7 and METTg3000=>?:@A,  DayVg3 and DurVg20 OR DayMg5 and DurMg30 OR DayWg5 and DurWg30BCD,  Other (not enough activity recorded to meet the other criteria) 
 

 

 For SB, we used fields 1090-0.0 (“Time spent driving”), 1080-0.0 (“Time spent using 

computer”, and 1070-0.0 (“Time spent watching television (TV)”). For each variable, “Less than 

an hour a day” (-10) was set equal to 0 and “Do not know” or “Prefer not to answer” (-1 or -3) 

answers were imputed with the median of the remaining values. SB was set equal to the sum of 

the three columns. Outlier individuals were removed, as defined by those with greater than 5 

standard deviations from the mean. 

 

 

Sampling random SNPs matched to QTLs 

We calculated the frequency of homozygous minor genotypes (fminor), the minor allele 

frequency (MAF), and the count of individuals with a non-missing genotype at each SNP (Nmiss). 

To identify the underlying null distribution of various statistics in our study, we sample 10 

matched SNPs for each QTL. Each matched SNP must have a MAF and fminor that is below a 

1% margin from the QTL, an Nmiss within 1% of the QTL’s Nmiss count, and be on a different 

chromosome than the QTL. 

 

 

Identification of genetic interactions 

 Pairwise interaction testing was performed between all SNP candidates and with each of 

the seven environmental factors in the discovery and replication sets separately. For GxE 

interactions with diet, only 75% of the discovery set (60% of full UKB set) was used for 

association tests since 25% was used to fit the model for calculating the diet score variable. 

GxE P-values were adjusted using false discovery rate and significance determined by FDR < 

0.1. GxG P-values were separately adjusted using false discovery rate and significance 

determined by FDR < 0.1.  
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GxE discovery rate was compared between the QTL set and the genome-wide matched 

SNP set. First, the same number of SNPs as the QTL set were sampled from the matched SNP 

set. Second, the GxE P-values from the sampled genome-wide SNPs were adjusted using false 

discovery rate. Third, the discovery rate within the set was calculated as the proportion of GxE 

interactions with FDR < 0.1. This was repeated across 10,000 iterations and the mean 

discovery rate across the iterations was used as the expected probability in a one-sided 

binomial test. 

 

 

Statistical replication of genetic interactions 

 Genetic interactions discovered in the discovery cohort were tested for in the replication 

set. Given a -log10(P) threshold equal to x, all more significant interactions (those with -log10(P) > 

x) were identified. Within the replication cohort, an interaction is considered to have been 

replicated if the direction of effect was the same as in the discovery set and if the P-value in the 

replication set is P < 0.05. The replication rate is the proportion of interactions to have replicated 

according to these two criteria. The genome-wide replication rate was computed by using the 

matched and randomly sampled SNPs and testing for GxE interactions within both the 80% and 

20% cohorts. The replication rate was calculated at x = [0.05, 0.01, 2.16 x 10-3, 0.005, 5.22 x 10-

4, 1.80 x 10-5], where x = [2.16 x 10-3, 5.22 x 10-4, 1.80 x 10-5] are FDR < [0.1, 0.05, 0.01] 

thresholds; these were calculated by identifying the maximum GxE PD within the QTL set that 

pass the respective FDR thresholds. In displays, the grey confidence intervals are derived from 

a binomial test with rate equal to 0.025, which is the theoretical replication rate under no true 

association.  

To test for differences in replication rate, a background set is specified and the 

replication rate within this background set is used as the theoretical success rate in a one-sided 

exact binomial test. The number of successes and number of trials is from the number of 

replicated GxE interactions and total number of GxE interactions in the other GxE set. 

 

 

Analyzing the rs12996547 x age interaction 

 The rs12996547 polymorphism was not used in GTEx consortium analyses43. 

Leveraging the 1000 Genomes Project66 and the HaploReg database42, we identified a nearby 

SNP, rs7575617, in linkage disequilibrium (D’ = 0.89) that was used in the GTEx analyses and 
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queried the GTEx portal for eQTL associations. Using the GTEx v8 data release, we correlated 

donor age (coded as a numerical variable with age in 10-year bins) and TMEM18 gene 

expression within visceral adipose tissue samples. 

 

 

Screening BMI GxE interactions for pleiotropic disease associations 

 To test whether GxE interactions associated with BMI are also associated with related 

diseases, three binary disease phenotypes were assembled that represent diabetes diagnosis, 

high blood pressure diagnosis (HBP), and coronary artery disease ascertainment (CAD).  

Diabetes and HBP was coded using corresponding fields 2443-0.0 and 6150-0.0, which include 

self-reported questionnaire information. The diabetes phenotype represents a self-reported 

answer to the question, “Has a doctor ever told you that you have diabetes?” This would 

represent a mix of diabetes subtypes, including Type 1 and Type 2 diabetes. For diabetes, 

values less than 0 were removed from association testing. For HBP, value less than 0 

represented controls and value equal to 4 represented a case. CAD was specified using criteria 

from previous research22. The following individuals were listed as cases: field 20002-0.0 equal 

to 1075; fields 41203-0.0 or 41205-0.0 equal to 410, 4109, 411, 4119, 412, 4129; fields 41202-

0.0 or 41204-0.0 equal to I21, I210, I211, I212, I213, I214, I219, I21X, I22, I220, I221, I228, 

I229, I23, I230, I231, I232, I233, I234, I235, I236, I241, I252; fields 41200-0.0 or 41210-0.0 

equal to K40, K401, K402, K403, K404, K41, K411, K412, K413, K414, K451, K452, K453, 

K454, K455, K491, K492, K498, K499, K502, K751, K752, K753, K754, K758, K759. All other 

individuals were listed as the controls for CAD. 

 GxE interactions with FDR < 0.1 and same direction of effect in discovery and replication 

sets were tested for association with diabetes, HBP, and CAD risk. PR < 0.05 in the replication 

cohort was not required, because the limited sample size in the replication cohort (one quarter 

the size of the discovery set) may reduce power to identify interaction associations at that level 

of significance and typically implies that a larger effect needs to be observed within the smaller 

cohort to reach that level of significance. (We found that only requiring direction of effect will still 

show statistically significant differences in replication rate between QTLs and random genome-

wide SNPs.) Finally, the GxE interaction with disease was tested for by employing logistic 

regression with identical covariates to the BMI analysis. This was repeated with adjustment for 

BMI by using BMI as a covariate. 
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PheWAS enrichment of vQTLs using Open Targets database queries 

We identified all SNP-phenotype associations with P < 0.05 and tested whether raw 

vQTLs were enriched for certain phenotype associations compared to pure muQTLs (Methods). 

To determine whether variance QTLs were more likely to be associated with some 

phenotypes, a phenotype-wide association study (PheWAS) leveraging the Open Targets 

database was performed. For an input SNP, we identified all phenotypes within the database 

that have been associated using a previous GWAS at P < 0.05. Across a set of queried SNPs, 

we calculated the proportion that were associated with the phenotype. We repeated this for the 

set of variance QTLs and the set of pure mean QTLs (no vQTL association). We trimmed the 

phenotypes list using the Open Target categories that were relevant to our study (Supp Data 7). 

Next, we used a statistical test to determine whether a given set of SNPs is enriched for 

association with a phenotype compared to a background set. Given a test set of K SNPs, in 

which m of the K SNPs are associated with the phenotype, and a background SNP set in which 

p is the proportion of SNPs associated with phenotype, we employ an exact binomial test with m 

successes, K trials, and p hypothetical probability of success. We test significance under a one-

sided alternative hypothesis that the observed success rate, m / K, is greater than p. The P-

values from the test were calculated for every phenotype present in the test set. False discovery 

rate correction was applied and significance assessed at FDR < 0.1. 

We applied the described PheWAS enrichment test in two settings. First, we evaluated 

whether the test was robust for use with the real data by randomly sampling 21 pure muQTLs 

and using the remaining pure muQTLs as the background set. Next, we evaluated if some 

associated phenotypes are enriched in the vQTL set compared to in the pure muQTLs by using 

the pure muQTLs as the background set. 

 

 

Annotating QTLs with protein coding genes 

All protein coding genes were downloaded from Ensembl. A QTL was queried in the 

Open Targets using the API, and the variant-to-gene (V2G) scores and the Ensembl Variant 

Effect Predictor (VEP) scores were saved for all Ensembl protein coding genes. If a queried 

SNP’s VEP score for a gene is greater than zero in Open Targets (e.g., the variant lies within an 

intron, exon, or UTR region), than the SNP is annotated with the gene with the greatest VEP 

score. Otherwise (for intergenic SNPs), the gene with the highest V2G score is used. If no 
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protein coding genes have a V2G score (due to far proximity), the coding gene with the nearest 

transcription start site was identified using the Open Targets API. Finally, if the queried SNP 

was not present in Open Targets, then a SNP in LD was identified as a proxy (Supp Data 8). 

rs550990127, rs562044398, rs772168224, and rs753789664 are four indels (3 muQTLs, 1 

RINT vQTL) that were removed from functional enrichment and PheWAS analyses due to 

annotation issues. 

 

 

GeneMania network creation and GO enrichment analysis 

GeneMania incorporates multiple biological databases to create a gene network, identify highly-

interconnected genes, and perform GO enrichment analysis. We used the browser platform with 

default settings, except for the addition of the “Attributes” databases. We queried the list of 

annotated genes for raw vQTLs, and separately the list of genes for pure muQTLs. 

 

 

Stratified LD-score regression to infer cell-type relevance 

Stratified LD score regression was performed with gene expression data using the 

“Multi_tissue_gene_expr” flag and default settings. Summary statistics were transformed using 

the munge_sumstats.py script. Only non-MHC HapMap3 SNPs were kept for LD score 

regression analysis. Cell-type enrichment P-values across the 205 functional annotations were 

adjusted using the Benjamini-Hochberg method for false discovery rate67. 
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End Notes 
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