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Abstract

Background: The predictive utility of polygenic scores is increasing, and many polygenic
scoring methods are available, but it is unclear which method performs best. This study
evaluates the predictive utility of polygenic scoring methods within a reference-
standardized framework, which uses a common set of variants and reference-based

estimates of linkage disequilibrium and allele frequencies to construct scores.

Methods: Eight polygenic score methods were tested: p-value thresholding and clumping
(pT+clump), SBLUP, lassosum, LDPred1, LDPred2, PRScs, DBSLMM and SBayesR, evaluating
their performance to predict outcomes in UK Biobank and the Twins Early Development
Study (TEDS). Strategies to identify optimal p-value threshold and shrinkage parameters
were compared, including 10-fold cross validation, pseudovalidation and infinitesimal

models (with no validation sample), and multi-polygenic score elastic net models.

Results: LDPred2, lassosum and PRScs performed strongly using 10-fold cross-validation to
identify the most predictive p-value threshold or shrinkage parameter, giving a relative
improvement of 16-18% over pT+clump in the correlation between observed and predicted
outcome values. Using pseudovalidation, the best methods were PRScs and DBSLMM, with
a relative improvement of >10% over other pseudovalidation and infinitesimal methods
(lassosum, SBLUP, SBayesR, LDPred1, LDPred2). PRScs pseudovalidation was only 3% worse

than the best polygenic score identified by 10-fold cross validation. Elastic net models
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containing polygenic scores based on a range of parameters consistently improved

prediction over any single polygenic score.

Conclusion: Within a reference-standardized framework, the best polygenic prediction was
achieved using LDPred2, lassosum and PRScs, modeling multiple polygenic scores derived
using multiple parameters. This study will help researchers performing polygenic score

studies to select the most powerful and predictive analysis methods.
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Introduction

In personalized medicine, medical care is tailored for the individual to provide improved
disease prevention, prognosis, and treatment. Genetics is a potentially powerful tool for
providing personalized medicine as genetic variation accounts for a large proportion of
individual differences in health and disease [1]. Furthermore, an individual’s genetic
sequence is stable across the lifespan, enabling predictions long before the onset of most
diseases. Although genetic information is used to predict rare Mendelian genetic disorders,
such as breast cancer based on BRCA1/2 variants, our ability to predict common disorders
using genetic information is currently insufficient for clinical implementation. This is due to
the increased etiological complexity of common disorders, with complex interplay between
genetic and environmental factors, and the highly polygenic genetic architecture with
contributions from many genetic variants with small effect sizes [2]. However, genome-wide
association studies (GWAS), used to detect common genetic associations, are rapidly
increasing in sample size, and are identifying large numbers of novel and robust genetic
associations for health-related outcomes [3]. This growing source of information is also
improving our ability to predict an individual’s disease risk or measured trait based on their

genetic variation [4,5].

An individual’s genetic risk for an outcome can be summarized in a polygenic score,
calculated from the number of trait-associated alleles carried. The contributing variants are
typically weighted by the magnitude of effect they confer on the outcome of interest,
estimated in a reference GWAS. There are several challenges in performing a well-powered

polygenic score analysis. Firstly, GWAS effect-sizes are inflated through Winner’s curse, and
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unbiased estimates can only be obtained through an independent training sample, with
these effect-size estimates then used to calculate polygenic scores in a further independent
sample [6]. Secondly, to maximize polygenic prediction accuracy, the GWAS summary
statistics must be adjusted to account for the linkage disequilibrium (LD) between genetic
variants, to avoid double counting the non-independent effect of variants in high LD, and
account for varying degrees of polygenicity across outcomes, i.e. the number of genetic
variants affecting the outcome [6]. LD can be accounted for using LD-based clumping of
GWAS summary statistics, removing variants in LD with lead variants within each locus, and
polygenicity is accounted for by applying multiple GWAS p-value thresholds (pT) to select
the effect alleles included in the polygenic score [4,5]. This pT+clump approach is
conceptually simple and computationally scalable [7]. However, using a hard LD threshold in
clumping to retain or remove variants from the polygenic score calculation can potentially
reduce the variance explained by the polygenic score. Alternative summary statistic-based
polygenic score methods retain all genetic variants by modelling both the LD between
variants and the polygenicity of the outcome [8—14]. These methods use estimates of LD to
jointly estimate the effect of nearby genetic variation maximizing the signal captured, and
generally apply a shrinkage parameter to the genetic effects to reduce overfitting and allow

for varying degrees of polygenicity across outcomes.

Polygenic scoring methods can lead to overfitting of genetic effects due to the p-value
based selection of variants or joint estimation of many genetic effects. To avoid this
overfitting, genetic effect size estimates can be reduced using shrinkage methods to
improve the generalizability of the model. Shrinkage methods for polygenic scoring can be

separated into frequentist penalty-based methods (e.g. lasso regression-based lassosum


https://doi.org/10.1101/2020.07.28.224782
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.224782; this version posted February 16, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

[10], summary-based best linear unbiased prediction (SBLUP) [9]) and Bayesian methods
that shrink estimates to fit a prior distribution of effect sizes, such as LDPred1 [8], LDPred2
[13], PRScs [11], SBayesR [12], and DBSLMM [14]. Each of these methods have been shown
to improve the predictive utility of polygenic scores over those derived using the pT+clump
approach. In comparisons between methods the findings are mixed: some studies have
similar results across methods [15], while papers developing a new method often report
that the developed method out-performs chosen other methods. To our knowledge no

independent study has yet compared all approaches.

Five methods (pT+clump, LDPred1, LDPred2, lassosum and PRScs) generate multiple
polygenic scores from user-defined tuning parameters. To determine which tuning
parameter provides optimal prediction, the polygenic scores must first be tested in an
independent ‘tuning’ sample. The pT+clump approach applies p-value thresholds to select
variants included in the polygenic score, whereas LDPred1, LDPred2, lassosum and PRScs
apply shrinkage parameters to adjust the GWAS effect sizes. In addition, lassosum, PRScs
and LDPred2 provide a pseudovalidation approach, whereby a single optimal shrinkage
parameter is estimated based on the GWAS summary statistics alone, and therefore do not
require a tuning sample. SBayesR and DBSLMM can be considered pseudovalidation
approaches as they also do not require a tuning sample to identify optimal parameters.
Another approach to derive polygenic scores is to assume an infinitesimal model, as is done
by SBLUP and the infinitesimal models of LDPred1 and 2 [16]. Similar to pseudovalidation
approaches, no tuning sample is required when assuming an infinitesimal model. Rather

than selecting a single tuning parameter, some studies have suggested that combining
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polygenic scores across p-value thresholds whilst taking into account their correlation using

either PCA or model stacking can improve prediction [17,18].

Polygenic scores are a useful research tool, as well as a promising potential tool for
personalized healthcare through prediction of disease risk, prognosis, and treatment
response [19]. However, polygenic scores calculated in a clinical setting should be valid for a
single target sample and thus need to be constructed using a reference-standardized
framework. Here, the polygenic score is independent of any properties specific to the target
sample, including the genetic variation available, and the LD and minor allele frequency
(MAF) estimates. In a reference-standardized approach, the genetic variants considered can
be standardized by using only single nucleotide polymorphisms (SNPs) that are commonly
available after imputation, such as variation within the HapMap3 reference [20]. The LD and
MAF estimates can be standardized by using an ancestry matched individual-level genetic
dataset such as 1000 Genomes [21]. Determining these properties (SNPs, LD, MAF) in
reference data provides a practical approach for estimating polygenic scores for an
individual, making them comparable to polygenic scores for other individuals of the same
ancestry [22]. Use of a reference-standardized framework also offers advantages by
improving the comparability of polygenic scores across cohorts. Several polygenic scoring
methods now recommend the use of HapMap3 SNPs and precomputed external LD

estimate references [11-13], in line with a reference-standardized approach.

In this study, we perform an extensive comparison of polygenic scoring methods within a
reference-standardized framework. We evaluate the predictive utility of models for

outcomes in UK Biobank and TEDS, combining information across tuning parameters. We
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evaluate eight polygenic scoring methods and apply different modelling strategies to select
optimal tuning parameters to establish the combinations that perform consistently well.
The reference-standardized framework increases the generalizability of results and provides
a resource for future studies investigating polygenic prediction in a research study or clinical

setting.
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Methods

To evaluate the different polygenic scoring approaches, we used two target samples: UK
Biobank (UKB) [23], and the Twins Early Development Study (TEDS) [24]. All code used to
prepare data and carryout analyses is available on the GenoPred website (see Data and

Code Availability).

UKB
UKB is a prospective cohort study that recruited >500,000 individuals aged between 40-69
years across the United Kingdom. The protocol and written consent were approved by the

UKB’s Research Ethics Committee (Ref: 11/NW/0382).

Genetic data

UKB released imputed dosage data for 488,377 individuals and ~96 million variants,
generated using IMPUTE4 software [23] with the Haplotype Reference Consortium
reference panel [25] and the UK10K Consortium reference panel [26]. This study retained
individuals that were of European ancestry based on 4-means clustering on the first 2
principal components provided by the UKB (self-reported ancestry was not used), and
removed related individuals (>3 degree relative) using relatedness kinship (KING)
estimates provided by the UKB [23]. The imputed dosages were converted to hard-call

format using a hard call threshold of zero.

Phenotype data

10
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Nine UKB phenotypes were analyzed. Eight phenotypes were binary: Depression, Type Il
Diabetes (T2D), Coronary Artery Disease (CAD), Inflammatory Bowel Disorder (IBD),
Rheumatoid arthritis (RheuArth), Multiple Sclerosis (MultiScler), Breast Cancer, and Prostate
Cancer. Three phenotypes were continuous: Intelligence, Height, and Body Mass Index
(BMI). Further information regarding outcome definitions can be found in the

Supplementary Material.

Analysis was performed on a subset of ~50,000 UKB participants for each outcome. For each
continuous trait (Intelligence, Height, BMI), a random sample was selected. For disease
traits, all cases were included, except for Depression and CAD where a random sample of
25,000 cases was selected. Controls were randomly selected to obtain a total sample size of
50,000. Sample sizes for each phenotype after genotype data quality control are shown in
Table 1. Supplementary Figure S1 shows a schematic diagram of how UKB data was split into

training and testing sample.

TEDS

The Twins Early Development Study (TEDS) is a population-based longitudinal study of twins
born in England and Wales between 1994 and 1996 [27]. Ethical approval for TEDS has been
provided by the King’s College London ethics committee (reference: 05/Q0706/228).
Written parental and/or self-consent was obtained before data collection. For this study,

one individual from each twin pair was removed to retain only unrelated individuals.

Genetic data

11
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TEDS participants were genotyped using two arrays, HumanOmniExpressExome-8v1.2 and
AffymetrixGeneChip 6.0. Stringent quality control was performed separately for each array,
prior to imputation via the Sanger Imputation server using the Haplotype Reference
Consortium (release 1.1) reference data[25,28]. Imputed genotype dosages were converted
to hard-call format using a hard call threshold of 0.9, with variants for each individual set to
missing if no genotype had a probability of >0.9. Variants with an INFO score < 0.4, MAF <

0.001, missingness > 0.05 or Hardy-Weinberg equilibrium p-value < 1x10® were removed.

Phenotypic data

This study used four continuous phenotypes within TEDS: Height, Body Mass Index (BMl),
Educational Achievement, and Attention Deficit Hyperactivity Disorder (ADHD) symptom
score (Table 1). These phenotypes were selected based on a previous polygenic study,

enabling comparison across methods [29]. The phenotypes were derived using the same

protocol as previously.

Genotype-based Scoring
The following genotype-based scoring procedure provides reference standardized polygenic

scores and can be applied to any datasets of imputed genome-wide array data (Figure 1).

SNP-level QC
HapMap3 variants from the LD-score regression website (see Web Resources) were
extracted from target samples (UKB, TEDS), inserting any HapMap3 variants that were not

available in the target sample as missing genotypes (as required for reference MAF

12


https://doi.org/10.1101/2020.07.28.224782
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.224782; this version posted February 16, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

imputation by the PLINK allelic scoring function) [30]. No other SNP-level QC was

performed.

Individual-level QC

Individual-level QC prior to imputation was previously performed for both UKB [23] and
TEDS [28] samples. Only individuals of European ancestry were retained for polygenic score
analysis. They were identified using 1000 Genomes Phase 3 projected principal components
of population structure, retaining only those within three standard deviations from the
mean for the top 100 principal components. This process will also remove individuals who

are outliers due to technical genotyping or imputation errors.

GWAS summary statistics

GWAS summary statistics were identified for phenotypes the same as or similar as possible
to the UKB and TEDS phenotypes (descriptive statistics in Table S1), excluding GWAS with
documented sample overlap with the target samples. GWAS summary statistics underwent
quality control to extract HapMap3 variants, remove ambiguous variants, remove variants
with missing data, flip variants to match the reference, retain variants with a minor allele
frequency (MAF) > 0.01 in the European subset of 1KG Phase 3, retain variants with a MAF >
0.01 in the GWAS sample (if available), retain variants with a INFO > 0.6 (if available),
remove variants with a discordant MAF (>0.2) between the reference and GWAS sample (if
available), remove variants with p-values >1 or </=0, remove duplicate variants, remove
variants with sample size >3SD from the median sample size (if per variant sample size is

available).

13


https://doi.org/10.1101/2020.07.28.224782
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.224782; this version posted February 16, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Reference genotype datasets

Target sample genotype-based scoring was performed using two different reference
genotype datasets, the European subset of 1000 Genomes Phase 3 (N=503) and a random
subset of 10,000 European-ancestry UKB participants. The UKB reference set was
independent of the target sample used for evaluating polygenic scoring methods. These
references were used to determine whether the sample size of the reference genotype
dataset affects the prediction accuracy of polygenic scores. Only 1,042,377 HapMap3

variants were available in the UKB dataset and used in genotype-based scoring.

Polygenic Scores (PRS)

Polygenic scoring was carried out using eight approaches with default parameters outlined
in Table 2. To ensure comparability across methods, the same set of HapMap3 variants were
considered, and the same reference genotype datasets were used to estimate LD and MAF

(except for PRScs and SBayesR).

PRScs-provides an LD reference for HapMap3 variants based on the European subset of the
1000 Genomes, and results should be comparable to other methods when using the 1000
Genomes reference. PRScs was not applied using the larger UKB reference dataset as PRScs
has been previously reported to show minimal improvement when using larger LD reference

datasets [11].

SBayesR analysis requires shrunk and sparse LD matrices as input. LD matrices were
calculated using Genome-wide Complex Trait Bayesian analysis (GCTB) [31] in batches of

5,000 variants, which were then merged for each chromosome, shrunk, and then made

14
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sparse. SBayesR analysis was also performed using LD matrices released by the developers

of GCTB based on 50,000 European UKB individuals (see Web Resources).

Two additional modifications of the standard pT+clump approach were tested, termed
‘pT+clump (non-nested)’ and ‘pT+clump (dense)’. The pT+clump (non-nested) approach is
the same the standard pT+clump approach except non-overlapping p-value thresholds were
used to select variants included in the polygenic score, thereby making the polygenic scores
for each threshold independent. The pT+clump (dense) approach is the same as the
standard pT+clump approach except that it uses 10,000 p-value thresholds (minimum=5x10

8 maximum=0.5, interval=5x10-5), implemented using default settings in PRSice [7].

After adjustment of GWAS summary statistics as necessary for each polygenic scoring
method, polygenic scores were calculated using PLINK with reference MAF imputation of
missing data. All scores were standardized based on the mean and standard deviation of

polygenic scores in the reference sample.

To determine whether certain methods are more prone to capturing genetic effects driven
by population stratification, we carried out a sensitivity analysis, in which the first 20
principal components were regressed from the polygenic scores in advance. Principal
components were derived in the 1KG Phase 3 reference, and then projected into UKB and

TEDS samples.

Modelling approaches

15
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For methods that provide polygenic scores based on a range of p-value thresholds
(pT+clump) or shrinkage parameters (lassosum, PRScs, LDPred1, LDPred2), the best
parameter was identified using either 10-fold cross validation (10FCVal) and, if available,
pseudovalidation (PseudoVal). Pseudovalidation was performed using the pseudovalidate
function in lassosum, the fully-Bayesian approach in PRScs, the auto model in LDPred2.
SBayesR and DBSLMM by default estimate the optimal parameters and are therefore
considered pseudovalidation methods. Methods assuming an infinitesimal model were
SBLUP and the infinitesimal models of LDPred1 and 2. In addition to selecting the single
‘best’ parameter for polygenic scoring, elastic net models were derived containing polygenic
scores based on a range of parameters for each method, with elastic net shrinkage
parameters derived using 10-fold cross-validation (Multi-PRS). The number of scores
generated by each method, which were included in the multi-PRS model, are shown in Table
2. In addition, we tested whether combining polygenic scores from all methods in an elastic

net model improved prediction. This combined model is referred to the ‘All’ model.

The optimal parameters (pT, GWAS-effect size shrinkage, elastic net parameters) were
determined based on the largest mean correlation between observed and predicted values
obtained through 10-fold cross validation, and the resulting model was then applied to an
independent test set. Ten-fold cross-validation is liable to overfitting when using penalized
regression as hyperparameters are tuned using the 10-fold cross validation procedure. The
independent test-set validation avoids any overfitting as the independent test sample is not
used for hyperparameter tuning. Ten-fold cross validation was performed using 80% of the
sample and the remaining 20% was used as the independent test sample. Ten-fold cross

validation and test-set validation was carried out using the ‘caret’ R package, setting the

16
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same random seeds prior to subsetting individuals to ensure the same individuals were

included for all polygenic scoring methods.

Evaluating prediction accuracy

Prediction accuracy was evaluated as the Pearson correlation between the observed and
predicted outcome values. Correlation was used as the main test statistic as it is applicable

for both binary and continuous outcomes and standard errors are easily computed as

1 — 12
SE, = —— 1)
n—2

Where SE, is the standard error of the Pearson correlation, 7 is the Pearson correlation, and
n is the sample size. Correlations can be easily converted to other test statistics such as R?
(observed or liability) and area under the curve (AUC) (equations 8 and 11 in [32]), with

relative performance of each method remaining unchanged.

When modelling the polygenic scores, logistic regression was used for predicting binary
outcomes, and linear regression was used for predicting continuous outcomes. If the model
contained only one predictor, a generalized linear model was used. If the model contained
more than one predictor (i.e. the polygenic scores for each p-value threshold or shrinkage
parameter), an elastic net model was applied to avoid overfitting due to the inclusion of

multiple correlated predictors [33].
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The correlation between observed and predicted values of each model were compared
using William’s test (also known as the Hotelling-Williams test) [34] as implemented by the
‘psych’ R package’s ‘paired.r’ function, with the correlation between model predictions of
each method specified to account for their non-independence. A two-sided test was used

when calculating p-values.

The correlation between predicted and observed values were combined across phenotypes
for each polygenic score method. Correlations and their variances (SE?) were aggregated
using the ‘BHHR’ method [35] as implemented in the ‘MAd’ R package’s ‘agg’ function, using
a phenotypic correlation matrix to account for the non-independence of analyses within
each target sample. In addition to averaging results across all phenotypes, we estimate the
average performance of methods within high and low polygenicity phenotypes. The
polygenicity of phenotypes was estimated using AVENGEME [36] (more information in

Supplementary Material).

The percentage difference between methods was calculated as

% dif ference = ((r; — 1ry)/ry) * 100
(2)

Where r; and 1, indicate the Pearson correlation between predicted and observed values

for models 1 and 2, respectively.

Method Runtime Comparison
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To compare the time taken for each polygenic scoring method to process GWAS summary
statistics, we ran each method using GWAS summary statistics restricted to variants on
chromosome 22. No parallel implementations were used in this comparison. Apart from

LDPred1, all the polygenic scoring methods can be implemented in parallel.
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Results

The eight polygenic risk score methods were applied to the target datasets of UKB (11
phenotypes) and TEDS (4 phenotypes), using two reference data sets of 1000 Genomes
(1KG, 503 individuals) and UKB (10,000 individuals). Models were derived using 10-fold
cross-validation, pseudovalidation, infinitesimal PRS and analysis of multiple threshold PRS,

as appropriate for each polygenic risk score method (Table 2).

First, we confirmed that the design of the study was appropriate to detect differences
between the methods using the GWAS summary statistics and test data sets chosen. GWAS
summary statistics had sample sizes of a mean of 50,698 cases and 94,391 controls, and
423698 individuals for continuous traits, with heritability on the liability scale (estimated
from the GWAS) ranging between 0.021 (Multiple Sclerosis) and 0.542 for Crohn’s disease
(Table S1). For pT+clump, with 1KG reference and UKB target samples, the correlations
between observed values (case-control status or measured trait) and the predicted values
from the polygenic risk scoring models ranged from 0.074 (SE=0.010) for Intelligence to
0.299 (SE=0.010) for Height (Table S7). For each disorder or trait, reference panel and
polygenic scoring method, the correlation was significantly different from zero (Tables S6-
S9). These results confirm that the study design - comprising the GWAS, reference panel,
target studies and traits - had sufficient information to capture polygenic prediction, and

that the traits are diverse in polygenic architecture.
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Results were highly concordant across the different target and reference samples used
though the estimates were more precise when using the UKB target sample due to the

increased sample size compared to TEDS (Figure S2-S3).

Effect of reference panel and validation method

All polygenic scoring methods were applied to two reference panels of European ancestry:
503 individuals from the 1,000 Genomes sample, and 10,000 individuals from UKB. Results
were highly similar for both panels (Figure S2-S3). For example, with the larger reference
panel the correlation increased by a mean of 0.0017 in UKB, and 0.006 in TEDS, across traits
and polygenic scoring methods (test-set validation, Table S2-S5; excluding PRScs which used
only the 1,000 Genomes reference panel). Detailed results are reported here only for the
1,000 Genomes (1KG) reference panel, with full results for UKB reference panel in

Supplementary Materials.

Both 10-fold cross validation and test-set validation methods were used in modelling, across
all polygenic risk scoring methods. The 10-fold cross validation results were highly
congruent with test-set validation results (Table 3). Results reported are based on test-set
validation since this method is clearly robust to overfitting when using elastic net models

(see Supplementary Materials for 10-fold cross-validation results).

Overview of polygenic scoring methods by modelling strateqy

The performance for each polygenic scoring method across phenotypes was assessed using
the correlation between observed and fitted values (Figure 2A), and then comparing each

method with a baseline method of pT+clump with 10-fold cross validation using the

21


https://doi.org/10.1101/2020.07.28.224782
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.224782; this version posted February 16, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

difference in correlation (Figure 2B). All methods performed at least as well as pT+clump,
except for SBayesR, which had convergence problems for several of the phenotypes (see
Supplementary Material for full information). These overview results show that for the
pseudovalidation (PseudoVal) and infinitesimal models (Inf) performed less well than
polygenic scores selected through 10-fold cross-validation (10FCVal), and that the prediction
when modelling multiple PRS (multi-PRS) was slightly higher than the 10-fold cross-
validation. Full results for all traits in UKB and TEDS indicate consistency across methods,
with no trait performing unexpectedly well or poorly on any single method (Tables S6-S9;

Figures S4-S7).

Comparison of polygenic scoring methods

A pairwise comparison of polygenic scoring methods was performed for each method
(pT+clump, lassosum, PRScs, SBLUP, SBayesR, LDPred1, LDPred2, DBSLMM, All) and each
model (10-fold cross validation, multi-PRS, pseudovalidation and infinitesimal). Figure 3
shows the difference in correlation (R) within and between methods for UKB outcomes with
1KG reference panel, with p-values for significant differences calculated using the William’s
test results aggregated across outcomes. Full results for TEDS and UKB, and for both

reference panels are given in Tables S10-S13 and Figure S8, and by trait in Tables S14-S17.

When using 10-fold cross validation to identify the optimal parameter, LDPred2, lassosum
and PRScs provided the most predictive polygenic scores in the test sample on average, with
a 16-18% relative improvement (p<8x1071¢) over the 10-fold cross-validated pT+clump
approach. When using 10-fold cross validation, on average LDPred2 provided a small but

nominally significantly improved prediction over lassosum and PRScs (2%, p=0.05).
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Pseudovalidation and infinitesimal models do not require a tuning sample and their results
are therefore described in parallel. Of the methods providing a pseudovalidation and/or
infinitesimal approach (lassosum, PRScs, LDPred, LDPred2, SBLUP, DBSLMM and SBayesR),
PRScs and DBSLMM performed the best on average, providing at least a 10% relative
improvement (p<4x107°) over other pseudovalidation approaches. The PRScs
pseudovalidation approach provided a further significant improvement over DBSLMM, with
an average relative improvement of 4% (p=4x10). Furthermore, the PRScs
pseudovalidation approach was on average only 3% (p-value = 6x10°3) worse than the best
polygenic score identified by 10-fold cross validation for any method. The performance of
lassosum pseudovalidation, the LDPred1 and LDPred?2 infinitesimal models, SBLUP, LDPred2
pseudovalidation and SBayesR was variable across phenotypes, whereas the PRScs
pseudovalidated polygenic score achieved near optimal predication compared to any
method, and always performed better than the best pT+clump polygenic scores as identified
by 10-fold cross validation. The DBSLMM method performance was also relatively stable

across phenotypes.

Modelling multiple polygenic scores based on multiple parameters using an elastic net
consistently outperformed models containing the single best polygenic score as identified
using 10-fold cross validation. The improvement was largest when using pT+clump polygenic
scores (12% relative improvement, p=1x1021), but was also statistically significant for
lassosum (6% relative improvement, 3x1071°), PRScs (2% relative improvement, p=4x10-),
LDPred1 (2% relative improvement, p=4x10~) and LDPred2 (2% relative improvement,

p=3x10"* methods. On average, the ‘All’ method, combining polygenic scores across
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polygenic scoring methods did not provide a statistically significant improvement over the
single best method (multi-PRS lassosum). Elastic net models using non-nested or dense p-
value thresholds showed no improvement over the standard p-value thresholding approach

(Tables S18-519).

The performance of SBayesR was higher when using the larger UKB reference sample
(Figures S2-S3, S9-510), though on average it still performed worse than all other
approaches (Figure S8). SBayesR results based on the UKB reference were similar to those
using the GCTB-provided LD reference (Figures S9-510). The relative performance of
SBayesR varied substantially (Figures 2B, S3, S9-S10). When using the UKB reference, the
variable performance of SBayesR is partly due to a lack of convergence for Height, IBD and
MultiScler, even when restricting variants to P<0.4 as suggested by the methods developers
(Table S20). The SBayesR heritability results for each GWAS when using different

approaches for preparing the summary statistics are shown in Table S20.

The relative performance of all methods and modelling approaches was similar across low
and high polygenicity phenotypes (Figure S11). Infinitesimal model-based polygenic scores
performed better for high polygenicity phenotypes. Estimates of polygenicity for each

phenotype are shown in Table S21.

Controlling for the first 20 genetic principal components did not affect the relative

performance of polygenic scoring methods (Figure S12).

Runtime Comparison
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The runtime of methods to process GWAS summary statistics on chromosome 22 without
parallel implementations varied substantially (Figure S13). The methods (fastest to slowest)
were pt+clump (~3 seconds), DBSLMM and lassosum (~30 seconds), SBLUP (~1 minute),
SBayesR and LDPred (~3-6 minutes), PRScs (~35 minutes), and LDPred2 (~50 minutes). The
number of parameters tested by each method will influence the runtime. For example,
using only one shrinkage parameter for PRScs will take 1/5 of time taken for PRScs to use 5

shrinkage parameters.
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Discussion

This study evaluated a range of polygenic scoring methods across phenotypes representing
a range of genetic architectures and using reference and target sample genotypic data of
different sample sizes. This study shows that, when a tuning sample is available to identify
optimal parameters, more recently developed methods that do not perform LD-based
clumping provide better prediction, with LDPred2, lassosum and PRScs providing a relative
improvement of 16-18% compared to the pT+clump approach. When a tuning sample is not
available, the optimal methods for prediction was PRScs and DBSLMM, providing a >10%
relative improvement over other pseudovalidation and infinitesimal approaches. The PRScs
pseudovalidation method provided a further relative improvement of 4% over the DBSLMM
method. Furthermore, the PRScs pseudovalidation performance was only 3% worse than
the best polygenic scores identified by 10-fold cross validation for any other method. This
study also shows that an elastic net model containing multiple polygenic scores based on a
range of p-value thresholds or shrinkage parameters provides better prediction than the
single best polygenic score as identified by 10-fold cross validation. Modelling multiple
parameters increased prediction by 12% when using the pT+clump approach and 2-6% for
polygenic scoring methods that model LD. Modelling polygenic scores from multiple

methods did not significantly improve prediction over the single best method.

Our study highlighted the performance of SBayesR is highly variable across GWAS summary
statistics and on average does not perform well compared to other methods. In contrast, a
recent preprint comparing polygenic scoring methods using depression and schizophrenia

GWAS reports that SBayesR is the best approach [16]. This apparent discrepancy can be
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explained by our study testing methods across a wider range of GWAS. Indeed, for the one
phenotype tested in both studies (depression), the results are highly concordant, with
SBayesR performing better than other methods when using larger LD-reference datasets.
Our study highlights the importance of validating methods based on GWAS for a range of

phenotypes and from different discovery samples/consortia.

These methods were evaluated within a reference-standardized framework and the results
are likely to be generalizable to a range of settings, including a clinical setting. The improved
transferability of prediction accuracy when using a reference-standardized approach
enables prediction with a known accuracy for a single individual. This is an essential feature
of any predictor as then its prediction can be appropriately considered in relation to other
information about the individual. It is important to consider whether the reference-
standardized approach impacts the predictive utility of the polygenic scores compared to
those derived using target sample specific properties. The use of only HapMap3 variants is
common for polygenic scoring methods as denser sets of variants increase the
computational burden of the analysis and provide only incremental improvements in
prediction [12]. However, denser sets of variants are ultimately likely to be of importance
for optimizing the predictive utility of polygenic scores. The use of reference LD estimates
instead of target sample-specific LD estimates is less likely to impact the predictive utility of
polygenic scores. LD estimates are used to recapitulate LD structure in the GWAS discovery
sample, and there should therefore be no advantage to using target sample specific LD
estimates instead of reference sample LD estimates, unless the target sample better

captures the LD structure in the GWAS discovery sample.
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One major limitation of our study is that it was performed only in studies of European
ancestry since GWAS of other ancestries have insufficient power for polygenic prediction.
Polygenic scoring method comparisons in other ancestries or across ancestries will require
substantial progress in diversifying genetic studies to non-European ancestry. In particular,
it will be important to assess the impact of greater genetic diversity and weaker linkage
disequilibrium in African ancestry populations. These studies are essential if polygenic risk

scores are to be implemented in clinical care, to ensure equity of healthcare.

The clinical implementation of polygenic scores is at an early stage, and we identify five
areas that still require further research. First, this study demonstrates that the reference-
standardized approach provides reliable polygenic score estimates. However, the extent to
which missing genetic variation within target sample data affects the prediction accuracy
needs to be investigated. Furthermore, the extent to which prediction accuracy varies
across individuals from different European ancestral populations needs to be assessed.
Second, this study used the HapMap3 SNP list when deriving polygenic scores, building on
previous research suggesting that these variants are reliably imputed and provide good
coverage of the genome [20]. However, other sets of variants should be explored as denser
coverage of the genome may improve prediction. Third, this study investigates polygenic
scores based on a single discovery GWAS or phenotype. Previous research has shown that
methods which combine evidence across multiple GWAS can improve prediction due to
genetic correlation between traits [37—41]. Further research comparing the predictive utility
of multi-trait polygenic prediction within a reference-standardized framework is required.
Fourth, we present the reference standardized approach as a conceptual framework for

implementing polygenic scores in a clinical setting. However, several additional issues will
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need to be addressed before they can be used in a clinical setting, such as assigning
individuals to the optimal reference population, the presence of admixture, and translating
relative polygenic scores into absolute terms. Finally, integration of functional genomic
annotations has been shown to improve prediction over functionally agnostic polygenic
scoring methods [42]. Comparison of functionally informed methods within a reference-

standardized framework is also required.

In conclusion, this study performed a comprehensive comparison of GWAS summary
statistic-based polygenic scoring methods within a reference-standardized framework using
European ancestry studies. The results provide a useful resource for future research and
endeavors to implement polygenic scores for individual-level prediction. All the code,
rationale and results of this study are available on the GenoPred website (see Web
Resources). This website will continue to document the evaluation of novel genotype-based
prediction methods, providing a valuable community resource for education, research, and
collaboration. Novel polygenic score methods can be rapidly tested against these standard
methods to benchmark performance. This framework should be a valuable tool in the
roadmap of moving polygenic risk scores from research studies to clinical implementation.
Further investigation of methods providing genotype-based prediction within a reference-

standardized framework is needed.
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Web Resources

e LDSC HapMap 3 SNP-list:

https://data.broadinstitute.org/alkesgroup/LDSCORE/w hm3.snplist.bz2

e |LDSC Munge Sumstats:

https://github.com/bulik/Idsc/blob/master/munge sumstats.py

e GCTB LD matrices: https://zenodo.org/record/3350914

e Impute.me: https://impute.me/

e GenoPred: https://opain.github.io/GenoPred

Data and Code Availability

The code used during this study are available at GitHub: https://opain.github.io/GenoPred.

An application is required to access individual-level data for TEDS and UKB.
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Table 1. Sample size of target sample phenotypes after quality control

L. Total No. of
UKB Phenotype Description ] No. of cases
sample size controls
Depression Major depression 50000 25000 25000
Intelligence Fluid intelligence 50000 NA NA
BMI Body Mass Index 50000 NA NA
Height Height 50000 NA NA
T2D Type-2 Diabetes 50000 35112 14888
CAD Coronary Artery Disease 50000 25000 25000
IBD Inflammatory Bowel Disease 50000 46539 3461
MultiScler Multiple Sclerosis 50000 48863 1137
RheuArth Rheumatoid Arthritis 50000 46592 3408
Prostate Cancer Prostate Cancer 50000 47073 2927
Breast Cancer Breast Cancer 50000 41488 8512
TEDS Phenotype
GCSE Mean GCSE scores 7296 NA NA
ADHD ADHD symptoms 7880 NA NA
BMI21 Body Mass Index at age 21 5220 NA NA
Height21 Height at age 21 5455 NA NA
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Table 2. Description of polygenic scoring approaches.

Multiol Pseudo-
ultiple
. P validation/ L. MHC
Method tuning o Software Description Parameters . LD-reference
infinitesimal region
parameters ]
option
LD-based clumping 10 nested p-value thresholds: 1e-8, 1e-6, 1e-4, 1e- Only top SUE e
pT+clump[30] Yes No PLINK and p-value 2,0.1,0.2,0.3,0.4,0.5,1 variant U T U;<B
thresholding Clumping: r?> = 0.1; window = 250kb retained
) 80 s and lambda combinations: s = 0.2, 0.5, 0.9, 1.
Pseudo- Lasso regression- Not EUR 1KG,
lassosum[10] Yes . lassosum lambda = exp(seq(log(0.001), log(0.1),
validation based A excluded EUR 10K UKB
length.out=20))
. . PRScs-
Pseudo- i . 5 global shrinkage parameters (phi) = 1e-6, 1e-4, Not .
PRScs[11] Yes o PRScs Bayesian shrinkage provided EUR
validation le-2, 1, auto excluded
1KG
Infinitesimal Best Linear Unbiased Not EUR 1KG,
SBLUP[9] No . o NA
(only option Prediction excluded EUR 10K UKB
Excluded EUR 1KG,
Pseudo-
L . . (as EUR 10K UKB,
SBayesR[12] No validation (only GCTB Bayesian shrinkage NA
. recommen GCTB-
option) )
ded) provided
L ) . Infinitesimal model and 7 non-zero effect Not EUR 1KG,
LDPred1[8] Yes Infinitesimal ~ LDPred  Bayesian shrinkage .
fractions (p) = 3e-3, 1e-3, 3e-2, 1le-2, 3e-1, 1e-1,1 excluded EUR 10K UKB
Pseudo- Auto, infinitesimal, and grid modes. Grid includes ot SR e
o ,
LDPred2[13] Yes validation and bingsnpr Bayesian Shrinkage 126 combinations of heritability and non-zero
o . excluded EUR 10K UKB
infinitesimal effect fractions (p).
Yes (only , . Not EUR 1KG,
DBSLMM No . DBSLMM Bayesian shrinkage NA
option) excluded EUR 10K UKB
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Note. Default or recommended parameters were used for all methods.
Alassosum lambda values described using R code.
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Table 3. Average test-set correlation between predicted and observed values across phenotypes.

Method Model CrossVal R (SE) IndepVal R (SE)
pT+clump 10FCval 0.155 (0.002) 0.153 (0.004)
pT+clump MultiPRS 0.175 (0.002) 0.174 (0.004)
lassosum 10FCval 0.19 (0.002) 0.183 (0.004)
lassosum MultiPRS 0.199 (0.002) 0.194 (0.004)
lassosum PseudoVal 0.159 (0.002) 0.157 (0.004)
PRScs 10FCVal 0.19 (0.002) 0.183 (0.004)
PRScs MultiPRS 0.194 (0.002) 0.187 (0.004)
PRScs PseudoVal 0.188 (0.002) 0.182 (0.004)
SBLUP Inf 0.162 (0.002) 0.156 (0.004)
SBayesR PseudoVal 0.097 (0.002) 0.095 (0.004)
LDPred1 10FCval 0.178 (0.002) 0.171 (0.004)
LDPred1 MultiPRS 0.181 (0.002) 0.175 (0.004)
LDPred1 Inf 0.163 (0.002) 0.156 (0.004)
LDPred2 10FCval 0.194 (0.002) 0.187 (0.004)
LDPred2 MultiPRS 0.197 (0.002) 0.191 (0.004)
LDPred2 PseudoVval 0.155 (0.002) 0.151 (0.004)
LDPred2 Inf 0.161 (0.002) 0.155 (0.004)
DBSLMM PseudoVval 0.182 (0.002) 0.175 (0.004)
All MultiPRS 0.201 (0.002) 0.196 (0.004)

Note. This table shows results based on the UKB target sample and 1000 genomes reference. 10FCVal = Single
polygenic score based on the optimal parameter as identified using 10-fold cross-validation. Multi-PRS = Elastic
net model containing polygenic scores based on a range of parameters, with elastic net shrinkage parameters
derived using 10-fold cross-validation. PseudoVal = Single polygenic score based on the predicted optimal
parameter as identified using pseudovalidation, which requires no tuning sample, Inf = Single polygenic score
based on infinitesimal model, which requires no tuning sample.
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Figure Legends:

Figure 1. Schematic diagram of reference-standardized polygenic scoring. 1KG = 1000 Genomes;
LDSC = Linkage Disequiibrium Score Regression; MAF = Minor allele Frequency,; Pre-imputed
genotype data = Indicates the observed genotype data has already been imputed; Observed genome-
wide genotype data = Indicate the observed genotype data has not been imputed, and therefore

requires imputation.

Figure 2. Polygenic scoring methods comparison for UKB target sample with 1KG reference. A)
Average test-set correlation between predicted and observed values across phenotypes. B) Average
difference between observed-prediction correlations for the best pT+clump polygenic score and all
other methods. The average difference across phenotypes are shown as diamonds and the difference
for each phenotype shown as transparent circles. SBayesR phenotype-specific correlation differences
<-0.1 are omitted. Shows only results based on the UKB target sample when using the 1KG reference
as other results were highly concordant. Error bars indicate standard error of correlations for each
method. 10FCVal represents a single polygenic score based on the optimal parameter as identified
using 10-fold cross-validation. Multi-PRS represents an elastic net model containing polygenic scores
based on a range of parameters, with elastic net shrinkage parameters derived using 10-fold cross-
validation. PseudoVal represents a single polygenic score based on the predicted optimal parameter
as identified using pseudovalidation, which requires no tuning sample. Inf represents a single

polygenic score based on the infinitesimal model, which requires no tuning sample.

Figure 3. Pairwise comparison between all methods, showing average test-set observed-expected
correlation difference between all methods with significance value. Correlation difference = Test
correlation — Comparison correlation. Red/orange coloring indicates the Test method (shown on Y
axis) performed better than the Comparison method (shown on X axis). Shows only results based on
the UKB target sample when using the 1KG reference as other results were highly concordant.

*=p<0.05. **=p<1x103. ***= p<1x10°. P-values are two-sided. 10FCVal represents a single polygenic
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score based on the optimal parameter as identified using 10-fold cross-validation. Multi-PRS
represents an elastic net model containing polygenic scores based on a range of parameters, with
elastic net shrinkage parameters derived using 10-fold cross-validation. PseudoVal represents a
single polygenic score based on the predicted optimal parameter as identified using
pseudovalidation, which requires no tuning sample. Inf represents a single polygenic score based on

the infinitesimal model, which requires no tuning sample.
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