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ABSTRACT 

Large scale neuroimaging datasets present the possibility of providing normative distributions 

for a wide variety of neuroimaging markers, which would vastly improve the clinical utility of 

these measures. However, a major challenge is our current poor ability to integrate measures 

across different large-scale datasets, due to inconsistencies in imaging and non-imaging 

measures across the different protocols and populations. Here we explore the harmonisation 

of white matter hyperintensity (WMH) measures across two major studies of healthy elderly 

populations, the Whitehall II imaging sub-study and the UK Biobank. We identify pre-

processing strategies that maximise the consistency across datasets and utilise multivariate 

regression to characterise sample differences contributing to study-level differences in WMH 
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variations. We also present a parser to harmonise WMH-relevant non-imaging variables 

across the two datasets. We show that we can provide highly calibrated WMH measures from 

these datasets with: (1) the inclusion of a number of specific standardised processing steps; 

and (2) appropriate modelling of sample differences through the alignment of demographic, 

cognitive and physiological variables. These results open up a wide range of applications for 

the study of WMHs and other neuroimaging markers across extensive databases of clinical 

data. 
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HIGHLIGHTS 

 We harmonised measures of WMHs across two studies on healthy ageing 

 Specific pre-processing strategies can increase comparability across studies 

 Modelling of biological differences is crucial to provide calibrated measures 
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INTRODUCTION 

The increasing availability of brain MRI datasets through multi-centre studies, consortia, and 

data sharing platforms, along with the increased power of computational resources, allows 

for the possibility of merging datasets and achieving unprecedent statistical power (Smith and 

Nichols, 2018). This has massively increased the range of research questions that can now be 

tackled. Moreover, this provides the possibility of generating normative distributions of 

neuroimaging markers, which would vastly improve the clinical utility of these measures. 

However, the increasing use of combined datasets has raised the important issue of ensuring 

that measures are consistent across datasets. The process of harmonisation aims to remove 

non-biological variability related to the measurement process, while preserving the biological 

and especially the clinically-relevant variability present in the data. 

 

In this work we aimed to combine different harmonisation approaches to develop a 

harmonisation pipeline for MRI-derived measures of white matter hyperintensities (WMHs) 

of presumed vascular origin (Wardlaw et al., 2013) on two large datasets related to healthy 

ageing that are part of the Dementias Platform UK (Bauermeister et al., 2020): the Whitehall 

II imaging sub-study (WH) (Filippini et al., 2014) and the UK Biobank (UKB) (Miller et al., 2016). 

The first underwent a scanner upgrade during data collection, and therefore contains data 

acquired on two scanners using the same protocol (Zsoldos et al., 2020). The second is instead 

a dataset that despite being also focused on the aging population used a different scanner, 

protocol, and set of non-imaging variables (demographic, cognitive and physiological) from 

WH. Our goal was to find the best combination of approaches able to reduce differences in 

WMH measures extracted from these datasets. This would help providing a comprehensive 

protocol to successfully reduce biases and promote data integration. 

 

The importance of characterising ageing-associated vascular damage is increasingly 

recognised, since vascular disease contributes to more than half of dementia cases, often in 

conjunction with Alzheimer's disease pathology (Arvanitakis et al., 2016; Debette et al., 2010). 

Among the signs of cerebral small vessel disease (SVD), WMHs are one of the most commonly 

evaluated, but their underlying pathology and clinical impact on cognition is still poorly 

understood (Wardlaw et al., 2013), and possibly affected by age (Zamboni et al., 2019). Being 

able to combine datasets would give further insight on the relationships between WMHs, its 

risk factors and clinical outcomes. This would not only improve statistical power, but also 

enable merging complementary information from datasets such as WH and UKB. For 

example, WH includes detailed longitudinal cognitive and behavioural assessments, while the 

UKB dataset has a bigger sample size and is more generalisable to the population (wider age 

range and more even gender balance than WH). An ability to integrate WMH data across 

these two datasets would open up the ability to gain novel insights into the prognostic value 

of WMHs.  
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While many harmonisation approaches have been developed for T1-weighted (e.g. Fortin et 

al., 2018; Zanadifar et al., 2018) and diffusion MRI (e.g. Fortin et al., 2017; Mirzaalian et al., 

2016), harmonisation approaches for T2-weighted scans and the quantification of WMHs (and 

other lesions) are still lacking, despite the recognition that biases are also present in this 

modality (Shinohara et al., 2017; Guo et al., 2019). Consortia and working groups (Wardlaw 

et al., 2013; Smith et al., 2019) recognised the need to standardise the assessment of SVD and 

proposed a set of standard definitions, acquisition protocols and a framework for developing 

neuroimaging biomarkers of cerebral small vessel disease. The HARmoNising Brain Imaging 

MEthodS for VaScular Contributions to Neurodegeneration (HARNESS) initiative 

(https://harness-neuroimaging.org) also set up web-based repositories of protocols, software 

tools and rating scales to facilitate multi-centre research. While all these resources contribute 

to more standardised assessment of WMHs, what is still currently lacking is a way to make 

quantitative measures truly consistent. 
 

The datasets we selected for this study allow us to test retrospective (i.e. after data collection) 

harmonisation strategies in the presence (WH scanner upgrade) and absence (WH-UKB) of 

prospective (i.e. prior to data collection) harmonisation. Harmonised acquisition protocols are 

commonly done in consortia and multi-centre studies (Jack et al., 2008; Potvin et al., 2019), 

as an agreement on a main set of collection procedures and common measures prior to data 

collection, to facilitate future integration or comparison of data. However, when dealing with 

MRI-derived measures some retrospective harmonisation is still needed. This is because, even 

after careful protocol harmonisation, systematic differences in the images can remain 

(related to scanner vendor, model, non-linearity of imaging gradients, magnetic field 

homogeneity, signal-to-noise ratio etc.) leading to bias in the MRI-derived measures (Kruggel 

et al., 2010; Potvin et al., 2019; Shinohara et al., 2017; Mirzaalian et al., 2016; Guo et al., 

2019). At the image pre-processing level, harmonisation strategies aim to remove the non-

biological variability, leading to more similar images (Mirzaalian et al., 2016; Dewey et al., 

2018), and to design/use analysis tools or pipelines that give consistent performance on 

different datasets and produce well-matched measures (Erus et al., 2018; Zandifar et al., 

2018; Guo et al., 2019). At the analysis level, harmonisation approaches aim to make 

measures consistent across datasets, some also modelling biological variability, so that 

characteristics of imaging site and study are removed from the data (Fortin et al., 2017; Fortin 

et al., 2018; Pomponio 2020). Despite rapid progress, MRI data harmonisation remains a 

challenge. Due to the different nature of the biases involved, a single strategy is unlikely to 

achieve successfully harmonised data (Wachinger et al., 2019; Glocker et al., 2019). 

 

A key element of our project involved increasing the robustness of FSL-BIANCA, a supervised 

classification method for segmenting WMHs (Griffanti et al., 2016). Briefly, BIANCA classifies 

the image voxels based on their intensity and spatial features using the k-nearest neighbour 

(k-NN) algorithm. The intensity features can be extracted from multiple MRI modalities, 

making it a very versatile tool. Being a supervised method, it needs some examples of 
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manually segmented WMHs for training the algorithm. The output image represents the 

probability per voxel of being a WMH and can then be thresholded to obtain the final binary 

mask (see Griffanti et al., 2016 for further details). BIANCA has been tested on vascular, 

neurodegenerative and healthy populations. It achieved excellent performance scores with 

respect to manual annotation and visual ratings and it is also registered among the software 

tools on the HARNESS initiative website (https://software.harness-

neuroimaging.org/harness-software-catalog/bianca.html). 

 

Starting from the WH ‘scanner upgrade scenario’, we explored the effect of processing 

choices that are particularly relevant for harmonisation: the impact of the rater performing 

the manual segmentations used to train BIANCA (likely to be different across datasets), the 

effect of bias field correction (since the distribution of radio frequency (RF) inhomogeneities 

is unique to the scanner), the choice of intensity features used to classify WMHs (which also 

depends on the available modalities for a specific dataset) and the composition of the training 

set for BIANCA (i.e. from which dataset(s) the example segmentations should be taken). We 

then extended the evaluation to the ‘retrospective data merging’ scenario, to harmonise WH 

and UKB. In this case the pipeline also included a non-imaging variables harmonisation step, 

to be able to model the biological variability in WMHs. Finally, based on the optimal settings 

obtained, we propose a set of recommendations for improving WMH comparability across 

datasets. 

 

 

METHODS 
 

Datasets 

The datasets we used in this work are WH and UKB.  

 

The first, described in Filippini et al. (2014), is part of a large longitudinal study, namely the 

Whitehall II Study, that explores the social determinants of health. It involves a sample of 

British civil servants (age range 60-85 years) who were first recruited in 1985 and participated 

in a number of phases of clinical/cognitive assessment. Seven hundred and seventy-four 

participants were selected randomly to receive multi-modal brain MRI scans and a detailed 

cognitive battery at the Oxford Centre for Functional MRI of the Brain (FMRIB) as part of the 

Imaging Sub-study (2012-2016). Out of those, we excluded 18 participants with evident brain 

abnormalities other than WMHs (e.g. tumour, stroke, multiple sclerosis), and 17 due to poor 

quality of the available MRI scans or lack of some of the MRI contrast of interest. As a result, 

the analysis was performed on a total number of 739 subjects, of which 528 (WH1) were 

imaged with a 3T Siemens Verio scanner (SC1) and 211 (WH2) with a 3T Siemens Prisma (SC2). 

Alongside the WH cohort, 5 additional young and healthy participants (age 31 ± 4.9 years, age 

range 26-39 years, 2 males) were also scanned at FMRIB on both SC1 and SC2 (‘traveling 

heads’). Even though these subjects did not have any WMHs, the MRI data allowed us to get 
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additional insight on non-biological sources of variability in the images and test some 

harmonisation approaches.   

 

The second dataset is the UKB imaging study, a sub-study of the UKB prospective 

epidemiological study gathering extensive questionnaires, physical and cognitive measures, 

and biological samples from predominantly healthy participants. The project imaging 

component (Miller et al., 2016), currently ongoing, aims at collecting detailed diagnostic MRI 

scans from 100,000 UKB participants. The sample available at the time of our work included 

14,503 subjects with scans released by January 2019 (age range 50-80 years). Out of those 

with available MRI data, we selected 3,205 subjects that had no missing data in the non-

imaging variables of interest (details below). This allowed us to avoid performing data 

imputation, which could have introduced an additional source of variability, while still having 

a large number of subjects to focus on the methodological goal of imaging data 

harmonisation. Ten further participants were excluded due to other brain abnormalities. The 

resulting UKB dataset was therefore composed of 2̇,295 participants. 

 

Non-imaging variables – In order to model the biological variability in WMH measures across 

datasets, we selected non-imaging variables with a potential link to WMHs. An example of 

such variables is age. It is one of the most important risk factor for WMHs, and WH and UKB 

have only partially overlapping age ranges (WH: 60-85 years; UKB: 50-80 years). Therefore, 

we considered particularly important to take it into account as source of biological variability 

when comparing measures of WMHs across datasets. A total of 33 variables, including 

demographic, clinical and cognitive factors were selected among those available for the WH 

dataset. Subsequently, when performing harmonisation between the WH and UKB datasets, 

we excluded 4 variables due to lack of availability for all participants within the UKB cohort, 

or due to substantial differences in the data collection across the two datasets (e.g. the design 

or administration of certain cognitive tests). The full list of non-imaging variables selected for 

both datasets is presented in Table 1. 

 

MRI data acquisition – Acquisition details for the datasets involved in our analysis are listed 

in Table 2.  

 

For the WH study, two MRI scanners were used, due to the scanner upgrade two-thirds of the 

way through the study: a 3T Siemens Magnetom Verio scanner (SC1) with a 32-channel 

receive head coil (April 2012 – December 2014) and a 3T Siemens Prisma scanner (SC2) with 

a 64-channel receive head-neck coil in the same centre (July 2015 – December 2016). The MRI 

modalities used for WMH segmentation were Fluid Attenuated Inversion Recovery (FLAIR) 

scans, T1-weighed scans and diffusion-weighted scans (dMRI), to derive Fractional Anisotropy 

(FA) maps. The MRI sequence parameters were either identical or closely matched between 

the two scanners. 
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For the UKB dataset, MRI acquisition was carried out using a 3T Siemens Skyra with a 32-

channel receive head coil (full details in Miller et al., 2016). As regards the MRI modalities, for 

the current study we used FLAIR scans and T1-weighed scans. We decided not to include dMRI 

within the WMH quantification pipeline, because the requirement to have 3 usable MRI 

modalities for each subject would have caused the exclusion of a small, yet significant amount 

of data (see (Alfaro-Almagro et al., 2018) for an indication of usable data for each modality). 

In fact, currently released measures of WMHs for UKB are extracted using T1-weighted and 

FLAIR only. Moreover, unlike T1-weighted and FLAIR scans, dMRI with 6 or more directions 

(needed to perform Diffusion Tensor Imaging and generate FA maps) are not very common 

in clinical contexts. Therefore, being able to obtain consistent WMH estimates with common 

sequences would make our approach more widely applicable.  

 

MRI pre-processing. All the available MRI scans underwent pre-processing using FSL v.6.0 

tools (Jenkinson et al., 2012) before being fed to BIANCA for WMH segmentation. T1-

weighted scans were processed using fsl_anat, which performs bias correction, brain 

extraction, and partial-volume tissue segmentation using FAST (Zhang et al., 2001). The sum 

of the volumes for the three tissue classes was used as total brain volume to normalise WMH 

measures. We used an exclusion mask for cortical grey matter and structures that can appear 

hyperintense on FLAIR and for which BIANCA is not currently optimised (putamen, globus 

pallidus, nucleus accumbens, thalamus, brainstem, cerebellum, hippocampus, amygdala) 

(details in (Griffanti et al., 2016)). FLAIR images were brain-extracted using BET (Smith et al., 

2002) and bias field corrected with FAST (Zhang et al., 2001). Images without bias field 

correction were also used to evaluate the effect of this pre-processing step on the WMH 

measures. For WH data, dMRI scans were pre-processed as described in (Filippini et al., 2014) 

and a diffusion tensor model was fit at each voxel to obtain FA maps. 

 

Since BIANCA works in single-subject space, we used FLIRT (Jenkinson et al., 2001) to register 

all the MRI modalities to the FLAIR scan, chosen as reference modality. Then, we masked the 

latter with the exclusion mask derived from the T1-weighted images. The transformation 

between FLAIR and MNI space for each subject was also calculated (using FLIRT) to be used 

by BIANCA to derive the spatial features (MNI coordinates). 

 

As BIANCA requires several parameter choices, we tested the influence of those that are 

particularly relevant for harmonisation, while keeping the others constant. We performed a 

preliminary analysis to assess the best combination of settings that produced consistent 

performances for segmentation accuracy and specificity across datasets. The best settings 

were found to be in line with the suggested parameters in (Griffanti et al., 2016) and 

previously used in studies using BIANCA on the WH dataset (Griffanti et al., 2018). Therefore, 

we fixed the following parameters for BIANCA throughout our study: 2,000 training points 

representing WMH lesions, 10,000 points representing non-lesion voxels, a patch size of 

dimension 3 voxels and a spatial weighting coefficient equal to 2. 
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A subset of manually segmented WMH images was available from each dataset to train 

BIANCA and to evaluate its segmentation performance in a cross-validated manner. The 

segmented data included 24 participants from the WH1 dataset, 24 from the WH2 dataset 

and 12 from the UKB dataset. The 24 subjects from WH1 were manually annotated by two 

raters (R1, R2). Rater 2 repeated their annotation a year later (R2a, R2b) enabling us to assess 

the effects of within- and between-rater variability on the WMH measures. Rater 2 also 

labelled the 24 scans from the WH2 dataset. For UKB we used the manual masks of 12 

subjects used in the released imaging pipeline (Alfaro-Almagro 2018). 

 

Harmonisation pipeline 

During our work we dealt with two scenarios: the first aimed at harmonising the two 

Whitehall imaging sub-studies (WH1 and WH2) representing data before and after the 

scanner upgrade within the same cohort and centre; the second addressed the integration of 

different cohorts (WH and UKB) acquired on different scanners at different centres. The 

different scenarios allowed us to test the effect of different factors affecting data and 

required some changes in the harmonisation pipelines applied. 

 

Scanner upgrade (Whitehall) – We started the analysis with the scanner upgrade scenario 

(WH1 and WH2) that included prospective harmonisation in the study design: the same non-

imaging variables were collected and the MRI protocol was as close as possible for the two 

scanners. Retrospective harmonisation was therefore not needed for the non-imaging data 

but carried out on the images.  

The availability of manual masks from multiple raters, ‘traveling heads’ data and FA maps for 

most of the participants allowed us to study the impact of: (i) the rater performing the manual 

labelling, (ii) the process of bias field correction on FLAIR images, (iii) the composition of the 

dataset used to train BIANCA (training set) and (iv) the inclusion of FA as one of the MRI 

modalities used by the segmentation tool to derive intensity features. We compared one 

option at a time using the metrics described in the Evaluation metrics section, while keeping 

the others fixed, in order to understand how each one could influence the results. We then 

identified optimal pre-processing and analysis strategies to reduce non-biological variability 

across datasets, while retaining or taking into account (modelling) the biological variability. 

 

 Effect of rater: in the training phase, BIANCA requires manually delineated WMH masks, 

which are known to suffer from inter- and intra-rater variability (Guo et al., 2019). We 

wanted to assess whether BIANCA trained with different manual masks (either multiple 

annotations by different raters or repeated annotations by the same rater) generates 

WMH segmentations that are more or less variable than the manual annotations among 

themselves. If BIANCA produced more consistent WMH masks than manual operators, 

the use of this automated segmentation tool would be advisable to obtain more 

consistent results. We evaluated this on data from a single scanner (WH1). We had 

multiple annotations for 24 MRI scans (two raters - R1, R2; and two annotations by R2 one 
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year apart - R2a, R2b - corresponding manual masks M1, M2a, M2b). Between-rater (M1 

vs M2a; M1 vs M2b) and within-rater (M2a vs M2b) agreement was calculated in terms 

of overlap between the manual masks using Dice Similarity Index (DI - see Griffanti et al., 

2016). Each set of ratings was then used to train BIANCA and the automated WMH masks 

(B1, B2a, B2b) were generated using a leave-one-out approach. We then calculated 

between-rater (B1 vs B2a; B1 vs B2b) and within-rater (B2a vs B2b) agreement also on the 

automatically segmented masks using DI. Finally, we compared DI values using paired t-

tests to assess whether consistency within the automatic WMH segmentations was higher 

or lower with respect to consistency within the manually labelled masks. 

 

 Effect of bias field correction: we assessed the impact of bias field correction (BC) in 

multiple ways. One indication of successful harmonisation is that harmonised images 

should be more similar to each other. We evaluated this aspect on the ‘traveling heads’ 

data available for the WH dataset. Corresponding scans from each of the 5 subjects were 

first registered to each other and then resampled into the space half-way between the 

two. We then calculated the cost function (correlation ratio) between the registered 

images as a measure of image similarity that is not influenced by head position (lower cost 

function indicates more similar images). The same procedure was repeated on the bias 

field corrected images. The values of the cost function before and after BC were compared 

with a paired t-test. Secondly, we investigated the effect of BC on BIANCA performance 

(i.e. overlap with manual WMH masks) as described in the Evaluation metrics section. The 

manual rater was R2 for both datasets and the training set for BIANCA was the same (24 

subjects from WH1). We compared the results obtained before and after BC, to test 

whether the adoption of this pre-processing step could provide more consistent results 

across datasets. We then evaluated the effect of BC on the relationship between WMHs 

and age, and in terms of explained variability of the scanner effect in a multivariate 

regression model (see Evaluation metrics for details). 

 

 Effect of training set composition for BIANCA: we compared three different options that 

could be used to train BIANCA when performing WMH segmentation on multiple 

datasets: single-site training (using the same training set for all datasets, with examples 

coming only from one site - 24 subjects from WH1 in our case), site-specific training 

(training BIANCA on each dataset separately) and mixed training (combining examples 

from WH1 and WH2, 24 subjects each, in a single training set to apply to all datasets). As 

before, we exploited several analysis approaches to evaluate which option would lead to 

better harmonised WMH measures. We investigated the effect of each option on: BIANCA 

performance, the relationship between WMHs and age, and the weight of the scanner 

variable in the multivariate regression model. All data were bias field corrected before the 

analysis (see Evaluation metrics for details). 
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 Effect of FA information: as previously mentioned, we did not use FA maps derived from 

dMRI to inform WMH segmentation for the UKB dataset, but FA maps were used in the 

WH dataset. Aiming to ultimately integrate the two datasets, we assessed on WH datasets 

the impact of not using FA as an additional intensity feature for BIANCA. We compared 

the FA inclusion/exclusion cases in terms of BIANCA performance, relationship between 

WMHs and age, and the weight of the scanner variable in the multivariate regression 

model (see Evaluation metrics for details). For testing this option, we only used bias field 

corrected images and fixed BIANCA training set to be mixed (i.e. including examples from 

WH1 and WH2).   

 

Retrospective harmonisation of Whitehall and UK Biobank datasets – We then extended the 

investigation to include data from the UKB cohort. In this case, no prospective harmonisation 

had been performed for imaging or non-imaging variables. The cohorts, despite being aging 

populations, differ in many aspects (see Table 1 for details). Hence, both non-imaging and 

imaging data required harmonisation.  

 

 Non-imaging harmonisation: non-imaging data available for both WH and UKB were 

converted to a common format. The conversion was conducted using the FMRIB 

UKBiobank Normalisation, Parsing And Cleaning Kit (FUNPACK 

https://git.fmrib.ox.ac.uk/fsl/funpack/), a Python library for pre-processing of UKB data 

containing a large number of procedures allowing us to perform various data sanitisation 

and processing steps. We defined a configuration file for FUNPACK, currently available 

online on GitLab (https://issues.dpuk.org/eugeneduff/wmh_harmonisation). It includes 

both built-in rules and new conversion functions that allowed us to obtain non-imaging 

variables expressed in the same units of measurements.  

 

 Imaging data harmonisation – effect of training set composition for BIANCA: for WH-

UKB integration, the manual WMH masks were generated by different raters, bias field 

correction was already performed as part of the automated pre-processing pipeline 

(Alfaro-Almagro et al., 2018) and FA was not used as additional intensity feature. We 

therefore tested whether the use of a specific training set for BIANCA could improve 

harmonisation between UKB and WH, despite different raters providing WMH examples 

and the use of only T1 and FLAIR as intensity features. As in the previous scenario, we 

compared the impact of site-specific and mixed training sets (this time combining 

examples from WH1, WH2 and UBK). Also in this case, the evaluation included comparing 

BIANCA performance, the relationship between WMHs and age, and the weight of the 

scanner variable in the multivariate regression model (see Evaluation metrics for details). 

 

Evaluation metrics – We evaluated the success of harmonisation in several ways. 

First, the harmonised WMH segmentation pipeline should have the same (or as close as 

possible) WMH segmentation performance across datasets. To assess this, we calculated a 
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series of overlap measures: Dice Similarity Index (DI), voxel-level False Positive Ratio (FPR), 

voxel-level False Negative Ratio (FNR), cluster-level FPR, cluster-level FNR (see (Griffanti et 

al., 2016) for details) between manual WMH masks and automatically segmented WMH 

masks (obtained using leave-one-out cross-validation whenever appropriate). We matched 

the number and the approximate lesion load of the manually annotated scans used to 

evaluate the automatic segmentation performance for all datasets (12 subjects for each 

dataset, WH1, WH2, UKB). We then looked at how different these metrics were between 

datasets for each option tested (across-scanner evaluation within option). In the scanner 

upgrade scenario we compared metrics between SC1 and SC2 for each of the following 

options: (A) without BC, single-site training, FA included; (B) with BC, single-site training, FA 

included; (C) with BC, site-specific training, FA included; (D) with BC, mixed training, FA 

included; (E) with BC, mixed training, FA excluded. For the WH-UKB harmonisation we 

compared SC1 vs SC2 vs UKB for the (A) site-specific training and (B) mixed training options 

(both with BC and no FA). 

 

Alongside the harmonisation aim, we also took into account the accuracy of the WMH 

segmentation (since consistent BIANCA performance across datasets does not necessarily 

correspond to accurate performance). Therefore – for each dataset – we compared BIANCA 

performance across different options ((A) vs (B) for bias field, (B) vs (C) vs (D) for training set, 

(D) vs (E) for effect of FA – for the scanner upgrade scenario; (A) vs (B) for training set – for 

the WH-UKB scenario) to investigate whether the adoption of one of them could lead to 

substantial improvements in terms of either segmentation accuracy, sensitivity or specificity 

(within-scanner evaluation across options). 

 

When the number of available options for both the across- and within-subject factors (being 

dataset and analysis option, respectively) was equal to two (as for the rater, bias field, and FA 

assessment) we used two-sample independent t-tests and paired t-tests for statistical 

assessment. When the number of available options was higher than two (as for the training 

set assessment) we first performed a two-way mixed ANOVA test, to test for potential 

interaction between factors and then, if results were significant, we investigated the main 

effect of each factor through separate one-way ANOVA tests.   

 

We then extended the evaluation to the full sample by considering the output of the 

automatic WMH segmentation for all the available subjects (WH1=528, WH2=211, 

UKB=2285), instead of just for those with manual WMH mask. We calculated WMH volumes 

(expressed as % of total brain volume) and compared them across datasets for each option 

of the two scenarios. In doing this we wanted to take sources of biological variability into 

account. Given that age is known to be among the strongest risk factors for WMHs, we started 

by looking at the correlation between WMH volumes and age in our datasets. We 

implemented a one-way ANCOVA test, using WMH volumes as the dependent variable, age 

as the main covariate and scanner/site as the categorical factor. Age was demeaned to avoid 
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multicollinearity and make results more interpretable. With this test we assessed differences 

in terms of slope (interaction between age and scanner) and intercept at mean age (main 

effect of scanner) for each option. Similar regression slopes (no significant interaction) and 

reduced or no volume bias (no significant main effect of scanner) would indicate successful 

harmonisation. 

 

Finally, harmonisation was evaluated by the extent to which it reduced the variation in WMH 

volumes that could be explained by scanner and dataset. We assessed this by examining the 

fit of a linear multivariate model, estimated using Elastic Net (Pedregosa et al., 2011), that 

predicted WMH volumes from non-imaging variables (see Table 1 for details) (including a 

variable associated with scanner/dataset). Well harmonised datasets will have minimal 

variance attributed to the scanner/dataset variables.  

 

 

RESULTS 

 

Scanner upgrade (Whitehall) 

Effect of rater. Overall, BIANCA produced more consistent WMH masks than manual 

operators (Fig. 1). Comparing manual and automatic segmentation procedures in terms of 

between-rater variability (R1 vs R2), we obtained opposite results when considering either 

the first (R2a) or second rating (R2b) from the second rater. The comparison between R1 and 

R2a highlighted a higher agreement (higher DI values) between manual masks (M1 vs M2a) 

than between the corresponding BIANCA output (B1 vs B2a) (Fig. 1.A, p<0.001 paired t-test). 

On the other hand, the comparison between R1 and R2b showed better consistency for 

BIANCA results (B1 vs B2b) than manual annotations (M1 vs M2b) (Fig. 1.B, p<0.001 paired t-

test). It is worth noting that the worst agreements (both between manual masks and BIANCA 

outputs) were observed for subjects characterised by very low WMH loads (dotted lines). For 

within-rater (R2) variability, we observed that BIANCA outputs (B2a vs B2b) had higher 

consistency than manual masks annotated twice by the same operator (M2a vs M2b) (Fig. 

1.C, p<0.001 paired t-test). For details refer to Supplementary Table S1. 

 

– insert figure 1 here – 

 

Effect of bias field correction. Bias field correction (BC) led to increased image similarity, 

when comparing ‘traveling heads’ data from the two WH scanners, as clearly visible from the 

example shown in Fig. 2.A. This was confirmed by a significant decrease in the cost function 

(correlation-ratio) after BC (p<0.001 paired t-test; Fig. 2.B). 

 

– insert figure 2 here – 
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The effects of bias field correction on BIANCA performance are shown in Table 3 and Fig. 3 

(where Fig. 3 displays DI values, while the equivalent plots for the other metrics are reported 

in the Supplementary material). Comparing segmentation performance within scanner, we 

observed a significant increase in the overall segmentation accuracy after BC, with higher DI 

values for both datasets (Fig. 3). Moreover, BC led to a greater level of specificity for the WH2 

dataset, demonstrated by a significant decrease in FPR and cluster-level FPR. For the WH1 

dataset, the DI improvement was accompanied by a decrease of FNR and cluster-level FNR 

values. This was at the expense of an increase in the WH1 FPR and cluster-level FPR. There 

was a significant difference in DI values between WH1 and WH2 after but not before BC 

suggesting worse comparability after BC. However, BC also had a positive impact on FPR 

which were no longer significantly different across-scanners. 

 

We then analysed the correlation between WMH volumes and age to determine the extent 

to which this relationship was affected by the scanner for the two BC options (Fig. 4.A and 

4.B). Results of the one-way ANCOVA tests reported in Table 5 show no significant difference 

when comparing regressions slopes between scanners for both options (p-value=0.782 

before BC; p-value=0.789 after BC). A significant across-scanner difference was instead found 

in the intercepts – in correspondence of the mean age – both before and after BC. However, 

the difference was reduced after BC (p-value<0.001 before BC; p-value=0.023 after BC). 

 

Finally, the implemented Elastic Net model showed that, after BC, the amount of variance in 

WMH volume attributed to the scanner/site of acquisition was lower, passing from second to 

sixth position (Fig. 5.A and 5.B, and Table 6 for specific values).  

 

Effect of training set composition for BIANCA. Overall, our results suggest that the mixed-

training option offers the best trade-off among the explored evaluation metrics, providing 

good and consistent BIANCA performance and consistent WMH volumes.  

 

When investigating the presence of a significant interaction between scanners (WH1/WH2) 

and training options (single-site/site-specific/mixed), a two-way mixed ANOVA test gave 

significant results for all the assessed overlap measures (Table 3). Therefore, we investigated 

the effect of each factor separately, evaluating firstly across-scanner and then within-scanner 

performances. Site-specific training produced the most consistent segmentations with 

respect to across-scanner performance. Between the remaining two options, the mixed 

training showed better consistency with respect to single-site training, with no significant 

WH1-WH2 difference in the cluster-level FPR values. When comparing segmentation 

performance within-scanner, we observed an overall improvement of results from single-site 

to site-specific training for WH2 (for WH1 is the same option as both the single-site and site-

specific training represent 24 subjects from WH1 in this case). The significant improvements 

in DI, FNR and cluster-level FNR were at the only expense of increased FP values. The 

comparison between site-specific and mixed training led to different results for the two 
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scanners, with significantly worse FPR and cluster-level FPR values for mixed training in WH1 

and worse DI, FNR and cluster-level FNR values in WH2. The remaining indicators showed 

improved or unaltered performance with mixed training. When comparing single-site and 

mixed training the results showed a favourable pattern towards the latter. For WH1 we 

observed a significant improvement for both FNR and cluster-level FNR when using mixed 

training, no significant difference in DI, and worse FPR and cluster-level FPR. For WH2, better 

performances were observed using a mixed training for all the indicators except FPR, which 

was not significantly different from the single-site training case.  

 

The results obtained from the one-way ANCOVA tests (Table 5) showed that site-specific 

training led to a significant difference between the age regression slopes for the two scanners 

(p-value=0.003). Using this option also led to the highest volume bias (calculated at the mean 

age) between scanners (Fig. 4.B, 4.C and 4.D). The adoption of a mixed training had a positive 

impact on regression slopes, such that they were no longer significantly different (p-

value=0.107) and also reduced the volume bias (at the mean age) – although it was still 

significant (p-value=0.045). 

 

When site-specific training was used, the weight of the scanner/site variable was greatly 

increased in the multivariate regression model, compared to the single-site option, with 

scanner/site being the variable that explained the greatest amount of variance (Fig. 5.B and 

5.C, and Table 6 for specific values). The adoption of a mixed training instead, reduced the 

amount of variance explained by the scanner/site variable, with the variable moving to the 

ninth position (Fig. 5.D, and Table 6 for specific values).  

 

Effect of FA information. The removal of FA as an additional intensity feature for WMH 

segmentation led to higher consistency between sites, but lower segmentation accuracy. 

 

Without FA there were no significant differences between the WH1 and WH2 datasets in all 

performance metrics. There was a significant decrease in the overall segmentation accuracy 

when excluding FA from the intensity features used by BIANCA, with lower DI performances 

(Fig. 3), and a negative impact on both FNR and cluster-level FNR (worse sensitivity). 

Removing FA also lowered FPR and cluster-level FPR, leading to a greater level of specificity.  

 

For the correlation between WMH volumes and age, results of the one-way ANCOVA tests 

(Table 5) showed that, excluding FA, the difference in slopes remained not significant (p-

value=0.439). The already small volume bias (at mean age) was further decreased (Fig. 4.D 

and 4.E) and, indeed, the difference between intercepts was no longer significant (p-

value=0.869). 
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Extracting WMHs using FLAIR and T1-weighted images only led to a decrease in the variance 

explained by the scanner/site variable, which was no longer present amongst the most 

predictive features (Fig. 5.D and 5.E, and Table 6 for specific values). 

 

– insert table 3 and figures 3, 4, 5 here – 

 

Retrospective harmonisation of Whitehall and UK Biobank datasets  

Non-imaging harmonisation. By applying our configuration file for FUNPACK, we brought all 

the variables into the same units for both datasets. Table 1 shows the format/units that each 

of the selected non-imaging variables were originally acquired with in WH and UKB, as well 

as the harmonised units chosen and the resulting harmonised mean and standard deviation 

values. 

 

Imaging data harmonisation – effect of training set composition for BIANCA. We next 

assessed the impact of different training sets (site-specific and mixed training) on the level of 

harmonisation between the WH and UKB WMH datasets (the single-site training was not 

tested, as it gave the worst results in the scanner upgrade scenario). 

 

Results, relative to BIANCA performance, in terms of Dice Similarity Index (DI) are shown in 

Fig. 6. The equivalent plots for the other metrics are reported in the Supplementary material. 

The two-way mixed ANOVA test highlighted the presence of a significant interaction between 

the scanners (WH1/WH2/UKB) and the training options (site-specific/mixed) for all the 

overlap measures (Table 4). For this reason, we further evaluated the main effect of each 

factor, investigating across- and within- scanner performance separately. Results of the one-

way ANOVA test revealed significant differences for all metrics across scanners when using a 

mixed training. The site-specific training gave more homogeneous results, (non-significant 

FPR and cluster-level FPR). Post-hoc pairwise comparisons revealed no significant difference 

in any overlap metrics between WH1 and WH2 for either of the training options. On the other 

hand, UKB showed a different performance with respect to the other datasets (WH1, WH2), 

using either site-specific or mixed training. Significant differences between WH1 and UKB 

were observed in DI, FNR and cluster-level FNR in the site-specific training case. DI, FNR and 

cluster-level FPR were significantly different in the mixed training case. All overlap metrics 

were significantly different between WH2 and UKB, except FPR and cluster-level FPR using 

site-specific training. Within-scanner comparisons highlighted a more favourable pattern 

towards the site-specific training. In fact, the use of a mixed training dataset led to improved 

segmentation sensitivity only for WH1, with a significant decrease of cluster-level FNR, and 

improved specificity for UKB with lower FPR and cluster-level FPR.   

 

In terms of correlation between WMH volumes and age, we compared results for WH1, WH2 

and UKB (Table 5). With respect to the site-specific case, the adoption of a mixed training led 

to a decrease in the across-scanner difference in regression slopes, even if it still remained 
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significant (p-value=0.005 mixed training; p-value=0.001 site-specific training, one-way 

ANCOVA test). The significant bias (evaluated at the mean age) characterising the site-specific 

case was substantially decreased using a mixed training set (Fig. 7.A and 7.B). Indeed, the 

difference in regression intercepts at mean age was no longer significant (p-value=0.157, one-

way ANCOVA test). 

 

The Elastic Net model showed that the scanner/site was no longer present amongst the most 

predictive features when using mixed training, compared to site-specific training where it 

explained the highest amount of variance in WMH volumes (Fig. 8.A and 8.B, and Table 6 for 

specific values). 

 

– insert table 4 and figures 6, 7, 8 here – 

 

– insert tables 5 and 6 here – 

 

 

DISCUSSION 

In this work we present an analysis of the harmonisation of measures of white matter 

hyperintensities (WMHs) of presumed vascular origin across different large-scale datasets. 

We dealt with data from three scanners across two studies on healthy ageing. The study 

design allowed us to assess two different scenarios: a scanner upgrade (analogous scenario 

to a multi-centre study, involving a single population acquired with the same acquisition 

protocol on two MRI scanners) and a retrospective data merging (two distinct large 

populations acquired with different acquisition protocols on different MRI scanners). Each 

dataset included both imaging and non-imaging data that were exploited to develop 

harmonisation strategies and evaluate the results. We used an automated segmentation tool, 

BIANCA, to extract WMH measures from each imaging dataset and investigated the impact 

of different factors on the comparability of WMH measures: the rater performing manual 

segmentation of the examples used to train BIANCA, the process of bias field correction of 

the FLAIR images, the composition of the dataset used to train BIANCA (training set) and the 

inclusion/exclusion of FA as one of the MRI modalities. We investigated different processing 

strategies aiming to find the combination that led to the most consistent results across 

scanners or studies. We evaluated the success of each strategy looking for the best trade-off 

between consistency and accuracy of segmentation performance, and consistency of WMH 

volumes, after modelling the biological variability in the datasets (age and other non-imaging 

variables related to WMHs).   

 

BIANCA needs to be trained by providing manual WMH segmentations, which are known to 

be affected by inter- and intra-rater variability (Guo et al., 2019). We wanted to assess how 

BIANCA would cope with this source of variability. To this aim we tested if BIANCA trained 

with different manual masks (either multiple annotations by different raters or repeated 
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annotations by the same rater) would produce WMH masks that are more or less consistent 

than manual masks themselves. On data from a single scanner (WH1) we observed that the 

consistency of the manual segmentation of the data has a major impact on the final BIANCA 

outputs. If the manual segmentations provided to BIANCA are sufficiently similar between 

raters/ratings, the automated tool improves the consistency of the output, providing better 

within- and between-rater agreement than the manual raters/ratings themselves. On the 

other hand, if the agreement between manual masks is low, BIANCA results can be even less 

consistent than manual masks. This prompts the need to standardise the definition of WMHs, 

especially in light of the fact that even if an increase in rating consistency is eventually 

achieved, this does not necessarily mean the obtained results are better in terms of accuracy. 

While for other segmentation tasks, e.g. hippocampus segmentation, clear protocols exist for 

manual labelling (Zandifar et al., 2018), there is no such protocol for WMHs. It is also worth 

noting that the lowest agreements (both between manual and automatic results) were 

observed for subjects characterised by a very low WMH load. In these images, WMHs are 

likely to be more difficult to segment because of their less obvious appearance or small size. 

Specific guidelines should therefore aim to clarify these sources of ambiguity. This analysis 

was limited by the relatively small number of ratings available and the range of expertise of 

the raters (R1 neuroimaging researcher, R2 medical student trained and supervised by an 

experienced neurologist). However, the scope of this evaluation was to explore how 

differences in manual ratings can impact a supervised segmentation method like BIANCA. To 

help quantifying the variability caused by manual segmentation we looked at the average 

agreement (DI) range and found that our between- and within-rater agreement is comparable 

with the scan-rescan agreement in WMHs assessed in a previous study (inter-scanner range: 

0.63–0.65; intra-scanner range: 0.63–0.77) (Guo et al., 2019). This suggests that the impact 

of the rater on the final segmentation is comparable to the effect of repeating the acquisition 

using the same settings. 

 

Correcting for bias field had a positive impact on almost all the metrics used for evaluation, 

indicating that, overall, its adoption is crucial to successful harmonisation. We observed 

increased image similarity when comparing ‘traveling heads’ data from the WH scanners, 

showing a clear removal of scanner-related variability in the images. BIANCA performance 

improved after BC, although in terms of consistency of performance between scanners, an 

improvement was only observable when BC was combined with a different strategy for the 

composition of the training dataset, such as BIANCA re-training within each scanner or the 

merging of multiple examples from different scanners (Fig. 3). The successful removal of non-

biological differences with BC was also evident when considering the correlation between 

WMH volumes and age, which showed that BC preserved the relationship with age (slopes 

not significantly different) while causing a decrease in the volume bias in correspondence of 

the mean age. The Elastic Net model confirmed the improved harmonisation with a significant 

decrease in the importance attributed to the scanner/site of acquisition. Bias field correction 

of T2-weighted (and FLAIR) images is, however, not always included in pre-processing 
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pipelines. In this work we specifically assessed the impact of BC on WMH segmentation and 

confirmed that it is beneficial to obtain more consistent image segmentation outputs across 

datasets. 

 

The information provided by dMRI proved to be useful to obtain accurate WMH 

segmentation. When using FA maps as one of the intensity features for BIANCA, the 

performance within-scanner was higher than when using only T1-weighted images and FLAIR. 

However, when using only two modalities, all the overlap measures were more consistent 

across scanners, there were no significant differences in the slope of the regression lines of 

WMH volumes and age, and no significant volume bias (not significant difference in the 

intercepts at the mean age). Furthermore, the scanner was no longer a significant predictor 

of WMH volumes in the Elastic Net model. The decision on whether to use FA would therefore 

depend on the application. While for an accurate segmentation it is useful to include features 

from diffusion-weighted scans, it also constitutes an additional source of variability across 

datasets and scanners, leading to less harmonised WMH measures. Harmonisation of 

diffusion MRI data is currently an active area of research (Fortin et al., 2017; Mirzaalian et al., 

2016), and it is likely that this modality will require specific harmonisation strategies that go 

beyond the scope of this work. Further work in this area will allow integrating DTI-derived 

measures in multimodal analyses while maintaining good consistency of results. Another 

aspect to keep in mind is that FA might not always be available (while T2-FLAIR and T1 scans 

are more commonly acquired), preventing the integration of datasets (or participants within 

a dataset) that do not have all of them available and usable. 

 

Regarding the choice of the composition of the training dataset for BIANCA we started by 

exploring three options in the scanner upgrade scenario. We compared the effect of using the 

same set for all the sites (single site), re-training BIANCA within-scanner (site-specific), or 

merging examples from different scanners (mixed). The first option led to the biggest 

difference in BIANCA performance across datasets and a significant bias in the volumes 

(significantly different intercept at the mean age), although the relationship with age 

remained consistent (non-significant difference in regression slopes, highest amount of 

variance explained by age). On the other hand, the second option provided the highest and 

most consistent BIANCA performance (overlap with manual masks on the subset of subjects 

with manual labels available) but led to the biggest difference in WMH volumes on the whole 

sample (significantly different slopes of the regression lines, significantly different intercept 

at the mean age, highest amount of variance explained by the scanner variable). The results 

observed for the mixed training set (third option) suggest it represents the best trade-off 

between good and consistent BIANCA performance, and consistent WMH volumes. Although 

this could be also due to the fact that more images were used in the mixed training, similar 

results were observed when using the same number of images (12 from each scanner). 

We further compared the best performing options (site-specific vs mixed) when harmonising 

WMH measures between WH and UKB. Using bias field corrected data and FLAIR and T1 as 
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intensity features, the results were similar to the scanner upgrade scenario. While the 

segmentation performance was overall higher in the case of site-specific training, the more 

consistent results were obtained with the mixed training set. 

Also in this case, the choice of the most suitable training set should be made depending on 

the application. When prioritising a more accurate WMH segmentation, a site-specific 

training is likely to give the best performance. When the aim is to compare or merge multiple 

datasets, a mixed training set is more appropriate. 

It is true that either of the above best options would require the effort of generating, or having 

access to, some manual masks and having to re-train BIANCA. Even if the numbers required 

are not high (12 images per dataset proved to be enough), this could still be an unfeasible 

option for some applications. The use of a single training set for multiple datasets would still 

be a valid option, but in light of our results, the recommendation would be to carefully check 

the segmentation accuracy and, when combining the resulting volumes, to consider the use 

of further strategies in the analyses to address potential biases (e.g. additional covariate in 

statistical analyses). The fact that including more examples from different datasets improved 

the results suggests that a promising solution would be to build a larger and more 

representative/generalisable training set, including examples from more scanners/datasets, 

that could be widely used. Towards this, we are publicly sharing our mixed training sets. 

Future work on more datasets should assess if, with a sufficiently large set of examples, a 

single training set is general enough to be able to be successfully applied to new datasets. 

 

An important part of retrospective data merging was also the harmonisation of non-imaging 

variables. Modelling the biological variability is crucial to obtain imaging measurements that 

are well aligned across datasets. The ad-hoc configuration file we created for FUNPACK 

allowed us to obtain matched variables, with the same units across the WH and UKB datasets. 

The configuration file is openly available at 

(https://issues.dpuk.org/eugeneduff/wmh_harmonisation). It is fully customizable, so it can 

be adapted to different datasets and expanded to include more variables and conversion 

rules.  

 

To conclude, we identified processing strategies to maximise the consistency across two large 

datasets, Whitehall II and UK Biobank, for the study of WMHs. We harmonised non-imaging 

variables and proposed a processing pipeline to minimise the effect of non-biological sources 

of difference in the imaging data. The main recommendations emerging from this work are 

the following: 

 use WMH manual masks generated from the same rater whenever possible and 

establish guidelines to maximise consistency of the manual masks; 

 perform bias field correction;  

 use a small set of modalities (T1-weighted and FLAIR), which are more reliably present 

across studies; 
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 train BIANCA on data coming from a mix of different scanners/studies when working 

with more than one dataset. 

We showed that with these steps, and appropriate modelling of sample differences, through 

the alignment of demographic, cognitive and physiological variables, we can provide highly 

consistent WMH measures. These results open up a wide range of applications for the study 

of WMHs and potentially other neuroimaging markers across extensive databases of clinical 

data. 
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FIGURES 

 

Figure 1. Effect of rater, assessed both in terms of between- (A and B) and within-rater variability (C). Each panel displays a comparison of the agreement (measured with Dice Similarity Index) 

between manual masks annotated by the raters (left boxplots) and BIANCA outputs generated with masks from those raters (right boxplot). Solid and dotted lines refer to results obtained on 

subjects characterised, respectively, by high and low WMH load. Legend: R1 = rater 1, R2a = Rater 2, first rating, R2b = rater 2, second rating (1 year apart from the first rating, blind to first 

rating), M = manual, B = BIANCA. 
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Figure 2. Effect of bias field correction (BC) on ‘travelling heads’ data from the WH dataset. (A) example data from 1 subject acquired on both scanners, before and after BC showing improvement 

in image similarity after BC (B) Cost function (correlation ratio) between Scanner1/Scanner2 images of the 5 traveling head participants, calculated before and after BC (*** - p < 0.001). 
 

Figure 3. BIANCA performance – scanner upgrade scenario. Box-plot of the Dice Similarity Index (DI) between BIANCA output and the corresponding manual masks for the different analysis 

options tested during our study (specified on the x axis). All the displayed results were evaluated on a sub-sample of manually segmented subjects (12 for WH1 and 12 for WH2) balanced in 

terms of WMH load and using leave-one-out cross-validation whenever appropriate (details in the main text). 
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Figure 4. Association between WMHs and age – scanner upgrade scenario. Scatter plot of the relationship between WMH volumes (expressed as % of total brain volume, y axis) and age (x 

axis), for WH1 (cyan) and WH2 (purple) data. Regression lines with 95% confidence interval are also displayed. Each plot refers to one of the investigated analysis options: (A) without BC, single-

site training, FA included; (B) with BC, single-site training, FA included; (C) with BC, site-specific training, FA included; (D) with BC, mixed training, FA included; (E) with BC, mixed training, FA 

excluded. Evaluation was conducted on the full sample of data for both datasets (WH1 = 528, WH2 = 211). 

E) Mixed training; BC; FA excluded 

A) WITHOUT BC; SINGLE-SITE TRAINING; FA 
INCLUDED

B) WITH BC; SINGLE-SITE TRAINING; FA INCLUDED

C) WITH BC; SITE-SPECIFIC TRAINING; FA INCLUDED D) WITH BC; MIXED TRAINING; FA INCLUDED

E) WITH BC; MIXED TRAINING; FA EXCLUDED
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Figure 5. Multivariate model – scanner upgrade scenario. Percentage of variance (y axis) explained by non-imaging variables (reported on the x axis) in the linear multivariate model that was 

implemented (Elastic Net). Evaluation was conducted on the full sample of data (WH1 = 528, WH2 = 211). Each plot refers to one of the investigated analysis options: (A) without BC, single-site 

training, FA included; (B) with BC, single-site training, FA included; (C) with BC, site-specific training, FA included; (D) with BC, mixed training, FA included; (E) with BC, mixed training, FA 

excluded. Variable scanner/site (SC) highlighted in red. Values are reported in Table 6 and supplementary table S2. 

A) WITHOUT BC; SINGLE-SITE TRAINING; FA INCLUDED B) WITH BC; SINGLE-SITE TRAINING; FA INCLUDED

C) WITH BC; SITE-SPECIFIC TRAINING; FA INCLUDED D) WITH BC; MIXED TRAINING; FA INCLUDED

E) WITH BC; MIXED TRAINING; FA EXCLUDED
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Figure 6. BIANCA performance – retrospective data merging scenario. Box-plot of the Dice Similarity Index (DI) between BIANCA output and the corresponding manual mask for the different 

analysis options tested during our study (specified on the x axis) All the displayed results were evaluated on a sub-sample of manually segmented subjects (12 for WH1, 12 for WH2 and 12 for 

UKB) balanced in terms of WMH load and using leave-one-out cross-validation. 

 

A) SITE-SPECIFIC TRAINING B) MIXED TRAINING
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Figure 7. Association between WMHs and age – retrospective data merging scenario. Scatter plot of the relationship between WMH volumes (expressed as % of total brain volume, y axis) and 

age (x axis), for WH1 (cyan), WH2 (purple) and UKB (orange) data. Regression lines with 95% confidence interval are also displayed. Each plot refers to one of the investigated analysis options: 

(A) with BC, site-specific training, FA excluded; (B) with BC, mixed training, FA excluded. Evaluation was conducted on the full sample of data for all datasets (WH1 = 528, WH2 = 211, UKB = 

2295).  

 

Figure 8. Multivariate model – retrospective data merging scenario. Percentage of variance (reported on the y axis) explained by non-imaging variables (reported on the x axis) in the linear 

multivariate model that was implemented (Elastic Net). Evaluation was conducted on the full sample of data for all the involved populations (WH1 = 528, WH2 = 211, UKB = 2295). Each plot 

refers to one of the investigated analysis options: (A) with BC, site-specific training, FA excluded; (B) with BC, mixed training, FA excluded. Variable scanner/site (SC) highlighted in red. Values 

are reported in Table 6 and supplementary table S2. 

  

A) SITE-SPECIFIC TRAINING B) MIXED TRAINING
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Table 1. Details of the non-imaging variables selected for our study. 

 Variables Raw Units 
Harmonised Units 

chosen * 
Value harmonised 

  Whitehall UK Biobank  Whitehall UK Biobank  

Demographic Age Years (continuous) Years (integer) Years (integer) 69.89 ± 5.19 61.46 ± 7.13 ** 

 Sex Categorical (binary) Categorical (binary) Categorical (binary) M: 597 (80.78%) M: 1017 (44.31%) ** 

 

Biological Weight kg (continuous) kg (continuous) kg (continuous) 78.49 ± 13.82 74.81 ± 14.67 ** 

Height m (continuous) cm (integer) m (continuous) 1.73 ± 0.08 1.70 ± 0.09 ** 

BMI (Body Mass Index) Kg/m2 (continuous) Kg/m2 (continuous) Kg/m2 (continuous) 26.10 ± 4.10 26.05 ± 4.30  

Systolic blood pressure mmHg (integer) mmHg (integer) mmHg (integer) 141.34 ± 17.42 136.96 ± 19.03 ** 

Diastolic blood Pressure mmHg (integer) mmHg (integer) mmHg (integer) 77.44 ± 10.69 78.11 ± 10.46  

Pulse bpm (integer) bpm (integer) bpm (integer) 67.72 ± 12.09 70.74 ± 12.09 ** 

Hand class Categorical (3 classes) Categorical (4 classes) Categorical (3 classes) 

Right: 655 (88.63%), Left: 

60 (8.12%), Ambidextrous: 

24 (3.25%) 

Right: 2042 (88.98%), 

Left: 213 (9.28%), 

Ambidextrous: 40 

(1.74%) 

* 

 

Socioeconomic Education Years (int) N/A N/A 19.07 ± 2.85 N/A  

 

Health behaviours Moderate physical activity h/week (continuous) 
day/week (integer), 

min/day (integer) 
h/week (continuous) 17.11 ± 27.73 4.28 ± 5.99 ** 

Vigorous physical activity h/week (continuous) min/day (integer) h/week (continuous) 9.39 ± 17.00 1.47 ± 2.27 ** 

Combination of different 

motorial tasks 
h/week (continuous) 

day/week (integer), 

min/day (integer) 
h/week (continuous) 25.11 ± 34.74 5.31 ± 6.78 ** 

Time spent watching TV h/week (continuous) h/day (integer) h/week (integer) 5.59 ± 3.30 19.12 ± 10.23 ** 

Total walking activity h/week (continuous) min/day (integer) h/week (continuous) 10.20 ± 8.17 6.36 ± 6.70 ** 

Sleep duration h/day (continuous) h/day (integer) h/day (integer) 6.92 ± 1.04 7.21 ± 0.96 ** 

Smoker status Categorical (binary) Categorical (4 classes) Categorical (binary) Smoker: 27 (3.65%) Smoker: 66 (2.87%)  
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Cigarette units units/day (integer) units/day (integer) units/day (integer) 0.44 ± 2.79 0.32 ± 2.20  

Alcohol status Categorical (binary) Categorical (4 classes) Categorical (binary) Consumer: 660 (89.67%) 
Consumer: 2214 

(96.47%) 
** 

Alcohol units 
units/month 

(continuous) 

units/day (categorical, 

5 classes), day/week 

(categorical, 5 classes) 

units/month 

(continuous) 
14.71 ± 15.14 5.27 ± 38.97 ** 

 

CVD 

(cardiovascular disease) 

Medications for Cardiovascular 

Disease 
Categorical (binary) Categorical (6 classes) Categorical (binary) Yes: 396 (53.58%) Yes: 230 (10.02%) ** 

History of Cardiovascular 

Disease 
Categorical (binary) Categorical (6 classes) Categorical (binary) Yes: 135 (18.27%) Yes: 449 (19.56%)  

 

General health 

Self-rated health Categorical (4 classes) Categorical (9 classes) Categorical (4 classes) 

Poor: 6 (0.81%), Fair: 54 

(7.32%), Good: 233 

(31.57%), Very 

good/Excellent: 445 

(60.30%) 

Poor: 17 (0.74%), Fair: 

253 (11.02%), Good: 

1431 (62.35%), Very 

good/Excellent: 594 

(25.89%) 

** 

Total number of medications units (integer) units (integer) units (integer) 2.87 ± 2.51 1.61 ± 1.81 ** 

Medications for Blood Pressure Categorical (binary) Categorical (6 classes) Categorical (binary) Yes: 244 (33.02%) Yes: 228 (9.93%) ** 

History of Diabetes Categorical (binary) Categorical (4 classes) Categorical (binary) Yes: 66 (8.93%) Yes: 68 (2.96%) ** 

 

Mental health 

Center for Epidemiologic 

Studies-Depression (CES-D) 

scale 

Categorical (4 classes) Categorical (5 classes) Categorical (4 classes) 

Not at all: 621 (84.15%), 

Several days: 91 (12.33%), 

More than half the days: 21 

(2.84%), Nearly every day: 

5 (0.68%) 

Not at all: 1887 (82.22%), 

Several days: 364 

(15.86%), More than half 

the days: 28 (1.22%), 

Nearly every day: 16 

(0.70%) 

** 

Depression - Medications Categorical (binary) N/A N/A Yes: 31 (4.19%) N/A  

 

Cognitive skills Trail Making Test (TMT) A seconds (integer) seconds (continuous) seconds (integer) 31.00 ± 11.62 37.74 ± 13.46 ** 

Trail Making Test (TMT) B seconds (integer) seconds (continuous) seconds (integer) 67.30 ± 34.04 62.18 ± 22.15 ** 

Digit CODing (DCOD) Correct answers (integer) ~ ~ 62.80 ± 13.22 ~  

Digit Span Backward (DSB) u (integer) u (integer) u (integer) 9.63 ± 2.44 7.06 ± 1.42 ** 

Reaction time ms (continuous) ~ ~ 316.37 ± 73.87 ~  
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For each variable we display the raw units (used at the time of data collection), the units chosen to harmonise the data, and the numerical values for the two cohorts in harmonised units, which 

allowed us to compare the two cohorts. The last column displays the results of the tests (t-test or chi-square, as appropriate) showing non-imaging differences between the two cohorts (* for 

p-values < 0.05 and ** for p-values < 0.01). Variables requiring the application of non-imaging harmonisation strategies are highlighted in grey. Legend: N/A = excluded due to lack of availability 

for all participants within the UK Biobank cohort, ~ = excluded due to substantial differences in the data collection across the two datasets.  

 

 

Table 2. Acquisition details for the three scanners involved in our study. 

Legend: FLAIR, fluid attenuated inversion recovery; MEMPR, Multi-Echo MPRAGE; MPRAGE, Magnetization Prepared Rapid Acquisition Gradient Echo; dMRI, diffusion MRI; EPI, Echo Planar 

Imaging; TR, repetition time; TE, echo time; FoV, field of view; TI, inversion time; PE, Phase Encoding. 

 Whitehall UK Biobank 

 3T Siemens Verio (WH1) 3T Siemens Prisma (WH2) 3T Siemens Skyra (UKB) 

Sequence FLAIR T1 (MEMPR) dMRI (EPI) FLAIR T1 (MPRAGE) dMRI (EPI) FLAIR T1 

TR (ms) 9000 2530 8900 9000 1900 8900 5000 2000 

TE (ms) 73 
1.79/3.65/ 

5.51/7.37 
91.2 73 3.97 91 395.0 2.01 

Flip angle (degrees) 150 7 ----- 150 8 ----- ----- 8 

Voxel dimension 

(mm3) 
0.9x0.9x3 1x1x1 2x2x2 0.4x0.4x3 1x1x1 2x2x2 1.05x1x1 1x1x1 

FoV read (mm) 220 256 192 220 192 192 256 256 

FoV phase (%) 100 100 100 100 100 100 100 100 

Base resolution 256 256 96 256 256 96 256 256 

Phase resolution (%) 100 100 100 100 100 100 100 100 

TI (ms) 2500 1380 ----- 2500 904 ----- 1800 880 

Bandwidth (Hz/Px) 283 651 1680 283 200 1680 781 240 

Orientation Transversal Sagittal Transversal Transversal Transversal Transversal Sagittal Sagittal 

b-value (s/mm2) ----- ----- 1500 ----- ----- 1500 ----- ----- 

Directions (n.) ----- ----- 
60 + 6 b0 (1 

reversed PE) 
----- ----- 

60 + 6 b0 (1 

reversed PE) 
----- ----- 

Acquisition time 4m 14s 6m 12s 9m 56s 4m 14s 5m 31s 10m 41s 5m 52s 4m 54s 
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Table 3. BIANCA performance – scanner upgrade scenario – Summary of all the overlap measures between BIANCA output and the corresponding manual mask, 

calculated for the different analysis options tested in our study (using leave-one-out cross-validation whenever appropriate). Statistical tests performed on data 

to assess the impact of bias field correction, training modalities and FA inclusion/exclusion on the segmentation performance. 

  
 DI FPR FNR cluster-level FPR cluster-level FNR 

  
 WH1 WH2 WH1 WH2 WH1 WH2 WH1 WH2 WH1 WH2 

 

Overlap 

measures 

 

Mean ± std Option A 0.52 ± 0.10 0.59 ± 0.07 0.05 ± 0.04 0.33 ± 0.16 0.63 ± 0.09 0.43 ± 0.08 0.09 ± 0.07 0.69 ± 0.14 0.610.13 0.48 ± 0.11 

Option B 0.75 ± 0.06 0.64 ± 0.03 0.18 ± 0.08 0.22 ± 0.10 0.28 ± 0.09 0.42 ± 0.07 0.33 ± 0.17 0.57 ± 0.18 0.35 ± 0.17 0.47 ± 0.09 

Option C 0.75 ± 0.06 0.73 ± 0.05 0.18 ± 0.08 0.26 ± 0.12 0.28 ± 0.09 0.24 ± 0.08 0.33 ± 0.17 0.53 ± 0.18 0.35 ± 0.17 0.35 ± 0.12 

Option D 0.76 ± 0.05 0.71 ± 0.04 0.22 ± 0.09 0.23 ± 0.11 0.23 ± 0.08 0.30 ± 0.07 0.42 ± 0.16 0.52 ± 0.17 0.28 ± 0.15 0.40 ± 0.10 

Option E 0.48 ± 0.11 0.45 ± 0.06 0.07 ± 0.05 0.09 ± 0.09 0.66 ± 0.09 0.68 ± 0.06 0.15 ± 0.09 0.17 ± 0.10 0.55 ± 0.14 0.63 ± 0.10 

 

Effect of Bias 

field correction 

 

Between-subject 

analysis: 

independent t-test 

 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 

Option A 0.061 < 0.001 *** < 0.001 *** < 0.001 *** 0.020 * 

Option B < 0.001 *** 0.259 < 0.001 *** 0.004 ** 0.049 * 

 

Within-subject 

analysis: paired t-

test 

Option A vs 

Option B 
< 0.001 *** 0.035 * < 0.001 *** 0.002 ** < 0.001 *** 0.531 < 0.001 *** < 0.001 *** < 0.001 *** 0.306 

 

Effect of 

Training 

modalities 

 

 

Training - Scanner 

interaction: two-

ways mixed ANOVA 

test 

 < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** 

 

Main effect of the 

Scanner (between-

subject factor): 

independent t-test 

 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 

Option B < 0.001 *** 0.259 < 0.001 *** 0.004 ** 0.049 * 

Option C 0.433 0.071 0.272 0.013 ** 0.998 

Option D 0.046 * 0.861 0.049 * 0.178 0.049 * 

 

Main effect of the 

Training (within-
 0.466 < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** 0.036 * < 0.001 *** < 0.001 *** 
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subject factor): 

repeated measures 

one-way ANOVA 

test (F-test and 

post-hocs) 

Option B vs 

Option C 
--------- < 0.001 *** --------- < 0.001 *** --------- < 0.001 *** --------- 0.45 --------- < 0.001 *** 

Option B vs 

Option D  
--------- < 0.001 *** < 0.001 *** 0.309 < 0.001 *** < 0.001 *** < 0.001 *** 0.045 * < 0.001 *** < 0.001 *** 

Option C vs 

Option D  
--------- 0.044 * < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** 1 < 0.001 *** 0.002 ** 

 

Effect of FA 

inclusion/exclusi

on 

 

Between-subject 

analysis: 

independent t-test 

 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 

Option D 0.046 * 0.861 0.049 * 0.178 0.049 * 

Option E 0.462 0.461 0.484 0.565 0.134 

 

Within-subject 

analysis: paired t-

test 

Option D vs 

Option E 
< 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** 

Options tested in our study are: (A) without BC, single-site training, FA included; (B) with BC, single-site training, FA included; (C) with BC, site-specific training, FA included; (D) with BC, mixed 

training, FA included; (E) with BC, mixed training, FA excluded. For each metric we reported: (i) mean ± std values relative to all datasets involved in our study (WH1, WH2); (ii) impact exerted 

by bias field correction on BIANCA performance (between- and within-subject analysis performed using independent and paired t-tests respectively); (iii) impact exerted by training modalities 

on BIANCA performance (two-ways mixed ANOVA test assessing the interaction between training and scanner (between- and within-subject factors respectively); when the interaction term 

resulted being significant we decomposed the analysis in two separate components assessing the main effect of training (repeated measures one-way ANOVA test evaluating differences 

between the investigated options for each dataset involved in our study; F-test and post-hoc comparisons are displayed) and the main effect of scanner (independent t-test evaluating differences 

between the investigated dataset for each option involved in our analysis); (iv) impact exerted by FA inclusion/exclusion on BIANCA performance (between- and within-subject analysis performed 

using independent and paired t-tests respectively). Results relative to the statistical tests are all reported in terms of p-values: * (< 0.05), ** (< 0.01), *** (< 0.001). Legend: DI = Dice Similarity 

Index, FPR = False Positive Ratio, FNR = False Negative Ratio, WH1 = Whitehall dataset 1, WH2 = Whitehall dataset 2. 

 

 

Table 4. BIANCA performance – retrospective scenario – Summary of all the overlap measures between BIANCA output and the corresponding manual mask, 

calculated for the different analysis options tested in our study (using leave-one-out cross-validation). Statistical tests performed on data to assess the impact 

of training modalities on the segmentation performance. 

 
  DI FPR FNR cluster-level FPR cluster-level FNR 

 
  WH1 WH2 UKB WH1 WH2 UKB WH1 WH2 UKB WH1 WH2 UKB WH1 WH2 UKB 

  

Mean ± std 
Option A 

 

0.47 ± 

0.12 

0.55 ± 

0.06 

0.76 ± 

0.07 

0.05 ± 

0.04 

0.10 ± 

0.08 

0.07 ± 

0.04 

0.67 ± 

0.10 

0.58 ± 

0.08 

0.34 ± 

0.09 

0.10 ± 

0.08 

0.20 ± 

0.14 

0.15 ± 

0.12 

0.61 ± 

0.13 

0.57 ± 

0.11 

0.41 ± 

0.16 
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Overlap 

measures 
Option B 

0.51 ± 

0.10 

0.46 ± 

0.05 

0.62 ± 

0.09 

0.08 ± 

0.05 

0.10 ± 

0.09 

0.02 ± 

0.01 

0.63 ± 

0.09 

0.68 ± 

0.05 

0.52 ± 

0.10 

0.17 ± 

0.11 

0.18 ± 

0.09 

0.07 ± 

0.07 

0.54 ± 

0.14 

0.62 ± 

0.10 

0.45 ± 

0.16 
 

Effect of 

Training 

Training - 

Scanner 

interaction: 

two-ways 

mixed ANOVA 

test 

 < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** < 0.001 *** 

 

Main effect of 

the Scanner 

(between-

subject factor): 

one-way 

ANOVA test (F-

test and post-

hocs) 

Option A  

 
< 0.001 

*** 
 0.199  

< 0.001 

*** 
 0.138  

0.003 

** 
 

WH1 vs 

WH2 

WH1 vs 

UKB 

WH2 vs 

UKB 

------------------------------------ 

WH1 vs 

WH2 

WH1 vs 

UKB 

WH2 vs 

UKB 

------------------------------------ 

WH1 vs 

WH2 

WH1 vs 

UKB 

WH2 vs 

UKB 

0.122 
< 0.001 

*** 

< 0.001 

*** 
0.155 

< 0.001 

*** 

< 0.001 

*** 
0.835 

0.004 

** 
0.019 * 

Option B 

< 0.001 *** 0.027 * < 0.001 *** 0.018 * 0.019 * 

WH1 vs 

WH2 

WH1 vs 

UKB 

WH2 vs 

UKB 

WH1 vs 

WH2 

WH1 vs 

UKB 

WH2 vs 

UKB 

WH1 vs 

WH2 

WH1 vs 

UKB 

WH2 vs 

UKB 

WH1 vs 

WH2 

WH1 vs 

UKB 

WH2 vs 

UKB 

WH1 vs 

WH2 

WH1 vs 

UKB 

WH2 vs 

UKB 

0.343 
0.009 

** 

< 0.001 

*** 
0.800 0.110 0.027 * 0.410 0.013 * 

< 0.001 

*** 
0.987 0.043 * 0.030 * 0.318 0.298 0.014 * 

Main effect of 

the Training 

(within-subject 

factor): paired 

t-test 

Option A 

vs Option 

B 

0.255 
< 0.001 

*** 

< 0.001 

*** 

< 0.001 

*** 
0.672 

< 0.001 

*** 
0.171 

< 0.001 

*** 

< 0.001 

*** 

0.008 

** 
0.304 0.010 * 

< 0.001 

*** 

< 0.001 

*** 

< 0.001 

*** 

Options tested in our study are: (A) with BC, site-specific training, FA excluded; (B) with BC, mixed training, FA excluded. For each metric we reported: (i) mean ± std values relative to all datasets 

involved in our study (WH1, WH2, UKB); (ii) impact exerted by training modalities on BIANCA performance (two-ways mixed ANOVA test assessing the interaction between training and scanner 

(between- and within-subject factors respectively); when the interaction term resulted being significant we decomposed the analysis in two separate components assessing the main effect of 

training (paired t-tests evaluating differences between the investigated options for each dataset involved in our study) and the main effect of scanner (one-way ANOVA tests evaluating 

differences between the investigated dataset for each option involved in our analysis; F-test and post-hoc comparisons are displayed). Results relative to the statistical tests are all reported in 

terms of p-values: * (< 0.05), ** (< 0.01), *** (< 0.001). Legend: DI = Dice Similarity Index, FPR = False Positive Ratio, FNR = False Negative Ratio, WH1 = Whitehall dataset 1, WH2 = Whitehall 

dataset 2. 
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Table 5. Analysis of the relationship between WMH volumes and age – scanner upgrade and retrospective scenario – Summary of the one-way ANCOVA test. 

  Scanner upgrade scenario Retrospective scenario 

  Analysis option A Analysis option B Analysis option C Analysis option D Analysis option E Analysis option A Analysis option B 

Slope 
F(1, 735) = 0.076, p = 

0.782 

F(1, 735) = 0.071, p = 

0.789 

F(1, 735) = 8.845, p = 

0.003 ** 

F(1, 735) = 2.597, p = 

0.107 

F(1, 735) = 0.598, p = 

0.439 

F(1, 3030) = 10.284, p = 

0.001 *** 

F(1, 3030) = 7.756, p = 

0.005 ** 

Intercept 
F(1, 735) = 44.755, p < 

0.001 *** 

F(1, 735) = 5.130, p = 

0.023 * 

F(1, 735) = 90.179, p < 

0.001 *** 

F(1, 735) = 4.049, p < 

0.045 * 

F(1, 735) = 0.027, p = 

0.869 

F(1, 3030) = 704.145, p < 

0.001 *** 

F(1, 3030) = 2.036, p = 

0.154 

Options tested in our study are: (I) for the scanner upgrade scenario: (A) without BC, single-site training, FA included; (B) with BC, single-site training, FA included; (C) with BC, site-specific 

training, FA included; (D) with BC, mixed training, FA included; (E) with BC, mixed training, FA excluded; (II) for the retrospective scenario: (A) with BC, site-specific training, FA excluded; (B) with 

BC, mixed training, FA excluded. The one-way ANCOVA test evaluated across-scanner differences (between WH1/WH2) characterising regression slope (interaction between age and scanner) 

and intercept at mean age (main effect of scanner) in the linear model relating WMH% to age. Results are reported in terms of F(df)- and p-values: * (< 0.05), ** (< 0.01), *** (< 0.001).  

 

 

Table 6. Elastic Net Regression performance – scanner upgrade and retrospective scenario – Summary of the results in terms of variance explained by the 

model and by a subset of the features which constituted it. Variables scanner and age are here reported for the different analysis options tested in our study. 

Full details of all the other features are provided in supplementary table S2. 

  Scanner upgrade scenario Retrospective scenario 

  Analysis option A Analysis option B Analysis option C Analysis option D Analysis option E Analysis option A Analysis option B 

Variance explained by the model  0.243 0.161 0.207 0.173 0.125 0.244 0.133 

 

Variance 

explained by the 

features 

Age 0.060 0.043 0.048 0.054 0.034 0.052 0.064 

Scanner 0.046 0.012 0.066 0.008 0.000 0.117 0.000 

Options tested in our study are: (I) for the scanner upgrade scenario: (A) without BC, single-site training, FA included; (B) with BC, single-site training, FA included; (C) with BC, site-specific 

training, FA included; (D) with BC, mixed training, FA included; (E) with BC, mixed training, FA excluded; (II) for the retrospective scenario: (A) with BC, site-specific training, FA excluded; (B) with 

BC, mixed training, FA excluded. The amount of WMH variance explained by the model is calculated using the R-squared coefficient. The amount of WMH variance explained by the features is 

reported in the lowest part of the table for the most relevant variables. 
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