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ABSTRACT

Large scale neuroimaging datasets present the possibility of providing normative distributions
for a wide variety of neuroimaging markers, which would vastly improve the clinical utility of
these measures. However, a major challenge is our current poor ability to integrate measures
across different large-scale datasets, due to inconsistencies in imaging and non-imaging
measures across the different protocols and populations. Here we explore the harmonisation
of white matter hyperintensity (WMH) measures across two major studies of healthy elderly
populations, the Whitehall Il imaging sub-study and the UK Biobank. We identify pre-
processing strategies that maximise the consistency across datasets and utilise multivariate
regression to characterise sample differences contributing to study-level differences in WMH
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variations. We also present a parser to harmonise WMH-relevant non-imaging variables
across the two datasets. We show that we can provide highly calibrated WMH measures from
these datasets with: (1) the inclusion of a number of specific standardised processing steps;
and (2) appropriate modelling of sample differences through the alignment of demographic,
cognitive and physiological variables. These results open up a wide range of applications for
the study of WMHSs and other neuroimaging markers across extensive databases of clinical
data.
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HIGHLIGHTS
e We harmonised measures of WMHSs across two studies on healthy ageing
e Specific pre-processing strategies can increase comparability across studies
e Modelling of biological differences is crucial to provide calibrated measures
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INTRODUCTION

The increasing availability of brain MRI datasets through multi-centre studies, consortia, and
data sharing platforms, along with the increased power of computational resources, allows
for the possibility of merging datasets and achieving unprecedent statistical power (Smith and
Nichols, 2018). This has massively increased the range of research questions that can now be
tackled. Moreover, this provides the possibility of generating normative distributions of
neuroimaging markers, which would vastly improve the clinical utility of these measures.
However, the increasing use of combined datasets has raised the important issue of ensuring
that measures are consistent across datasets. The process of harmonisation aims to remove
non-biological variability related to the measurement process, while preserving the biological
and especially the clinically-relevant variability present in the data.

In this work we aimed to combine different harmonisation approaches to develop a
harmonisation pipeline for MRI-derived measures of white matter hyperintensities (WMHs)
of presumed vascular origin (Wardlaw et al., 2013) on two large datasets related to healthy
ageing that are part of the Dementias Platform UK (Bauermeister et al., 2020): the Whitehall
Ilimaging sub-study (WH) (Filippini et al., 2014) and the UK Biobank (UKB) (Miller et al., 2016).
The first underwent a scanner upgrade during data collection, and therefore contains data
acquired on two scanners using the same protocol (Zsoldos et al., 2020). The second is instead
a dataset that despite being also focused on the aging population used a different scanner,
protocol, and set of non-imaging variables (demographic, cognitive and physiological) from
WH. Our goal was to find the best combination of approaches able to reduce differences in
WMH measures extracted from these datasets. This would help providing a comprehensive
protocol to successfully reduce biases and promote data integration.

The importance of characterising ageing-associated vascular damage is increasingly
recognised, since vascular disease contributes to more than half of dementia cases, often in
conjunction with Alzheimer's disease pathology (Arvanitakis et al., 2016; Debette et al., 2010).
Among the signs of cerebral small vessel disease (SVD), WMHs are one of the most commonly
evaluated, but their underlying pathology and clinical impact on cognition is still poorly
understood (Wardlaw et al., 2013), and possibly affected by age (Zamboni et al., 2019). Being
able to combine datasets would give further insight on the relationships between WMHs, its
risk factors and clinical outcomes. This would not only improve statistical power, but also
enable merging complementary information from datasets such as WH and UKB. For
example, WH includes detailed longitudinal cognitive and behavioural assessments, while the
UKB dataset has a bigger sample size and is more generalisable to the population (wider age
range and more even gender balance than WH). An ability to integrate WMH data across
these two datasets would open up the ability to gain novel insights into the prognostic value
of WMHs.
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While many harmonisation approaches have been developed for T1-weighted (e.g. Fortin et
al., 2018; Zanadifar et al., 2018) and diffusion MRI (e.g. Fortin et al., 2017; Mirzaalian et al.,
2016), harmonisation approaches for T2-weighted scans and the quantification of WMHs (and
other lesions) are still lacking, despite the recognition that biases are also present in this
modality (Shinohara et al., 2017; Guo et al., 2019). Consortia and working groups (Wardlaw
etal., 2013; Smith et al., 2019) recognised the need to standardise the assessment of SVD and
proposed a set of standard definitions, acquisition protocols and a framework for developing
neuroimaging biomarkers of cerebral small vessel disease. The HARmoNising Brain Imaging
MEthodS for VaScular Contributions to Neurodegeneration (HARNESS) initiative
(https://harness-neuroimaging.org) also set up web-based repositories of protocols, software
tools and rating scales to facilitate multi-centre research. While all these resources contribute
to more standardised assessment of WMHs, what is still currently lacking is a way to make
guantitative measures truly consistent.

The datasets we selected for this study allow us to test retrospective (i.e. after data collection)
harmonisation strategies in the presence (WH scanner upgrade) and absence (WH-UKB) of
prospective (i.e. prior to data collection) harmonisation. Harmonised acquisition protocols are
commonly done in consortia and multi-centre studies (Jack et al., 2008; Potvin et al., 2019),
as an agreement on a main set of collection procedures and common measures prior to data
collection, to facilitate future integration or comparison of data. However, when dealing with
MRI-derived measures some retrospective harmonisation is still needed. This is because, even
after careful protocol harmonisation, systematic differences in the images can remain
(related to scanner vendor, model, non-linearity of imaging gradients, magnetic field
homogeneity, signal-to-noise ratio etc.) leading to bias in the MRI-derived measures (Kruggel
et al., 2010; Potvin et al., 2019; Shinohara et al., 2017; Mirzaalian et al., 2016; Guo et al.,
2019). At the image pre-processing level, harmonisation strategies aim to remove the non-
biological variability, leading to more similar images (Mirzaalian et al., 2016; Dewey et al.,
2018), and to design/use analysis tools or pipelines that give consistent performance on
different datasets and produce well-matched measures (Erus et al., 2018; Zandifar et al.,
2018; Guo et al., 2019). At the analysis level, harmonisation approaches aim to make
measures consistent across datasets, some also modelling biological variability, so that
characteristics of imaging site and study are removed from the data (Fortin et al., 2017; Fortin
et al.,, 2018; Pomponio 2020). Despite rapid progress, MRI data harmonisation remains a
challenge. Due to the different nature of the biases involved, a single strategy is unlikely to
achieve successfully harmonised data (Wachinger et al., 2019; Glocker et al., 2019).

A key element of our project involved increasing the robustness of FSL-BIANCA, a supervised
classification method for segmenting WMHSs (Griffanti et al., 2016). Briefly, BIANCA classifies
the image voxels based on their intensity and spatial features using the k-nearest neighbour
(k-NN) algorithm. The intensity features can be extracted from multiple MRI modalities,
making it a very versatile tool. Being a supervised method, it needs some examples of
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manually segmented WMHs for training the algorithm. The output image represents the
probability per voxel of being a WMH and can then be thresholded to obtain the final binary
mask (see Griffanti et al., 2016 for further details). BIANCA has been tested on vascular,
neurodegenerative and healthy populations. It achieved excellent performance scores with
respect to manual annotation and visual ratings and it is also registered among the software
tools on the HARNESS initiative website (https://software.harness-
neuroimaging.org/harness-software-catalog/bianca.html).

Starting from the WH ‘scanner upgrade scenario’, we explored the effect of processing
choices that are particularly relevant for harmonisation: the impact of the rater performing
the manual segmentations used to train BIANCA (likely to be different across datasets), the
effect of bias field correction (since the distribution of radio frequency (RF) inhomogeneities
is unique to the scanner), the choice of intensity features used to classify WMHs (which also
depends on the available modalities for a specific dataset) and the composition of the training
set for BIANCA (i.e. from which dataset(s) the example segmentations should be taken). We
then extended the evaluation to the ‘retrospective data merging’ scenario, to harmonise WH
and UKB. In this case the pipeline also included a non-imaging variables harmonisation step,
to be able to model the biological variability in WMHSs. Finally, based on the optimal settings
obtained, we propose a set of recommendations for improving WMH comparability across
datasets.

METHODS

Datasets
The datasets we used in this work are WH and UKB.

The first, described in Filippini et al. (2014), is part of a large longitudinal study, namely the
Whitehall Il Study, that explores the social determinants of health. It involves a sample of
British civil servants (age range 60-85 years) who were first recruited in 1985 and participated
in a number of phases of clinical/cognitive assessment. Seven hundred and seventy-four
participants were selected randomly to receive multi-modal brain MRI scans and a detailed
cognitive battery at the Oxford Centre for Functional MRI of the Brain (FMRIB) as part of the
Imaging Sub-study (2012-2016). Out of those, we excluded 18 participants with evident brain
abnormalities other than WMHs (e.g. tumour, stroke, multiple sclerosis), and 17 due to poor
quality of the available MRI scans or lack of some of the MRI contrast of interest. As a result,
the analysis was performed on a total number of 739 subjects, of which 528 (WH1) were
imaged with a 3T Siemens Verio scanner (SC1) and 211 (WH2) with a 3T Siemens Prisma (SC2).
Alongside the WH cohort, 5 additional young and healthy participants (age 31 + 4.9 years, age
range 26-39 years, 2 males) were also scanned at FMRIB on both SC1 and SC2 (‘traveling
heads’). Even though these subjects did not have any WMHs, the MRI data allowed us to get
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additional insight on non-biological sources of variability in the images and test some
harmonisation approaches.

The second dataset is the UKB imaging study, a sub-study of the UKB prospective
epidemiological study gathering extensive questionnaires, physical and cognitive measures,
and biological samples from predominantly healthy participants. The project imaging
component (Miller et al., 2016), currently ongoing, aims at collecting detailed diagnostic MRI
scans from 100,000 UKB participants. The sample available at the time of our work included
14,503 subjects with scans released by January 2019 (age range 50-80 years). Out of those
with available MRI data, we selected 3,205 subjects that had no missing data in the non-
imaging variables of interest (details below). This allowed us to avoid performing data
imputation, which could have introduced an additional source of variability, while still having
a large number of subjects to focus on the methodological goal of imaging data
harmonisation. Ten further participants were excluded due to other brain abnormalities. The
resulting UKB dataset was therefore composed of 2,295 participants.

Non-imaging variables — In order to model the biological variability in WMH measures across

datasets, we selected non-imaging variables with a potential link to WMHs. An example of
such variables is age. It is one of the most important risk factor for WMHs, and WH and UKB
have only partially overlapping age ranges (WH: 60-85 years; UKB: 50-80 years). Therefore,
we considered particularly important to take it into account as source of biological variability
when comparing measures of WMHs across datasets. A total of 33 variables, including
demographic, clinical and cognitive factors were selected among those available for the WH
dataset. Subsequently, when performing harmonisation between the WH and UKB datasets,
we excluded 4 variables due to lack of availability for all participants within the UKB cohort,
or due to substantial differences in the data collection across the two datasets (e.g. the design
or administration of certain cognitive tests). The full list of non-imaging variables selected for
both datasets is presented in Table 1.

MRI data acquisition — Acquisition details for the datasets involved in our analysis are listed
in Table 2.

For the WH study, two MRI scanners were used, due to the scanner upgrade two-thirds of the
way through the study: a 3T Siemens Magnetom Verio scanner (SC1) with a 32-channel
receive head coil (April 2012 — December 2014) and a 3T Siemens Prisma scanner (SC2) with
a 64-channel receive head-neck coil in the same centre (July 2015 — December 2016). The MRI
modalities used for WMH segmentation were Fluid Attenuated Inversion Recovery (FLAIR)
scans, T1-weighed scans and diffusion-weighted scans (dMRI), to derive Fractional Anisotropy
(FA) maps. The MRI sequence parameters were either identical or closely matched between
the two scanners.
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For the UKB dataset, MRI acquisition was carried out using a 3T Siemens Skyra with a 32-
channel receive head coil (full details in Miller et al., 2016). As regards the MRI modalities, for
the current study we used FLAIR scans and T1-weighed scans. We decided not to include dMRI
within the WMH quantification pipeline, because the requirement to have 3 usable MRI
modalities for each subject would have caused the exclusion of a small, yet significant amount
of data (see (Alfaro-Almagro et al., 2018) for an indication of usable data for each modality).
In fact, currently released measures of WMHSs for UKB are extracted using T1-weighted and
FLAIR only. Moreover, unlike T1-weighted and FLAIR scans, dMRI with 6 or more directions
(needed to perform Diffusion Tensor Imaging and generate FA maps) are not very common
in clinical contexts. Therefore, being able to obtain consistent WMH estimates with common
sequences would make our approach more widely applicable.

MRI pre-processing. All the available MRI scans underwent pre-processing using FSL v.6.0
tools (Jenkinson et al., 2012) before being fed to BIANCA for WMH segmentation. T1-
weighted scans were processed using fsl_anat, which performs bias correction, brain

extraction, and partial-volume tissue segmentation using FAST (Zhang et al., 2001). The sum
of the volumes for the three tissue classes was used as total brain volume to normalise WMH
measures. We used an exclusion mask for cortical grey matter and structures that can appear
hyperintense on FLAIR and for which BIANCA is not currently optimised (putamen, globus
pallidus, nucleus accumbens, thalamus, brainstem, cerebellum, hippocampus, amygdala)
(details in (Griffanti et al., 2016)). FLAIR images were brain-extracted using BET (Smith et al.,
2002) and bias field corrected with FAST (Zhang et al., 2001). Images without bias field
correction were also used to evaluate the effect of this pre-processing step on the WMH
measures. For WH data, dMRI scans were pre-processed as described in (Filippini et al., 2014)
and a diffusion tensor model was fit at each voxel to obtain FA maps.

Since BIANCA works in single-subject space, we used FLIRT (Jenkinson et al., 2001) to register
all the MRI modalities to the FLAIR scan, chosen as reference modality. Then, we masked the
latter with the exclusion mask derived from the T1-weighted images. The transformation
between FLAIR and MNI space for each subject was also calculated (using FLIRT) to be used
by BIANCA to derive the spatial features (MNI coordinates).

As BIANCA requires several parameter choices, we tested the influence of those that are
particularly relevant for harmonisation, while keeping the others constant. We performed a
preliminary analysis to assess the best combination of settings that produced consistent
performances for segmentation accuracy and specificity across datasets. The best settings
were found to be in line with the suggested parameters in (Griffanti et al., 2016) and
previously used in studies using BIANCA on the WH dataset (Griffanti et al., 2018). Therefore,
we fixed the following parameters for BIANCA throughout our study: 2,000 training points
representing WMH lesions, 10,000 points representing non-lesion voxels, a patch size of
dimension 3 voxels and a spatial weighting coefficient equal to 2.
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A subset of manually segmented WMH images was available from each dataset to train
BIANCA and to evaluate its segmentation performance in a cross-validated manner. The
segmented data included 24 participants from the WH1 dataset, 24 from the WH2 dataset
and 12 from the UKB dataset. The 24 subjects from WH1 were manually annotated by two
raters (R1, R2). Rater 2 repeated their annotation a year later (R2a, R2b) enabling us to assess
the effects of within- and between-rater variability on the WMH measures. Rater 2 also
labelled the 24 scans from the WH2 dataset. For UKB we used the manual masks of 12
subjects used in the released imaging pipeline (Alfaro-Almagro 2018).

Harmonisation pipeline

During our work we dealt with two scenarios: the first aimed at harmonising the two
Whitehall imaging sub-studies (WH1 and WH2) representing data before and after the
scanner upgrade within the same cohort and centre; the second addressed the integration of
different cohorts (WH and UKB) acquired on different scanners at different centres. The
different scenarios allowed us to test the effect of different factors affecting data and
required some changes in the harmonisation pipelines applied.

Scanner upgrade (Whitehall) — We started the analysis with the scanner upgrade scenario

(WH1 and WH2) that included prospective harmonisation in the study design: the same non-
imaging variables were collected and the MRI protocol was as close as possible for the two
scanners. Retrospective harmonisation was therefore not needed for the non-imaging data
but carried out on the images.

The availability of manual masks from multiple raters, ‘traveling heads’ data and FA maps for
most of the participants allowed us to study the impact of: (i) the rater performing the manual
labelling, (ii) the process of bias field correction on FLAIR images, (iii) the composition of the
dataset used to train BIANCA (training set) and (iv) the inclusion of FA as one of the MRI
modalities used by the segmentation tool to derive intensity features. We compared one
option at a time using the metrics described in the Evaluation metrics section, while keeping
the others fixed, in order to understand how each one could influence the results. We then
identified optimal pre-processing and analysis strategies to reduce non-biological variability
across datasets, while retaining or taking into account (modelling) the biological variability.

e Effect of rater: in the training phase, BIANCA requires manually delineated WMH masks,
which are known to suffer from inter- and intra-rater variability (Guo et al., 2019). We
wanted to assess whether BIANCA trained with different manual masks (either multiple
annotations by different raters or repeated annotations by the same rater) generates
WMH segmentations that are more or less variable than the manual annotations among
themselves. If BIANCA produced more consistent WMH masks than manual operators,
the use of this automated segmentation tool would be advisable to obtain more
consistent results. We evaluated this on data from a single scanner (WH1). We had
multiple annotations for 24 MRI scans (two raters - R1, R2; and two annotations by R2 one
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year apart - R2a, R2b - corresponding manual masks M1, M2a, M2b). Between-rater (M1
vs M2a; M1 vs M2b) and within-rater (M2a vs M2b) agreement was calculated in terms
of overlap between the manual masks using Dice Similarity Index (DI - see Griffanti et al.,
2016). Each set of ratings was then used to train BIANCA and the automated WMH masks
(B1, B2a, B2b) were generated using a leave-one-out approach. We then calculated
between-rater (B1 vs B2a; B1 vs B2b) and within-rater (B2a vs B2b) agreement also on the
automatically segmented masks using DI. Finally, we compared DI values using paired t-
tests to assess whether consistency within the automatic WMH segmentations was higher
or lower with respect to consistency within the manually labelled masks.

o Effect of bias field correction: we assessed the impact of bias field correction (BC) in
multiple ways. One indication of successful harmonisation is that harmonised images
should be more similar to each other. We evaluated this aspect on the ‘traveling heads’
data available for the WH dataset. Corresponding scans from each of the 5 subjects were
first registered to each other and then resampled into the space half-way between the
two. We then calculated the cost function (correlation ratio) between the registered
images as a measure of image similarity that is not influenced by head position (lower cost
function indicates more similar images). The same procedure was repeated on the bias
field corrected images. The values of the cost function before and after BC were compared
with a paired t-test. Secondly, we investigated the effect of BC on BIANCA performance
(i.e. overlap with manual WMH masks) as described in the Evaluation metrics section. The
manual rater was R2 for both datasets and the training set for BIANCA was the same (24
subjects from WH1). We compared the results obtained before and after BC, to test
whether the adoption of this pre-processing step could provide more consistent results
across datasets. We then evaluated the effect of BC on the relationship between WMHs
and age, and in terms of explained variability of the scanner effect in a multivariate
regression model (see Evaluation metrics for details).

o Effect of training set composition for BIANCA: we compared three different options that
could be used to train BIANCA when performing WMH segmentation on multiple
datasets: single-site training (using the same training set for all datasets, with examples
coming only from one site - 24 subjects from WH1 in our case), site-specific training
(training BIANCA on each dataset separately) and mixed training (combining examples
from WH1 and WH2, 24 subjects each, in a single training set to apply to all datasets). As
before, we exploited several analysis approaches to evaluate which option would lead to
better harmonised WMH measures. We investigated the effect of each option on: BIANCA
performance, the relationship between WMHs and age, and the weight of the scanner
variable in the multivariate regression model. All data were bias field corrected before the
analysis (see Evaluation metrics for details).
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o Effect of FA information: as previously mentioned, we did not use FA maps derived from
dMRI to inform WMH segmentation for the UKB dataset, but FA maps were used in the
WH dataset. Aiming to ultimately integrate the two datasets, we assessed on WH datasets
the impact of not using FA as an additional intensity feature for BIANCA. We compared
the FA inclusion/exclusion cases in terms of BIANCA performance, relationship between
WMHs and age, and the weight of the scanner variable in the multivariate regression
model (see Evaluation metrics for details). For testing this option, we only used bias field
corrected images and fixed BIANCA training set to be mixed (i.e. including examples from
WH1 and WH2).

Retrospective harmonisation of Whitehall and UK Biobank datasets — We then extended the
investigation to include data from the UKB cohort. In this case, no prospective harmonisation

had been performed for imaging or non-imaging variables. The cohorts, despite being aging
populations, differ in many aspects (see Table 1 for details). Hence, both non-imaging and
imaging data required harmonisation.

¢ Non-imaging harmonisation: non-imaging data available for both WH and UKB were
converted to a common format. The conversion was conducted using the FMRIB
UKBiobank Normalisation, Parsing And Cleaning Kit (FUNPACK
https://git.fmrib.ox.ac.uk/fsl/funpack/), a Python library for pre-processing of UKB data

containing a large number of procedures allowing us to perform various data sanitisation
and processing steps. We defined a configuration file for FUNPACK, currently available
online on GitLab (https://issues.dpuk.org/eugeneduff/wmh harmonisation). It includes

both built-in rules and new conversion functions that allowed us to obtain non-imaging
variables expressed in the same units of measurements.

¢ Imaging data harmonisation — effect of training set composition for BIANCA: for WH-
UKB integration, the manual WMH masks were generated by different raters, bias field
correction was already performed as part of the automated pre-processing pipeline
(Alfaro-Almagro et al., 2018) and FA was not used as additional intensity feature. We
therefore tested whether the use of a specific training set for BIANCA could improve
harmonisation between UKB and WH, despite different raters providing WMH examples
and the use of only T1 and FLAIR as intensity features. As in the previous scenario, we
compared the impact of site-specific and mixed training sets (this time combining
examples from WH1, WH2 and UBK). Also in this case, the evaluation included comparing
BIANCA performance, the relationship between WMHs and age, and the weight of the
scanner variable in the multivariate regression model (see Evaluation metrics for details).

Evaluation metrics — We evaluated the success of harmonisation in several ways.

First, the harmonised WMH segmentation pipeline should have the same (or as close as
possible) WMH segmentation performance across datasets. To assess this, we calculated a
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series of overlap measures: Dice Similarity Index (DI), voxel-level False Positive Ratio (FPR),
voxel-level False Negative Ratio (FNR), cluster-level FPR, cluster-level FNR (see (Griffanti et
al., 2016) for details) between manual WMH masks and automatically segmented WMH
masks (obtained using leave-one-out cross-validation whenever appropriate). We matched
the number and the approximate lesion load of the manually annotated scans used to
evaluate the automatic segmentation performance for all datasets (12 subjects for each
dataset, WH1, WH2, UKB). We then looked at how different these metrics were between
datasets for each option tested (across-scanner evaluation within option). In the scanner
upgrade scenario we compared metrics between SC1 and SC2 for each of the following
options: (A) without BC, single-site training, FA included; (B) with BC, single-site training, FA
included; (C) with BC, site-specific training, FA included; (D) with BC, mixed training, FA
included; (E) with BC, mixed training, FA excluded. For the WH-UKB harmonisation we
compared SC1 vs SC2 vs UKB for the (A) site-specific training and (B) mixed training options
(both with BC and no FA).

Alongside the harmonisation aim, we also took into account the accuracy of the WMH
segmentation (since consistent BIANCA performance across datasets does not necessarily
correspond to accurate performance). Therefore — for each dataset — we compared BIANCA
performance across different options ((A) vs (B) for bias field, (B) vs (C) vs (D) for training set,
(D) vs (E) for effect of FA — for the scanner upgrade scenario; (A) vs (B) for training set — for
the WH-UKB scenario) to investigate whether the adoption of one of them could lead to
substantial improvements in terms of either segmentation accuracy, sensitivity or specificity
(within-scanner evaluation across options).

When the number of available options for both the across- and within-subject factors (being
dataset and analysis option, respectively) was equal to two (as for the rater, bias field, and FA
assessment) we used two-sample independent t-tests and paired t-tests for statistical
assessment. When the number of available options was higher than two (as for the training
set assessment) we first performed a two-way mixed ANOVA test, to test for potential
interaction between factors and then, if results were significant, we investigated the main
effect of each factor through separate one-way ANOVA tests.

We then extended the evaluation to the full sample by considering the output of the
automatic WMH segmentation for all the available subjects (WH1=528, WH2=211,
UKB=2285), instead of just for those with manual WMH mask. We calculated WMH volumes
(expressed as % of total brain volume) and compared them across datasets for each option
of the two scenarios. In doing this we wanted to take sources of biological variability into
account. Given that age is known to be among the strongest risk factors for WMHs, we started
by looking at the correlation between WMH volumes and age in our datasets. We
implemented a one-way ANCOVA test, using WMH volumes as the dependent variable, age
as the main covariate and scanner/site as the categorical factor. Age was demeaned to avoid
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multicollinearity and make results more interpretable. With this test we assessed differences
in terms of slope (interaction between age and scanner) and intercept at mean age (main
effect of scanner) for each option. Similar regression slopes (no significant interaction) and
reduced or no volume bias (no significant main effect of scanner) would indicate successful
harmonisation.

Finally, harmonisation was evaluated by the extent to which it reduced the variation in WMH
volumes that could be explained by scanner and dataset. We assessed this by examining the
fit of a linear multivariate model, estimated using Elastic Net (Pedregosa et al., 2011), that
predicted WMH volumes from non-imaging variables (see Table 1 for details) (including a
variable associated with scanner/dataset). Well harmonised datasets will have minimal
variance attributed to the scanner/dataset variables.

RESULTS

Scanner upgrade (Whitehall)

Effect of rater. Overall, BIANCA produced more consistent WMH masks than manual
operators (Fig. 1). Comparing manual and automatic segmentation procedures in terms of
between-rater variability (R1 vs R2), we obtained opposite results when considering either
the first (R2a) or second rating (R2b) from the second rater. The comparison between R1 and
R2a highlighted a higher agreement (higher DI values) between manual masks (M1 vs M2a)
than between the corresponding BIANCA output (B1 vs B2a) (Fig. 1.A, p<0.001 paired t-test).
On the other hand, the comparison between R1 and R2b showed better consistency for
BIANCA results (B1 vs B2b) than manual annotations (M1 vs M2b) (Fig. 1.B, p<0.001 paired t-
test). It is worth noting that the worst agreements (both between manual masks and BIANCA
outputs) were observed for subjects characterised by very low WMH loads (dotted lines). For
within-rater (R2) variability, we observed that BIANCA outputs (B2a vs B2b) had higher
consistency than manual masks annotated twice by the same operator (M2a vs M2b) (Fig.
1.C, p<0.001 paired t-test). For details refer to Supplementary Table S1.

—insert figure 1 here —

Effect of bias field correction. Bias field correction (BC) led to increased image similarity,
when comparing ‘traveling heads’ data from the two WH scanners, as clearly visible from the
example shown in Fig. 2.A. This was confirmed by a significant decrease in the cost function

(correlation-ratio) after BC (p<0.001 paired t-test; Fig. 2.B).

—insert figure 2 here —
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The effects of bias field correction on BIANCA performance are shown in Table 3 and Fig. 3
(where Fig. 3 displays DI values, while the equivalent plots for the other metrics are reported
in the Supplementary material). Comparing segmentation performance within scanner, we
observed a significant increase in the overall segmentation accuracy after BC, with higher DI
values for both datasets (Fig. 3). Moreover, BC led to a greater level of specificity for the WH2
dataset, demonstrated by a significant decrease in FPR and cluster-level FPR. For the WH1
dataset, the DI improvement was accompanied by a decrease of FNR and cluster-level FNR
values. This was at the expense of an increase in the WH1 FPR and cluster-level FPR. There
was a significant difference in DI values between WH1 and WH2 after but not before BC
suggesting worse comparability after BC. However, BC also had a positive impact on FPR
which were no longer significantly different across-scanners.

We then analysed the correlation between WMH volumes and age to determine the extent
to which this relationship was affected by the scanner for the two BC options (Fig. 4.A and
4.B). Results of the one-way ANCOVA tests reported in Table 5 show no significant difference
when comparing regressions slopes between scanners for both options (p-value=0.782
before BC; p-value=0.789 after BC). A significant across-scanner difference was instead found
in the intercepts — in correspondence of the mean age — both before and after BC. However,
the difference was reduced after BC (p-value<0.001 before BC; p-value=0.023 after BC).

Finally, the implemented Elastic Net model showed that, after BC, the amount of variance in
WMH volume attributed to the scanner/site of acquisition was lower, passing from second to
sixth position (Fig. 5.A and 5.B, and Table 6 for specific values).

Effect of training set composition for BIANCA. Overall, our results suggest that the mixed-
training option offers the best trade-off among the explored evaluation metrics, providing
good and consistent BIANCA performance and consistent WMH volumes.

When investigating the presence of a significant interaction between scanners (WH1/WH?2)
and training options (single-site/site-specific/mixed), a two-way mixed ANOVA test gave
significant results for all the assessed overlap measures (Table 3). Therefore, we investigated
the effect of each factor separately, evaluating firstly across-scanner and then within-scanner
performances. Site-specific training produced the most consistent segmentations with
respect to across-scanner performance. Between the remaining two options, the mixed
training showed better consistency with respect to single-site training, with no significant
WH1-WH2 difference in the cluster-level FPR values. When comparing segmentation
performance within-scanner, we observed an overall improvement of results from single-site
to site-specific training for WH2 (for WH1 is the same option as both the single-site and site-
specific training represent 24 subjects from WH1 in this case). The significant improvements
in DI, FNR and cluster-level FNR were at the only expense of increased FP values. The
comparison between site-specific and mixed training led to different results for the two
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scanners, with significantly worse FPR and cluster-level FPR values for mixed training in WH1
and worse DI, FNR and cluster-level FNR values in WH2. The remaining indicators showed
improved or unaltered performance with mixed training. When comparing single-site and
mixed training the results showed a favourable pattern towards the latter. For WH1 we
observed a significant improvement for both FNR and cluster-level FNR when using mixed
training, no significant difference in DI, and worse FPR and cluster-level FPR. For WH2, better
performances were observed using a mixed training for all the indicators except FPR, which
was not significantly different from the single-site training case.

The results obtained from the one-way ANCOVA tests (Table 5) showed that site-specific
training led to a significant difference between the age regression slopes for the two scanners
(p-value=0.003). Using this option also led to the highest volume bias (calculated at the mean
age) between scanners (Fig. 4.B, 4.C and 4.D). The adoption of a mixed training had a positive
impact on regression slopes, such that they were no longer significantly different (p-
value=0.107) and also reduced the volume bias (at the mean age) — although it was still
significant (p-value=0.045).

When site-specific training was used, the weight of the scanner/site variable was greatly
increased in the multivariate regression model, compared to the single-site option, with
scanner/site being the variable that explained the greatest amount of variance (Fig. 5.B and
5.C, and Table 6 for specific values). The adoption of a mixed training instead, reduced the
amount of variance explained by the scanner/site variable, with the variable moving to the
ninth position (Fig. 5.D, and Table 6 for specific values).

Effect of FA information. The removal of FA as an additional intensity feature for WMH
segmentation led to higher consistency between sites, but lower segmentation accuracy.

Without FA there were no significant differences between the WH1 and WH2 datasets in all
performance metrics. There was a significant decrease in the overall segmentation accuracy
when excluding FA from the intensity features used by BIANCA, with lower DI performances
(Fig. 3), and a negative impact on both FNR and cluster-level FNR (worse sensitivity).
Removing FA also lowered FPR and cluster-level FPR, leading to a greater level of specificity.

For the correlation between WMH volumes and age, results of the one-way ANCOVA tests
(Table 5) showed that, excluding FA, the difference in slopes remained not significant (p-
value=0.439). The already small volume bias (at mean age) was further decreased (Fig. 4.D
and 4.E) and, indeed, the difference between intercepts was no longer significant (p-
value=0.869).
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Extracting WMHs using FLAIR and T1-weighted images only led to a decrease in the variance
explained by the scanner/site variable, which was no longer present amongst the most
predictive features (Fig. 5.D and 5.E, and Table 6 for specific values).

—insert table 3 and figures 3, 4, 5 here —

Retrospective harmonisation of Whitehall and UK Biobank datasets

Non-imaging harmonisation. By applying our configuration file for FUNPACK, we brought all
the variables into the same units for both datasets. Table 1 shows the format/units that each
of the selected non-imaging variables were originally acquired with in WH and UKB, as well
as the harmonised units chosen and the resulting harmonised mean and standard deviation
values.

Imaging data harmonisation — effect of training set composition for BIANCA. We next
assessed the impact of different training sets (site-specific and mixed training) on the level of
harmonisation between the WH and UKB WMH datasets (the single-site training was not
tested, as it gave the worst results in the scanner upgrade scenario).

Results, relative to BIANCA performance, in terms of Dice Similarity Index (DI) are shown in
Fig. 6. The equivalent plots for the other metrics are reported in the Supplementary material.
The two-way mixed ANOVA test highlighted the presence of a significant interaction between
the scanners (WH1/WH2/UKB) and the training options (site-specific/mixed) for all the
overlap measures (Table 4). For this reason, we further evaluated the main effect of each
factor, investigating across- and within- scanner performance separately. Results of the one-
way ANOVA test revealed significant differences for all metrics across scanners when using a
mixed training. The site-specific training gave more homogeneous results, (non-significant
FPR and cluster-level FPR). Post-hoc pairwise comparisons revealed no significant difference
in any overlap metrics between WH1 and WH2 for either of the training options. On the other
hand, UKB showed a different performance with respect to the other datasets (WH1, WH2),
using either site-specific or mixed training. Significant differences between WH1 and UKB
were observed in DI, FNR and cluster-level FNR in the site-specific training case. DI, FNR and
cluster-level FPR were significantly different in the mixed training case. All overlap metrics
were significantly different between WH2 and UKB, except FPR and cluster-level FPR using
site-specific training. Within-scanner comparisons highlighted a more favourable pattern
towards the site-specific training. In fact, the use of a mixed training dataset led to improved
segmentation sensitivity only for WH1, with a significant decrease of cluster-level FNR, and
improved specificity for UKB with lower FPR and cluster-level FPR.

In terms of correlation between WMH volumes and age, we compared results for WH1, WH2
and UKB (Table 5). With respect to the site-specific case, the adoption of a mixed training led
to a decrease in the across-scanner difference in regression slopes, even if it still remained
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significant (p-value=0.005 mixed training; p-value=0.001 site-specific training, one-way
ANCOVA test). The significant bias (evaluated at the mean age) characterising the site-specific
case was substantially decreased using a mixed training set (Fig. 7.A and 7.B). Indeed, the
difference in regression intercepts at mean age was no longer significant (p-value=0.157, one-
way ANCOVA test).

The Elastic Net model showed that the scanner/site was no longer present amongst the most
predictive features when using mixed training, compared to site-specific training where it
explained the highest amount of variance in WMH volumes (Fig. 8.A and 8.B, and Table 6 for
specific values).

—insert table 4 and figures 6, 7, 8 here —

—insert tables 5 and 6 here —

DISCUSSION

In this work we present an analysis of the harmonisation of measures of white matter
hyperintensities (WMHSs) of presumed vascular origin across different large-scale datasets.
We dealt with data from three scanners across two studies on healthy ageing. The study
design allowed us to assess two different scenarios: a scanner upgrade (analogous scenario
to a multi-centre study, involving a single population acquired with the same acquisition
protocol on two MRI scanners) and a retrospective data merging (two distinct large
populations acquired with different acquisition protocols on different MRI scanners). Each
dataset included both imaging and non-imaging data that were exploited to develop
harmonisation strategies and evaluate the results. We used an automated segmentation tool,
BIANCA, to extract WMH measures from each imaging dataset and investigated the impact
of different factors on the comparability of WMH measures: the rater performing manual
segmentation of the examples used to train BIANCA, the process of bias field correction of
the FLAIR images, the composition of the dataset used to train BIANCA (training set) and the
inclusion/exclusion of FA as one of the MRI modalities. We investigated different processing
strategies aiming to find the combination that led to the most consistent results across
scanners or studies. We evaluated the success of each strategy looking for the best trade-off
between consistency and accuracy of segmentation performance, and consistency of WMH
volumes, after modelling the biological variability in the datasets (age and other non-imaging
variables related to WMHs).

BIANCA needs to be trained by providing manual WMH segmentations, which are known to
be affected by inter- and intra-rater variability (Guo et al., 2019). We wanted to assess how
BIANCA would cope with this source of variability. To this aim we tested if BIANCA trained
with different manual masks (either multiple annotations by different raters or repeated
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annotations by the same rater) would produce WMH masks that are more or less consistent
than manual masks themselves. On data from a single scanner (WH1) we observed that the
consistency of the manual segmentation of the data has a major impact on the final BIANCA
outputs. If the manual segmentations provided to BIANCA are sufficiently similar between
raters/ratings, the automated tool improves the consistency of the output, providing better
within- and between-rater agreement than the manual raters/ratings themselves. On the
other hand, if the agreement between manual masks is low, BIANCA results can be even less
consistent than manual masks. This prompts the need to standardise the definition of WMHs,
especially in light of the fact that even if an increase in rating consistency is eventually
achieved, this does not necessarily mean the obtained results are better in terms of accuracy.
While for other segmentation tasks, e.g. hippocampus segmentation, clear protocols exist for
manual labelling (Zandifar et al., 2018), there is no such protocol for WMHs. It is also worth
noting that the lowest agreements (both between manual and automatic results) were
observed for subjects characterised by a very low WMH load. In these images, WMHs are
likely to be more difficult to segment because of their less obvious appearance or small size.
Specific guidelines should therefore aim to clarify these sources of ambiguity. This analysis
was limited by the relatively small number of ratings available and the range of expertise of
the raters (R1 neuroimaging researcher, R2 medical student trained and supervised by an
experienced neurologist). However, the scope of this evaluation was to explore how
differences in manual ratings can impact a supervised segmentation method like BIANCA. To
help quantifying the variability caused by manual segmentation we looked at the average
agreement (DI) range and found that our between- and within-rater agreement is comparable
with the scan-rescan agreement in WMHs assessed in a previous study (inter-scanner range:
0.63—0.65; intra-scanner range: 0.63-0.77) (Guo et al., 2019). This suggests that the impact
of the rater on the final segmentation is comparable to the effect of repeating the acquisition
using the same settings.

Correcting for bias field had a positive impact on almost all the metrics used for evaluation,
indicating that, overall, its adoption is crucial to successful harmonisation. We observed
increased image similarity when comparing ‘traveling heads’ data from the WH scanners,
showing a clear removal of scanner-related variability in the images. BIANCA performance
improved after BC, although in terms of consistency of performance between scanners, an
improvement was only observable when BC was combined with a different strategy for the
composition of the training dataset, such as BIANCA re-training within each scanner or the
merging of multiple examples from different scanners (Fig. 3). The successful removal of non-
biological differences with BC was also evident when considering the correlation between
WMH volumes and age, which showed that BC preserved the relationship with age (slopes
not significantly different) while causing a decrease in the volume bias in correspondence of
the mean age. The Elastic Net model confirmed the improved harmonisation with a significant
decrease in the importance attributed to the scanner/site of acquisition. Bias field correction
of T2-weighted (and FLAIR) images is, however, not always included in pre-processing
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pipelines. In this work we specifically assessed the impact of BC on WMH segmentation and
confirmed that it is beneficial to obtain more consistent image segmentation outputs across
datasets.

The information provided by dMRI proved to be useful to obtain accurate WMH
segmentation. When using FA maps as one of the intensity features for BIANCA, the
performance within-scanner was higher than when using only T1-weighted images and FLAIR.
However, when using only two modalities, all the overlap measures were more consistent
across scanners, there were no significant differences in the slope of the regression lines of
WMH volumes and age, and no significant volume bias (not significant difference in the
intercepts at the mean age). Furthermore, the scanner was no longer a significant predictor
of WMH volumes in the Elastic Net model. The decision on whether to use FA would therefore
depend on the application. While for an accurate segmentation it is useful to include features
from diffusion-weighted scans, it also constitutes an additional source of variability across
datasets and scanners, leading to less harmonised WMH measures. Harmonisation of
diffusion MRI data is currently an active area of research (Fortin et al., 2017; Mirzaalian et al.,
2016), and it is likely that this modality will require specific harmonisation strategies that go
beyond the scope of this work. Further work in this area will allow integrating DTI-derived
measures in multimodal analyses while maintaining good consistency of results. Another
aspect to keep in mind is that FA might not always be available (while T2-FLAIR and T1 scans
are more commonly acquired), preventing the integration of datasets (or participants within
a dataset) that do not have all of them available and usable.

Regarding the choice of the composition of the training dataset for BIANCA we started by
exploring three options in the scanner upgrade scenario. We compared the effect of using the
same set for all the sites (single site), re-training BIANCA within-scanner (site-specific), or
merging examples from different scanners (mixed). The first option led to the biggest
difference in BIANCA performance across datasets and a significant bias in the volumes
(significantly different intercept at the mean age), although the relationship with age
remained consistent (non-significant difference in regression slopes, highest amount of
variance explained by age). On the other hand, the second option provided the highest and
most consistent BIANCA performance (overlap with manual masks on the subset of subjects
with manual labels available) but led to the biggest difference in WMH volumes on the whole
sample (significantly different slopes of the regression lines, significantly different intercept
at the mean age, highest amount of variance explained by the scanner variable). The results
observed for the mixed training set (third option) suggest it represents the best trade-off
between good and consistent BIANCA performance, and consistent WMH volumes. Although
this could be also due to the fact that more images were used in the mixed training, similar
results were observed when using the same number of images (12 from each scanner).

We further compared the best performing options (site-specific vs mixed) when harmonising
WMH measures between WH and UKB. Using bias field corrected data and FLAIR and T1 as
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intensity features, the results were similar to the scanner upgrade scenario. While the
segmentation performance was overall higher in the case of site-specific training, the more
consistent results were obtained with the mixed training set.

Also in this case, the choice of the most suitable training set should be made depending on
the application. When prioritising a more accurate WMH segmentation, a site-specific
training is likely to give the best performance. When the aim is to compare or merge multiple
datasets, a mixed training set is more appropriate.

Itis true that either of the above best options would require the effort of generating, or having
access to, some manual masks and having to re-train BIANCA. Even if the numbers required
are not high (12 images per dataset proved to be enough), this could still be an unfeasible
option for some applications. The use of a single training set for multiple datasets would still
be a valid option, but in light of our results, the recommendation would be to carefully check
the segmentation accuracy and, when combining the resulting volumes, to consider the use
of further strategies in the analyses to address potential biases (e.g. additional covariate in
statistical analyses). The fact that including more examples from different datasets improved
the results suggests that a promising solution would be to build a larger and more
representative/generalisable training set, including examples from more scanners/datasets,
that could be widely used. Towards this, we are publicly sharing our mixed training sets.
Future work on more datasets should assess if, with a sufficiently large set of examples, a
single training set is general enough to be able to be successfully applied to new datasets.

An important part of retrospective data merging was also the harmonisation of non-imaging
variables. Modelling the biological variability is crucial to obtain imaging measurements that
are well aligned across datasets. The ad-hoc configuration file we created for FUNPACK
allowed us to obtain matched variables, with the same units across the WH and UKB datasets.
The configuration file is openly available at
(https://issues.dpuk.org/eugeneduff/wmh harmonisation). It is fully customizable, so it can

be adapted to different datasets and expanded to include more variables and conversion
rules.

To conclude, we identified processing strategies to maximise the consistency across two large
datasets, Whitehall Il and UK Biobank, for the study of WMHs. We harmonised non-imaging
variables and proposed a processing pipeline to minimise the effect of non-biological sources
of difference in the imaging data. The main recommendations emerging from this work are
the following:
e use WMH manual masks generated from the same rater whenever possible and
establish guidelines to maximise consistency of the manual masks;
e perform bias field correction;
e use asmall set of modalities (T1-weighted and FLAIR), which are more reliably present
across studies;
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e train BIANCA on data coming from a mix of different scanners/studies when working
with more than one dataset.
We showed that with these steps, and appropriate modelling of sample differences, through
the alignment of demographic, cognitive and physiological variables, we can provide highly
consistent WMH measures. These results open up a wide range of applications for the study
of WMHs and potentially other neuroimaging markers across extensive databases of clinical
data.
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UK Biobank dataset: informed consent is obtained from all UK Biobank participants; ethical
procedures are controlled by a dedicated Ethics and Guidance Council
(http://www.ukbiobank.ac.uk/ethics) that has developed with UK Biobank an Ethics and
Governance  Framework (given in  full at http://www.ukbiobank.ac.uk/wp-
content/uploads/2011/05/EGF20082.pdf), with IRB approval also obtained from the North
West Multi-center Research Ethics Committee.

ACKNOWLEDGMENTS

We thank all Whitehall Il participants for their time, the Whitehall Il staff at the University
College London, Mandy Pipkin and Barbora Krausova for assisting with recruitment and data
collection, the FMRIB Radiographers team for data acquisition, Dr. Christoph Arthofer for the
helpful discussions, IT and support teams at the Wellcome Centre for Integrative
Neuroimaging for their helpful collaboration.


https://issues.dpuk.org/eugeneduff/wmh_harmonisation
https://doi.org/10.1101/2020.07.28.208579
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.208579; this version posted July 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

FUNDING

The study was supported by the UK Medical Research Council (MRC) grants “Dementias
Platform UK” (MR/L023784/2) and “Predicting MRI abnormalities with longitudinal data of
the Whitehall Il Substudy” (UK Medical Research Council: G1001354, PI: KPE), and by the HDH
Wills 1965 Charitable Trust (Nr: 1117747, Pl: KPE). This study was also supported by the
Wellcome Centre for Integrative Neuroimaging, which has core funding from the Wellcome
Trust (203139/2/16/2).

V.B. was supported by Lombardy Region (Announcement POR-FESR 2014-2020) within the
project named "Sistema Integrato DomiciliarE e Riabilitazione Assistita al Benessere"
(SIDERAMB). C.E.M., N.F. and L.G. were supported by the National Institute for Health
Research (NIHR) Oxford Health Biomedical Research Centres (BRC), a partnership between
Oxford Health NHS Foundation Trust and the University of Oxford. L.G. was also supported by
the Oxford Parkinson’s Disease Centre (Parkinson’s UK Monument Discovery Award, J-
1403) and the MRC Dementias Platform UK (MR/L023784/2). E.Zs, K.P.E. and S.S. were
supported by the European Union’s Horizon 2020 programme ‘Lifebrain’ (732592). S.S. was
also supported by an Alzheimer’s Society Junior Research Fellowship (Grant ref: 441). V.S. and
M.J. were supported by the Wellcome Centre for Integrative Neuroimaging, which has core
funding from the Wellcome Trust (203139/Z/16/Z). G.Z. was supported by the Italian Minister
of Education (MIUR). M.J. was supported by the National Institute for Health Research (NIHR)
Oxford BRC, and this research was funded by the Wellcome Trust (215573/2/19/Z). A.S.-M.
receives research support from the US National Institutes of Health (RO01AG056477). M.K. was
supported by NordForsk, the UK Medical Research Council (MRC S011676), the Academy of
Finland (311492), and the US National Institutes on Aging (NIA RO1AG056477, RF1IAG062553).

DECLARATIONS OF INTEREST
M.J. and L.G. receive royalties from licensing of FSL to non-academic, commercial entities.

REFERENCES

Alfaro-Almagro, F., Jenkinson, M., Bangerter, N. K., Andersson, J. L. R., Griffanti, L., Douaud, G., ... Smith, S. M.
(2018). Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank.
Neurolmage, 166, 400-424. doi: 10.1016/j.neuroimage.2017.10.034

Arvanitakis, Z., Capuano, A. W., Leurgans, S. E., Bennett, D. A. and Schneider, J. A. (2016). Relation of cerebral
vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: a cross-sectional study.
The Lancet Neurology, 15(9), 934—943. doi: 10.1016/s1474-4422(16)30029-1

Bauermeister, S., Orton, C., Thompson, S., Barker, R. A., Bauermeister, J. R., Ben-Shlomo, Y., ... Gallacher,
E. (2020). The Dementias Platform UK (DPUK) Data Portal. European Journal of Epidemiology.
doi: https://doi.org/10.1101/582155


https://doi.org/10.1101/2020.07.28.208579
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.208579; this version posted July 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Debette, S., Beiser, A., DeCarli, C., Au, R., Himali, J. J. and Kelly-Hayes, M. (2010). Association of MRI markers of
vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: the Framingham
Offspring Study. Stroke, 41:600-606. doi: 10.1161/STROKEAHA.109.570044

Dewey, B. E., Zhao, C., Carass, A., Oh, J., Calabresi, P. A., van Zijl, P. C. M. and Prince, J. L. (2018). Deep
Harmonization of Inconsistent MR Data for Consistent Volume Segmentation. Lecture Notes in Computer
Science, 20-30. doi: 10.1007/978-3-030-00536-8_3

Erus, G., Doshi, J., An, Y., Verganelakis, D., Resnick, S. M. and Davatzikos, C. (2018). Longitudinally and inter-site
consistent multi-atlas based parcellation of brain anatomy using harmonized atlases. Neurolmage, 166, 71-78.
doi: 10.1016/j.neuroimage.2017.10.026

Filippini, N., Zsoldos, E., Haapakoski, R., Sexton, C. E., Mahmood, A., Allan, C. L., ... Ebmeier, K. P. (2014). Study
protocol: the Whitehall Il imaging sub-study. BMC Psychiatry, 14(1). doi: 10.1186/1471-244x-14-159

Fortin, J.-P., Parker, D., Tung, B., Watanabe, T., Elliott, M. A., Ruparel, K., ... Shinohara, R. T.
(2017). Harmonization of multi-site diffusion tensor imaging data. Neurolmage, 161, 149-170. doi:
10.1016/j.neuroimage.2017.08.047

Fortin, J.-P., Cullen, N., Sheline, Y. I., Taylor, W. D., Aselcioglu, ., Cook, P. A., ... Shinohara, R. T.
(2018). Harmonization of cortical thickness measurements across scanners and sites. Neurolmage, 167, 104—
120. doi: 10.1016/j.neuroimage.2017.11.024

Glocker, B., Robinson, R., Castro, D. C., Dou, Q., Konukoglu, E. (2019). Machine Learning with Multi-Site
Imaging Data: An Empirical Study on the Impact of Scanner Effects. Medical Imaging meets NeurlPS Workshop.
arXiv:1910.04597

Griffanti, L., Zamboni, G., Khan, A., Li, L., Bonifacio, G., Sundaresan, V., ... Jenkinson, M. (2016). BIANCA (Brain
Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter
hyperintensities. Neurolmage, 141, 191-205. doi: 10.1016/j.neuroimage.2016.07.018

Griffanti, L., Jenkinson, M., Suri, S., Zsoldos, E., Mahmood, A., Filippini, N., ... Zamboni, G. (2018). Classification
and characterization of periventricular and deep white matter hyperintensities on MRI: A study in older adults.
Neurolmage, 170, 174-181. doi: 10.1016/j.neuroimage.2017.03.024

Guo, C., Niu, K., Luo, Y., Shi, L., Wang, Z., Zhao, M., ... Sun, L. (2019). Intra-Scanner and Inter-Scanner
Reproducibility of Automatic White Matter Hyperintensities Quantification. Frontiers in Neuroscience, 13. doi:
10.3389/fnins.2019.00679

Jack, C. R., Lowe, V. J., Senjem, M. L., Weigand, S. D., Kemp, B. J., Shiung, M. M., ... Petersen, R. C. (2008). 11C
PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic
mild cognitive impairment. Brain, 131(3), 665—680. doi: 10.1093/brain/awm336

Jenkinson, M. and Smith, S. M. (2001). A global optimisation method for robust affine registration of brain
images. Medical Image Analysis, 5(2):143-156. doi: 10.1016/51361-8415(01)00036-6

Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., Smith, S. M. (2012). FSL. Neurolmage, 62:782-
90. doi: https://doi.org/10.1016/j.neuroimage.2011.09.015


https://arxiv.org/abs/1910.04597
https://doi.org/10.1101/2020.07.28.208579
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.208579; this version posted July 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Kruggel, F., Turner, J. and Muftuler, L.T. (2010). Impact of scanner hardware and imaging protocol on image
quality and compartment volume precision in the ADNI cohort. Neuroimage, 49:2123-33. doi:
10.1016/j.neuroimage.2009.11.006

McCarthy, P., (2020). FUNPACK. doi: 10.5281/zenodo.3743321

Miller, K. L., Alfaro-Almagro, F., Bangerter, N. K., Thomas, D. L., Yacoub, E., Xu, J., ... Smith, S. M.
(2016). Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nature
Neuroscience, 19(11), 1523—-1536. doi: 10.1038/nn.4393

Mirzaalian, H., Ning, L., Savadjiev, P., Pasternak, O., Bouix, S., Michailovich, O., ... Rathi, Y. (2016). Inter-site and
inter-scanner diffusion MRI data harmonization. Neurolmage, 135, 311-323. doi:
10.1016/j.neuroimage.2016.04.041

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... Duchesnay, E. (2011). Scikit-
learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825-2830: url:
http://www.jmlir.org/papers/volumel2/pedregosalla/pedregosalla.pdf

Pomponio, R., Erus, G., Habes, M., Doshi, J., Srinivasan, D., Mamourian, E., ... Davatzikos, C.
(2019). Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan.
Neurolmage, 116450. doi: 10.1016/j.neuroimage.2019.116450

Potvin, O., Khademi, A., Chouinard, I., Farokhian, F., Dieumegarde, L., ... Leppert, I. (2019). Measurement
Variability Following MRI System Upgrade. Frontiers in Neurology, 10. doi: 10.3389/fneur.2019.00726

Shinohara, R. T., Oh, J., Nair, G., Calabresi, P. A., Davatzikos, C., ... Doshi, J. (2017). Volumetric Analysis from a
Harmonized Multisite Brain MRI Study of a Single Subject with Multiple Sclerosis. American Journal of
Neuroradiology, 38(8), 1501-1509. doi: 10.3174/ajnr.a5254

Smith, S. M.. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143—155. doi:
10.1002/hbm.10062

Smith, S. M. and Nichols, T. E. (2018). Statistical Challenges in “Big Data” Human Neuroimaging. Neuron, 97(2),
263-268. doi: 10.1016/j.neuron.2017.12.018

Smith, E. E., Biessels, G. J., De Guio, F., de Leeuw, F. E., Duchesne, S., Diiring, M., ... Wardlaw, J. M.

(2019). Harmonizing brain magnetic resonance imaging methods for vascular contributions to
neurodegeneration. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 11, 191-204. doi:
10.1016/j.dadm.2019.01.002

Wachinger C., Becker B.G., Rieckmann A. and Pélsterl S. (2019) Quantifying Confounding Bias in
Neuroimaging Datasets with Causal Inference. Lecture Notes in Computer Science, vol 11767. doi:
https://arxiv.org/pdf/1907.04102.pdf

Wardlaw, J. M., Smith, E. E., Biessels, G. J., Cordonnier, C., Fazekas, F., Frayne, R., ... Black, S. E. (2013).
Neuroimaging standards for research into small vessel disease and its contribution to ageing and
neurodegeneration. The Lancet Neurology, 12(8), 822-838. doi: 10.1016/51474-4422(13)70124-8


https://doi.org/10.1101/2020.07.28.208579
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.208579; this version posted July 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Zamboni, G., Griffanti, L., Mazzucco, S., Pendlebury, S. T. and Rothwell, P. M. (2019). Age-dependent
association of white matter abnormality with cognition after TIA or minor stroke. Neurology, 93, e272-e282.
doi: 10.1212/wnl.0000000000007772

Zandifar, A., Fonov, V. S., Pruessner, J. C. and Collins, D. L. (2018). The EADC-ADNI harmonized protocol for
hippocampal segmentation: A validation study. Neurolmage, 181, 142-148. doi:
10.1016/j.neuroimage.2018.06.077

Zhang, Y., Brady, M. and Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random
field model and the expectation-maximization algorithm. IEEE transactions on medical imaging, 20(1), 45-57.
doi: 10.1109/42.906424

Zsoldos, E., Mahmood, A., Filippini, N., Suri, S., Heise, V., Griffanti, L., ... Ebmeier, K. P. (2020). Association of
mid-life stroke risk with structural brain integrity and memory performance at older ages: A longitudinal cohort
study. Brain Communications, fcaa026. doi: https://doi.org/10.1093/braincomms/fcaa026


https://doi.org/10.1101/2020.07.28.208579
http://creativecommons.org/licenses/by-nc-nd/4.0/

FIGURES

10 A) Between-rater R1 vs R2a 10 B) Between-rater R1 vs R2b 10 C) Within-rater R2a vs R2b

0.8

0.6

a

04

02

0-0 Manual BIANCA 0-0 Manual BIANCA 0.0 Manual BIANCA
(M1vs M2a) (B1vs B2a) (M1vs M2b)  (B1 vs B2b) (M2a vs M2b) (B2a vs B2b)

Figure 1. Effect of rater, assessed both in terms of between- (A and B) and within-rater variability (C). Each panel displays a comparison of the agreement (measured with Dice Similarity Index)
between manual masks annotated by the raters (left boxplots) and BIANCA outputs generated with masks from those raters (right boxplot). Solid and dotted lines refer to results obtained on
subjects characterised, respectively, by high and low WMH load. Legend: R1 = rater 1, R2a = Rater 2, first rating, R2b = rater 2, second rating (1 year apart from the first rating, blind to first
rating), M = manual, B = BIANCA.

A) EXAMPLE DATA B) COST FUNCTION
BEFORE biasfield correction AFTER biasfield correction ' i

~ 0.05 4 *hk
fe) o

- = =

o e

e 5 0.04

c &)

; %

w 3 0.03
©
- O P01
c O
S 0.02 2

o B + P03

e = P04

s = 0.01 P05

® 2 o P06
© o

Before BC After BC



https://doi.org/10.1101/2020.07.28.208579
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2. Effect of bias field correction (BC) on ‘travelling heads’ data from the WH dataset. (A) example data from 1 subject acquired on both scanners, before and after BC showing improvement
in image similarity after BC (B) Cost function (correlation ratio) between Scanner1/Scanner2 images of the 5 traveling head participants, calculated before and after BC (*** - p < 0.001).
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Figure 3. BIANCA performance — scanner upgrade scenario. Box-plot of the Dice Similarity Index (DI) between BIANCA output and the corresponding manual masks for the different analysis
options tested during our study (specified on the x axis). All the displayed results were evaluated on a sub-sample of manually segmented subjects (12 for WH1 and 12 for WH2) balanced in
terms of WMH load and using leave-one-out cross-validation whenever appropriate (details in the main text).
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Figure 4. Association between WMHSs and age — scanner upgrade scenario. Scatter plot of the relationship between WMH volumes (expressed as % of total brain volume, y axis) and age (x
axis), for WH1 (cyan) and WH2 (purple) data. Regression lines with 95% confidence interval are also displayed. Each plot refers to one of the investigated analysis options: (A) without BC, single-
site training, FA included; (B) with BC, single-site training, FA included; (C) with BC, site-specific training, FA included; (D) with BC, mixed training, FA included; (E) with BC, mixed training, FA
excluded. Evaluation was conducted on the full sample of data for both datasets (WH1 =528, WH2 = 211).
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Figure 5. Multivariate model — scanner upgrade scenario. Percentage of variance (y axis) explained by non-imaging variables (reported on the x axis) in the linear multivariate model that was
implemented (Elastic Net). Evaluation was conducted on the full sample of data (WH1 = 528, WH2 = 211). Each plot refers to one of the investigated analysis options: (A) without BC, single-site
training, FA included; (B) with BC, single-site training, FA included; (C) with BC, site-specific training, FA included; (D) with BC, mixed training, FA included; (E) with BC, mixed training, FA
excluded. Variable scanner/site (SC) highlighted in red. Values are reported in Table 6 and supplementary table S2.
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Figure 6. BIANCA performance — retrospective data merging scenario. Box-plot of the Dice Similarity Index (DI) between BIANCA output and the corresponding manual mask for the different
analysis options tested during our study (specified on the x axis) All the displayed results were evaluated on a sub-sample of manually segmented subjects (12 for WH1, 12 for WH2 and 12 for
UKB) balanced in terms of WMH load and using leave-one-out cross-validation.
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Figure 7. Association between WMHs and age — retrospective data merging scenario. Scatter plot of the relationship between WMH volumes (expressed as % of total brain volume, y axis) and
age (x axis), for WH1 (cyan), WH2 (purple) and UKB (orange) data. Regression lines with 95% confidence interval are also displayed. Each plot refers to one of the investigated analysis options:
(A) with BC, site-specific training, FA excluded; (B) with BC, mixed training, FA excluded. Evaluation was conducted on the full sample of data for all datasets (WH1 = 528, WH2 = 211, UKB =
2295).
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Figure 8. Multivariate model — retrospective data merging scenario. Percentage of variance (reported on the y axis) explained by non-imaging variables (reported on the x axis) in the linear
multivariate model that was implemented (Elastic Net). Evaluation was conducted on the full sample of data for all the involved populations (WH1 = 528, WH2 = 211, UKB = 2295). Each plot
refers to one of the investigated analysis options: (A) with BC, site-specific training, FA excluded; (B) with BC, mixed training, FA excluded. Variable scanner/site (SC) highlighted in red. Values
are reported in Table 6 and supplementary table S2.
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Table 1. Details of the non-imaging variables selected for our study.

Demographic

Biological

Socioeconomic

Health behaviours

Variables

Age
Sex
Weight
Height
BMI (Body Mass Index)
Systolic blood pressure
Diastolic blood Pressure

Pulse

Hand class

Education

Moderate physical activity

Vigorous physical activity

Combination of different
motorial tasks

Time spent watching TV
Total walking activity
Sleep duration

Smoker status

Raw Units

Whitehall
Years (continuous)
Categorical (binary)

kg (continuous)
m (continuous)
Kg/m2 (continuous)
mmHg (integer)
mmHg (integer)

bpm (integer)

Categorical (3 classes)

Years (int)
h/week (continuous)

h/week (continuous)
h/week (continuous)
h/week (continuous)
h/week (continuous)
h/day (continuous)

Categorical (binary)

UK Biobank
Years (integer)
Categorical (binary)
kg (continuous)
cm (integer)
Kg/m2 (continuous)
mmHg (integer)
mmHg (integer)

bpm (integer)

Categorical (4 classes)

N/A

day/week (integer),
min/day (integer)

min/day (integer)

day/week (integer),
min/day (integer)

h/day (integer)
min/day (integer)
h/day (integer)

Categorical (4 classes)

Harmonised Units
chosen *

Years (integer)
Categorical (binary)
kg (continuous)
m (continuous)
Kg/m2 (continuous)
mmHg (integer)
mmHg (integer)

bpm (integer)

Categorical (3 classes)

N/A
h/week (continuous)

h/week (continuous)

h/week (continuous)
h/week (integer)

h/week (continuous)
h/day (integer)

Categorical (binary)

Whitehall
69.89+5.19
M: 597 (80.78%)
78.49 £ 13.82
1.73+£0.08
26.10+£4.10
14134 +17.42
77.44 £10.69

67.72 £12.09

Right: 655 (88.63%), Left:
60 (8.12%), Ambidextrous:

24 (3.25%)

19.07 £2.85

17.11+£27.73

9.39+17.00
25.11 +34.74
5.59+3.30
10.20 £8.17
6.92 +1.04

Smoker: 27 (3.65%)

Value harmonised

UK Biobank
61.46+7.13
M: 1017 (44.31%)
74.81 £14.67
1.70+£0.09
26.05+£4.30
136.96 £ 19.03
78.11£10.46

70.74 £12.09

Right: 2042 (88.98%),

Left: 213 (9.28%),
Ambidextrous: 40
(1.74%)

N/A

4.28 £5.99

1.47 £2.27
531+6.78
19.12 £10.23
6.36£6.70
7.21+£0.96

Smoker: 66 (2.87%)

* %k

* %k

* ¥

* %k

* %k

* %k

* %k

* %k

* %k
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Cigarette units

Alcohol status

units/day (integer)

Categorical (binary)

units/day (integer)

Categorical (4 classes)

units/day (integer)

Categorical (binary)

0.44+2.79

Consumer: 660 (89.67%)

0.32+2.20

Consumer: 2214

* %

(96.47%)
units/day (categorical,
) units/month /day ( ¢ units/month
Alcohol units ) 5 classes), day/week ) 14.71 +15.14 5.27 +38.97 pet
(continuous) ) (continuous)
(categorical, 5 classes)
Medications for Cardiovascular ) ) ) ) )
CVD - Categorical (binary) Categorical (6 classes) Categorical (binary) Yes: 396 (53.58%) Yes: 230 (10.02%) *x
isease
(cardiovascular disease)
History of Cardiovascular ) ) ) . )
bi Categorical (binary) Categorical (6 classes) Categorical (binary) Yes: 135 (18.27%) Yes: 449 (19.56%)
isease
General health Poor: 6 (0.81%), Fair: 54 Poor: 17 (0.74%), Fair:
(7.32%), Good: 233 253 (11.02%), Good:
Self-rated health Categorical (4 classes) Categorical (9 classes) Categorical (4 classes) (31.57%), Very 1431 (62.35%), Very *E
good/Excellent: 445 good/Excellent: 594
(60.30%) (25.89%)
Total number of medications units (integer) units (integer) units (integer) 2.87+2.51 1.61+1.81 *x
Medications for Blood Pressure Categorical (binary) Categorical (6 classes) Categorical (binary) Yes: 244 (33.02%) Yes: 228 (9.93%) *x
History of Diabetes Categorical (binary) Categorical (4 classes) Categorical (binary) Yes: 66 (8.93%) Yes: 68 (2.96%) *x
Not at all: 1887 (82.22%),
Mental health Not at all: 621 (84.15%), ( °)
. . ) Several days: 364
Center for Epidemiologic Several days: 91 (12.33%),
(15.86%), More than half

Coghnitive skills

Studies-Depression (CES-D)
scale

Depression - Medications

Trail Making Test (TMT) A
Trail Making Test (TMT) B
Digit CODing (DCOD)
Digit Span Backward (DSB)

Reaction time

Categorical (4 classes)

Categorical (binary)

seconds (integer)
seconds (integer)
Correct answers (integer)
u (integer)

ms (continuous)

Categorical (5 classes)

N/A
seconds (continuous)

seconds (continuous)

u (integer)

Categorical (4 classes)

N/A
seconds (integer)

seconds (integer)

u (integer)

More than half the days: 21
(2.84%), Nearly every day:
5 (0.68%)

Yes: 31 (4.19%)
31.00 + 11.62
67.30 + 34.04
62.80 + 13.22

9.63+2.44

316.37 £73.87

the days: 28 (1.22%),
Nearly every day: 16
(0.70%)

N/A
37.74 +£13.46

62.18 £22.15

7.06+1.42

* %k

* %k

* %k
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For each variable we display the raw units (used at the time of data collection), the units chosen to harmonise the data, and the numerical values for the two cohorts in harmonised units, which
allowed us to compare the two cohorts. The last column displays the results of the tests (t-test or chi-square, as appropriate) showing non-imaging differences between the two cohorts (* for
p-values < 0.05 and ** for p-values < 0.01). Variables requiring the application of non-imaging harmonisation strategies are highlighted in grey. Legend: N/A = excluded due to lack of availability
for all participants within the UK Biobank cohort, ~ = excluded due to substantial differences in the data collection across the two datasets.

Table 2. Acquisition details for the three scanners involved in our study.

Sequence
TR (ms)
TE (ms)

Flip angle (degrees)

Voxel dimension
(mm3)

FoV read (mm)
FoV phase (%)
Base resolution
Phase resolution (%)
Tl (ms)
Bandwidth (Hz/Px)
Orientation
b-value (s/mm?)
Directions (n.)

Acquisition time

FLAIR

9000

73

150

0.9x0.9x3

220

100

256

100

2500

283

Transversal

4m 14s

3T Siemens Verio (WH1)
T1 (MEMPR)

2530

1.79/3.65/
5.51/7.37

4
Ix1x1

256

100

256

100
1380
651

Sagittal

6m 12s

Whitehall

dMRI (EPI)

8900

91.2

192
100
96
100
1680
Transversal

1500

60 + 6 b0 (1
reversed PE)

9m 56s

FLAIR

9000

73

150

0.4x0.4x3

220

100

256

100

2500

283

Transversal

4dm 14s

3T Siemens Prisma (WH2)
T1 (MPRAGE)

1900

3.97

1x1x1

192
100
256
100
904
200

Transversal

5m 31s

dMRI (EPI)

8900

91

192
100
96
100
1680
Transversal

1500

60 +6b0 (1
reversed PE)

10m 41s

UK Biobank

3T Siemens Skyra (UKB)

FLAIR T1
5000 2000
395.0 2.01
————— 8
1.05x1x1 1x1x1
256 256
100 100
256 256
100 100
1800 880
781 240
Sagittal Sagittal
5m 52s 4m 54s

Legend: FLAIR, fluid attenuated inversion recovery; MEMPR, Multi-Echo MPRAGE; MPRAGE, Magnetization Prepared Rapid Acquisition Gradient Echo; dMRI, diffusion MRI; EPI, Echo Planar

Imaging; TR, repetition time; TE, echo time; FoV, field of view; Tl, inversion time; PE, Phase Encoding.
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Table 3. BIANCA performance —scanner upgrade scenario — Summary of all the overlap measures between BIANCA output and the corresponding manual mask,

calculated for the different analysis options tested in our study (using leave-one-out cross-validation whenever appropriate). Statistical tests performed on data

to assess the impact of bias field correction, training modalities and FA inclusion/exclusion on the segmentation performance.

Overlap
measures

Effect of Bias
field correction

Effect of
Training
modalities

DI FPR FNR cluster-level FPR cluster-level FNR
WH1 WH2 WH1 WH2 WH1 WH2 WH1 WH2 WH1 WH2
Mean + std Option A 0.52+0.10 0.59 £0.07 0.05+0.04 0.33+£0.16 0.63+£0.09 0.43+£0.08 0.09 £ 0.07 0.69+0.14 0.610.13 0.48 £0.11
Option B 0.75+0.06 0.64 £0.03 0.18 £0.08 0.22£0.10 0.28 £0.09 0.42 +£0.07 0.33+0.17 0.57+£0.18 0.35+0.17 0.47 £0.09
Option C 0.75+£0.06 0.73 £0.05 0.18 £0.08 0.26 £0.12 0.28 £0.09 0.24 £0.08 0.33+£0.17 0.53+£0.18 0.35+£0.17 0.35+£0.12
Option D 0.76 £0.05 0.71+£0.04 0.22 £0.09 0.23+£0.11 0.23+£0.08 0.30+£0.07 0.42 £0.16 0.52+0.17 0.28 £0.15 0.40+0.10
Option E 0.48£0.11 0.45 £ 0.06 0.07 £0.05 0.09 £0.09 0.66 £0.09 0.68 £0.06 0.15£0.09 0.17£0.10 0.55+£0.14 0.63+£0.10
Between-subject WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2
analysis:
H * % k% % %k k. %k k % *
independent t-test Option A 0.061 <0.001 <0.001 <0.001 0.020
Option B <0.00] *** 0.259 <0.001 *** 0.004 ** 0.049 *
Within-Subject OptIOI"I Avs
analysis: paired t- Cotion | SO00LTTF0035%  <0001***  0002%*  <0001*** 0.531 <0.001*** <0001 ***  <0.001 *** 0.306
: ption
test
Training - Scanner
interaction: two- <0.001 *** <0.001 *** <0.001 *** <0.001 *** <0.001 ***
ways mixed ANOVA
Main effect of the WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2
Scanner (between-
. . Option B <0.00] *** 0.259 <0.001 *** 0.004 ** 0.049 *
subject factor):
independent t-test ;¢ 0.433 0.071 0.272 0.013 ** 0.998
Option D 0.046 * 0.861 0.049 * 0.178 0.049 *
Main effect of the 0.466 <0.001*** <0.001*** <0001*** <0.001*** <0.001*** <0.001***  0036*  <0.001*** <0.001***

Training (within-
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subject factor): .
Option B vs
repeated measures gption c | <0.001 ¥*¥* e <0.001 *** <0.001 ***  coeeeeee 045 e <0.001 ***
one-way ANOVA
test (F-test and Option B vs
R <0.001 *** = <0.001 *** 0.309 <0.001 ***  <0.001 *** <0.001 *** 0.045 * <0.001 ***  <0.001 ***
post-hocs) Option D
Option Cvs
N B 0.044 * <0.001 ***  <0.001 *** <0.001 *** <0.001 *** = <0.001 *** 1 <0.0071 *** 0.002 **
Option D
Effect of FA Between-subject WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2 WH1 vs WH2
inclusion/exclusi analysis:
H * * *
on independent t-test Option D 0.046 0.861 0.049 0.178 0.049
Option E 0.462 0.461 0.484 0.565 0.134
Within-subject Option D vs
analysis: paired t- Option £ <0.001 *** <0.001 *** <0.001 *** <0.001 *** <0.001 ***
test

Options tested in our study are: (A) without BC, single-site training, FA included; (B) with BC, single-site training, FA included; (C) with BC, site-specific training, FA included; (D) with BC, mixed
training, FA included; (E) with BC, mixed training, FA excluded. For each metric we reported: (i) mean # std values relative to all datasets involved in our study (WH1, WH2); (ii) impact exerted
by bias field correction on BIANCA performance (between- and within-subject analysis performed using independent and paired t-tests respectively); (iii) impact exerted by training modalities
on BIANCA performance (two-ways mixed ANOVA test assessing the interaction between training and scanner (between- and within-subject factors respectively); when the interaction term
resulted being significant we decomposed the analysis in two separate components assessing the main effect of training (repeated measures one-way ANOVA test evaluating differences
between the investigated options for each dataset involved in our study; F-test and post-hoc comparisons are displayed) and the main effect of scanner (independent t-test evaluating differences
between the investigated dataset for each option involved in our analysis); (iv) impact exerted by FA inclusion/exclusion on BIANCA performance (between- and within-subject analysis performed
using independent and paired t-tests respectively). Results relative to the statistical tests are all reported in terms of p-values: * (< 0.05), ** (< 0.01), *** (< 0.001). Legend: DI = Dice Similarity
Index, FPR = False Positive Ratio, FNR = False Negative Ratio, WH1 = Whitehall dataset 1, WH2 = Whitehall dataset 2.

Table 4. BIANCA performance — retrospective scenario — Summary of all the overlap measures between BIANCA output and the corresponding manual mask,
calculated for the different analysis options tested in our study (using leave-one-out cross-validation). Statistical tests performed on data to assess the impact
of training modalities on the segmentation performance.

DI FPR FNR cluster-level FPR cluster-level FNR
WHT  WH2 UKB WHT  WH2 UKB WHT  WH2 UKB WHT  WH2 UKB WHT  WH2 UKB
Veanzeg | OPHONA 047 055 076  005% 010% 007+ 067+ 058: 034: 010% 020: 015: 06lr 057: 041
eanxs 0.12 0.06 0.07 0.04 0.08 0.04 0.10 0.08 0.09 0.08 0.14 0.12 0.13 0.11 0.16



https://doi.org/10.1101/2020.07.28.208579
http://creativecommons.org/licenses/by-nc-nd/4.0/

Overlap Oction B 0.51+ 0.46 + 0.62 + 0.08 + 0.10+ 0.02 + 0.63 + 0.68 + 0.52+ 0.17 0.18 + 0.07 + 0.54 + 0.62 + 0.45+
ion
measures P 0.10 0.05 0.09 0.05 0.09 0.01 0.09 0.05 0.10 0.11 0.09 0.07 0.14 0.10 0.16
Training -
Effect of
Scanner
Training ) .
interaction:
two-ways <0.001 *** <0.0071 *** <0.001 *** <0.001 *** <0.001 ***
WO-
mixed ANOVA
test
) <0.001 <0.001 0.003
Main effect of e 0.199 e 0.138 "
the Scanner
(between- WH1vs WH1lvs WH2vs WH1vs WH1lvs WH2vs WH1vs WH1vs WH2vs
subject factor): = Option A WH?2 UKB UKB WH?2 UKB UKB WH?2 UKB UKB
one-way
ANOVA test (F- <0.001 <0.001 <0.001 <0.001 0.004
o (t 0.122 ex ven 0.155 ven ex 0.835 " 0.019 *
est and post-
hocs)
<0.001 *** 0.027 * <0.001 *** 0.018 * 0.019 *
WH1vs WHlvs WH2vs & WHlvs WHl1vs WH2vs WH1vs WH1lvs WH2vs WHl1vs WH1lvs WH2vs WH1lvs WH1vs WH2vs
Option B WH2 UKB UKB WH?2 UKB UKB WH?2 UKB UKB WH?2 UKkB uKkB WH2 UKB UkB
0.009 <0.001 <0.001
0.343 . e 0.800 0.110 0.027 * 0.410 0.013 * e 0.987 0.043* 0.030* 0.318 0.298 0.014 *
Main effect of
the Training Option A
o . } <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.008 , <0001 <0001 <0.001
(within-subject = vs Option 0.255 e ek e 0.672 e 0.171 ek e o 0.304 0.010 e e e
factor): paired B

t-test

Options tested in our study are: (A) with BC, site-specific training, FA excluded; (B) with BC, mixed training, FA excluded. For each metric we reported: (i) mean * std values relative to all datasets
involved in our study (WH1, WH2, UKB); (ii) impact exerted by training modalities on BIANCA performance (two-ways mixed ANOVA test assessing the interaction between training and scanner
(between- and within-subject factors respectively); when the interaction term resulted being significant we decomposed the analysis in two separate components assessing the main effect of
training (paired t-tests evaluating differences between the investigated options for each dataset involved in our study) and the main effect of scanner (one-way ANOVA tests evaluating
differences between the investigated dataset for each option involved in our analysis; F-test and post-hoc comparisons are displayed). Results relative to the statistical tests are all reported in
terms of p-values: * (< 0.05), ** (< 0.01), *** (< 0.001). Legend: DI = Dice Similarity Index, FPR = False Positive Ratio, FNR = False Negative Ratio, WH1 = Whitehall dataset 1, WH2 = Whitehall

dataset 2.
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Table 5. Analysis of the relationship between WMH volumes and age — scanner upgrade and retrospective scenario — Summary of the one-way ANCOVA test.

Scanner upgrade scenario Retrospective scenario
Analysis option A Analysis option B Analysis option C Analysis option D Analysis option E Analysis option A Analysis option B
g F(1, 735)=0.076, p = F(1,735)=0.071,p = F(1, 735) = 8.845, p = F(1,735)=2.597,p = F(1, 735)=0.598, p = F(1,3030) = 10.284, p = F(1,3030) = 7.756, p =
ope
P 0.782 0.789 0.003 ** 0.107 0.439 0.001 *** 0.005 **
Intercent F(1,735) = 44.755, p < F(1,735)=5.130,p = F(1, 735) =90.179, p < F(1, 735) = 4.049, p < F(1,735)=0.027,p= = F(1,3030)=704.145p< = F(1,3030)=2.036,p =
P 0.001 *** 0.023 * 0.001 *** 0.045 * 0.869 0.001 *** 0.154

Options tested in our study are: (1) for the scanner upgrade scenario: (A) without BC, single-site training, FA included; (B) with BC, single-site training, FA included; (C) with BC, site-specific
training, FA included; (D) with BC, mixed training, FA included; (E) with BC, mixed training, FA excluded; (ll) for the retrospective scenario: (A) with BC, site-specific training, FA excluded; (B) with
BC, mixed training, FA excluded. The one-way ANCOVA test evaluated across-scanner differences (between WH1/WH2) characterising regression slope (interaction between age and scanner)
and intercept at mean age (main effect of scanner) in the linear model relating WMH% to age. Results are reported in terms of F(df)- and p-values: * (< 0.05), ** (< 0.01), *** (< 0.001).

Table 6. Elastic Net Regression performance — scanner upgrade and retrospective scenario — Summary of the results in terms of variance explained by the
model and by a subset of the features which constituted it. Variables scanner and age are here reported for the different analysis options tested in our study.
Full details of all the other features are provided in supplementary table S2.

Scanner upgrade scenario Retrospective scenario
Analysis option A Analysis option B Analysis option C Analysis option D Analysis option E Analysis option A Analysis option B
Variance explained by the model 0.243 0.161 0.207 0.173 0.125 0.244 0.133
Variance Age 0.060 0.043 0.048 0.054 0.034 0.052 0.064
explained by the
features Scanner 0.046 0.012 0.066 0.008 0.000 0.117 0.000

Options tested in our study are: (I) for the scanner upgrade scenario: (A) without BC, single-site training, FA included; (B) with BC, single-site training, FA included; (C) with BC, site-specific
training, FA included; (D) with BC, mixed training, FA included; (E) with BC, mixed training, FA excluded; (ll) for the retrospective scenario: (A) with BC, site-specific training, FA excluded; (B) with
BC, mixed training, FA excluded. The amount of WMH variance explained by the model is calculated using the R-squared coefficient. The amount of WMH variance explained by the features is
reported in the lowest part of the table for the most relevant variables.
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