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Abstract

Maximal growth rate is a basic parameter of microbial lifestyle that varies over several
orders of magnitude, with doubling times ranging from a matter of minutes to multiple days.
Growth rates are typically measured using laboratory culture experiments. Yet, we lack suffi-
cient understanding of the physiology of most microbes to design appropriate culture conditions
for them, severely limiting our ability to assess the global diversity of microbial growth rates.
Genomic estimators of maximal growth rate provide a practical solution to survey the distribu-
tion of microbial growth potential, regardless of cultivation status. We developed an improved
maximal growth rate estimator, and implement this estimator in an easy-to-use R package
(gRodon), which outperforms the state-of-the-art growth estimator in multiple settings, in-
cluding in a community context where we implement a novel species abundance correction for
metagenomes. Additionally, we estimate maximal growth rates from over 200,000 genomes,
metagenome-assembled genomes, and single-cell amplified genomes to survey growth potential
across the range of prokaryotic diversity. We provide these compiled maximal growth rates in
a publicly-available database (EGGO), which we use to illustrate how culture collections show
a strong bias towards organisms capable of rapid growth. We demonstrate how this database
can be used to propagate maximal growth rate predictions to organisms for which we lack
genomic information, on the basis of 16S rRNA sequence alone. Finally, we observe a bias in
growth predictions for extremely slow-growing organisms, ultimately leading us to suggest a
novel evolutionary definition of oligotrophy based on the selective regime an organism occupies.

Significance

Despite the wide perception that microbes have rapid growth rates, many environments like seawater
and soil are often dominated by microorganisms that can only grow very slowly. Our knowledge
about growth is necessarily biased towards easily culturable organisms, which turn out to be those
that tend to grow fast, because microbial growth rates have traditionally been measured using lab
growth experiments. But how are potential growth rates distributed in nature? We developed a
tool to predict maximum growth rate from an organism’s genome sequence (gRodon). We predicted
the growth rates of over 200,000 organisms and compiled these predictions in a publicly-available
database (EGGO), which illustrates how current collections of cultured microbes are strongly biased
towards fast-growing organisms.
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Introduction .

Microbial growth rates vary widely, with doubling times ranging from under 10 minutes for lab- -
reared organisms [15] to several days for oligotrophic marine organisms [39, 52], and even as high as s
many years for deep sub-surface microbes [11, 60, 67]. Even under optimal nutrient conditions and 4
in the absence of competition, species will vary in their maximal potential growth rates as a function s
of their ability to rapidly synthesize cellular components and replicate their genome [33, 28, 72, 55].
Broad lifestyle differences can be detected across habitats, with many oligotrophic marine systems -
harboring slow-growing organisms relative to nutrient-rich habitats like the human gut [72, 62]. s
Yet, optimal, or even adequate, culture conditions for the majority of prokaryotic organisms are o
unknown [53, 25], making it difficult to assess the true diversity of microbial maximal growth 1o
rates. Although growth media for some species can be predicted based on their phylogeny [44], 1
cultivation is laborious and impractical in a high-throughput manner for many ecosystems such as 12
deep sea waters. Moreover, as we show here, even comprehensive culturing efforts targeted at a 13
specific ecosystem (e.g., the human gut) tend to be biased towards fast-growing members of the 1a
community. By estimating maximal growth rates directly from environmentally-derived sequences s
it may be possible to build a comprehensive and unbiased snapshot of growth across different 16
habitats. 17

A beacon of hope, maximal growth rates predicted using genome-wide codon usage statistics 1s
[72] appear to capture overall trends in the growth rates of natural communities [36]. Because the 1o
genetic code is degenerate, genes may vary in their usage of alternative codons for a given amino 2o
acid. Highly expressed genes demonstrate a biased usage of alternative codons, optimized to cellular 21
t-RNA pools [26, 21, 14, 24, 63, 18]. Vieira-Silva et al. [72] showed that among several possible 22
genomic indicators of growth (e.g., TRNA copy number and proximity to the origin of replication, 23
t-RNA copy number, etc.) high codon usage bias (CUB) in genes coding for ribosomal proteins and — 2a
other highly-expressed genes is the best predictor of high maximal growth rates, and can be used s
to make accurate predictions even with partial genomic data. Their growthpred software leverages 26
this bias to predict maximal growth rates from genomic data [72]. 27

We extend the work of Vieira-Silva et al. [72] by assessing additional dimensions of codon usage 2
[63, 10]. In doing so we are able to substantially improve our predictive performance. Additionally, 2e
we provide a correction based on species abundances to the method when applied to bulk community 3o
data from metagenomes, an important but previously neglected correction. Together we provide a s
user-friendly implementation of these methods in an R package (gRodon). Using our method, we 32
assay growth rates in over 200,000 genomes (|65, 66, 23]) and environmentally-derived metagenome- 13
assembled genomes (MAGs; [48, 69, 61, 1, 74]) and single-cell amplified genomes (SAGs; [8, 46]) in 34
order to survey the natural diversity of prokaryotic growth rates. We provide this comprehensive s
set of over 200,000 predictions as a compiled database of estimated growth rates (estimated growth s
rates from gRodon online; EGGO). Using this large database we demonstrate how growth rate s
predictions can be propagated to organisms for which no genomic information is available but that s
have a close relative in EGGO. Finally, we provide guidance as to when codon-usage based growth 3o
estimators are expected to fail, and when classification (i.e. predicting oligotrophy vs. copiotrophy) a0
may be a wiser use of these methods than regression (i.e., prediction of exact doubling times). a
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Results and Discussion °
Predicting Maximal Growth Rates P
More than one aspect of codon usage is associated with growth aa

We measured three features of codon usage: (1) the median CUB of a user-provided set of highly- s
expressed genes relative to the codon usage pattern of all genes in a genome [63], (2) the mean of s
the CUBs of each highly-expressed gene relative to the overall codon usage pattern of the entire 47
set of highly-expressed genes, and (3) the genome-wide codon pair bias [10]. For details of these s
calculations see the Methods. In practice, we take the set of highly-expressed genes to be those s
coding for ribosomal proteins because these genes are expected to be highly expressed in most o
organisms [72]. The first (1) measure captures CUB in the classical sense, and the MILC metric s
we use [63] controls for overall genome composition as well as gene length. The second (2) measure  s2
captures the “consistency” of bias across highly expressed genes, with the intuition that if highly- =3
expressed genes are optimized to cellular t-RNA pools then they will share a common bias (low  se
values indicate high consistency). This quantity can be though of as the “distance” between highly  ss
expressed genes in codon-usage space, where we expect these genes to be close together when they e
are highly optimized for growth. The third (3) measure, codon pair bias, captures associations be- sz
tween neighboring codons, which have been suggested to impact translation [22, 6, 10]. Specifically, ss
it has been shown that altering the frequency of different codon pairs (but not the overall codon or  ss
amino acid usage) can lead to lower rates of translation, and this strategy has been used to pro- o
duce attenuated polioviruses (potentially to engineer novel vaccines; [10]). Because it is much more e
difficult to accurately estimate pair-bias due to the large number of possible codon pairs, we do so e
on a genome-wide scale, calculating pair-bias over all genes rather than just for highly expressed 3
genes (our R package includes a “partial” mode for when this is not possible due to partial genomic  es
information). Consider that if there are 64 codons, the number of possible ordered pairs is 4096, s
and accordingly far more data will be needed to reliably estimate the frequencies of all of these es
pairs than the original set of codons. 67

We fit our model using all available completely assembled genomes in RefSeq (1415) for the s
set of 214 species with documented maximal growth rates compiled by Vieira-Silva et al [72]. All e
three of these measures were significantly associated with growth rate in a multiple regression 7o
(CUB, p = 2.2 x 1077 consistency, p = 8.1 x 107!%; codon-pair bias, p = 5.3 x 1076; linear =
regression). Furthermore, comparing nested models, incorporating first CUB, then consistency, 7
and finally codon-pair bias, we found that each nested model fit the data significantly better than 7
the last (addition of consistency, p = 4.2 x 10~!!; addition of codon-pair bias, p = 4.0 x 107%; 7
likelihood-ratio test). 75

gRodon accurately predicts maximal growth rates 76

The gRodon model fit the available maximal growth rate data well (adjusted R? = 0.63; Fig 1a). 77
Our model demonstrated a significantly better fit to growth data than a linear model fit on the 7
output of growthpred (ANOVA, p = 1.1 x 1078, Fig 2). Notably, gRodon provided a better fit to 7o
the data than growthpred at both high and low growth rates (S1 Figure). 80

We considered the possibility of overfitting our model to the data, which would inhibit our e
ability to apply our predictor to new datasets. Overfitting is a particularly relevant concern when s
dealing with species data, since models may end up being fit to underlying phylogenetic structure s
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Figure 1: Predictions from gRodon accurately reflect prokaryotic growth rates, with the caveat that
(a) gRodon underestimates doubling times when growth is very slow due to (b) a floor on CUB
reached in slow-growth regimes. Vertical dashed red line at 5 hours indicates where the CUB vs.
doubling time relationship appears to flatten. The black dashed line in (a) is the © = y reference
line.

rather than real associations between variables. In addition to traditional cross-validation (Fig 2a), s
we implemented a blocked cross validation approach, which effectively controls for phylogenetic —ss
structure when estimating model error [54]. Under this framework, we take each phylum in our se
dataset as a fold to hold out for independent error estimation rather than holding out random e
subsets of our data as in traditional cross validation. We found that even when predicting growth  ss
rates for each phylum in this way (extrapolating from our model fit to all other phyla, but excluding s
the test phylum), we outperformed growthpred’s predictions for the large majority of phyla (Fig e
2b). Importantly, for this comparison growthpred’s predictions were based on it’s fit to the entire o
dataset (including the test phylum), meaning that gRodon was able to outperform growthpred even o2
when given an unfair disadvantage. 03

We examined a number of confounding variables that could affect model performance. Observed s
codon statistics are the result of several interacting evolutionary forces. Selection for rapid growth s
drives the signal we exploit here, but the effective population size (N, ) and the rate of recombination  ee
will determine how efficiently selection acts on a given population [12]. We found that N, is e
correlated with maximal growth rate (as might be expected; [3]), as well as our model residuals s
(S2 Figure), though the effect is rather weak. For populations with extremely atypical effective oo
population sizes (e.g., intracellular symbionts), we caution that N, is likely to confound genomic 100
growth rate estimates. Recombination locally increases the efficiency of selection, and can lead 101
to weak but significant patterns in GC content along the genome [2, 73]. We found no apparent 102
differences in codon usage bias between genes with or without a signal of recombination, both looking 103
at all genes in a genome (S3 Figure) and just the ribosomal proteins (S4 Figure). Finally, especially  10s
in oligotrophic marine environments, many microbes experience selection for genome streamlining 1os
(high percent coding sequence) alongside selection for low genomic GC content [64, 20]. While our 106
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Figure 2: Predictions from gRodon are more accurate that those from growthpred. (a) Under
10-fold cross-validation (CV; repeated 100 times) gRodon outperforms growthpred (in terms of
mean squared error, MSE). (b) Even extrapolating across phyla gRodon typically outperforms
growthpred. FEach point represents error extrapolating to a given phylum, with the point size
representing the number of species assigned to that phylum in our dataset. The black dashed line is
the z = y reference line. Note that in both (a,b) the growthpred values shown are not cross-validated
(since growthpred’s model has already been fit on the full dataset), but performance values were
calculated on each fold, giving growthpred an advantage (though gRodon still demonstrates higher
accuracy despite the unfair comparison).
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measures of codon usage should correct for genome nucleotide composition, we wanted to be sure 107
our model’s performance was not affected by these other targets of selection. While percent coding 1os
sequence does appear to have some non-linear association with growth rate, our model residuals 1oe
were not affected by either percent coding sequence or GC content (S5 Figure). This is consistent 1o
with previous work showing that CUB-based approaches can predict growth rates in low-nutrient 111
marine microcosms [36]. 112

Finally, we assessed the impact of our training set on gRodon’s predictions. The original set of 13
minimal doubling times from Vieira-Silva et al. [72] was a carefully hand-curated dataset compiled 11
specifically for this application, but includes only a subset of available recorded doubling time 11s
estimates for cultured microbes. Unfortunately, there is no single database describing all known 116
microbial growth rates, but recent work has attempted to compile all available microbial phenotypic 117
data [38], including data on growth rates. We re-trained gRodon on the growth rates associated 1s
with microbes with completely assembled genomes in the Madin et al. [38] database (464 species 11
with 8287 genomes). The re-trained model yields very similar results to the original gRodon model 120
(S6 and S7 Figures), despite the two training datasets disagreeing on the maximal growth rates of 121
several species (S6 Figure). We include this alternative model in the gRodon package alongside the 122
model trained only on the Vieira-Silva et al. [72] dataset and include predictions from both models 12
for each entry in the EGGO database. 124

The problem of slow-growers 125

For very long doubling times, while gRodon outperforms growthpred it still tends to underestimate 126
the actual doubling time (Fig la and Fig 2a). In populations of very slow growing microbes, 127
selection to optimize transcription of ribosomal proteins is likely quite low, and once the selective 128
coefficient is low enough, drift will dominate the evolutionary process. This expectation is consistent 12e
with the pattern seen in Fig 1b where CUB of the ribosomal proteins reaches a floor at very high 130
doubling times. Importantly, this floor will likely be a problem for all genomic predictors of maximal 131
growth rate. Drift will be the primary evolutionary force influencing any genomic feature when 132
selection coefficients approach zero, as we expect for genomic features associated with rapid growth 133
in extremely slow-growing organisms. 134

What can be done in such a scenario? While gRodon cannot accurately differentiate between a 135
doubling time of 10 or 100 hours, it can reliably tell us if a doubling time is greater than 5 hours 13s
long (the threshold at which CUB flattens in Fig 1b, see S8 Fig). In fact, this threshold suggests 137
a natural definition of an oligotroph as an organism for which selection for rapid maximal growth 13s
is low enough so that no signal of growth optimization (e.g., CUB) is observed. Importantly, this 13
standard redefines oligotrophy in evolutionary terms, as a specific selective regime that a microbe 1a0
can occupy, and therefore the threshold for oligotrophy will depend on the N, of a species (as 1a
illustrated by the effects of N, on our model residuals above). From our data, it appears that at 1
typical N, values for microbes (~ 108; [3], S2 Fig), codon optimization is undetectable for maximal 1
doubling times greater than 5 hours (Fig 1b and S8 Fig). Even for Prochlorococcus marinus, which  1aa
may have very large effective population sizes (> 103 [27] over a well-mixed marine region, though 15
some estimates of Prochlorococcus N, are much lower at ~ 108 [3]), growth rates were severely 1as
underestimated, though still above our 5 hour threshold (predicted doubling time of 6.2 hours 1
versus an actual doubling time of 17 hours for strain CCMP1375). Thus, gRodon can be used as 1as
an accurate classifier for oligotrophy/copiotrophy by simply defining microbes predicted to have 1
maximal doubling times greater than 5 hours as oligotrophs (S8 Fig). Obviously this threshold s
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will vary to some degree across species and populations (e.g, as local population size, population 1s:
structure, selective regimes, recombination rates, etc. vary), but our predictor appears to be largely s>
robust to most confounders (S2, S3, S4, and S5 Figures), and without additional information 5 hours 1ss
serves well as a pragmatic default. 154

Predicting the mean growth rate of a community using metagenomes 155

We cannot resolve the genomes of the majority of organisms described by a typical metagenomic 1se
sample. Yet, often we wish to look for changes in community-scale characteristics over space 1s7
and time. Given a nearly complete set of coding sequences from a community, is it possible to 1ss
estimate community-wide growth potential even when we do not know which organisms make up 1se
that community? Vieira-Silva et al. [72] found differences in the CUB across habitats and during 1o
ecological succession in the infant gut, interpreting this as community-level differences in the average 1e
maximal growth rate. This approach is supported by the fact that codon usage patterns and t-RNA 162
copy numbers tend to be shared by members of a community [72, 68, 56], where different species 13
within an environment tend to have more similar codon usage patterns than the same species in  1ea
different environments [56]. Thus, comparing the set of all highly expressed genes (e.g., all genes 1es
coding for ribosomal proteins) to the full set of genes in a metagenome should give a rough estimate 166
of the mean community-wide growth rate. 167

Importantly, the growthpred approach makes a major omission in that it does not account for ies
the relative abundances of different organisms in the sample. All assembled genes are treated as 1eo
equal, thus biasing the growth estimate towards the rarer members of a community. To correct 170
for this, we incorporated read coverage of genes into our gRodon calculation, thus producing a in
community-wide maximal growth rate estimate that reflects the taxonomic distribution of a com- 17
munity. Our approach is simple — in gRodon’s metagenome mode (which only takes CUB into 17
account, not consistency or pair-bias) we calculate the weighted median of the CUB of highly ex- 17e
pressed genes, with weights corresponding to the mean depth of coverage of these genes, rather than  17s
an unweighted median as in the default gRodon calculation. Thus, the highly expressed genes of 76
abundant organisms are accounted for proportionally to their relative abundance. For comparison, 177
we also implemented an unweighted version of metagenome mode in gRodon. 178

In practice, it is not easy to benchmark such a method on a natural community since we do not  17e
typically know the actual maximal growth rates of all members of any given community. Neverthe- 1so
less, our approach can be validated by nutrient enrichment experiments where nutrients are added 181
to an initially oligotrophic community leading to a rise in copiotrophs. If gRodon truly captures is
changes in community-wide growth potential, we should see our community-level maximal growth 1ss
rate predictions increase under this nutrient enrichment regime. While many such experiments have 1ss
been carried out, very few are accompanied by shotgun metagenomic sequencing. Recently, Okie 1ss
et al. [45] performed a controlled nutrient enrichment experiment in a highly oligotrophic pond 1se
system that included replicated metagenomic samples from the treatment and control conditions. 1s7
Despite a small number of samples overall (n = 10), gRodon’s weighted metagenome mode detected — 1es
a significantly higher community-level average maximal growth rate in the enrichment condition 1se
(p = 0.032, Mann-Whitney test; S10 Fig). Importantly, no difference was detected when using s
gRodon’s unweighted metagenome mode (p = 0.15, Mann-Whitney test; S10 Fig). Okie et al. [45] 101
excluded several samples from their final analyses on the basis of low read counts, doing the same 102
sufficiently reduces our sample size (n = 7) so that no significant change is detected (p = 0.057, 103
Mann-Whitney test), though all enriched treatments have higher predicted maximal growth rates 1ea
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’ Source \ Type \ Number of Genomes Environment
RefSeq Assemblies [65] | Isolate 184907 -
Parks et al. [48] MAG 7287 -
GORG-tropics [46] SAG 7214 Marine Surface
Tully et al. [69] MAG 2266 Marine
Delmont et al. [13] MAG 809 Marine
MarRef [29] Isolate 725 Marine
Pasolli et al. [49] MAG 4431 Human Microbiome
Nayfach et al. [41] MAG 4483 Human Gut
Poyet et al. [50] Isolate 3459 Human Gut
Zou et al. [75] Isolate 1493 Human Gut

Table 1: Summary of EGGO database

than all control treatments (S11 Fig). In a recent time-series study, Coella-Camba et al. [9] applied 1
multiple nutrient treatments to mesocosms in oligotrophic marine waters and tracked their change 106
over time with shotgun metagenomes. In several experiments a large cyanobacterial bloom was 1e7
observed within the first 7 days of the experiment followed by a crash [9], which both gRodon’s 1es
weighted and unweighted metagenome modes were able to capture as a steep increase in growth 1ee
rate before a return to baseline (S12 Fig), though the un-corrected, unweighted metagenome mode 200
systematically underestimated average community maximal growth rates (S13 Fig). As sequencing 201
costs continue to decline it will become easier to benchmark community-wide maximal growth es- 202
timates, though even from our limited example we emphasize that it is important to take relative 203
abundances into account when making these estimates. 208

The EGGO Database 205

We constructed a database (EGGO; Table 1) of predicted growth rates from 217,074 publicly 206
available genomes, metagenome-assembled genomes (MAGs), and single-cell amplified genomes 207
(SAGs). Of these, the majority corresponded to RefSeq genome assemblies (184,907; [65, 66]). 208
The distribution of growth rates across RefSeq was roughly bi-modal, with the split between peaks 200
corresponding to the 5 hour doubling-time cutoff we proposed above for classifying oligotrophs (Fig 210
3a). Additionally, phyla tended to broadly group together in terms of growth rate, and the 5 hour 2
divide separated fast- and slow-growing phyla (Fig 3b-c). Using a Gaussian mixture model we 212
obtained two large clusters of microbes, with mean doubling times of 2.7 and 7.9 hours respectively, 213
roughly corresponding to our proposed copiotroph /oligotroph divide (Fig 3a). We also obtained a 21e
third, very small and slow growing cluster, accounting for 0.4% of observations with a mean minimal 215
doubling time of 99 hours (too small to plot in Fig 3a). 216

MAGs and SAGs make up a sizable portion of our overall database (26,490) and provide impor- 2iz
tant information about the distribution of growth rates of uncultured organisms. A basic expecta- »1s
tion is that cultured microbes from an environment will on average have higher maximal growth 21
rates than the true average across that environment, since culturing slow-growing species will in 220
general be more difficult [53, 70]. This pattern can be clearly seen in both marine (Fig 4) and host- 221
associated (Fig 5a-b) environments, with isolate collections showing much lower predicted doubling 222
times than MAGs and SAGs from the same environments. Even in sets of isolates meant to capture 223
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Figure 3: Prokaryotes with sequenced genomes span a broad range of predicted growth rates. (a)
Predicted growth rates for assemblies in NCBI’s RefSeq database. Growth rates were averaged over
genera to produce this distribution, since the sampling of taxa in RefSeq is highly uneven (see S9
Fig for full distribution; a small number of genera had inferred doubling times over 100 hours, 6
out of 2984). Clusters correspond the components of a Gaussian mixture model, with area under
each curve scaled to the relative likelihood of an observation being drawn from that cluster. (b-c)
Growth rate distributions for individual (b) fast- and (c¢) slow-growing phyla (only showing phyla
with > 30 genera represented in RefSeq). Vertical dashed red line in (a-c) at 5 hours for reference.
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Figure 4: Predicted maximal growth rates in marine environments. Observe that (a-b) genomes
from isolates have shorter predicted doubling times on average than MAGs and SAGs, and fail to
capture the slow-growing fraction of the community. Additionally, SAGs showed a lower overall
growth rate than MAGs, with very few doubling times predicted to be under 5 hours. This may be
due in part to how SAGs were sampled (only at the ocean surface, rather than at multiple depths),
or to some systematic bias in how MAGs are assembled and binned. MAGs generated by distinct
research groups showed surprisingly consistent maximal growth rate distributions. Vertical dashed
red line in (a) at 5 hours for reference.

the complete taxonomic diversity in an environment [75, 50], we see that they fail to capture the 224
most slowly-growing members of the community (Fig 5a-b). Illustrating this gap is important, as it 22s
shows how existing culture collections are not only incomplete, but also biased. These patterns are 226
most apparent when looking within an environment, and largely disappear when comparing against 227
MAGs from diverse environments (S14 Fig; [48]). 228

Finally, we note that there are many potential use-cases for gRodon and the EGGO database, 220
especially when studying subsets of microbes for which additional metadata is available. For exam- 230
ple, microbes associated with “non-westernized” human gut microbiota have a significantly shorter 231
doubling time on average than the gut microbiome as a whole (t-test, p = 4.1 x 107°%; Fig 5¢; 232
classification of “non-westernized” taxa from [49]; we note that this terminology centers a mythic 233
monolithic “West” as a reference against which all other groups are to be compared, and should 2:a
be revised [32]), perhaps indicating that they are primarily infrequent but fast-growing community 23s
members caught during a bloom. As another example, the very largest cells in marine samples 236
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Figure 5: Predicted maximal growth rates in the human gut. Observe that (a-b) genomes from
isolates have shorter predicted doubling times on average than MAGs, and fail to capture the slow-
growing fraction of the community. Notably, growth-rate distributions are consistent across MAG
datasets (S18 Fig) in the gut, though they vary across body sites (S19 Fig). We also found that (c)
gut microbes associated with non-westernized microbiomes had slightly higher growth rates than
gut microbes in general. Vertical dashed red line in (a) at 5 hours for reference.
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seem to also be those with the highest maximal growth rates (Fisher’s exact test, p = 2.2 x 10715; 237
S15 Fig). This is consistent with the “nutrient growth law” coined by Schaechter et al [57], which 23s
describes a simple exponential relationship between bacterial cell volumes and their growth rates. 23e
Because maximal growth rate is a basic parameter of microbial lifestyle [55], gRodon and EGGO 240
allow us to build better large-scale comparative studies linking specific traits and habitats to par- 2a1
ticular microbial life-histories. 242

Using EGGO to predict growth using only 16S rRNA 243

There are many organisms for which we do not have genomic information, but for which we have the s
genomic information of a close relative. Vieira-Silva et al. [72] observed conservation of growth rate 2as
below the genus level. We leverage these phylogenetic relationships alongside our comprehensive 26
EGGO database to drastically expand the set of organisms whose growth rates we can predict. 247

The growth rates of species pairs within a genus are strongly associated. This is true looking 2as
at actual maximal growth rates (linear regression, p = 2.4 x 1074, R? = 0.39, despite a small 240
number of datapoints n = 25), but becomes more apparent when we examine the large number of 250
inferred growth rates in EGGO (linear regression, p < 2.2 x 10716, R? = 0.42; S16 Fig). In order 2
to assess how closely two organisms must be related to reliably extrapolate maximal growth rate, 2s2
we built a phylogeny of 16S rRNA sequences with corresponding records in EGGO. We predicted »s3
maximal growth rate as the weighted geometric mean of an organism’s nearest 5 relatives on the tree 2sa
(weighted by inverse patristic distance, see Methods). Comparing an organism’s entry in EGGO 25
to values extrapolated from closely related relatives, we found that the two quantities were highly 2se
correlated (Pearson correlation of log-transformed doubling times p = 0.78, p < 2.2 x 10716; Fig 257
6a). Prediction error was relatively insensitive to how distant these neighbors were up to a patristic 2ss
distance of ~ 0.2 (Fig 6b; consistent with previous observations [72]). We obtained similar results as
when predicting only on the basis of the closest relative (Pearson correlation of log-transformed 260
doubling times p = 0.60, p < 2.2 x 10716; S17 Fig). Importantly, prediction using a 16S tree 2
relies on a large database of pre-predicted maximal growth rates (i.e., EGGO), meaning that errors 2e2
are compounded over multiple rounds of prediction. We thus caution against over-interpretation of 263
phylogenetic predictions, though these predictions can offer a useful baseline estimate for organisms  2ea
for which we have very little life-history information. One option for the conservative microbiologist 2es
is to use phylogeny to predict whether an organism is a copiotroph or oligotroph (following our 2ee
earlier cutoff of a 5 hour doubling time), as classification is generally an easier task than regression. 26
Our approach to phylogeny-based prediction did well when applied for classification of oligotrophs 2es
(i.e., whether an organism had a doubling time > 5 hours; accuracy= 0.98, Cohen’s kK = 0.61). We 260
include a blast database of 16S sequences for organisms with records in EGGO alongside the online 270
database so that users may search their own 16S sequences to predict growth. 271

Conclusions

We produced a community resource in the form of an easy-to-use and well documented R package 273
(gRodon) and comprehensive database (EGGO) for predicting and compiling maximal growth rates 27a
across prokaryotes. Using these tools we show how existing cultured isolates do not fully capture »7s
the diversity of prokaryotic lifestyles. We are unlikely to overcome these biases easily, as the slow- 276
growing microbes missing from our culture collections are precisely the ones we expect to be most 27z
difficult (and time-consuming) to grow in the laboratory. Yet, we have their genomes, and may 27s
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Figure 6: Closely related organisms have similar predicted maximal growth rates. (a) We predicted
the growth rate of an organism based on closely related organisms in EGGO and found good
correspondence to that organism’s entry in EGGO. Dashed line denotes the 2z = y line. (b) Pairs of
randomly sampled organisms have similar growth rate entries in EGGO as long as they are closely
related (vertical dashed blue line at a patristic distance of 0.2, the same threshold found in [72]).
Horizontal gray line at d = 0.5 hours for reference. (a-b) Points shaded relative to number of nearby
neighbors in order to visualize density (ggpointdensity R package https://github.com/LKremer/
ggpointdensity).

be able to extrapolate their traits from microbes that are more easily cultivable. Growth rate is 27
one example where inference of traits from genomes has clear utility, though we emphasize that 2so
genome-wide signals may be confounded by other evolutionary and/or demographic processes and 2s:
that it is important to assess their robustness and limitations, as we have done here. 282

Finally, we emphasize that the relationship of the in situ growth rate and the maximal growth 2ss
rate of an organism is not clear given the cryptic influence of top-down and bottom-up controls »sa
at the sampling time. There are any number of reasons why an organism may not reproduce at 2ss
its physiological maximal rate (e.g., fluctuating habitat quality, dispersal to sub-optimal habitats, 2se
etc.). Nevertheless, it is encouraging that recent work using natural communities has shown that 2ez
CUB-based estimators do a reasonably good job of predicting observed instantaneous growth rates 2es
in marine systems [36], even as peak-to-trough [30, 4, 19, 17] methods of estimating growth have 2s0
been reported to work poorly for marine plankton, with the exception of the most highly abun- 2e0
dant copiotrophs [36]. Thus, taken together with our benchmarking against nutrient-enrichment 2e:
experiments, the data suggest that CUB-based estimators of maximal growth rate tend to also 2e2
recapitulate the instantaneous growth rate of a community. 203

Methods 208

All scripts used to generate figures and analysis, as well as predicted growth rates for various genomic  2es
datasets and the full EGGO database, are available at https://github.com/jlw-ecoevo/eggo. 206
The gRodon package, including documentation and a vignette can be downloaded at https:// 297
github.com/jlw-ecoevo/gRodon. 208

13


https://doi.org/10.1101/2020.07.25.221176
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.25.221176; this version posted August 7, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Model Fitting 200

For each species with a growth rate listed in the original Vieira-Silva dataset (214; [72]) we down- 300
loaded all available complete genome assemblies from NCBI’s RefSeq database (1415; [65, 66, 23]). 301
For each species we calculated the mean of each of our three codon usage statistics across all 3oz
genomes corresponding to that species. Ribosomal protein annotations were taken directly from sos
the annotations generated by NCBI’s default prokaryotic annotation pipeline, and these were the sca
ribosomes passed to both growthpred and gRodon. Importantly, growthpred can also search for sos
ribosomal proteins using a provided database, though we did not use this feature so as to make soe
sure the two prediction methods were compared on identical datasets. For initial model fitting, we 307
excluded thermophiles and psychrophiles from the dataset (31) as these organisms systematically sos
differ in their codon usage patterns [72]. Similar to growthpred, we include a temperature option fit 3o
using these microbes in the final gRodon package that accounts for optimal growth temperature in 310
the final model, though given the few extremophiles used to fit this model we caution users against s
drawing strong conclusions when it is applied to extremophiles (by default temperature is not used 312
for prediction). 313

We then fit a linear model to box-cox transformed doubling times (optimal A chosen using the 31a
MASS package [71]) using our three codon usage measures as predictors. Similarly we fit models for = sis
gRodon’s “partial” (excluding pair-bias) and “metagenome” (excluding pair-bias and consistency) sie
modes. 317

For fitting on the Madin et al. [38] training set we used the same model fitting procedure. We  11s
took the minimal recorded doubling time from each species in the “condensed traits NCBIL.csv” 310
supplementary file (https://doi.org/10.6084/m9.figshare.c.4843290.v1), and where possible 320
obtained all completely assembled genomes associated with that species from RefSeq. This yielded 321
our training set with 464 species matched to 8287 genomes. Notably, 130 of these species were 322
either thermophiles or psychrophiles, perhaps making this training set preferable when dealing 323
with extremophiles. 324

The Gaussian-mixture model in Fig 3 was fit using the Mclust() function in the mclust package s2s
with default settings [58]. Mclust chooses the optimal mixture of Gaussian based on BIC and finds sz
this optimum (for mean and variance) using an expectation-maximization algorithm. 327

Metagenomic Data 328

The raw sequencing data for the metagenomic water samples taken at the end of the Okie et al. 320
[45] experiments were obtained from NCBI under BioProject PRJEB22811. Raw sequencing data 330
for the time-series samples taken by Coella-Camba et al. [9] were obtained from NCBI under sa
BioProject PRINA395437. Adapters and low quality reads were trimmed using fastp v0.21.0 [7] 332
with default parameters and only reads longer than 30 bp were kept for further analysis. Okie et al. 333
[45] samples were assembled individually using metaSPAdes v3.10.1 [43]. Coello-Camba et al. [9] 33a
samples were assembled individually using megahit v1.2.9 [34] with default parameters. We called 33s
and annotated ORFs from assemblies using prokka [59] (with options “--metagenome --compliant -- 336
fast”). Reads were mapped to ORFs using bwa 0.7.12 [35], and the number of reads aligned to each ss7
ORF were counted using bamcov v0.1.1 (available at https://github.com /fbreitwieser/bamcov). s3s
We ran gRodon in weighted and unweighted metagenome mode on each sample, with weights 339
corresponding to mean coverage depth (corrected for gene length). In weighted metagenome mode 340
the median CUB of the highly expressed genes is taken as a weighed median (weightedMedian in  sa
matrixStats R package), with weights corresponding to mean depth of coverage for that gene. One  sa
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sample from Coella-Camba et al. [9] had a very atypical estimated average minimal doubling time  3as
over twice as long as any other estimated doubling time from this dataset (MGO78 at 3.1 hours, 3
as compared to the second longest doubling time in MG002 at 1.4 hours), and strongly disagreeing sas
with a replicate sample from the same experiment and timepoint (MGOT73 at 0.35 hours). Upon 1ae
closer inspection, this sample had far fewer bases than the rest (133M bases vs > 1G bases) and  3az
only a little over 400 genes were detected in the assembly, far too few for accurate assessment of sas
community-wide growth rate, leading us to omit this sample from further analyses. 349

EGGO Datasets 350

We downloaded all prokaryotic assemblies from RefSeq [65, 66], as well as several collections of = ss:
isolate genomes [29, 50, 75], MAGs [69, 49, 41], and SAGs [46]. Where possible, we used per- ss2
existing gene annotations provided by NCBI. For the Pasolli et al. [49] and Nayfach et al. [41] sss
MAGs gene predictions were not available and we used prokka to predict ORFs and annotate zsa
ribosomal proteins [59]. Note that for both of these MAG datasets we used a subset of all MAGs  sss
designated as being representatives of species clusters by the authors. We then ran gRodon on sse
each genome, using partial mode for MAGs and SAGs (which vary in their completeness). Finally, ss
we filtered results from genomes with few ribosomal proteins. Similar to Vieira-Silva et al [72], sse
we found that growth rates were biased when <10 highly expressed genes were used for prediction sse
(520 Fig), and we used this cutoff for our MAGs and SAGs. For our isolate genomes this generally  seo
was not an issue, with over 99% of genomes in RefSeq having between 50-70 annotated ribosomal  se
proteins. We filtered all genomes outside this range to remove a very small set of obvious problem se2
cases (e.g., one Bacillus genome that had over 1000 annotated ribosomal proteins). The numbers ses
in Table 1 correspond to post-filtering genome counts. 364

Measuring Bias 365

We use the MILC measure of codon usage bias [63] implemented in the coRdon R package [16]. 366
This bias measure behaves slightly better than the ENC’ measure used by Vieira-Silva et al [42, 72], 36
and automatically accounts for the CUB of genomic background in its calculation (by taking the ses
genome-wide distribution of codons as its expected distribution; [63, 16]). As recommended in ses
the coRdon documentation, genes with fewer than 80 codons were omitted from our calculations. 370
Importantly, we calculate the MILC statistic on a per-gene basis rather than concatenating all 37
of our genes. The contribution (M,) of each amino acid (a) to the MILC statistic for a gene is sz
calculated as: o 373
M:Z@mi (1)
ceC

where C' is the set of codons coding for a, O, is the observed count of codon ¢, and E. is the 372
expected count of codon ¢ (See the original paper for the full calculation of the MILC statistic; s7s
[63]). Typically, E, for a given gene is estimated using the genome-wide frequency of that codon 37
c. This is what we mean when we say that for our CUB measurement the bias of highly expressed sz
genes is calculated “relative to the genomic background”. 378

For our consistency calculation MILC was also used, but was calculated using the highly ex- 37
pressed proteins as the expected background (using the “subset” option in coRdon). In other seo
words, we estimated the expected count of a codon, E., using the frequency of that codon in ss
highly-expressed genes only, rather than the genome-wide frequency. 382
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For codon-pair bias we implemented the calculation by Coleman et al. [10] that controls for ses
background amino acid and codon usage when estimating the over/under representation of codon ssa
pairs (see their S1 Fig for relevant equation). 385

Population Parameters 386

We obtained estimates of N, from [3], which are based on dN/dS ratios (the intuition being that ser
selection acts more efficiently in large populations). Gene-specific recombination rates were obtained  ses
by applying the PhiPack [5] program for detecting recombination to the ATGC database of closely-  sso
related genome clusters [31], as described in Weissman et al. [73]. 390

Extrapolating Between Closely Related Taxa 301

For all genomes used to build EGGO we extracted all annotated 16S rRNA genes and then aligned 3oz
these sequences and removed poorly-aligned columns using ssu-align and ssu-mask (default settings; se3
[40]). We then filtered sequences for which less than 80% of positions were accounted for (i.e., were 3o
gaps). We ran fasttree on the resulting alignment (with -fastest, -nt, and -gtr options; [51]) to ses
obtain a phylogeny with 192,195 tips representing 60,421 organisms. For phylogenetic prediction of  3e6
maximal growth rate we then omitted any tips with EGGO entries where d > 100 hours (13 tips) ez
to minimize the influence of outliers. 308

To predict growth rate we first randomly sampled one tip per organism in our tree (to avoid ses
predicting an organisms growth rate from itself). We then iteratively found the five closest tips to a0
each tip in the tree, and took the weighted geometric mean of the growth rates associated with these ao1
tips. This gave us our predicted maximal growth rate on the basis of 16S rRNA in Fig 6a. Weights o2
were calculated as inverse patristic distance, with a small constant added for when organisms had  aes
identical 16S sequences (e.g., multiple genomes in EGGO for the same species): 40a

! @)

w=-——.
distance + 10—8
For S17 Fig, the predicted rate was simply taken as the rate associated with the closest tip on the aos

tree. We identified the closest tips using the castor R package [37]. 406

To produce Fig 6b we sampled 10,000 tips from our tree and calculated all pairwise distances so7
between tips using the cophenetic.phylo() function in the ape R package [47]. 408
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