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Abstract

Neural datasets often contain measurements of neural activity across multiple
trials of a repeated stimulus or behavior. An important problem in the analysis
of such datasets is to characterize systematic aspects of neural activity that carry
information about the repeated stimulus or behavior of interest, which can be
considered “signal”, and to separate them from the trial-to-trial fluctuations in
activity that are not time-locked to the stimulus, which for purposes of such
analyses can be considered “noise”. Gaussian Process factor models provide a
powerful tool for identifying shared structure in high-dimensional neural data.
However, they have not yet been adapted to the problem of characterizing signal
and noise in multi-trial datasets. Here we address this shortcoming by proposing
“signal-noise” Poisson-spiking Gaussian Process Factor Analysis (SNP-GPFA), a
flexible latent variable model that resolves signal and noise latent structure in neural
population spiking activity. To learn the parameters of our model, we introduce
a Fourier-domain black box variational inference method that quickly identifies
smooth latent structure. The resulting model reliably uncovers latent signal and
trial-to-trial noise-related fluctuations in large-scale recordings. We use this model
to show that predominantly, noise fluctuations perturb neural activity within a
subspace orthogonal to signal activity, suggesting that trial-by-trial noise does
not interfere with signal representations. Finally, we extend the model to capture
statistical dependencies across brain regions in multi-region data. We show that in
mouse visual cortex, models with shared noise across brain regions out-perform
models with independent per-region noise.
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1 Introduction

Recent advances in electrophysiological and calcium fluorescence imaging technologies have enabled
the collection of increasingly high-dimensional neural datasets. Making sense of such datasets will
rely on the development of flexible statistical methods for extracting relevant structure. Gaussian
process factor models provide one powerful tool for identifying low-dimensional latent structure
from high-dimensional neural response data. These models seek to characterize neural time-series
data in terms of a small number of smoothly evolving latent variables, and have been successfully
used to characterize neural representations in a variety of contexts [1, 2, 3, 4, 5, 6].

Standard Gaussian Process factor analysis (GPFA) uses a Gaussian process prior to impose smooth-
ness on inferred latent variables, but do not explicitly consider stimulus or task conditions. However,
neural data often exist in the form of repeated trials, whereby the same condition is presented to an
animal multiple times. These repeated presentations give rise to neural activity that varies across trials
around some time-varying “signal” component that is typically estimated using the peri-stimulus
time histogram (PSTH). Understanding this signal, and its relationship to trial-to-trial variability, is
of central importance to the models of coding in the nervous system [7, 8], yet latent factor models
have not been developed to explicitly study this question. Here we address this shortcoming by
developing an extension to Gaussian process factor analysis with Poisson spiking (P-GPFA) which
we call signal and noise P-GPFA (SNP-GPFA). This model incorporates both signal and independent
per-trial components that vary across trials. We refer to these latter components as “noise”, in the
sense that they are not time-locked to the repeated stimulus, though they may well reflect other signals
unrelated to the experimental stimulus of interest.

In both P-GPFA and SNP-GPFA models, because the Gaussian process is not a conjugate prior for a
Poisson observation model, posterior inference is intractable in closed form. Variational inference
methods have become increasingly common for applications of Gaussian processes [9, 10, 5].
They achieve tractability by approximating the posterior distribution pθ(x|y)with a well-behaved
variational distribution qφ(x|y) [11]. For P-GPFA and SNP-GPFA, because the calculation of the
expectation under qφ(x|y) of the joint distribution pθ(x,y) is intractable, we use a ‘black-box’
approach, which works via sampling of the joint distribution [12].

However, black-box variational inference approaches for Gaussian Process Factor models with long
time-series can be computationally cumbersome. Therefore, we introduce a variant of black-box
variational inference which uses a Fourier-transformed latent representation that factorizes across
Fourier modes. This procedure diagonalizes the Gaussian Process (GP) covariance, avoiding a large
matrix inversion during inference, thereby providing speed and computational improvements. We
demonstrate the inference technique is fast and flexible in a simpler P-GPFA framework, and then
use it to learn the SNP-GPFA model quickly and efficiently.

The SNP-GPFA model recovers separate signal and noise subspaces, which allows us to answer a
number of scientific questions regarding these facets of neural activity. Here, we address two scientific
questions with SNP-GPFA. 1) We characterize the overlap between signal and noise subspaces, and
2) We characterize the extent to which noise is shared across cortical region using multi-region neural
recordings.

For the first, the alignment of subspaces that reflect different aspects of neural activity has been
explored in other contexts [6, 13], as well as the characterization of the subspace of neural noise [14].
Previous work suggests that signal and noise subspaces may be orthogonal [14], and such orthogonal
representations may not limit neural information [15]. Our model directly addresses this question.
Using SNP-GPFA on primate data we find that there is indeed more noise activity orthogonal to
the signal subspace than in the signal subspace, particularly when a visual stimulus is present. This
suggests that trial-by-trial variability does not interfere with stimulus encoding.

To address the second scientific question, we include SNP-GPFA analyses on simultaneously recorded
visual regions in rodent cortex to ask if trial-varying activity is shared or independent across cortical
regions. We compare performance of SNP-GPFA models that varying in their number of shared and
independent noise latents across cortical regions. We find that the model that has shared noise latents
performs best on cross-validation measures, suggesting trial-by-trial variability has shared structure
across cortical regions.
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Figure 1: Efficient representation of GP covariance. (A) Standard GP covariance matrix for 1D
vectorization of 200 timepoints, with length scale ` = 15, and its Fourier representation, pruned. (B)
Time to maximization of the ELBO in the time-domain inference and in the Fourier domain with and
without a minimum frequency.

2 Poisson Gaussian Process Factor Analysis (P-GPFA)

We begin by introducing the Poisson-GPFA model, which has been used previously to identify
continuous latent states from population spike train recordings [10, 16, 6]. The observations of our
model are spike-train data, represented by the neurons-by-time matrix Y ∈ N

N×T .

We seek to learn a P-dimensional latent variable x(t) ∈ IRP that linearly maps to the data via a
loadings matrix W ∈ IRN×P , followed by some nonlinear function f and Poisson observations.

Y = Poiss(f(W>X)) (1)

Our choice of non-linear function f is the softplus f(x) = log(1 + exp(x)).

Each latent xj(t) (j ∈ {1 . . . P}, t ∈ {1, 2 . . . T}) evolves according to a Gaussian process, xj(t) ∼
GP(0,K(θ)), with covariance matrix K(θ) defined by a squared exponential kernel [K(θ)]tt′ =
ρ exp(−|z(t)− z(t′)|2/2`2), where hyperparameters θ = {`, ρ} include a length scale ` controlling
smoothness and a marginal variance ρ controlling magnitude.

Given that the marginal likelihood of this model, p(Y|W) =
∫

p(Y|W,X)p(X|θ)dX is not
available in closed-form, it is common to use a variational inference approach to learn the parameters
of such models [16, 10]. Recall that variational inference seeks to maximize an evidence lower
bound (ELBO) using a variational distribution [11]. Here, because the expectation term in the ELBO,
Eqφ [log(p(y|x,w))], cannot be calculated analytically, we employ a ’black box approach’ which
uses Monte-Carlo samples to estimate the expectation term [17]. This inference method is called
black-box variational inference (BBVI).

2.1 Fourier-domain black-box variational inference

BBVI can be computationally cumbersome. Therefore, to learn the P-GPFA and SNP-GPFA models,
we introduce a novel inference method which performs BBVI over a Fourier-represented latent space,
which increases both inference tractability and speed. Factorizing and learning the time series in the
Fourier domain, rather than the time domain, allows us to take advantage of computational savings
conferred by a diagonal covariance matrix while overcoming problems of uncorrelated timepoints
which is typical when the variational distribution is factorized over time [18].

Our motivation for this approach is that the GP prior over xj(t) describes a stationary process, as its
covariance only depends on pairwise distances. This allows us to diagonalize the covariance K by the

Fourier transform (Fig 1A). Here, the covariance matrix K is diagonalized by K̃ = BKB> where

B is the orthonormal discrete Fourier transform matrix with [B]ω,t =
1√
P
e−i2πωt/m, i ≡

√
−1. The

diagonalized kernel is represented as c̃(ω̃) = ρ̃e−
1

2
ω̃2`2 where ρ̃ =

√
2πρ` is the frequency-domain

variance and ω̃ = 2π
m ω represents an adjusted frequency of the GP kernel.
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Figure 2: Learning a P-GPFA latent model using Fourier-domain black box variational inference.
(A) The learned and true rates of four simulated neurons. Grey bars indicate spike PSTHs (B) The
four generative latents and learned latents rotated to their optimal mapping via regression. (C) The
maximum ELBO value after inference with a varying number of latent dimensions. The ELBO
achieves its maximal value at the true number of latent variables. (D) Reconstruction mean-squared
error (MSE) on real rodent data using P-GPFA and GPFA.

Inference can be conducted completely in the Fourier domain, precluding the need to invert the prior
covariance K. The joint likelihood is expressed as

`(Y,X|W, θ) = `(Y, X̃|W, θ) (2)

≈
∑

i

log(f(wi
>X̃B))yi +

(

f(wi
>X̃B)− log(yi!)

)

1T

− 1

2

(

Pd log 2π + P
∑

ω̃

log c̃θ(ω̃) +
∑

p

x̃p
>diag(W̃nθ)

−1x̃p

)

,

(3)

where X̃ represents the Fourier-transformed latents and 1T is a length-T vector of ones, and
i ∈ {1, 2 . . . N} denotes neuron index. The diagonalized representation demonstrably speeds up
computational time (Fig 1 B). Moreover, the inversion of the time-domain K can present tractability

challenges due to computer precision [19], however, the inversion of K̃ is trivial so long as the vector

along the diagonal, W̃θ, does not contain values that are too small. When small values are present,

we regularize W̃θ by adding a small constant value (10−7).

This Fourier-represented GP has additional computational advantages, including methods to prune
unnecessary Fourier coefficients that do not substantially contribute to explaining variability in Y.
Pruning frequencies constrains the number of coefficients in the Fourier representation to a much
smaller number than would be necessary in the time-domain. For a more detailed treatment, see [20].
For our purposes, pruning of the Fourier representation has the consequence of pruning the variational
distribution, increasing inference efficiency. Fourier BBVI also preserves time-correlations while
permitting a diagonal variational covariance. Ultimately, this Fourier-domain BBVI method can be
viewed as an alternative to many other methods that work to make Gaussian processes computationally
efficient, such as inducing points and sparse GP approximations [21, 22, 23].

We use our Fourier-domain BBVI to learn the Fourier latents X̃ via direct optimization of the

variational distribution qφ(X̃), factor loading parameters W, and hyperparameters `. (Note there
is an invariance between hyperparameter ρ, and the loadings matrix W, so we need not directly
learn ρ in this model.) The speed up from optimization with Fourier domain BBVI can be realized
most starkly in the domain where the time-series is very long. Figure 1B compares Fourier-domain
inference to time-domain inference for a Poisson observation GPFA model with a single latent (i.e.
P = 1, T = 1500) and N = 10 neurons. Inference is sped up by conversion to the Fourier domain
as the bottleneck in time-domain inference is the inversion of a 1500× 1500 covariance matrix K.
By additionally specifying a minimum frequency, sufficiently small frequencies are pruned and the
variational distribution and prior covariance can be cut from 1500 values to 62. This provides an
additional substantial speed advantage of approximately an order of magnitude. It is important to
note that the speed-up of our method depends on the specifics of the number of neurons, latents,
latent length, and pruning. For subsequent analyses in this paper, the speed-up of BBVI due to the
Fourier-domain implementation is anywhere from 20-70%.
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Figure 3: SNP-GPFA model. (A) The model describes trial-by-trial variability with signal latents
common to all trials and noise latents independent across trials (one dimension for each shown here).
Resultant rates are predictive for a single neuron across trials. (B) Reconstructed PSTHs for three
example rodent V1 neurons given by signal model component. (C) Demonstration of trial-by-trial
variability explained by noise component for three trials for the top example neuron in B.

We verify our Fourier-BBVI inference method using simulated neural spikes drawn from a Poisson
distribution with four GP latent dimensions. Our inference approach is able to reconstruct rates of
individual neurons as well as latent structure (Fig 2). The inference procedure also identifies correct
latent dimensionality, as the ELBO is maximal at the true number of latent dimensions (Fig 2C).

The non-conjugacy of P-GPFA (and SNP-GPFA), and thus the reason we need to use the sophisticated
inference of Fourier-BBVI, is due to the fact that the observations are Poisson, as opposed to Gaussian.
This is an important choice as Poisson observations better describe neural data. We show, using data
from rodent visual cortex (Fig 2D), the cross-validated mean squared error of the inferred spike rate to
smoothed spike rate from held-out trials. The model with Poisson observations performs significantly
better that the GPFA model with Gaussian observations. Others have noted similar advantages to
Poisson observation factor models for neural data in other settings [10]. For this reason we wish to
use a Poisson observation characterization for our SNP-GPFA model.

3 SNP-GPFA

To isolate noise and signal subspaces in the P-GPFA framework, we introduce a model that includes
separate noise and signal latent structure (SNP-GPFA). We assess the model on two neural data sets.
One contains multi-neuron spiking activity from 65 neurons recorded in primate V1 during passive
viewing of a drifting sinusoidal grating stimulus, with 72 different orientations for D = 35 repeated
trials. The second consists of spiking activity from 67 neurons from two regions of rodent visual
cortex, recorded during passive viewing of D = 20 repeats of a 32-second sinusoidal grating stimulus.
Gratings had 8 different orientations which persisted for 4 seconds each. For more information, see
[24, 25] and the supplemental materials.
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The SNP-GPFA model describes neural activity on trial j as

yj = Poiss(f(Ws
>Xs +Wn

>Xn
j )) (4)

where P signal latents are drawn from a “signal” Gaussian process, xs
p ∼ GP(0,Ks) with

covariance Ks and concatenated to form Xs> = (xs
1
,xs

2
, . . . ,xs

P ), which are shared across trials.
On each trial, Q independent noise latents are drawn from a “noise” Gaussian process, xn

q ∼
GP(0,Kn) with covariance Kn, forming Xn> =

(

xn
1
,xn

2
, . . . ,xn

Q

)

. Loading weights Ws
> and

Wn
> parametrize a mapping from the dimensionality of the signal space P or the noise space Q

to the full N -dimensional neural response space. Thus,Ws is of size P × N and Wn is Q × N .
Covariance matrices Ks and Kn are constructed by evaluating a radial basis covariance at all pairs
of time points in a trial. The SNP-GPFA model is outlined schematically in Fig 3A. For clarity, we
visualize the model with only one signal and noise latent dimension, but the dimensions of the two
spaces can be arbitary.

To perform inference for the SNP-GPFA model, we develop a variational approach similar to that
for P-GPFA. We use a variational distribution qφ for the latents, parametrized as a fully-independent

multivariate normal distribution of dimension T̃ (P+QD) where T̃ , which corresponds to the number

of Fourier coefficients needed to represent the signal. We determine T̃ by assuming a minimum
length scale of 10 (` ≥ 10), which substantially shrinks the number of Fourier coefficients required to
represent the latent signal and noise processes (from 321 to 44 dimenions for rodent data, and from
511 to 108 dimensions for primate data). This choice is appropriate, as we typically we do not learn
length scales smaller than this value.

We fit the SNP-GPFA model to data, and found that the the signal component successfully captures
the PSTH, or mean response across trials (Fig. 3B). Importantly, the model also identifies a noise
component that accurately predicts trial-by-trial spiking variability. Figure 3C shows 3 example trials
for the top neuron in 3B. The per-trial rate deviations, given by a wn,i

>Xn, where wn,i is an isolated
row of Wn, accurately capture per-trial spiking deviations. This can be easily seen in trial three,
where a sharp burst at the end of the trial is captured by the noise component of the model.

3.1 Learning dimensionality

To identify the dimensionality of signal and noise latents, we used a cross-validation known as
co-smoothing training [26]. We first trained on a subset of randomly selected trials (10 for rodent data,
20 for primate data) and used Fourier-BBVI to learn Ws

>, Wn
> and Xs. To test the accuracy of

the learned parameters (Ws
>, Wn

>, `) and signal latents, we withhold a small random selection of
neurons and then learn the noise latents Xn over the held-out trials. We evaluate the cross-validated
log-likelihood of the held out neurons using these new noise latents and the inferred structure from
the initial trials. We perfomed five-fold cross validation and averaged over folds. For additional
information about the data preprocessing and cross-validation, see supplemental materials.

We find the signal dimensionality by first leaving out the noise component, and increasing the number
of signal dimensions until there is a decrease in CV performance. We then incrementally increase
the number of noise dimensions until CV performance decreases. Interestingly, noise components
increased CV performance suggesting population-level structure in trial-to-trial variability. For the
primate data, this procedure identified 5 signal dimensions and 6 noise dimensions. (See section 3.3
for details of dimensionality for the multi-region rodent data.)

3.2 Visualizing signal and noise subspaces

We visualize the resulting signal and noise subspaces for neural population data recorded from
primates. For this experiment, a drifting gratings stimulus was present for the first half of the of a
2.5 second trial (see [24] and the supplemental materials for more details). For a particular stimulus
orientation (0◦), we show the first 3 PCs of the five dimensional signal subspace. Here, we only
show three PC dimensions for clarity. Note that during the stimulus presentation, there is a strong
sinusoidal component to the latent neural activity. However, after the stimulus presentation period,
this structure is no longer present. This latent signal structure in our SNP-GPFA model is nearly
identical to the results of P-GPFA with no noise component, and to the plot in [10], which also uses
traditional P-GPFA run on the same data. However, unlike P-GPFA, SNP-GPFA additionally extracts
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Figure 4: Visualizing noise and signal subspaces. First three PCs of signal (A) and noise (B)
subspaces for 20 trials of a single stimulus presentation. (C) The first PC of the noise latents for three
random example trials. (D) Total L2 norm of noise activity projected into signal subspace (red) and
orthogonal to signal subspace (black) for an example trial. (E) Same as D but normalized to show
percentage of noise activity variance. (F) Fraction of noise variance orthogonal to signal subspace
averaged over all trials for a single orientation (black) and all trials and orientations (grey).

a noise subspace (Fig 4 B). This subspace has no obvious structure and does not include the same
sinusoidal component in the first half of the trial. As expected, plotting the first noise latent PC
across three example trials, there is no obvious pattern to the noise deviations, reflecting idiosyncratic
variations in population firing rates across trials (Fig 4 C).

An important question that arises with this model is whether or not the noise subspace overlaps with
the signal subspace. Overlap of these subspaces implies that trial-to-trial variability in the noise
components can corrupt the population response along the signal dimensions, thereby interfering with
representation of the signal. Previous work [15] suggests that noise only interferes with the signal
reprsentation if it lies in a direction defined by the derivatives of neural tuning curves, and recent work
suggests that noise and signal subspaces may indeed be nearly orthogonal [14, 27, 28]. Because our
model contains separate latent components for signal and noise, we can explicitly compare the relative
angle between these subspaces. More specifically, we look to assess how strongly the pure-noise
component of neural activity projects into the signal subspace. Under the SNP-GPFA model, the
noise-subspace component of neural activity is Yn = Wn

>Xn. To assess overlap with the signal
subspace, we compute the singular value decomposition of the signal-component loading weights,
Ws = USV>, which provides a basis for the signal subspace via the columns of V. The portion of
variance of the noise within the signal subspace for each time point is then given by ||VV>Yn,t||22,

where Yn,t is the tth column of Yn, or the L2 norm along the six noise dimensions. The portion of

variance orthogonal to the signal subspace is thus simply ||Yn,t −VV>Yn,t||22.

Figure 4D shows the resulting L2-norm time-series both within and orthogonal to the signal subspace.
This is for a single example trial for the same single stimulus as in A-C (orientation of 0◦). To
visualize the fractional variance into and out of the signal subspace, we normalize each trace by the
total variance at each time point, ||Yn,t||22 (Fig 4 E). For this trial, the noise activity tends to mostly
lie in the subspace orthogonal to the stimulus activity. However, this is not true when the overall
noise variance is high. At these moments, the noise exists mostly in the signal subspace. Figure
4F shows the fractional noise variance orthogonal to the signal subspace averaged over all trials for
the orientation of 0◦ (black line) and all trials and orientations (grey line). It is primarily during the
stimulus presentation time that the noise activity is preferentially orthogonal to the stimulus subspace.
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When there is no stimulus, after the halfway point of the trial, there is a slight preference for the noise
activity to lie in the signal subspace.

3.3 Shared and independent noise in multi-region data

The rodent dataset we examined contained data from two simultaneously-recorded visual cortical
regions, an upstream area “V1” and a downstream area “AL”. The SNP-GFPA model can therefore
be extended to allow for a characterization of shared variability across these regions. For simplicity,
let’s consider two versions of the model: (1) a “shared-noise” model, which is the SNP-GPFA
model applied to both regions simultaneously (see eq 4); or (2) an independent noise model, which

includes a block-diagonalization of Wn into a V1 component Wn
V 1 and AL component Wn

AL.
The independent noise model describing neural activity for trial j is thus:

[

yV 1

j

yAL
j

]

= Poiss

(

f(Ws
>Xs +

[

Wn
V 1 0

0 Wn
AL

]

[

X
n,V 1

j

X
n,AL
j

]

)

)

(5)

where X
n,V 1

j are noise latents that map exclusively to V1 activity, and X
n,AL
j are noise latents

that map exclusively to AL activity. By contrast, departures from a block-diagonal structure in the
loadings matrix reflects the degree to which latent variability is shared across brain regions.
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Figure 5: Two-region SNP-GPFA model. (A and B) Validation of our cross-valdiation (CV) approach
on simulated data. (C) CV results on real neural data with varied block-diagonal structure for Wn.

We first validate the approach on simulated data. We generate two datasets, one with a full Wn

matrix, and this other with block-diagonal structure. We perform inference on each of these datasets,
one using the original model outlined in eq 4, and the other using the block diagonal structure in eq 5.
We show that the model with its corresponding generated data exhibits higher CV performance (Fig 5
A,B). For additional details see supplement.

On the multi-region rodent data, we compare the SNP-GPFA model with a block-diagonal Wn to
models where Wn has an increasing number of shared noise latents. We determine a six dimensional
signal component. For the noise dimensionality, we start with a complete block representation (eq 5)
of 5 V1 dimensions and 4 AL dimensions, which contain no shared components. We then compare
CV performance of this model to ones where increasing numbers of noise latents are shared between
the regions (Fig 5C). For information regarding how we select the proper number of noise and signal
dimensions in this framework, see supplemental materials. We find that models with at least two
shared noise dimensions perform better than models with one or fewer shared noise dimensions.
Means and standard error shown over five-fold CV (Fig 5). This suggests that there is trial-varying
structure in neural population activity that is shared across cortical regions.

4 Conclusion

We have introduced a Gaussian process factor analytic model for spike train data that extracts separate
signal and noise latent structure from trial-structured data. To learn this model we employ a novel
inference method based on black-box variational inference in the Fourier domain, which allows for
faster and more stable inference by diagonalizing the posterior covariance and pruning unnecessary
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frequencies. The resulting SNP-GPFA model is able to extract signal latents that characterize
population PSTHs in real neural data, and noise latents that capture trial-to-trial variability that is
shared across neurons. We then use the results of the model fit to answer scientific questions about
trial-based neural data. We find that noise activity tends to project primarily in a subspace orthogonal
to signal activity, especially when a stimulus is present, suggesting an optimal type of neural encoding
[15]. We additionally use our model on multi-region rodent data and compare performance where
noise is shared between cortical regions as opposed to being independent to each region. We find
that noise models with shared structure better describes neural data suggesting cortical variability
is shared across cortical regions. Overall, the model is a promising method for understanding the
relationship between stimulus-locked and trial-varying neural activity at the population level. We
believe there is a great number of additional scientific questions that the SNP-GPFA model can help
answer, including determining how signal and noise representations relate to behavior, and further
exploring how block-diagonal loadings matrices may partition signal and noise latent representations
in multi-region data. We provide downloadable code for the community to use the SNP-GPFA model
on their own trial-based neural data.

Broader Impact

Here, we propose a new model for neuroscientists to uncover latent structure in trial-based neural
population data. Trial-based neural recordings with identical stimuli are ubiquitous in neuroscience
research. However, trial-by-trial variability in neural activity is not well understood. More broadly,
it is unclear in general what the function of neural noise is in the brain. Our model works on
neural population data to separate out neural noise latent representations from stimulus-locked
representations. It additionally uses a novel inference technique that is rapid and stable. Here, we
provide a general, easy-to-use tool for neuroscientists, and we hope others are encouraged to employ
it to understand trial-based neural information in their own experimental set-up. We provide code for
download. We do not foresee any negative consequences to society resulting from this work.
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