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Abstract 

Human ventral temporal cortex (VTC) contains category-selective regions that respond 

preferentially to ecologically-relevant categories such as faces, bodies, places, and words, which 

are causally involved in the perception of these categories. How do these regions develop during 

childhood? We used functional MRI to measure longitudinal development of category-selectivity 

in school-age children over 1 to 5 years. We discovered that from young childhood to the teens, 

face- and word-selective regions in VTC expand and become more category-selective, but limb-

selective regions shrink and lose their preference for limbs. Critically, as a child develops, increases 

in face- and word-selectivity are directly linked to decreases in limb-selectivity, revealing that 

during childhood limb-selectivity in VTC is repurposed into word- and face-selectivity. These data 

provide evidence for cortical recycling during childhood development. This has important 

implications for understanding typical as well as atypical brain development and necessitates a 

rethinking of how cortical function develops during childhood.  

 

 

Main 

A central question in neuroscience is how does cortical function develop? Ventral temporal cortex 

(VTC) is an excellent model system to address this question as it contains regions selective for 

ecological categories such as faces1, bodies2, places3, and words4 that are critical for human behavior 

and can be identified in each individual. When infants first open their eyes, they are inundated with 

faces, body-parts, their surrounding room, and objects. This visual input may begin to shape VTC 

representations in infancy and lead to the emergence of face representations in the first year of 

life537. However, experience with other categories, such as words, does not begin until later in 

childhood when children learn to read.  

 

Two main theories regarding the development of category-selective regions have been proposed. 

The theory of functional refinement predicts that category-selective regions emerge from raw, 

general-purpose cortex8,9, which has some basic property10 that is present early in development such 

as foveal bias11,12. For example, a longitudinal study that tracked development of word-selectivity 

during the first year of school, found that word-selectivity emerged upon previously unspecialized 

cortex9. Similarly, developmental studies of face-selective regions reported that the growing part of 

face-selective regions showed less specificity in children than adults8 and also in younger than older 

infant monkeys7. 

 

Alternatively, the theory of competition posits that rivalry for cortical resources may constrain 

development13,14. In particular, as both face and word recognition require fine visual acuity afforded 
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by foveal vision, emerging representations for these categories may compete over foveal resources 

in lateral VTC15. This competition for foveal cortical territory may lead to recycling of cortex selective 

to one category earlier in childhood (e.g., faces) to be selective to another category (e.g., words) 

with later demands for reading14,16. For example, comparison of brains of illiterate or late literate 

adults to literate adults suggests that increased literacy in adulthood is associated with reduced 

responses to faces in the left fusiform gyrus14,17. Because reading acquisition is specific to humans, 

and the fusiform gyrus, which is the anatomical structure where face-selective regions reside, is 

hominoid-specific, addressing this intense theoretical debate necessitates longitudinal brain 

measurements in school-age children to examine the development of multiple category 

representations. 

 

Here, we addressed this key gap in knowledge using longitudinal fMRI in 29 children (initially 5312 

years old) to measure development of cortical representations of multiple categories as well as their 

relationship. Children were scanned repeatedly over the course of 1 to 5 years (mean±SD: 3.75±1.5 

years, Fig. S1A), with an average of 4.4±1.92 fMRI sessions per child and 128 included sessions 

overall (Methods). During fMRI, children viewed images from 10 categories spanning five domains: 

characters (pseudowords, numbers), body parts (headless bodies, limbs), faces (adult faces, child 

faces), objects (string instruments, cars), and places (houses, corridors, Fig. S1D). Analyses were 

performed in each individual9s native brain space, which allows precise tracking of the developing 

cortex in each participant and prevents blurring of responses from different categories due to 

normalization to a standard brain template18.  

 

Results 

How does category-selectivity develop in VTC? 

To assess the development of category-selectivity in VTC, we first quantified the volume of category-

selective activations in VTC as a function of age. Selectivity was computed by contrasting responses 

to each category vs. all other categories except the other category from the same domain (e.g., 

limbs vs. all other categories except bodies, t>3, voxel level). VTC was anatomically defined on the 

cortical surfaces of each child and divided into lateral and medial partitions (Fig. 1B). This division 

captures the center-periphery organization of VTC12,15, where lateral VTC represents the central 

visual field, and medial VTC represents the peripheral visual field19. To test for age-related changes in 

the volume of category-selective activations, we used linear mixed models (LMMs) with age as a 

fixed effect and participant as a random effect. LMMs with intercepts that varied across participants 
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and a constant slope fit the data best in the majority of cases (Methods). Fig. 1A shows examples of 

linear mixed model fits for words, limbs, and faces (all LMMs in Fig. S2). Fig. 1C summarizes the LMM 

slopes and confidence intervals (CI) for all categories and VTC partitions. The slopes (³age) indicate 

the rate of change (mm3/month) of category-selective volume with age (Fig. 1C- colored bars). 

Significant development after FDR correction20 is indicated by asterisks in Fig. 1C (full statistics in 

Tables S1-S2). 

 

Results reveal differential development of category-selectivity across VTC partitions and categories. 

Significant development of category-selectivity occurred in lateral, but not medial VTC (Fig. 1C, Fig. 

S2, Tables S1-S2). Surprisingly, there were both developmental increases and decreases in the 

volume of category-selective activation in lateral VTC: word- and face-selective activation increased, 

but limb-selective activation decreased (Fig. 1A,C, Fig. S2).  

 

Interestingly, during childhood, the volume of word-selective activation significantly increased in left 

lateral VTC (Fig. 1C-light blue, ³age=4.14 mm3/month (95%CI:0.81,7.48), t(126)=2.46, pFDR=0.044). 

However, there was no  evidence for change in the volume of word-selective activation in the right 

hemisphere (Fig. 1C,D, Fig. S2, ³age=0.66 mm3/month (-0.66,1.99), t(126)=0.99, pFDR=0.46), or of 

number-selective activations bilaterally (Fig. 1C, Fig. S2, Table S1, left: ³age=0.11 mm3/month (-2.15, 

2.38), t(126)=0.10, pFDR=0.92; right: ³age=0.11 mm3/month (-1.69, 1.90), t(126)=0.12, pFDR=0.92). 

Examining the average volume of activations (Fig. 1D-boxplots, Fig. S3 for all categories) as well as 

LMM predictions of the mean volume (Fig 1D-diamonds), revealed that word-selectivity doubled on 

average from ~500 mm3 in 539-year-olds to ~1000 mm3 in 13317-year-olds. Notably, as the volume 

of word-selective activation doubled, the volume of limb-selective activation halved (Fig. 1D-yellow). 

In fact, limb-selective activation significantly decreased over childhood in both hemispheres (Fig. 1C-

yellow, left: ³age=-3.79 mm3/month (-6.84,-0.74), t(126)=-2.46, pFDR=0.044; right: ³age=-3.42 

mm3/month (-5.79,-1.04), t(126)=-2.85, pFDR=0.04), but there was no evidence for change in body-

selective activation (Fig 1C-orange, left: ³age=-0.59 mm3/month (-1.98, 0.80), t(126)=-0.84, pFDR=0.50; 

right: ³age=-1.63 mm3/month (-3.63, 0.38), t(126)=-1.61, pFDR=0.22). At the same time, the volume of 

face-selective activation significantly increased over childhood bilaterally for both adult faces (Fig. 

1C-bright red: left: ³age=0.89 mm3/month (0.26,1.52), t(126)=2.79, pFDR=0.04; right: ³age=1.32 

mm3/month (0.34,2.29), t(126)=2.68, pFDR=0.042) and child faces (Fig. 1C-dark red, left: ³age=1.95 

mm3/month (0.74,3.17), t(126)=3.18, pFDR=0.036; right: ³age=2.16 mm3/month (0.35,3.97), 

t(126)=2.37, pFDR=0.049). Similar longitudinal development in lateral VTC was observed for other 
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contrasts, such as contrasting responses by domain (Fig. S4) and for other metrics, such as the level 

of category-selectivity within constant-sized regions (Fig. S5). 

 

A concern in pediatric imaging is that data quality may conflate developmental effects. Thus, we 

performed several controls to test if factors that may affect data quality contribute to our results. 

First, behavioral performance on the oddball task performed during scanning was overall high 

(median performance=91%, SD=18%), indicating that children were attending to the stimuli. Second, 

to test if developmental effects may be related to temporal signal-to-noise (tSNR) or motion during 

scan, we ran more LMMs, which included in addition to age, tSNR and average motion during scan as 

predictors. Motion was not a significant predictor of the volume of category-selective activation 

(Table S3). While tSNR was a significant predictor, it was independent from age. That is, LMMs that 

included tSNR as an additional predictor revealed the same pattern of results showing significant 

age-related increases in face- and word-selective activations as well as age-related decreases in 

limb-selective activations (Fig 1C-open bars, Tables S4, S5). Third, to test if developmental effects are 

driven by overall lower reliability of responses in younger children compared to older children, we 

assessed response reliability in V1 as a control ROI. Response reliability in V1 was overall high and 

not related to age (Fig. S6). Together, these analyses validate that age-related changes in category-

selective activations reflect longitudinal development rather than differences in measurement 

quality across years. 

 

Is development anatomically specific? 

To determine the anatomical specificity of the observed development, we defined limb-, word-, and 

face-selective regions of interest (ROIs) in each participant and session (Fig. 2A-C, t-value > 3 voxel-

level) and examined them longitudinally. Category-selective ROIs remained largely within the same 

anatomical structures as ROIs expanded or shrank across childhood (Fig. 2A-C). We used LMMs to 

examine the effect of age on ROI volume (age: fixed effect, subject: random effect, change of ROI 

volume per month (³age) in Fig. 2D, full statistics in Table S6).  

 

The growth of word- and face-selective regions was anatomically specific: posterior but not anterior 

ROIs significantly expanded (Fig. 2D). Activation for words grew significantly in the left posterior 

occipitotemporal sulcus (Fig 2D-pOTS-words, ³age=1.71 mm3/month (0.45,2.98), t(117)=2.68, 

pFDR=0.02), but not in the mid occipitotemporal sulcus (Fig. 2D-mOTS-words, left: ³age=-0.07 

mm3/month (-1.22,1.08), t(101)=-0.12, pFDR=0.90, right: ³age=0.25 mm3/month (-0.43,0.92), 

t(33)=0.74, pFDR=0.66). Similarly, bilateral activation for faces grew significantly in the posterior 
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fusiform (Fig 2D-pFus-faces, left: ³age=0.75 mm3/month (0.17,1.33), t(118)=2.55, pFDR=0.02, right: 

³age=1.41 mm3/month (0.46,2.35), t(96)=2.96, pFDR=0.019), but not in the mid fusiform (Fig2D-mFus-

faces, left: ³age=0.11 mm3/month (-0.47,0.69), t(105)=0.38, pFDR=0.79, right: ³age=0.20 mm3/month (-

0.46,0.85), t(100)=0.60, pFDR=0.69). In contrast to the growth of pOTS-words and pFus-faces, OTS-

limbs shrank significantly in both hemispheres (Fig. 2D-OTS-limbs, Table S6, left: ³age=-1.70 

mm3/month (-2.59,-0.81), t(124)=-3.78, pFDR=0.002, right: ³age=-0.89 mm3/month (-1.53,-0.24), 

t(124)=-2.73, pFDR=0.02). The growth of face- and word-selective regions and the shrinking of limb-

selective regions also holds for ROI surface area (Fig. S7), but it is less pronounced for ROIs defined 

from domain contrasts (Fig. S8). Together, these data show that the development of category 

selectivity is more prominent in posterior than anterior face and word-selective ROIs. 

 

What functional changes occur in the developing regions? 

We next assessed the functional properties of the developing regions of category-selective ROIs in 

each participant. For words and faces, where selective voxels emerge during development, we call 

the difference between the end and initial ROIs the emerging pOTS-words and emerging pFus-faces. 

For limbs, we call the difference between the initial and end ROIs the waning OTS-limbs. We focus 

on the left hemisphere due to the left lateralization of the development of word-selectivity (right 

hemisphere in Fig. S9). LMMs were used to assess the effect of age on selectivity in emerging and 

waning ROIs (age: continuous fixed effect; participant: random effect). LMM slopes and their 

significance are shown in Fig. 3-left (stats in figure caption and Table S7). Since developing regions 

are not completely independent from the original ROIs, we repeated the analysis in independent 

ring-shaped ROIs centered on the initial functional ROIs, yielding similar findings (Fig. S10).  

 

In the emerging left pOTS-words, selectivity to words significantly increased with age, as expected by 

the definition of the ROI (Fig. 3A-left blue bar). At the same time, selectivity to limbs and bodies 

significantly decreased (Fig. 3A-left, colored bars), but we found no evidence for changes in 

selectivity to other categories (Fig. S9, Table S7). As a control, we repeated these analyses excluding 

each region9s preferred category (e.g., excluding words in contrasts examining the emerging pOTS-

words), finding similar results (Fig. 3A-left, open bars, Table S8).  

 

To elucidate if the changes in selectivity in the emerging ROI were due to increased responses to the 

preferred category or decreased responses to nonpreferred categories, we used LMMs to quantify 

the response amplitude to each category as a function of age (age: continuous fixed effect; 

participant: random effect, change in %-signal/month (³age), Fig. S11, Table S9). Results show that 
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developmental changes in word-selectivity were associated with significant increases in the 

responses to words (³age=0.008 %-signal/month (0.004,0.012), t(110)=3.82, pFDR=0.002) with no 

significant changes to other categories (Fig. S11, Table S9) except that responses to string 

instruments also significantly increased (³age=0.004 %-signal/month (0.001,0.006), t(110)=2.98, 

pFDR=0.025). Indeed, average responses to words in pOTS-words are higher in teens (13-17-year-olds) 

than children (5-9-year-olds; Fig. 3A-right-boxplots, Fig. S11, Table S9) in correspondence with LMM 

predictions (Fig. 3A-right-diamonds).  

 

Similarly, in the emerging pFus-faces, selectivity to faces increased (Fig. 3C-left-red bars, Fig. S9). At 

the same time, selectivity to limbs significantly decreased bilaterally (Fig. 3C-left-yellow bar) and this 

development was significant in the left hemisphere also when faces were excluded from the contrast 

(Fig. 3C-left, open bars); selectivity to bodies only decreased in the left hemisphere (Fig. 3C-orange). 

We found no significant changes in selectivity to other categories (Fig. S9, Table S7). Increases in 

selectivity to faces were associated with significant increases in responses to faces (Fig. S11, Table 

S9, adult faces: ³age=0.006 %-signal/month (0.004,0.009), t(103)=5.33, pFDR<0.001; child faces: 

³age=0.011 %-signal/month (0.007,0.015), t(103)=5.79, pFDR<0.001). Indeed, average responses to 

both adult and child faces were higher in teens than children in correspondence with LMM 

predictions (Fig. 3C-right). Additionally, responses to words and string instruments also significantly 

increased in the left emerging pFus-faces (words: ³age=0.006 %-signal/month (0.002,0.01), 

t(103)=2.78, pFDR=0.04, string instruments: ³age=0.003 %-signal/month (7.7x10-4,0.006), t(103)=2.62, 

pFDR=0.04), and there was a trend for an increase in responses to cars (Fig. 3C-right, Fig. S11, Table 

S9). Thus, developmental increases in word- and face-selectivity in emerging word and face ROIs, 

respectively, are driven by increased responses to their preferred category, rather than decreased 

responses to nonpreferred categories. 

 

As OTS-limbs is located between pOTS-words and pFus-faces, we asked if increased responses to 

faces and words also occur in the waning OTS-limbs. We found that not only did responses to limbs 

significantly decrease with age (Fig. S11, ³age=-0.005 %-signal/month (-0.008,-0.003), t(120)=-4.47, 

pFDR<0.001) but also responses to adult faces significantly increased with age (Fig. S11, ³age=0.002 %-

signal/month (4.6x10-4,0.003), t(120)=2.64, pFDR=0.043). This is an intriguing phenomenon in which 

this waning region responds more strongly to limbs in 5-9-years-olds than in 13-17-year-olds (Fig. 

3B-right-yellow). There was no evidence for changes of responses to other categories (Fig. 3B-right, 

Fig. S11, Table S9-full statistics). These changes in responses amplitudes resulted in significant 

decreases in limb-selectivity (Fig. 3B-left, Fig. S9) as well as significant increases in face-selectivity 
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(Fig. 3B-left, colored bars). There was no evidence for changes in selectivity to other categories 

including bodies (Fig. S9). Therefore, developmental decreases in limb-selectivity of the waning OTS-

limbs reflect decreased responses to the preferred category together with increased responses to 

faces.  

 

Given the profound developmental decreases in limb-selectivity in both emerging and waning ROIs, 

we tested if this is a general phenomenon across lateral VTC. Analyses of lateral VTC excluding voxels 

that were selective in the first session to categories showing development, revealed no significant 

decreases in limb-selectivity in the remainder of lateral VTC (Fig. S12). This suggests that 

developmental changes in limb-selectivity are most prominent in the emerging and waning ROIs.  

 

Are changes in face-, word-, and limb-selectivity linked? 

While the theory of competition does not make predictions about limb representations, it predicts 

that development of face and word representations are linked as they compete over cortical 

territory that shows a foveal bias13,14. Thus, we tested if there is a quantitative relationship between 

selectivities to faces, words, and limbs in the emerging and waning ROIs. Model comparison of 

LMMs relating the selectivity to the preferred category to selectivity of the other categories revealed 

that in all developing ROIs, selectivity to the preferred category was better predicted by the 

selectivity to the other two categories rather than just one of them (likelihood ratio tests comparing 

a one-predictor-LMM with a two-predictor-LMM, left hemisphere: all �2g4.76, pf0.029, Table S10). 

Moreover, in all developing ROIs, selectivity to the preferred category was significantly and 

negatively related to selectivity to the other two categories (³category1, ³category2: fixed effects, subject: 

random effect, Fig. 4, left hemisphere; Fig. S13, right hemisphere; statistics in figure caption and full 

statistics in Table S11). E.g., in the emerging pOTS-words, higher word-selectivity is significantly 

linked with both lower face- and limb-selectivity (Fig. 4A, Table S11). The negative relationship 

between the preferred category of an ROI and the other two categories was also observed at the 

voxel level (Fig. S14). 

 

We visualized how selectivity to words, faces, and limbs changes in emerging and waning ROIs. Using 

the LMM, we related the selectivity to the preferred category with the selectivity to the other two 

categories for 5-9-year-olds and for 13-17-year-olds (Fig. 4-left, Table S12). In the emerging pOTS-

words, 5-9-year-olds have positive selectivity to limbs and negative selectivity to faces (Fig 4A). By 

age 13-17, word-selectivity has increased while limb-selectivity has reduced to zero and face-

selectivity has become even more negative (Fig. 4A-left). That is, after development, selectivity to 
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words in pOTS-words has replaced the initial selectivity for limbs, not faces. Notably, this 

developmental pattern is visible in individual children from their initial age (Fig. 4A-middle & right, 

arrow bases) to their end age (Fig. 4A- middle & right, arrow heads). Similarly, in the emerging pFus-

faces, 5-9-year-olds have positive limb-selectivity but no clear preference for words (Fig. 4C-right). 

By age 13-17, as face-selectivity has increased, limb-selectivity is lost and there is little change to 

word-selectivity (Fig. 4C Fig. S13, Table S12).  

 

In the waning OTS-limbs, 5-9-year-olds exhibit largely negative face-selectivity and mild positive 

word-selectivity (Fig. 4B-left, Table S12). As limb-selectivity declines by age 13-17, both word- and 

face-selectivity increase (Fig. 4B-left). While limb-selectivity consistently declined across individuals, 

there was more variability in individual developmental trajectories compared to the emerging ROIs 

(Fig. 4B- middle, right). In some children limb-selectivity was replaced by word-selectivity and in 

others with face-selectivity. 

Discussion 

Our longitudinal measurements in children using a large range of ecologically-relevant categories 

reveal new insights about the functional development of high-level visual cortex. We show that 

while face- and word-selective regions grow and become more selective, limb-selective regions 

shrink during childhood development and lose their selectivity to limbs. Importantly, the decrease in 

limb-selectivity is directly linked to the increase in word- and face-selectivity providing evidence for 

cortical recycling during childhood development. We discuss each of these findings and their 

implications below. 

 

A surprising finding from our study is that childhood development is not only associated with growth 

of category-selective regions and increases in selectivity, but also involves loss of selectivity. That is, 

in addition to finding growth and increased selectivity of face- and word-selective regions in VTC as 

individual children develop, consistent with cross-sectional studies8,12,16,21324, we find that limb-

selective regions in VTC shrink during childhood development and lose their selectivity to limbs. This 

decrease in the amount of limb-selective volume is specific to limbs as the amount of body-selective 

volume remains largely unchanged (Fig. 1C), consistent with previous findings9,22. As such, our results 

show that young children9s VTC is actually more selective for limbs than it is later in childhood.  

 

Our results provide striking empirical evidence for recycling14 of category-selectivity in high-level 

visual cortex during childhood. However, contrary to previous predictions13,14 that face-selectivity is 
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recycled to word-selectivity during development, our results show that limb-selectivity is recycled to 

both word- and face-selectivity. This recycling occurs via a mechanism of decreasing responses to 

limbs and increasing responses to both faces and words at the ROI and voxel levels. Future research 

is needed to determine if this recycling also occurs at the single neuron level25.  

 

Critically, our results require a rethinking of prevailing developmental theories that propose that 

cortical development involves sculpting of new representations upon general-purpose cortex8,9. 

First, in contrast to the prevailing view suggesting that children9s VTC is indistinctive8310,16,26, the 

present data shows that young children9s9 VTC is more selective to limbs than it is later in childhood. 

Second, our data suggest that during childhood, cortical selectivity can change from one category to 

another.  

 

These results generate new questions for future research. First, why do young children exhibit large 

VTC representations for limbs? Some clues to this question can be gleaned from behavioral studies 

that examined what infants and toddlers look at in natural settings. These studies discovered that 

young infants (f 6 months) look at faces more than hands, but older infants and toddlers (1- 2 year-

olds) look at hands more than faces27329. Developmental psychologists have hypothesized that this 

change in the child9s <visual diet= may be related to multiple factors including the mobility of the 

child29, their motor dexterity at manipulating objects27,29, and communicative information in 

gesturing30. Based on this developmental literature and our findings, we speculate that much like 

baby teeth changing to permanent teeth, as children9s diet and size changes, cortical recycling in VTC 

may reflect adjustment to changing visual demands during childhood. Thus, we propose an 

intriguing new hypothesis that cortical recycling in VTC co-occurs with changes in the saliency and 

frequency of visual stimuli that are socially and communicatively relevant, moving from hands and 

gestures in toddlers to faces and words in school age children and teens. Future research can test 

this hypothesis by determining what children and teens look at together with computational 

modeling to test the effect of different visual diets on emerging VTC representations31333. 

 

Second, what are the behavioral implications of this cortical recycling? Prior research has found that 

developmental improvements in face recognition ability8,34 and face discriminability35 are linked with 

developmental increases in face selectivity8,34 and neural sensitivity to faces35 in VTC, respectively. 

Likewise, developmental improvements in reading proficiency are linked with developmental 

increases in neural selectivity to words9,23,36 and in the informativeness of distributed responses to 

words in VTC12. These studies suggest that the developmental decreases in responses to limbs in VTC 
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may have behavioral ramifications, a hypothesis that can be tested in future developmental research 

combining neuroimaging and behavioral measurements. 

 

The present findings have important implications for understanding typical37 and atypical38341 brain 

development. First, these data fill a key gap in knowledge by quantifying the rate of the 

development of category-selectivity from young children to teens. Thus, they offer a foundation for 

using fMRI to assess developmental and learning deficiencies, especially those related to reading42 

and social perception38,39. We acknowledge that a limitation of the current study is the variability in 

data acquisition with regard to the time interval between scans and number of scans per child. Thus, 

we emphasize the necessity for future longitudinal research with more regular age sampling 

spanning a large duration in both typical and atypical populations, which will allow further in-depth 

analyses of cortical recycling at finer spatial scales, such as on the level of individual voxels. Second, 

it will be important to determine if there is a critical period during development in which cortical 

recycling can occur10,43 and if this period is particularly protracted in lateral VTC, which overlaps 

foveal representations11,15,19. Third, childhood visual deprivation40 or brain lesions41 may affect 

cortical recycling and the emergence of category representations in VTC in atypical populations44347. 

Future longitudinal studies measuring cortical development in children who have vastly different 

visual experience with faces, hands, and written words (e.g., congenital blind, sighted, and 

congenital deaf), will be important for determining how differing visual inputs and behavioral 

demands during childhood affect cortical recycling. Finally, an open question for future research is 

whether cortical recycling occurs in other brain systems in which earlier representations may be 

altered by schooling48 or prolonged childhood experience. Some examples include learning new 

languages after one9s mother tongue49,50 or learning complex math51 upon an earlier numerosity 

system52,53.  

 

In sum, the surprising finding from our study is that contrary to the prevailing hypothesis that during 

childhood new cortical representations are formed upon unspecified cortex, we find evidence for 

cortical recycling in which limb representations are repurposed during childhood to represent faces 

and words. The discovery of cortical recycling is important because it not only provides a key 

advancement in understanding cortical development, but also necessitates a rethinking of how 

cortical function develops during childhood. 

Methods	

Statement on ethical regulations 
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This study was approved by the Institutional Review Board of Stanford University and complies with 

all relevant ethical regulations. Prior to the start of the study, parents gave written consent, and 

children gave written assent. For their participation children received $30 per hour for scanning, as 

well as a small toy. 

 

Participants 

Children with normal or corrected-to-normal vision were recruited from local schools in the Bay 

Area. The diversity of the participants reflects the makeup of the Bay Area population. 62.5% of 

children were Caucasian, 20% were Asian, 5% were Native Hawaiian, 5% were Hispanic, and 7.5% 

were multiracial or from other racial/ethnic groups.  

Prior to their first MRI session, children were trained in a scanner simulator to acclimate them to the 

scanner environment and to enhance quality of MRI data. In the simulator, children practiced laying 

still while watching a short movie and receiving live feedback on their motion. For subsequent scans, 

simulator training was repeated if necessary.  

 

We collected data from 40 (26 female) children (onset age=5-12 years, M=8.66 years, SD=2.34 years, 

Fig. S1). We selected this age range because (i) it captures the phase in which children start learning 

to read and (ii) it covers a broad age range spanning childhood and adolescence in which previous 

studies have documented VTC development9,21.  

Data from 4 children were excluded because they dropped out of the study after participating only 

once, and thus did not provide longitudinal data. Data from 7 children were excluded because their 

data did not pass inclusion criteria (see below). In the remaining 29 children, 29 functional sessions 

were excluded due to motion, 1 session due to a technical error during acquisition, and 1 session 

due to aliasing artifacts during acquisition. Therefore, data from 128 functional sessions of 29 

neurotypical children (18 female, 11 male) are reported in this study (Fig. S1A,B has an overview of 

the included and excluded sessions). Initial ages of the included children ranged from 5 to 12 years 

(mean=9.19, SD=2.13). No statistical methods were used to pre-determine sample sizes, but our 

sample sizes are similar to those reported in previous cross-sectional publications34,54 and larger than 

previous longitudinal studies on VTC development9.  

 

Participants were scanned using functional and structural MRI for 1 to 5 years. When possible, 

children participated in 1 to 2 functional scans per year. Additionally, children participated in 1 

structural MRI session per year. Each child participated in at least 2 and up to 10 fMRI sessions 

(mean=4.41, SD=1.92) with the time interval between the first and last fMRI scan ranging from 10 
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months to 5 years (mean=45 months, SD=18 months, Fig. S1C). Functional and anatomical scans 

were typically conducted on different days to avoid fatigue.  

Magnetic resonance imaging 

Structural imaging  

Data were acquired at the Center for Cognitive Neurobiological Imaging at Stanford University on a 3 

Tesla GE Discovery MR750 scanner (GE Medical Systems) using a phase-array 32 channel head coil. 

Whole brain anatomical scans were collected using quantitative MRI (qMRI55) with a spoiled gradient 

echo sequence using multiple flip angles (�=4°, 10°, 20°, 30°), TR=14ms and TE=2.4ms. The scan 

resolution was 0.8x0.8x1.0mm3 (later resampled to 1mm isotropic). For T1-calibration we acquired 

spin-echo inversion recovery scans with an echo-planar imaging read-out, spectral spatial fat 

suppression and a slab inversion pulse. These scans were acquired at TR=3s, inplane 

resolution=2x2mm2, slice thickness=4mm and 2x acceleration, echo time=minimum full. 

 

Functional imaging 

Functional data were collected using the same scanner and head coil as the structural images. Slices 

were oriented parallel to the parieto-occipital sulcus. The simultaneous multi-slice, one-shot T2* 

sensitive gradient echo EPI sequence was acquired with a multiplexing factor of 3 to acquire near 

whole brain coverage (48 slices), FOV=192mm, TR=1s, TE=30ms, and flip angle=76°. Resolution was 

2.4 mm isotropic. 

 

10 category experiment 

Participants completed three runs of a 10-category experiment11,12,54. During each run participants 

viewed images from five domains each comprising images of two categories including faces (adult 

faces, child faces), body parts (headless bodies, limbs), objects (cars, string instruments), places 

(corridors, houses) and characters (pseudowords, numbers). Following prior work on visual 

representations, we define a visual category as a set of exemplars sharing the same parts and 

configuration, e.g., limbs56359 and domain as a grouping of one or more categories that share 

semantic association (whether or not they share visual features) and are thought to require distinct 

processing mechanisms60. E.g., houses and corridors are both places, but are visually dissimilar. 

Examples of stimuli are shown in Fig. S1D.  

Images were presented in 4 s blocks, at a rate of 2 Hz and did not repeat across the course of the 

experiment. Image blocks were intermixed with gray luminance screen baseline blocks. Blocks were 

counterbalanced across categories and baseline. Stimuli were grayscale and contained a phase-

scrambled background generated from randomly selected images. Participants were instructed to 
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view the images while fixating on a central dot and to perform an oddball task. Participants pressed 

a button whenever an image comprising only the phase-scrambled background appeared. Due to 

occasional button box malfunction behavioral responses in the oddball task were recorded in 98 out 

of 128 sessions used in the analyses. 

 

Data analysis 

Data analysis was performed in MATLAB version 2017b (The MathWorks, Inc.) and using the mrVista 

software package (https://github.com/vistalab/vistasoft/wiki/mrVista). 

 

Inclusion criteria  

In each functional session children participated in three runs of the 10 category-experiment. Criteria 

for inclusion of data were (i) at least 2 runs per session where within-run motion < 2 voxels and 

between-run motion < 3 voxels, and (ii) at least two fMRI sessions at least six months apart.  

Because only two of the three runs survived motion quality thresholds for several fMRI sessions, 

analyses include two runs per child per session to ensure equal amounts of data across participants 

and sessions. For sessions with all 3 runs passing motion quality criteria, 2 runs with lowest within-

run motion were included.  

 

Structural MRI data analysis and individual template creation 

Quantitative whole brain images of each child and timepoint were processed with the mrQ pipeline 

(https://github.com/mezera/mrQ55) to generate synthetic T1 brain volumes. For each child, the 

synthetic T1 brain volumes from their multiple timepoints were used to generate a within-subject 

brain volume template. Each participant9s brain anatomical template was generated using the 

FreeSurfer Longitudinal pipeline 

(https://surfer.nmr.mgh.harvard.edu/fswiki/LongitudinalProcessing61) using FreeSurfer version 6.0. 

The gray-white matter segmentation of each participant9s within-subject brain template was 

manually edited to fix segmentation errors (e.g., holes and handles) to generate an accurate cortical 

surface reconstruction of each participant9s brain. The motivation for aligning the functional data to 

the within-subject-template were (i) to enable comparison of regions of interest (ROIs) from 

different timepoints in the same brain volume for each participant and to (ii) minimize potential 

biases which can occur from aligning longitudinal data to the anatomical volume from a single 

timepoint61. On average 2.48 (SD=0.69) synthetic T1s were used to generate the within-subject-

template (min=2, max=5). Functional data from all sessions of a participant were aligned to their 

within-subject brain template. In 17 participants the last fMRI session that was included was 
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conducted after the within-subject template had been created. These functional sessions were 

acquired on average 11± 2 months after acquisition of the last synthetic T1 that was included in the 

within-subject-template (excluding 2 participants whose last T1 could not be used because of 

technical error during acquisition and subject motion). 

 

Definition of anatomical regions of interest (lateral and medial VTC ROIs) 

On the inflated surface of each hemisphere in each participant, we defined anatomical regions of 

interest (ROIs) of the lateral and medial VTC (Fig. 1B) as in previous publications12. We first defined 

the VTC anatomically and then separated it to lateral and medial VTC. The posterior border of VTC 

was the posterior transverse collateral sulcus (ptCoS) and the anterior border was aligned to the 

posterior end of the hippocampus, which typically aligns with the anterior tip of the mid fusiform 

sulcus (MFS). The lateral border of VTC was the inferior temporal gyrus (ITG) and the medial border 

of VTC was the medial border of the collateral sulcus (CoS). Finally, VTC was divided into its lateral 

and medial partitions along the MFS (example in Fig. 1B).  

 

fMRI data analysis 

Functional data from each session were aligned to the individual within-subject template. Motion 

correction was performed both within and across functional runs. No spatial smoothing and no slice-

timing correction were performed. Time courses were transformed into percentage signal change by 

dividing each timepoint of each voxel9s data by the average response across the entire run. To 

estimate the contribution of each of the 10 conditions (corresponding to the 10 image categories) a 

general linear model (GLM) was fit to each voxel by convolving the stimulus presentation design with 

the hemodynamic response function (as implemented in SPM, www.fil.ion.ucl.ac.uk/spm). 

 

Definition of selectivity in lateral and medial VTC 

We used a data-driven approach to examine the development of category selectivity in VTC. The 

motivation for this type of analysis was to (i) use an automated, observer-independent approach and 

(ii) use an approach that does not require clustered activations.  

In each participant, we assessed selectivity to each category in anatomically defined lateral and 

medial VTC ROIs (Fig. 1B). Selectivity was defined as t-value > 3 (voxel-level) for the contrast of 

interest. We also performed a complementary threshold-independent analysis in constant-sized 

regions (see Control analysis below). Category contrasts (Fig. 1) were computed by contrasting 

responses to each category with all other categories from all other domains (i.e., words vs. all other 

categories except numbers). We used this approach for defining contrasts to ensure that all 
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categories are contrasted to the same number of control categories and contrasts are not biased to 

any particular category. We also computed contrasts for domains (faces, body parts, characters, 

objects, places), see supplemental analyses (Fig. S4). For domain contrasts, responses to both 

categories of each domain were contrasted with stimuli from all other domains (i.e., characters vs. 

all others). 

 

Definition of functional regions of interest  

To examine the anatomical specificity of the observed development of selectivity (Fig. 1), we defined 

word-, limb-, and face-selective functional regions in each participant (see Fig. 2A-C). For the 

definition of functional ROIs, a threshold of a t-value > 3 (voxel-level) was used. All ROIs were 

defined in each participant9s native cortical surface generated from the within-subject brain 

template. Word-selective regions were defined as above-threshold clusters for the contrast words 

vs. all categories except numbers that straddled the occipito-temporal-sulcus (OTS). The more 

anterior cluster was defined as mOTS-words and the posterior cluster as pOTS-words. These clusters 

are also referred to as the visual word form area (VWFA 1 and 2, respectively4). The limb-selective 

region was defined as above-threshold cluster of voxels for the contrast limbs vs. all categories 

except bodies straddling the OTS and was labelled OTS-limbs. This cluster is also referred to as the 

fusiform body area (FBA2). Face-selective regions were defined using the contrast faces (adult and 

child) vs. all other categories, because we observed similar development for both face types in the 

analysis related to Fig. 1. Face-selective clusters were defined as above-threshold clusters on the 

lateral fusiform gyrus. The more anterior cluster typically aligns with the anterior tip of the MFS, and 

was defined as mFus-faces, while the more posterior cluster was defined as pFus-faces19. These two 

face-selective clusters are also referred to as the fusiform face area (FFA 1 and 2, respectively1). 

For supplemental analyses (Fig. S7) we also defined place-, character-, and combined body-part-

selective regions. Place-selective regions were defined as above threshold clusters on the collateral 

sulcus that respond to houses and corridors vs. all other categories. This region is also referred to as 

parahippocampal place area (PPA3). Character-selective regions were defined as above-threshold 

clusters on the OTS that responded more strongly to words and numbers vs. all other categories. 

Similarly, a body-part-selective region was defined as above-threshold clusters on the OTS that 

responded more strongly to bodies and limbs than the other categories.  

 

Emerging and waning ROIs 

To characterize the selectivity and responses within VTC regions that changed with development, we 

defined in each participant9s VTC ROIs that: (i) either gained selectivity to faces or words or (ii) lost 
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selectivity to limbs during childhood. To do so, we defined emerging face and word ROIs as well as 

waning limb ROIs. For words and faces, where selective voxels emerge during development, the 

emerging ROI is the region that was selective to faces (or words) in the end timepoint but was not 

selective to that category in the initial timepoint (Fig. 2A,C). We call the region that is the difference 

between the end and initial ROIs the emerging pOTS-words and emerging pFus-faces. For limbs, 

where selective voxels decline during development, we call the difference between the initial and 

end ROIs the waning OTS-limbs. That is, the waning OTS-limbs is the region that was within the ROI 

in the initial timepoint but not in the end timepoint (Fig. 2B). For a given participant, the initial ROI 

corresponds to the first fMRI session in which the ROI could be identified, and end ROI corresponds 

to the last fMRI session in which the ROI could be identified. 

 

Control analysis of selectivity development in independent ring-shaped ROIs  

The emerging and waning ROIs were defined from individual participant9s functional ROIs on their 

native brain anatomy and thus capture precisely the part of cortex that undergoes development. As 

these ROIs are not completely independent from the original ROIs, we sought to validate these 

results in an independent manner. Thus, we conducted a complementary analysis to evaluate 

responses in independent ring ROIs. First, we created two disk ROIs centered at the center 

coordinate of the initial functional ROI. One ROI was sized to match the surface area of the initial 

ROI, and the other, sized to match the corresponding end ROI. Then, we defined the area in between 

these two disk ROIs as the independent ring-shaped ROI. 

 

Within each ring-shaped ROI, we measured responses to the 10 categories as well as selectivity to 

each category (Fig. S10). Importantly, this analysis replicated the significant decrease in limb-

selectivity in the waning limb-ROIs, emerging left pOTS-words, and emerging left pFus-faces. In right 

pFus-faces, we found a similar trend for decreasing limb-selectivity (see figure legend of Fig. S10 for 

statistics). In left pOTS-words, we find a similar trend for increasing word-selectivity (Fig. S10A) and 

in right pFus-faces we find a similar trend for increasing face-selectivity (Fig. S10D,E). We note that a 

limitation of this approach is that while the ring analysis guarantees independence, it does not 

capture exactly the developing tissue, as the actual developing ROIs are not ring shaped (Fig. 2A-C, 

see example ROIs). Therefore, this approach is less accurate for assessing developmental changes in 

VTC. 

 

Control analysis: estimating changes in selectivity across development in a constant number of 

lateral VTC voxels 
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In the analyses in Fig. 1, we evaluated category-selectivity by estimating the number of voxels within 

an anatomical ROI that significantly responded to one category (vs. all other categories except the 

other category from the same domain, threshold of t>3, voxel-level). While this threshold 

guarantees significant selectivity, ultimately the threshold value is a number decided by the 

experimenter.  

To ensure that findings of developmental effects do not depend on the threshold used, we 

performed a complementary analysis of category-selectivity in lateral VTC across development 

which did not depend on a threshold. Across development, we kept the number of voxels within VTC 

constant and evaluated their mean selectivity (t-value) to a category. Specifically, at each timepoint 

we selected the 20% most selective voxels (i.e., the voxels with the highest t-values) for each 

category contrast and calculated their mean t-value (Fig. S5). The 20% most selective voxels are 

determined in each session independently, to avoid biasing the selection of voxels to a specific 

timepoint. Then we used LMMs to determine if the mean selectivity of these voxels changes over 

time. LMMs can be expressed as: t-value ~ age in months + (1|participant).  

 

Results of this analysis largely replicate the main finding presented in Fig. 1C, and reveal (i) a 

significant increase in word-selectivity in the left hemisphere (see legend of Fig. S6 for statistics), (ii) 

a bilateral decrease in limb-selectivity, (iii) an increase in selectivity to adult faces in the right 

hemisphere, (iv) a bilateral increase in selectivity to child faces and (v) an increase in selectivity to 

houses in the left hemisphere. 

 

Control analysis: Estimating the response reliability in V1 and testing if it is related to age 

To assess the reliability of responses, we conducted a multivariate pattern analysis (MVPA62) in V1 

ROIs defined by the Glasser atlas63 as well as lateral VTC ROIs. For each voxel, the response 

amplitude (beta value) for each category was estimated from the GLM of each run. These vectors of 

responses - also called multivoxel patterns (MVPs) - were generated independently for each of the 

two runs in each session. We then calculated correlations between pairs of MVPs (run1 to run2) to 

each category combination, resulting in 10x10 representational similarity matrices. We calculated 

the mean of reliability across all categories (mean of the on-diagonal correlations) as a measure for 

the reliability of responses, as it provides a measurement for the similarity of responses to the same 

category from one functional run to another. Next, we tested if there is a relationship between the 

reliability of responses and age. To this end, we ran linear mixed models predicting the response 

reliability by age using random intercept models with the grouping variable subject (response 

reliability ~age + (1|subject)). Results of this analysis are in Fig. S6. 
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Is the decrease in limb-selectivity uniform across lateral VTC? 

As we found accumulating evidence for reductions in limb-selectivity in lateral VTC, an open 

question is whether the decrease in limb-selectivity occurs across the entire lateral VTC or whether it 

is restricted to the regions in which selectivity changes across development. To this end, we aimed 

to assess development of limb-selectivity in VTC excluding voxels that were selective to categories 

showing significant development (Fig. 1). Thus, we identified in each participant9s first session the 

voxels selective for these categories, excluded them from lateral VTC, and then measured limb-

selectivity across development in the remaining lateral VTC voxels. Next, we used LMMs to test if 

there was a significant decrease in the mean selectivity to limbs in these remaining lateral VTC 

voxels (Fig. S12). While there was a trend for a decrease in selectivity in both hemispheres, the 

effects were not significant after correcting for multiple comparisons (left: slope=-0.0039 t/month, 

p=0.16; right: slope=-0.0036 t/month, p=0.16, FDR corrected). These results suggest that the 

decrease in limb- selectivity appears to be strongest in the developing category-selective regions. 

Can cortical recycling be measured at the voxel level? 

To assess if cortical recycling is also observable at the voxel level, we measured the selectivity for 

limbs, faces, and words in each session for each voxel of the waning and emerging parts of ROIs. 

Using this data, we examined the relationship between the voxel selectivity to the category that 

defines the ROI as a function of voxel selectivity to the two other categories (i.e., in emerging pOTS-

words we related word-selectivity to limb- and face-selectivity: word-selectivity ~ limb-selectivity + 

face-selectivity +(1|session). To quantify the relationship, we ran a separate linear mixed model 

(LMM) for each participant and ROI. Thus, the number of independent measurements in each LMM 

is the number of voxels in the emerging/waning ROI and the grouping variable in the LMM is 

8session9. We then summarized the individual subject slopes from the LMM for each ROI in a boxplot 

(Fig. S14) 

 

Statistical Analyses 

Linear mixed models (LMMs) were used for statistical analyses because (i) the data has a hierarchical 

structure with sessions being nested within each participant, and (ii) sessions were unevenly 

distributed across time (Fig. S1A). Models were fitted using the 8fitlme9 function in MATLAB version 

2017b (The MathWorks, Inc.). In initial analyses the fit of random-intercept models, which allow 

intercepts to vary across participants, were compared with the fit of random-slope models, which 
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allow both intercepts and slopes to vary across participants. Results revealed that a random-

intercept model fitted the data best in the majority of cases. Thus, to enable comparability across 

analyses, LMMs with random intercepts were used throughout the analyses. Data distribution was 

assumed to be normal, but this was not formally tested. 

 

LMMs related to Figure 1 can be expressed as: volume of selective activation for a category in mm3 ~ 

age in months + (1|participant), in which volume of selective activation is the response variable, age 

in months is a continuous predictor (fixed effect), and the term (1|participant) indicates that random 

intercepts are used for the grouping variable participant. The slopes of the LMMs are plotted in Fig. 

1C. Statistics were run on the complete data set including 128 sessions.  

Boxplots in Fig. 1D showing subsets of the data are used for estimating volume of selective 

activation in different age groups and visualization purposes, but not to evaluate statistical 

significance. One session per child per age group is included in the boxplot. To confirm the validity of 

the grouping of the age groups for the boxplots in Fig. 1D (5-9yo and 13-17yo), we used the LMMs 

(shown in Fig. 1C) to predict the size of category-selective activation for the mean age in years of the 

participants in each of the two age groups. This predicted size is indicated as a black diamond in the 

boxplots. Estimated mean size (diamonds) from the LMM corresponded well with the medians of the 

boxplots, thus, validating the grouping of the participants in the boxplots. 

 

To estimate changes in the size of category-selective ROIs (Fig. 2D, Fig. S7) we used LMMs specified 

as: ROI size in mm3 ~ age in months + (1|participant). Similarly, to estimate changes in the surface 

area of category-selective ROIs (Fig. S8) we used LMMs specified as: ROI surface area in mm2 ~ age in 

months + (1|participant). 

 

To evaluate significance of the developmental changes in emerging and waning ROIs, we used two 

separate LMMs: (i) selectivity changes across development (Fig. 3-left) were modeled as t-value ~ 

age in months + (1|participant), and (ii) changes in responses across development (Fig. 3-right) as % 

signal (b)~ age in months + (1|participant). Percent signal refers to the change in response for a 

certain condition relative to baseline. Selectivity refers to contrasting responses to different 

categories (see above definition of contrasts and thresholds). Selectivity and response values were 

obtained for each voxel and LMMs were fit on the average value in an ROI. Boxplots in Fig. 3 show 

mean responses for each of the 10 categories in 5-9-year-olds and 13-17-year-olds. They are used for 

visualizing response amplitudes (units of % signal) in different age groups, but not to evaluate 

statistical significance, which was done using the LMM. The selection of age groups in the boxplots is 
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validated by plotting the LMM prediction for the mean age in years of participants in each age group 

(compare black diamonds to measured median).  

LMM analyses related to Fig. 4 tested if changes in limb-, face-, and word-selectivity in the 

developing ROIs were related to each other. For each emerging and waning ROI, we tested if 

selectivity for one category (e.g., word-selectivity in the emerging pOTS-words) was predicted by 

selectivity to the other categories (e.g., limb- and face-selectivity in the emerging pOTS-words). We 

also tested if an LMM with two predictors (e.g., predicting word-selectivity from both limb- and face-

selectivity) is a better model than an LMM with one predictor (e.g., predicting word-selectivity just 

from face-selectivity) using a likelihood ratio test. If the likelihood ratio test confirmed that both 

predictors contributed significantly to the model fit, both predictors were included in the analysis. 

Parameters of LMMs and likelihood ratio tests are reported in supplemental Tables S10-11. Tables 

are grouped by analysis type.  

 

The reported statistical tests are two-tailed. False-discovery rate (FDR) correction following the 

procedure by Benjamini and Hochberg20 as implemented in MATLAB version 2017b (The 

MathWorks, Inc.) was applied to correct for multiple comparisons related to the same analysis.  

Data availability 

The data that support the findings of this study are available from the corresponding author upon 

request. 

Code availability 

Code will be made available with publication at: https://github.com/VPNL/Recycling. 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.07.18.209783doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.18.209783
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

References 

1. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human 

extrastriate cortex specialized for face perception. J Neurosci 17, 430234311 (1997). 

2. Peelen, M. V. & Downing, P. E. Selectivity for the human body in the fusiform gyrus. J. 

Neurophysiol. 93, 6033608 (2005). 

3. Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 

392, 5983601 (1998). 

4. Cohen, L. et al. The visual word form area. Spatial and temporal characterization of an initial 

stage of reading in normal subjects and posterior split-brain patients. Brain 123, 2913307 

(2000). 

5. Deen, B. et al. Organization of high-level visual cortex in human infants. Nat. Commun. 8, 

13995 (2017). 

6. de Heering, A. & Rossion, B. Rapid categorization of natural face images in the infant right 

hemisphere. Elife 4, 1314 (2015). 

7. Livingstone, M. S. et al. Development of the macaque face-patch system. Nat. Commun. 8, 13

12 (2017). 

8. Golarai, G. et al. Differential development of high-level visual cortex correlates with category-

specific recognition memory. Nat. Neurosci. 10, 5123522 (2007). 

9. Dehaene-Lambertz, G., Monzalvo, K. & Dehaene, S. The emergence of the visual word form: 

Longitudinal evolution of category-specific ventral visual areas during reading acquisition. 

PLoS Biol. 16, 1334 (2018). 

10. Srihasam, K., Vincent, J. L. & Livingstone, M. S. Novel domain formation reveals proto-

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.07.18.209783doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.18.209783
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

architecture in inferotemporal cortex. Nat. Neurosci. 17, 177631783 (2014). 

11. Gomez, J., Natu, V., Jeska, B., Barnett, M. & Grill-Spector, K. Development differentially 

sculpts receptive fields across early and high-level human visual cortex. Nat. Commun. 9, 13

12 (2018). 

12. Nordt, M. et al. Learning to Read Increases the Informativeness of Distributed Ventral 

Temporal Responses. Cereb. Cortex 1316 (2019). doi:10.1093/cercor/bhy178 

13. Behrmann, M. & Plaut, D. C. A vision of graded hemispheric specialization. Ann. N. Y. Acad. 

Sci. 1359, 30346 (2015). 

14. Dehaene, S., Cohen, L., Morais, J. & Kolinsky, R. Illiterate to literate: behavioural and cerebral 

changes induced by reading acquisition. Nat. Rev. Neurosci. 16, 2343244 (2015). 

15. Levy, I., Hasson, U., Avidan, G., Hendler, T. & Malach, R. Center-periphery organization of 

human object areas. Nat Neurosci 4, 5333539 (2001). 

16. Cantlon, J. F., Pinel, P., Dehaene, S. & Pelphrey, K. A. Cortical representations of symbols, 

objects, and faces are pruned back during early childhood. Cereb. Cortex 21, 1913199 (2011). 

17. Dehaene, S. et al. How Learning to Read Changes and Language. Science 1359, 1359364 

(2010). 

18. Frost, M. A. & Goebel, R. Measuring structural-functional correspondence: Spatial variability 

of specialised brain regions after macro-anatomical alignment. Neuroimage 59, 136931381 

(2012). 

19. Weiner, K. S. et al. The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic 

and functional divisions of human ventral temporal cortex. Neuroimage 84, 4533465 (2014). 

20. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.07.18.209783doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.18.209783
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 57, 28933300 (1995). 

21. Scherf, K. S., Behrmann, M., Humphreys, K. & Luna, B. Visual category-selectivity for faces, 

places and objects emerges along different developmental trajectories. Dev. Sci. 10, (2007). 

22. Peelen, M. V., Glaser, B., Vuilleumier, P. & Eliez, S. Differential development of selectivity for 

faces and bodies in the fusiform gyrus. Dev. Sci. 12, 16325 (2009). 

23. Ben-Shachar, M. The development of cortical sensitivity to visual word forms- Supplementary 

Information. 238732399 (2011). 

24. Golarai, G., Liberman, A., Yoon, J. M. & Grill-Spector, K. Differential development of the 

ventral visual cortex extends through adolescence. Front. Hum. Neurosci. 3, 80 (2010). 

25. Kobatake, E., Wang, G. & Tanaka, K. Effects of shape-discrimination training on the selectivity 

of inferotemporal cells in adult monkeys. J. Neurophysiol. 80, 3243330 (1998). 

26. Arcaro, M. J., Schade, P. F., Vincent, J. L., Ponce, C. R. & Livingstone, M. S. Seeing faces is 

necessary for face-domain formation. Nat. Neurosci. 20, 140431412 (2017). 

27. Fausey, C. M., Jayaraman, S. & Smith, L. B. From faces to hands: Changing visual input in the 

first two years. Cognition 152, 1013107 (2016). 

28. Frank, M. C., Vul, E. & Saxe, R. Measuring the Development of Social Attention Using Free-

Viewing. Infancy 17, 3553375 (2012). 

29. Long, B., Kachergis, G., Agrawal, K., & Frank, M. C. Detecting social information in a dense 

database of infants9 natural visual experience. (2020). 

30. Liszkowski, U., Carpenter, M. & Tomasello, M. Pointing out new news, old news, and absent 

referents at 12 months of age. Dev. Sci. 10, 137 (2007). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.07.18.209783doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.18.209783
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

31. Haber, N., Mrowca, D., Wang, S., Fei-Fei, L. & Yamins, D. L. K. Learning to play with 

intrinsically-motivated, self-aware agents. Adv. Neural Inf. Process. Syst. 2018-Decem, 83883

8399 (2018). 

32. Khaligh-Razavi, S. M. & Kriegeskorte, N. Deep Supervised, but Not Unsupervised, Models May 

Explain IT Cortical Representation. PLoS Comput. Biol. 10, (2014). 

33. Zhuang, Chengxu; Zhai, Alex Lin; Yamins, D. Local Aggregation for Unsupervised Learning of 

Visual Embeddings. in Proceedings of the IEEE/CVF International Conference on Computer 

Vision (2019). 

34. Gomez, J. et al. Microstructural proliferation in human cortex is coupled with the 

development of face processing. Science (80-. ). 355, (2017). 

35. Natu, V. S. et al. Development of Neural Sensitivity to Face Identity Correlates with 

Perceptual Discriminability. J. Neurosci. 36, 10893310907 (2016). 

36. Wandell, B. A., Rauschecker, A. M. & Yeatman, J. D. Learning to see words. Annu. Rev. 

Psychol. 63, 31353 (2012). 

37. Feldstein Ewing, S. W., Bjork, J. M. & Luciana, M. Implications of the ABCD study for 

developmental neuroscience. Dev. Cogn. Neurosci. 32, 1613164 (2018). 

38. Constantino, J. N. et al. Infant viewing of social scenes is under genetic control and is atypical 

in autism. Nature 547, 3403344 (2017). 

39. Duchaine, B. C. & Nakayama, K. Developmental prosopagnosia: a window to content-specific 

face processing. Curr. Opin. Neurobiol. 16, 1663173 (2006). 

40. Amedi, A., Raz, N., Pianka, P., Malach, R. & Zohary, E. Early 8visual9 cortex activation correlates 

with superior verbal memory performance in the blind. Nat. Neurosci. 6, 7583766 (2003). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.07.18.209783doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.18.209783
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

41. Liu, T. T. et al. Successful Reorganization of Category-Selective Visual Cortex following 

Occipito-temporal Lobectomy in Childhood. Cell Rep. 24, 1113-1122.e6 (2018). 

42. Norton, E. S., Beach, S. D. & Gabrieli, J. D. E. Neurobiology of dyslexia. Curr. Opin. Neurobiol. 

30, 73378 (2015). 

43. Srihasam, K., Mandeville, J. B., Morocz, I. A., Sullivan, K. J. & Livingstone, M. S. Behavioral and 

Anatomical Consequences of Early versus Late Symbol Training in Macaques. Neuron 73, 6083

619 (2012). 

44. Büchel, C., Price, C. & Friston, K. A multimodal language region in the ventral visual pathway. 

Nature 394, 2743277 (1998). 

45. Emmorey, K., McCullough, S. & Weisberg, J. Neural correlates of fingerspelling, text, and sign 

processing in deaf American sign language3English bilinguals. Lang. Cogn. Neurosci. 30, 7493

767 (2015). 

46. Bi, Y., Wang, X. & Caramazza, A. Object Domain and Modality in the Ventral Visual Pathway. 

Trends Cogn. Sci. 20, 2823290 (2016). 

47. Reich, L., Szwed, M., Cohen, L. & Amedi, A. A ventral visual stream reading center 

independent of visual experience. Curr. Biol. 21, 3633368 (2011). 

48. Dehaene, S. & Cohen, L. Cultural recycling of cortical maps. Neuron 56, 3843398 (2007). 

49. Lucas, T. H., McKhann, G. M. & Ojemann, G. A. Functional separation of languages in the 

bilingual brain: A comparison of electrical stimulation language mapping in 25 bilingual 

patients and 117 monolingual control patients. J. Neurosurg. 101, 4493457 (2004). 

50. Green, D. W., Crinion, J. & Price, C. J. Convergence, Degeneracy, and Control. Lang. Learn. 56, 

993125 (2006). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.07.18.209783doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.18.209783
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

 

51. Amalric, M. & Dehaene, S. Origins of the brain networks for advanced mathematics in expert 

mathematicians. Proc. Natl. Acad. Sci. 113, 4909 LP 3 4917 (2016). 

52. Kersey, A. J. & Cantlon, J. F. Neural Tuning to Numerosity Relates to Perceptual Tuning in 336-

Year-Old Children. J. Neurosci. 37, 512 LP 3 522 (2017). 

53. Pica, P., Lemer, C., Izard, V. & Dehaene, S. Exact and approximate arithmetic in an Amazonian 

indigene group. Science (80-. ). 306, 4993503 (2004). 

54. Natu, V. S. et al. Apparent thinning of human visual cortex during childhood is associated with 

myelination. Proc. Natl. Acad. Sci. U. S. A. 116, 20750320759 (2019). 

55. Mezer, A. et al. Quantifying the local tissue volume and composition in individual brains with 

magnetic resonance imaging. Nat. Med. 19, 166731672 (2013). 

56. Grill-Spector, K. & Kanwisher, N. Visual recognition: as soon as you know it is there, you know 

what it is. Psychol Sci 16, 1523160 (2005). 

57. Weiner, K. S. & Grill-Spector, K. Sparsely-distributed organization of face and limb activations 

in human ventral temporal cortex. Neuroimage 52, 155931573 (2010). 

58. Weiner, K. S., Sayres, R., Vinberg, J. & Grill-Spector, K. fMRI-adaptation and category 

selectivity in human ventral temporal cortex: Regional differences across time scales. J. 

Neurophysiol. 103, 334933365 (2010). 

59. Stigliani, A., Weiner, K. S. & Grill-Spector, K. Temporal Processing Capacity in High-Level Visual 

Cortex Is Domain Specific. J. Neurosci. 35, 12412312424 (2015). 

60. Kanwisher, N. Domain specificity in face perception. Nat. Neurosci. 3, 7593763 (2000). 

61. Reuter, M., Schmansky, N. J., Rosas, H. D. & Fischl, B. Within-subject template estimation for 

unbiased longitudinal image analysis. Neuroimage 61, 140231418 (2012). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.07.18.209783doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.18.209783
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

62. Haxby, J. V et al. Distributed and overlapping representations of faces and objects in ventral 

temporal cortex. Science (80-. ). 293, 242532430 (2001). 

63. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 1713

178 (2016). 

 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.07.18.209783doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.18.209783
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

 

Acknowledgements 

We thank Laura Villalobos, Erica Yeawon, Hwang, Savana Huskins, Alema Fitisemanu, and Philip 

Eykamp for manually editing gray-white matter brain segmentations. We thank Caitlyn Estrada and 

Nancy Lopez-Alvarez for help with data collection, and Rachel Hinds for help with data entry and 

management. We thank Jon Winawer for his constructive review of our manuscript.  

Funding: This work was supported by a fellowship of the German National Academic Foundation 

awarded to MN (NO 1448/1-1); NIH grant 2RO1 EY 022318 to KGS. NIH training grant 5T32EY020485 

(VN); NSF Graduate Research Development Program (DGE-114747) and Ruth L. Kirschstein National 

Research Service Award (F31EY027201) to JG. The funders had no role in study design, data 

collection and analysis, decision to publish or preparation of the manuscript. 

Author contributions 

M.N. collected data, developed and coded the analysis pipeline, analysed the data, and wrote the 

manuscript. V.N. and J.G. designed the experiment, collected data, and contributed to the 

manuscript. A.A.R. collected the data, contributed to data analysis, and contributed to the 

manuscript. D.F. and H.K, collected the data, and contributed to the manuscript. KGS designed the 

experiment, contributed to the analysis pipeline and data analysis, and wrote the manuscript. 

Competing interests 

The authors declare no competing interests. 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.07.18.209783doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.18.209783
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

Figures 

 

Fig. 1. Developmental increases and decreases in category-selective activation in lateral VTC.  

(A) Volume of word-, limb- and child-face-selective activation by age. Each dot is a session and 

colored by participant. Red line: Linear mixed model (LMM) prediction of category-selective 

activation by age. Shaded gray: 95% confidence interval (CI). All scatterplots in Fig. S2. (B) Lateral and 

medial VTC on the inflated cortical surface of a 5-year-old. (C) LMM slopes indicating change in 

category-selective activation volume per month (n=128 sessions, 29 children). Colored bars: slopes 

for models using age as a predictor. Open bars with black outlines: slopes for the age predictor for 
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models including both age and time series signal-to-noise ratio (tSNR) as predictors. Error bars: 95% 

CI. Significant development after FDR-correction (p<0.05) is indicated by asterisks (colored bars) and 

circles (open bars). (D) Category-selective activation by age group. One session per child is included 

per boxplot. Crosses: outliers; Diamonds: mean volume predicted by LMM. All categories in Fig. S3. 

Acronyms: N: numbers; W: words; L: limbs; B: bodies; AF: adult faces; CF: child faces, C: Cars, SI: 

String instruments, H: Houses, Cor: Corridors. 
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Fig. 2. Development of category-selective ROIs. Initial ROIs (colored) and end ROIs (outline) in 3 

example children: (A) left pOTS-words at age 10 and 15, (B) left OTS-limbs at age 11 and 13, (C) left 

pFus-faces at age 9 and 14. MFS: mid fusiform sulcus; OTS: occipito-temporal sulcus. (D) LMM 

slopes: change in volume of category-selective regions per month. Error bars: 95% CI; Asterisks: 

significant development, p<0.05, FDR-corrected. The number of sessions per ROI is as follows: left 

mOTS-words: n=103, right mOTS-words: n=35, left pOTS-words: n=119, right pOTS-words: n=73, left 

OTS-limbs: n=126, right OTS-limbs: n=126, left mFus-faces: n=107, right mFus-faces: n=102, left 

pFus-faces: n=120, right pFus-faces: n=98.  
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Fig. 3. Age-related increases in word- and face-selectivity parallel decreases in limb-selectivity in 

the developing regions. (A-C) Left: Colored bars: LMM slopes indicating changes in selectivity by age. 

Open bars: LMM slopes for contrasts in which the ROI-defining category is not included. Error bars: 

95% CI; Significant development after FDR-correction (p<0.05) is indicated by asterisks (colored bars) 

and circles (open bars). Note that there are no open bars or circles for the category defining the ROI. 

Statistics for colored bars: (A) Emerging pOTS-word, words: t(110)=6.17, pFDR<0.001; limbs: t(110)=-

4.74, pFDR<0.001; bodies: t(110)=-3.68, pFDR=0.002. (B) Waning OTS-limbs, limbs: t(120)=-6.83, 

pFDR<0.001; adult faces: t(120)=2.59, pFDR= 0.04. (C) Emerging pFus-faces, adult faces: t(103)=4.09, 

pFDR<0.001; child faces: t(103)=4.11, pFDR<0.001; limbs: t(103)=-6.24, pFDR<0.001; bodies: t(103)=-
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3.57, pFDR=0.002. All ROIs and categories in Fig. S9. Full statistics in Tables S7-S8. Right: Response 

amplitudes for the 10 categories. One functional session per child is included per boxplot. Diamonds: 

estimated responses from LMMs. Crosses: outliers.  
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Fig. 4. Developmental changes in word-, face-, and limb-selectivity are linked. Left: LMM prediction 

(circle) of category selectivity to words (A), limbs (B), and faces (C) vs. selectivity to the other two 

categories in 5-9-year-olds and 13-17-year-olds. Middle: Individual participant data visualized in 3D. 

In each panel the variable on the z-axis is related to the x- and y-variables, this relationship is 

quantified in the model; ��, 95%-CI, t-values, degrees of freedom, and p-values are shown at the 

top. Full statistics in Table S11; Orange arrows: Individual child data. Blue arrows: LMM prediction 

(same as left panel). Right: Rotated version of the plots in the middle column to enhance visibility of 

positive and negative values along the other horizontal axis. Right hemisphere in Fig. S13. 
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