

1 **Organoid-derived adult human colonic epithelium responds to co-culture with a probiotic**
2 **strain of *Bifidobacterium longum***

3

4 Emma Lauder (i), Kwi Kim (iii), Thomas Mitchell Schmidt (ii, iii), Jonathan Louis Golob (iii)

5

6

7 i) Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA.

8 ii) Department of Microbiology and Immunology. University of Michigan. Ann Arbor, Michigan,

9 USA

10 iii) Division of Infectious Diseases. Department of Internal Medicine. University of Michigan. Ann
11 Arbor, Michigan, USA

12

13

14

15

16

17

18

19

20

21 Corresponding Author:

22 Jonathan Golob, MD PhD.

23 1510E MSRB I

24 1150 West Medical Center Dr, SPC 5666

25 Ann Arbor, Michigan. 48109-5666

26 golobj@med.umich.edu

27 **Abstract**

28 In germ-free animals the lack of microbes within the gut results in a propensity to mucosal
29 inflammation among other immune deficits. This suggests microbes are essential for the healthy
30 function of the human gut, but we have lacked a reproducible mechanistic model of interactions
31 between human colonic epithelium and the anaerobic microbes within the gut. To establish the
32 physiological effect of a common anaerobe in the human gut, we co-cultured a probiotic strain of
33 *Bifidobacterium longum* (35624) with organoid-derived adult human colonic epithelium in
34 asymmetric gas conditions (anoxic apically, 5% oxygen basolaterally) and compared to axenic
35 ('germ-free') epithelium. Bacteria proliferated and retained their normal cellular morphology in
36 the presence of the human colonic epithelium. The human colonic mucosa retained trans-
37 epithelial electrical resistance (TEER) consistent with an intact epithelium but lower than in
38 axenic conditions. Changes in TEER corresponded to changes in Claudin-family gene
39 expression. Inflammation was repressed in co-culture as compared to axenic, with reduced
40 expression of executor and pyroptosis caspases; reduced expression of activators and
41 increased expression of inhibitors of *NFKB*; reduced expression of toll-like-receptors (*TLRs*) and
42 increased expression of *TOLLIP* (a negative regulator of *TLRs*). Consistent with the presence of
43 actively fermenting bacteria that produce lactate and acetate but do not produce butyrate,
44 *PPARA* expression was increased while *PPARG* expression was reduced. As in germ-free
45 animal experiments, axenic human colonic mucosa is poised for inflammation. Co-culture with
46 *Bifidobacterium longum* resolved the pro-inflammatory state while modulating barrier function
47 (via Claudin genes) and cellular energetics (via *PPARA* and *PPARG* genes).

48

49

50 **Importance**

51 Experiments in animals demonstrate the importance of microbes with the gut for the health of
52 the gut. Many of the microbes within the healthy gut are strictly anaerobic and cannot grow in

53 the presence of oxygen; human tissues require some oxygen to live. Here we observe the effect
54 of growing an anaerobic bacterium - *Bifidobacterium longum* - typically found in the human gut
55 with human colonic tissue. We observed that the human tissue responded favorably to being
56 cultivated with the microbe as compared to being alone. This experiment confirms human
57 colonic tissues reduce their inflammation in the presence of a bacteria typically found in the gut.

58

59

60 **Observation**

61 Animals without a gut microbiome are known to have a dysfunctional gut, including lowered GI
62 motility (1), altered ionic transport across the mucosal barrier (2), chronic diarrhea (3), and
63 difficulty absorbing nutrients (3). Germ-free animals also fail to properly develop innate or
64 adaptive immunity (4, 5), have impaired reproductive fitness (6), and deficiencies in bone and
65 neural development (7, 8). These animal-model studies are the basis for our belief that the
66 presence of a gut microbiome is critical for human health. However we have previously lacked
67 an adequate *human* model of host-microbiome interactions to verify this belief.

68

69 Organoid-derived epithelia allow for reproducible and mechanistic investigation of interactions
70 between anaerobic bacteria and human colonic epithelium. Organoid-derived human colonic
71 epithelia retain the genetic and epigenetic state of the tissue from which it was derived (9). This
72 model was recently extended to allow for co-culture of the human epithelium with anaerobic
73 microbes typically found within the human gut (10). To establish the physiological effect of a
74 common anaerobe in the human gut, we co-cultured a probiotic strain of *Bifidobacterium*
75 *longum* (35624) with organoid-derived adult human colonic epithelium in asymmetric gas
76 conditions (anoxic apically, 5% oxygen basolaterally) and compared its behavior to axenic
77 ('germ-free') epithelium.

78

79 In asymmetric oxygen conditions, both the microbes and organoid-derived human epithelium
80 remained metabolically active. After 24 hours, an inoculum of 10^6 colony forming units (CFU)
81 per microliter of *B. longum* proliferated to a median of 1.9×10^8 CFU/mL (Fig. 1A) in co-culture
82 with human colonic epithelium, similar to microbes in traditional anaerobic culture conditions.
83 The epithelium retained trans-epithelial electrical resistance at a level consistent with an intact
84 monolayer, but at a reduced level as compared to axenic conditions (Fig. 1B).

85

86 Co-culture (as compared to microbe-free axenic culture) resulted in multiple changes in gene
87 expression consistent with reduced inflammation (Fig. 2). Compared to axenic conditions, co-
88 culture with *Bifidobacterium longum* (35624) resulted in reduced expression of executor and
89 pyroptosis caspases (Fig. S1). NF κ B is a master-regulator transcription factor of cellular
90 inflammation (11). NF κ B activators were downregulated and NF κ B inhibitors were upregulated
91 with co-culture (Fig. S2). Toll-like receptors (TLRs) recognize microbial molecular patterns (12);
92 inflammatory TLRs were downregulated and TOLLIP (a negative negative regulators of TLRs)
93 was upregulated (Fig. S3).

94

95 Co-culture affected the expression of genes associated with the tight junctions, which
96 corresponded to the observed change in TEER. Claudin-family gene expression changed with
97 *CLDN23*, *CLDN1*, and *CLDN2* downregulated and *CLDND1* and *CLDND2* upregulated with co-
98 culture as compared to axenic (Fig. S4).

99

100 Cellular energetics were also affected by co-culture. The peroxisome proliferator activated
101 receptor (PPAR) family of transcription factors are master regulators of cellular respiration.
102 Consistent with co-culture with a bacterium that produces lactate and acetate as fermentation
103 products, *PPAR- γ* expression was downregulated and *PPAR- α* expression was upregulated as
104 compared to axenic conditions (Fig. S5).

105

106 **Here we observe co-culture with *Bifidobacterium longum* resolved the pro-inflammatory**
107 **state of axenic epithelium while modulating barrier function (via Claudin genes) and**
108 **cellular energetics (via PPAR genes).** Our observations with organoid-derived human colonic
109 epithelium *in-vitro* are consistent with previous findings in germ-free animal models (1–8). We
110 also observed that both the anaerobic microbes and organoid-derived human colonic epithelium

111 survived and remained metabolically active when co-cultured together in asymmetric oxygen
112 conditions.

113

114 Our observation demonstrates the promise of this *in vitro* systems biology experimental
115 approach. We feel organoid-derived human colonic epithelium is more predictive of true
116 physiologic responses than immortalized colonic carcinoma cell lines. Compared to animal
117 models, this approach is more efficient in time and expense and does not require extrapolation
118 from the model organism to human biology. Even with the introduction of a single microbial
119 species typically found in the human gut, we were able to observe changes in the transcriptional
120 state of the colonic epithelium consistent with prior *in vivo* model organism experiments.

121

122 Compared to the host-microbe interactions in a healthy adult human colon, this experiment was
123 quite simplified with only one microbial strain present. Further, this strain contains NADH-
124 oxidase and superoxide dismutase (13) and therefore may be more micro-aerotolerant
125 compared to other anaerobes found in the human gut. There is no obvious barrier to future
126 experiments with more complex microbial communities (either adoptively transferred from the
127 lumen of the human gut, or constructed communities in culture), but future experiments will
128 have to determine the phylogenetic and physiological range of anaerobic microbes that survive
129 and remain metabolically active in this co-culture system.

130

131 In this observation, we made extensive use of RNA-sequencing to determine the transcriptional
132 state of the human colonic epithelium. This systems biology approach is suitable to more
133 definitive measures of the state of the human epithelium, including immunochemistry,
134 colorimetric assays of transcriptional factor and enzymatic activity, and Western blot.

135

136 The combination of organoid-derived human colonic epithelium with asymmetric oxygen culture
137 conditions is a promising novel model system for future human host-microbe systems biology
138 experiments.

139

140

141 **Methods**

142

143 **Bacterial preparation.** Bifidobacteria Specific Media (BSM) broth (Sigma-Aldrich; 90273) was
144 inoculated with *Bifidobacterium longum* strain 35624 and cultured for 18 hours while shaking at
145 37C. The bacterial suspension was washed and diluted in DMEM/F-12, GlutaMAX supplement
146 (Thermofisher Catalog# 10565018) .

147

148 **Human Colonic Epithelium from Organoids.** Colonic stem cells (University of Michigan TTML
149 colonoid line 87) were plated onto collagen-coated transwells in accordance with the protocol
150 from the Translational Tissue Modeling Laboratory (<http://www.jasonspencelab.com/ttml>). The
151 stem cells were differentiated, as per (14). Differentiation was completed in a 5% oxygen 5%
152 CO2 balance N2 environment to acclimate to physiological oxygen conditions. Experimental
153 conditions were added 18 hours after first TEER measurement if TEER was determined to be
154 present (TEER>330Ohms/cm²) indicating an intact monolayer of cells.

155

156 **Culture Conditions .** Differentiation Media (14) was removed from the apical side of the
157 transwell insert and either DMEM/F-12, GlutaMAX supplement (Thermofisher Catalog#
158 10565018) (axenic) or an inoculum of *Bifidobacterium* of a known starting OD were added. Co-
159 culture occurred at 37 C. The basal compartment was maintained with a 5% oxygen, 5% CO2
160 balance N2 environment. The apical chamber was maintained in anaerobic conditions in a 5%
161 CO2 balance nitrogen environment.

162

163 **Trans-epithelial Electrical Resistance (TEER).** TEER was recorded using the electrical
164 Volt/Ohm meter (World Precision Instrument).

165

166 **Gene expression.** After 24 hours of either axenic growth or co-culture with *Bifidobacterium*,
167 RNA isolation of the epithelial monolayer was performed with the Qiagen Micro Kit. RNA library
168 preparation and sequencing were performed (GeneWiz). Using poly dT priming (selects for
169 mRNA during the reverse transcription to cDNA) and Illumina HiSeq PE125 sequencing
170 approximately 20 million reads recovered per technical replicate. Raw reads were processed,
171 and FPKM calculated for each gene via the NF-CORE rnaseq workflow (15).

172

173 **Statistical analysis.** Linear Mixed-Random Effects modeling via the python statsmodels (16)
174 package to determine the correlation between FPKM for a given gene and co-culture
175 (respecting biological and technical replicates), with the following formula:

$$\text{FPKM} \sim \text{co-culture} + (1|\text{exp})$$

177

178 **Acknowledgements**

179 Funding for these experiments, and *Bifidobacterium longum* (35624) were provided by Procter &
180 Gamble; the design and execution of experiment as well as the analysis and interpretation of
181 results were conducted independently of Procter & Gamble.

182

183 Dr. Golob is supported by the ASTCT New Investigator Award.

184

185 **References**

186 1. Abrams GD, Bishop JE. 1967. Effect of the normal microbial flora on gastrointestinal
187 motility. Proc Soc Exp Biol Med Soc Exp Biol Med N Y N 126:301–304.

188 2. Lomasney KW, Houston A, Shanahan F, Dinan TG, Cryan JF, Hyland NP. 2014. Selective
189 influence of host microbiota on cAMP-mediated ion transport in mouse colon.
190 *Neurogastroenterol Motil Off J Eur Gastrointest Motil Soc* 26:887–890.

191 3. Heneghan J. 2012. Germfree research: biological effect of gnotobiotic environments.
192 Elsevier.

193 4. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. 2005. An immunomodulatory molecule
194 of symbiotic bacteria directs maturation of the host immune system. *Cell* 122:107–118.

195 5. Broom LJ, Kogut MH. 2018. The role of the gut microbiome in shaping the immune system
196 of chickens. *Vet Immunol Immunopathol* 204:44–51.

197 6. Shimizu K, Muranaka Y, Fujimura R, Ishida H, Tazume S, Shimamura T. 1998.
198 Normalization of reproductive function in germfree mice following bacterial contamination.
199 *Exp Anim* 47:151–158.

200 7. Yan J, Charles JF. 2017. Gut Microbiome and Bone: to Build, Destroy, or Both? *Curr*
201 *Osteoporos Rep* 15:376–384.

202 8. Warner BB. 2019. The contribution of the gut microbiome to neurodevelopment and
203 neuropsychiatric disorders. *Pediatr Res* 85:216–224.

204 9. Hill DR, Spence JR. 2017. Gastrointestinal Organoids: Understanding the Molecular Basis
205 of the Host-Microbe Interface. *Cell Mol Gastroenterol Hepatol* 3:138–149.

206 10. Fofanova T, Stewart C, Auchtung J, Wilson R, Britton R, Grande-Allen K, Estes M,
207 Petrosino J. 2019. A novel human enteroid-anaerobe co-culture system to study microbial-
208 host interaction under physiological hypoxia. preprint, *Bioengineering*.

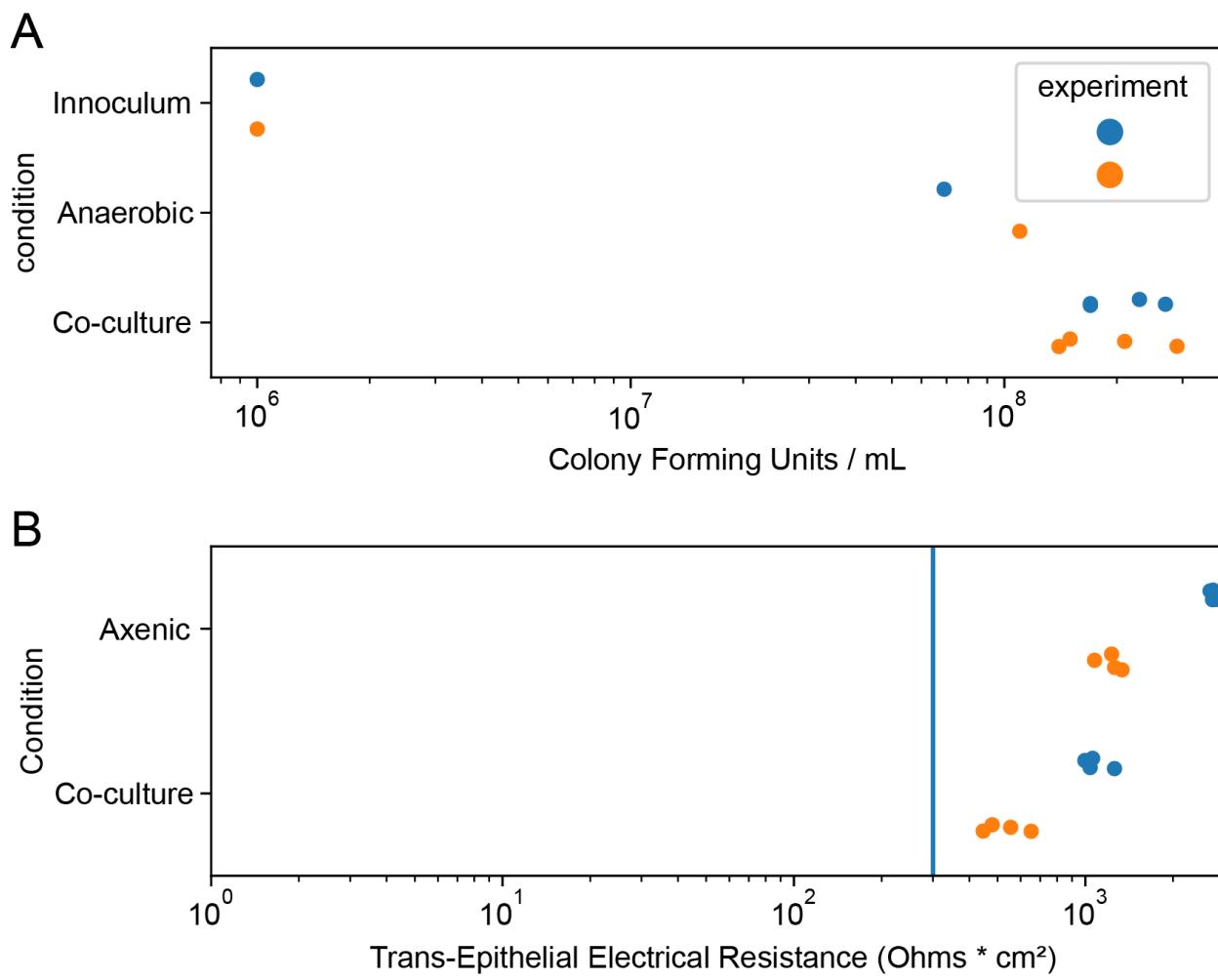
209 11. Oeckinghaus A, Ghosh S. 2009. The NF-kappaB family of transcription factors and its
210 regulation. *Cold Spring Harb Perspect Biol* 1:a000034.

211 12. Kawai T, Akira S. 2007. TLR signaling. *Semin Immunol* 19:24–32.

212 13. Shimamura S, Abe F, Ishibashi N, Miyakawa H, Yaeshima T, Araya T, Tomita M. 1992.
213 Relationship between oxygen sensitivity and oxygen metabolism of *Bifidobacterium* species.

214 J Dairy Sci 75:3296–3306.

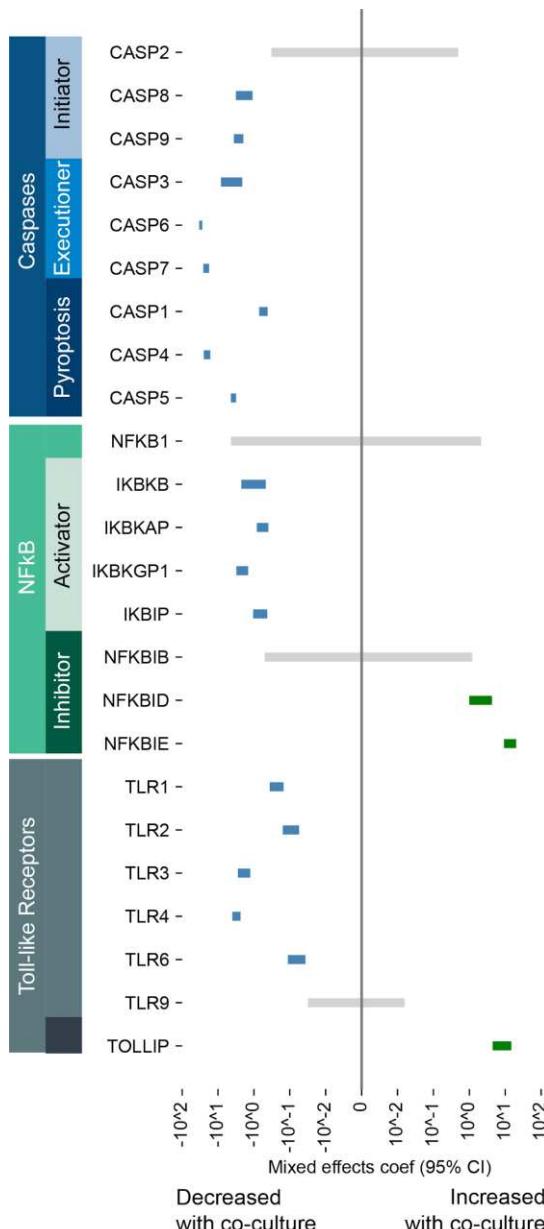
215 14. Watson CL, Mahe MM, Múnera J, Howell JC, Sundaram N, Poling HM, Schweitzer JI,
216 Vallance JE, Mayhew CN, Sun Y, Grabowski G, Finkbeiner SR, Spence JR, Shroyer NF,
217 Wells JM, Helmрath MA. 2014. An in vivo model of human small intestine using pluripotent
218 stem cells. Nat Med 20:1310–1314.


219 15. Ewels PA, Peltzer A, Fillinger S, Alneberg J, Patel H, Wilm A, Garcia MU, Di Tommaso P,
220 Nahnsen S. 2019. *nf-core* : Community curated bioinformatics pipelines. preprint,
221 Bioinformatics.

222 16. Seabold S, Perktold J. 2010. Statsmodels: Econometric and statistical modeling with
223 python9th Python in Science Conference.

224

225


226

227

228 **Figure 1: The number of** microbes (A) and electrical resistance of human epithelium (B) after
229 24 hours of co-culture in asymmetric gas conditions, as compared to axenic controls.

230

231

232 **Figure 2: Changes in regulators of inflammation and apoptosis with co-culture.** The 95%

233 confidence interval for the linear-mixed / random effects model coefficient is depicted for co-

234 culture as the independent variable, and fragments per kilobase of transcript length and

235 megabase of sequence for each transcript. If the confidence interval does not cross zero,

236 expression was significantly reduced (blue) or increased (green) when comparing co-culture to

237 axenic control conditions.