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ABSTRACT

Protein residue-residue contact prediction from protein sequence information has undergone substantial
improvement in the past few years, which has made it a critical driving force for building correct protein
tertiary structure models. Improving accuracy of contact predictions has, therefore, become the forefront
of protein structure prediction. Here, we show a novel contact map denoising method, ContactGAN,
which uses Generative Adversarial Networks (GAN) to refine predicted protein contact maps.
ContactGAN was able to make a consistent and significant improvement over predictions made by
recent contact prediction methods when tested on two datasets including protein structure modeling
targets in CASP13. ContactGAN will be a valuable addition in the structure prediction pipeline to

achieve an extra gain in contact prediction accuracy.

Introduction

Protein structure prediction remains as one of the most important and unsolved problems in biology,
more specifically in bioinformatics, biophysics, and structural biology. The tertiary structure of proteins
can provide indispensable information for understanding the principle of how the protein structure is
built and how it carries out biological functions. Knowledge of the protein structure also facilitates
developing drug molecules by enabling structure-based drug design!? and serves as the basis for
artificial protein design’®. Computational protein structure prediction supplements experimental methods
for determining structures. As observed in the community-wide protein structure prediction experiments,
the Critical Assessment of techniques in protein Structure Prediction (CASP)?*, the accuracy of
prediction methods has significantly improved in the past few years. The main driver behind this
accuracy boost is the improvement of residue-residue contact or distance prediction, which is used

effectively to guide the construction of protein structure models°.

2


https://doi.org/10.1101/2020.06.26.174300
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.26.174300; this version posted June 27, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Residue contacts or distances of a protein are predicted from a multiple sequence alignment
(MSA) of the protein® . Predicting residue contacts from an MSA of the protein is not a recent novel
idea. Rather, it has over 20 years of effort by different research groups toward establishing accurate
prediction methods. In principle, evolutionary constraints for maintaining residue-residue contacts in a
protein structure leave a trace in the MSA of the protein of interest and its homologous proteins. Earlier
works applied relatively simple statistical approaches to detect co-related mutation patterns between
two columns (i.e. residue pairs) in a MSA’. The accuracy of contact prediction was substantially
improved a few years ago when the so-called co-evolution approaches, which use statistical inference
based on the Potts model'’, were introduced. The methods in this category include CCMPred!!,
Gremlin'?2, EVFold"3, plmDCA!?, FreeContact'*!>, and MetaPSICOV'>. Further improvement was
observed more recently when deep learning, Convolutional Neural Networks (CNN)'® and Residual
Networks!”, were applied to the problem. The methods in this category includes DeepCov'®, RaptorX-
contact'®, DeepContact®, and trRosetta’!.

Although substantial improvement in contact prediction was observed, contact prediction is
still far from perfect. Here, we propose ContactGAN, a novel contact map denoising and refinement
method using Generative Adversarial Networks (GAN)?*2. GANs have been widely adopted for high-

level generation tasks in computer vision with applications including image-to-image translation®>24,

3, and image deblurring®®. ContactGAN takes a contact map predicted by

image super resolution?
existing methods, which is considered as a low-resolution or noisy input, and outputs an improved map
with a higher accuracy over the original map. ContactGAN was trained with predicted noisy contact
maps coupled with corresponding native contact maps, which the networks were guided to generate.

We show that we gain a consistent and substantial precision improvement over predicted maps

by CCMPred, DeepCov, and DeepContact. When ContactGAN was applied to the current state-of-the-
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art contact prediction method, trRosetta, it showed an average precision improvement of 1.14% over
L/1 long-contacts on the validation dataset we used. ContactGAN also demonstrated consistent
improvement when tested on contact predictions made to the CASP13° protein dataset. It was also
demonstrated that combining predicted maps computed by different methods improves the accuracy of

generated maps.

ContactGAN

ContactGAN takes a predicted contact map as input and outputs a refined map. ContactGAN adopts the
GAN framework, where two networks, a generative and a discriminative network, are trained with sets
of predicted (noisy) and corresponding native (i.e. correct) contact maps so that refined maps can be
generated by learning patterns from predicted and native maps. A native contact map we use contains
binary values, 1 or 0, where 1 indicates that the C[3 atom distance of the corresponding residue pair is 8
A or shorter. For training and validation, we prepared a dataset of 6640 non-redundant protein structures
(see Methods), for which correct contact maps were generated in addition to predicted maps computed
by four existing contact map prediction methods: CCMPred, DeepContact, DeepCov, and trRosetta.
These four methods are briefly explained in Methods.

Figure 1 shows the network structure of ContactGAN. Figure la illustrates the overall
architecture. The generator network, illustrated in Figure 1b, is a CNN consisting of a 2D convolution
layer with 32 channels and a kernel size of 9, which is followed by 9 or 18 ResNet layers, a 2D
convolution layer, and finally by a sigmoid layer. 18 ResNet blocks were used when refining contact
maps generated by trRosetta and 9 for all the other methods. Each ResNet block contains 2 convolutional
layers with 32 channels and skip connections, dropout (with a dropout probability 0.25), PReLU

activations?’, and Instance Normalization as we used a batch size of 1. In the series of the ResNet blocks,
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we used dilation filters of 1, 2, and 4 dilations for the first 3 blocks, respectively and repeated this unit
of 3 blocks in subsequent layers. The final convolutional layer uses a smaller kernel size of 3 with 32
output channels. The last sigmoid layer outputs a contact probability for each pixel in the 2D contact

map. We used a stride of 1 uniformly in all the filters in all the layers.
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Figure 1. The architecture of ContactGAN. a, the overall structure that connects the generator and the
discriminator networks. The generator network takes a noisy predicted contact map and outputs a refined map.
The discriminator network is to discriminate a generated map by the generator network and the native map, so

that the generator is trained to produce indistinguishable maps from native maps by the discriminator. b, the
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detailed network structure of the generator network. X is equal to 18 for handling maps from trRosetta and 9 for
the other methods. The blue arrows indicate skip connections, which connect the input of a ResNet block and a
plus sign, an operator that simply adds two matrices. ¢, the detailed structure of the discriminator network. See

text for more details.

The discriminator network (Figure 1c¢) is a fully convolutional binary classifier. It takes a contact
map output from the generator and the corresponding native contact map and classifies the two maps
into classes, either native (correct) or predicted. The discriminator network consists of 10 CNNs
followed by a softmax layer. The first convolutional layer in the discriminator contains 32 channels, and
the count is multiplied by a factor of 2 for each subsequent layer. We used PReLU and group
normalization with a group size of 16 in the first convolutional layer and 32 in all other layers.

ContactGAN was trained and validated on the 6,640 proteins in the non-redundant dataset.
6,344 proteins were used for training and 296 were used for validation. ContactGAN was trained
separately for each contact prediction method using predicted maps and corresponding native contact
maps. Trained models were further tested on 43 protein domains used as targets in CASP13. Note that
protein sequence information and other features, such as MSA and secondary structure prediction, were

not used in ContactGAN.

Contact map improvement with ContactGAN

In Table 1, we summarize ContactGAN’s performance in improving residue contact map prediction.
On the left, results on the validation set in the non-redundant protein dataset are shown while on the
right the results on the CASP13 dataset are shown. In this table, we only showed precision considering
predicted contacts with the top L/2 and L/1 highest probabilities (L is the length of the protein). Results

with more metrics are provided in Supplementary Table S1, S2, and S3. Supplementary Figure S1
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shows improvements of the precision of individual predicted contact maps on the validation and the

CASP13 datasets.

Table 1. Summary of the improvement of contact map prediction by ContactGAN.

Method Validation » CASP13
L2 L/1 L/2 L/
Med+Lg Lg Meg+Lg Lg Med+Lg Lg Med+Lg Lg
CCMpred 0.367 0.308 0.268 0.215 0.232 0.209 0.164 0.121
0.565 0.471 0.456 0.365 0.356 0.262 0.283 0.210

DeepCov 0.636 0.521 0.503 0.391 0.394 0.287 0.32 0.231
0.656 0.539 0.522 0.403 0.473 0.332 0.373 0.251

DeepContact 0.609 0.500 0.480 0.373 0.475 0.336 0.382 0.267
0.649 0.540 0.521 0.409 0.516 0.372 0.410 0.283

C+Dv® 0.636 0.521 0.503 0.391 0.394 0.287 0.32 0.231
0.683 0.577 0.557 0.443 0.500 0.363 0.396 0.283

C+Dt 0.609 0.500 0.480 0.373 0.475 0.336 0.382 0.267
0.676 0.573 0.551 0.440 0.540 0.378 0.421 0.302

Dv + Dt 0.636 0.521 0.503 0.391 0.475 0.336 0.382 0.267
0.691 0.579 0.558 0.441 0.527 0.39 0.420 0.309

C+Dv+Dt 0.636 0.521 0.503 0.391 0.475 0.336 0.382 0.267
0.706 0.600 0.576 0.463 0.554 0.397 0.443 0.310

trRosetta 0.848 0.757 0.727 0.612 0.774 0.653 0.657 0.510
0.849 0.765 0.733 0.619 0.790 0.660 0.668 0.518

a) Results of two datasets are shown: On the left, the validation set of 296 proteins in the non-redundant
protein dataset; on the right, the CASP13 dataset. b) L/2 and L/1 shows precision values when top L/2
or L/1 contact predictions with the highest probabilities were considered. L is the length of the protein.
The columns Lg consider only long-range contacts (residue pairs separated by more than 23 residues)
while Med+Lg columns consider medium- and long-range contacts (residue pairs separated by more
than 11 residues). ¢) Each result show two values: up, original average precision by the existing method;
bottom, average precision of denoised contact maps by ContactGAN. In the middle rows, contact maps
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of two or three methods were used as input: C, CCMpred; Dv, DeepCov; Dt, DeepContact. When
multiple maps were used as input, the highest precision among the existing methods was shown as the
original results. For trRosetta, three independent contact predictions were combined, each of which used

an MSA with different E-value cutoffs, 0.001, 0.1, and 1.0.

The first three rows show results for individual methods, CCMpred, DeepCov, and
DeepContact. ContactGAN made substantial improvements for these methods in all the metrics, which
was consistent between the validation set and the CASP13 set. Particularly, the improvements were
largest for CCMpred, which had the lowest original precision among the three methods. For CCMpred,
ContactGAN improved L/1 Long precision on the validation set from 0.215 to 0.365, an improvement
of 69.8%. For the CASP13 set, the improvement for L/1 Long was larger, 73.5% (from 0.121 to 0.210).
The improvement ranged from 25.4% to 72.6% for other metrics shown in Table 1 for CCMpred. The
improvement was also consistent for DeepCov and DeepContact, but with smaller improvement margins
than observed for CCMpred. For DeepCov, ContactGAN showed an improvement of 3.07% and 8.66%
for L/1 Long on the validation and the CASP13 sets, respectively. The corresponding values for
DeepContact were 9.65%, and 5.99%, respectively.

The middle rows in Table 1 present ContactGAN performance using multiple channels, where
a pairwise combination of the above three methods and all three methods together were used as input
channels. To be able to take two or three contact maps as input, the network architecture of Contact GAN
(Figure 1) was modified accordingly. The row with “C + Dv” shows the precision values with CCMPred
and DeepCov as two input channels for ContactGAN. With these two channels, ContactGAN showed
substantial improvement in every evaluation category over the two individual methods. It is interesting
to note that the improvement was achieved not only over CCMpred, the method with lower accuracy,

but also over the better method, DeepCov. We see similar improvements when CCMPred+DeepContact
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and DeepCov+DeepContact were used as two-channel inputs. Then, we further extended the use of
multi-channels to three channel inputs with CCMpred, DeepCov, and DeepContact altogether
(C+Dv+Dt in the table), which resulted in a further improvement over two channel inputs.
Improvements by combining additional method(s) are apparent in Figure 2, where L/1 Long precision
values of each individual method and its combinations with other methods are compared. From
originally predicted contact maps predicted by a single method, ContactGAN improved them with a
large margin, which was further improved by using two contact maps predicted by different methods
(two input channels). Furthermore, an even higher precision was achieved by using three methods as
input. Starting from the original prediction by CCMpred, DeepCov, and DeepContact, L/1 Long
precisions by the denoised maps using all three methods were improved by 115.3% (from 0.215 to

0.463), 18.4%, and 24.1% on the validation set, and 156.2%, 34.2%, and 16.1% on the CASP13 set,

respectively.
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Figure 2. Improvement of /1 Long precision by using additional predicted contact maps as input
channels. Three sets of bars on the left show results for CCMpred (pale gray), DeepCov (black), and
DeepContact (gray), respectively, on the validation set. The other three sets on the right are results on
the CASP13 set. Orig(C), Orig(Dv), and Orig(Dt) are precision of the original contact maps predicted
by CCMpred, DeepCov, and DeepContact, respectively. GAN indicates the precision of denoised maps
by ContactGAN. Five bars in a set represent average precision of the original maps, those of the denoised
maps by ContactGAN, denoised maps of a combination of two maps, (C+Dv, C+Dt, Dv+Dt), and
denoised maps from the combination of three input maps (C+Dv+Dt). Precision values plotted are taken

from Table 1.

In the last row of Table 1 we show the results of the application of ContactGAN to trRosetta,
a new method whose performance is one of the best among those published and available?!. Since the
base accuracy of trRosetta is significantly better than the other methods, we combined three different
channels of trRosetta, each using different MSAs generated with a sequence E-value cutoff of 0.001,
0.1, and 1.0, respectively, instead of combining with the other methods. Compared with the best
prediction among the results with the three E-values, which is 0.001, ContactGAN made consistent
improvements for all the metrics. For L/1 Long, ContactGAN improved by 1.14% (from 0.612 to 0.619)
and 1.57% (0.510 to 0.518), for the validation set and the CASP13 set, respectively. The performance
gains seen on trRosetta are lower than for the other methods, which was as expected since trRosetta

provides highly accurate contact maps from the start.

Contact prediction between secondary structure elements

Next, we investigated which types of contacts were improved by ContactGAN. Particularly, we
examined contacts between residues in secondary structure elements, a-helix and a-helix (denoted as
o—a below), B-strand and B-strand (B—f), and a-helix and B-strand (a—f3). To quantify the change made
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by ContactGAN, we compared the fraction of correct contacts between secondary structure elements
predicted among the top L/1 long-range contacts before and after applying ContactGAN. Figure 3¢ and
3d show the cases of the three-channel ContactGAN with CCMpred, DeepCov, and DeepContact. For
reference, the overall change of L/1 long precision of maps is shown in Figure 3a and 3b. The same
plots for the other prediction methods are provided in Supplementary Figure S2.

In Figure 3¢ and 3d, correct contacts between secondary structure elements share 74.0% and
57.4% among predicted L/l long contacts in the original prediction for the validation set and the
CASPI13 set, respectively. On the validation set (Figure 3c¢), all three types of correct secondary
structure interactions increased or remained unchanged for about 72 to 78% of the maps. Thus, no
preference for the secondary structure interaction type was observed. On the other hand, correct
o—o contact predictions were particularly increased in the CASP13 set (Figure 3d) compared to the
other two types, — and a—f contacts, which did not show improvement in about half of the maps.
Thus, we can see a tendency that a—a long-range contact predictions have a relatively higher tendency

to improve by ContactGAN.
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Figure 3. Precision for contacts between secondary structure elements by the three-channel ContactGAN
with CCMpred, DeepCov, and DeepContact. a, b, the overall L/1 long average precision values before and
after applying ContactGAN for each map are plotted. For each map, the x-value shows the highest precision
among the three methods, CCMpred, DeepCov, and DeepContact. a, the results on the validation set.
ContactGAN improved or kept the same precision for 82.1% (243 out of 296) of maps. b, the results on the
CASP13 set. ContactGAN improved or kept the same precision for 60.5% (26 out of 43) of maps. ¢, The fraction
of correct long-range contacts between residues in a-helix and o-helix (0—a; cyan), B-strand and B-strand (B—J3;
magenta), and o-helix and B-strand (a—f; black) among the top L/1 long predicted contacts are separately plotted.
Contacts between residues in loop structure were not considered. The results shown are on the validation set. The
fraction of correct contacts between a—o, f—f, and a—f increased or stayed the same for 71.9%, 78.0%, and
72.2% of the maps, respectively. d, the results on the CASP13 set. The fraction of correct contacts between
a—a., Bp—P, and a—P increased or stayed the same for 72.1%, 48.8%, and 51.2% of the maps, respectively.
Supplemental Figure S2 provides the same type of plots for ContactGAN applied for individual prediction

methods.

Examples of improved contact map predictions by ContactGAN
In this section, we show four examples of pairs of contact maps before and after applying ContactGAN.

The first example (Figure 4a) is a ContactGAN application to a map predicted by CCMpred. For this
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large protein of 672 amino acids (PDB ID: 3I1G5A), the map by CCMpred is covered by noisy
predictions with low probability values. The contact probability values of the entire map distributed in
a narrow range from 0.0 to 0.17 with the standard deviation of 0.0064 (the diagonal region of the map,
i.e. j=i, i+1, i-1 were discarded in these statistics). In contrast, ContactGAN map denoised it into more
distinct contact patterns, which yielded a 61.98% improvement in L/1 long-range precision from 0.192
to 0.311. The probability distribution of the denoised map showed minimum and maximum probabilities
0f 0.0 and 1.0 with a standard deviation of 0.076.

The next example is the refinement of a predicted contact map by DeepContact for a 110
residue-long 3-class protein (Figure 4b). On the right panel, we show the output from a two-channel
ContactGAN that used predictions from DeepContact and CCMpred as input. Although the original
map by DeepContact captures characteristic anti-parallel B-sheet patterns correctly, those are buried in
other false-positive contacts with high probability values. ContactGAN was able to clean the strong
noise and improved the L/1 long precision from 0.227 to 0.545 over DeepContact, an improvement of
141.1%.

In Figure 4¢, a map predicted by DeepCov for a 405 residue-long protein in the CASP13
dataset was improved by the three-channel ContactGAN with CCMpred, DeepContact, and DeepCov.
Similar to the previous two cases, the original map suffered from high noisy probability values for
medium and long-range contacts, which were cleaned by ContactGAN. The L/1 long precision
improvement achieved was 50.8% over DeepCov, and 45.1% over DeepContact.

The last example was a contact map by trRosetta (MSA E-value: 10-) refined by the three-
channel ContactGAN with trRosetta with three E-values (Figure 4d). For this map, a 3-channel input
of trRosetta versions was fed to ContactGAN. Compared to the other three cases, the improvements

made by ContactGAN visually seem minor; however, they include enhancement of critical very long-
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range contacts between residues 12-18 and 112-118. These correct contacts were very weakly predicted
by trRosetta with the minimum, maximum, and the average values of 0.002, 0.148, and 0.03,
respectively, which were strengthened to 0.009, 0.732, and 0.230 for the minimum, maximum, and
average probability values, respectively. The precision improvement of L/1 long-range contacts was
12.5% overall.
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Figure 4. Examples of contact maps before and after applying ContactGAN. For each panel, the map on the left
is the original one predicted by an existing method and the map on the right is the denoised map by ContactGAN.
The color scale shows predicted probability values of contacts, ranging from dark blue (0.0) to bright yellow (1.0).
Contacts with the residue itself along the diagonal line are removed. a, a contact map for glutamate-cysteine
ligase (PDB ID: 3IG5A; 672 amino acids (aa)) predicted by CCMpred. The L/1 long precision improved from
0.192 to 0.311 by ContactGAN. b, a contact map of KOW6-KOW?7 domain of human DSIF (PDB ID: SOHQA,
110 aa) predicted by DeepContact. This map was improved by a two-channel ContactGAN with CCMpred and
DeepContact. The comparison here is made with DeepContact because it produced a more accurate map than
CCMpred. The L/1 long precision improved from 0.227 to 0.545. ¢, a contact map of a CASP13 target protein,
Enterococcal surface protein (CASP ID: T0987, PDB ID:60RI; 405aa) predicted by DeepCov. It was improved
by the three-channel ContactGAN with CCMpred, DeepCov, and DeepContact. This comparison is made with
DeepCov because it produced the most accurate map among the three methods for this protein. The L/1 long

precision improved from 0.386 to 0.582. d, a contact map of a CASP13 target protein, filamentous haemagglutinin
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family protein (CASP ID: T0968s1, PDB ID:6CP9; 126 aa) by trRosetta using a MSA of E-value 0.001. It was
improved by the three-channel ContactGAN with trRosetta with three E-values. The L/1 long precision improved
from 0.407 to 0.458.

Effect of contact map improvement in structure modeling
Improvement in a predicted contact map can often make significant changes in resulting protein
structure models that are constructed with the improved map. Figure 5 shows a few such examples. For
the modeling, we used Rosetta?® with the constraints from the contact map and also from predicted
dihedral angles by SPOT-1D? (see Methods). In the figure, blue and red in a structure model indicate
Coa atoms that were modelled within 2.0 A and over 8.0 A, respectively, from the correct position
measured after superimposing the entire model structure to the native structure.

The first example, Figure Sa, is a relatively simple structure with a B-sheet and a layer of two
helices. For this protein, ContactGAN improved the L/1 Long precision of the contact map from 0.468
to 0.494. The model using the original map did not have the B-sheet (the middle panel), which was
substantially improved by using the denoised map by ContactGAN. The GDT-TS3%3! score of the
models improved from 0.435 to 0.500 by the improved contact map. In the second example of
filamentous haemagglutinin family protein (Figure 5b), the improved contact map made possible to
correctly fold the core of the structure, which includes a -sheet and two a-helices. For the protein
structure in Figure 5S¢, a drastic effect was caused by the improved contact map, where the over 50-
residue long C-terminal tail was now folded. GDT-TS was improved from 0.322 to 0.415 by this change.
The last example (Figure 5d) is the structure of insulin fructotransferase (PDB ID: 2INUA). The contact
map refinement by ContactGAN resulted in substantial improvement of the B-helix structure in the

middle of the protein. The GDT-TS increased from 0.132 to 0.304 by the refinement.
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Figure 5. Examples of protein structure models constructed with original and improved contact maps by
ContactGAN. Left, the native structure; middle, the protein model constructed with the original contact map;
right, the model constructed with the improved map. a, an artificially design protein, (PDB ID: 6MSP; 80 amino
acids). The original map was predicted by trRosetta. The original contact map had L/1 Long precision was 0.468,
which was improved to 0.494 by ContactGAN. With the improved contact map, GDT-TS of the protein model
improved from 0.435 (middle) to 0.500 (right). b, filamentous haemagglutinin family protein, (PDB ID: 6CP9;
126 aa). The original map was predicted by trRosetta with a L/1 Long precision was 0.407, which was improved
to 0.458. With the improved contact map, GDT-TS of the protein model improved from 0.367 (middle) to 0.456
(right). ¢, N-terminal domain of KaiA, (PDB ID: 1IM2EA; 135 aa). The original map predicted by trRosetta with
a L/1 Long precision of 0.748, which was improved to 0.859. GDT-TS of the protein model improved from 0.322
(middle) to 0.415 (right). d, insulin fructotransferase (PDB ID: 2INUA; 410 aa). The original map was predicted
by DeepCov with a L/1 Long precision of 0.587, which was improved to 0.652. GDT-TS of the protein model
improved from 0.132 (middle) to 0.304 (right).
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Discussion

In this work, we present ContactGAN, a novel GAN-based denoising framework to push the limit of
protein contact prediction. High-quality contact prediction is critical in recent procedures of protein
structure prediction. Thus, ContactGAN will be a valuable addition to the structure prediction pipeline
to achieve extra gain in the contact prediction accuracy. In principle, ContactGAN can be trained and
applied to any contact prediction method. Besides contact prediction, a similar GAN approach will be
able to improve other types of structural features used to guide structure modeling, such as main-chain
and side-chain angle predictions®'?°, as well as residue distance predictions®?33. Application of GAN to

residue distance prediction is left for our future work.
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Methods

Protein structure and contact map dataset
We prepared a dataset of 6,640 non-redundant protein structures, for each of which a contact map was
computed by four existing contact map prediction methods. The predicted contact maps, together with
the native (i.e. correct) contact maps, were used for training ContactGAN. A native contact map we use
contains binary values, 1 or 0, where 1 indicates that the CP3 atom distance of the corresponding residue
pair is 8 A or shorter.

The protein dataset was constructed based on the PISCES?* protein dataset selected with a
25% sequence identity, which was released before May 2018 (i.e. the beginning of CASP13). All these
proteins were solved by X-ray or Nuclear Magnetic Resonance (NMR). From the PISCES dataset,
proteins longer than 700 amino acid residues or shorter than 25 amino acid residues were discarded.
Proteins were also excluded if they contain unknown amino acids in their sequence, have a knot in the
structure that was checked by referring to the KnotProt2.0 database®’, or have consecutive missing
residues up to two residues in the structure. Structure gaps up to two residues were filled with the
Modeller*¢ automodel protocol.

In addition to this dataset, we used 43 contact prediction (RR) target protein domains in
CASP13 as an independent test set. The lengths of the proteins ranged from 80 to 640 (average 243.1).

They are available at the CASP13 website (http://predictioncenter.org/caspl3/targetlist.cgi).
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Predicting contact maps with four existing methods

We used four existing contact map prediction methods, CCMpred, DeepContact, DeepCov, and
trRosetta, to predict contact maps of the proteins in the dataset described above. Input MSAs were
generated using DeepMSA?’. This pipeline collects similar sequences to a target protein sequence in
three stages of the database search. We used HHsuite*® version 3.2.0 and HMMER?® version 3.3 in
DeepMSA. For sequence databases, Uniclust30 database*® dated October 2017, Uniref90*! dated April
2018, and Metaclust NR database*> dated January 2018 were used. These databases were released
before CASP13 has started.

CCMpred is a baseline contact prediction method, which uses the Pseudo-Likelihood
Maximization (PLM) of direct couplings between pairs of amino acids in a MSA of the target protein'!.
CCMpred has shown more accurate predictions compared to other PLM based methods'!, such as
GREMLIN!? and pImDCA'?. We fed a MSA generated by us using the above-mentioned pipeline.

DeepContact is one of the deep learning-based contact prediction methods??. DeepContact
uses a CNN, which takes evolutionary coupling information produced by EVFold and CCMpred as well
as the secondary structure prediction by PSIPRED* besides an MSA of the target protein. We used the

DeepContact code made available at Github by the authors (https://github.com/largelymfs/deepcontact).

DeepContact takes a single protein sequence as input and its pipeline generates an MSA and other
features for input of CNN and produces a matrix file of predicted residue-residue contacts.

DeepCov is another contact prediction method that uses deep learning'®. DeepCov uses
amino-acid covariance data derived directly from sequence alignments. Unlike DeepContact, DeepCov
uses only MSA information as the input of CNNs. We used the code that was available at

https://github.com/psipred/DeepCov. Input MSAs were generated by the DeepMSA pipeline described

above.
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trRosetta uses the ResNet CNN architecture!’. It was shown that trRosetta had superior
performance to other existing methods on the CASP13 dataset. For trRosetta, we generated MSAs at
three different E-values in the HHblits search steps of the DeepMSA pipeline, 0.001, 0.1, and 1.0. Since
trRosetta outputs predicted distance between residue pairs, we used a distance cutoff of 8A to decide if
two residues are in contact. Since we ran trRosetta with three MSAs of different E-value cutoffs, we
obtained three different contact predictions, which were considered as a 3-channel input for

ContactGAN.

Parameter training for ContactGAN

A contact map predicted by a contact map prediction method (e.g. CCMpred), which we hereby refer to
as a noisy map, is an input to the generator network of ContactGAN. The output map of the generator
network and the corresponding native contact map of the noisy map were then used as inputs to the
discriminator network. Out of 6640 pairs of noisy and native contact maps, 6,344 pairs were used for
training and 296 were used as validation data.

For training GANs, the generator and discriminator networks are trained together with a min-

max game-style objective function given by equation (1):

min max E [logD(x)] + E [log (1 - D(2))] (1)
“@ P ox~p, Z~P

g

where G and D are parameters of the generator and the discriminator networks of ContactGAN, P, is
the real (correct) data distribution, P, is the generated (fake) data distribution, D(x) and D(z) are
predicted probabilities by the discriminator that the real (x) and fake data z are real. The generator
receives noisy data as input and generates denoised data. The discriminator then classifies input data to

denoised data or real data. The minimax objective ensures that the generator generates good quality

denoised data that can fool the discriminator into classifying denoised data as real data.
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Following the above common practice for general GAN, the objective function for
ContactGAN is formulated as shown in Equation 2, which is a linear combination of a content loss and

an adversarial loss:

Loss = Losscontent + 10_3 Lossadversarial 5 (2)
L L 2
where LosScontent = i-o Zj:o (Ti,j - (G(N))i'j) and (3)
Lossgaversariat = —D (G(N)) 4)

Here, L is the protein sequence length, T corresponds to the native contact matrix (map), and N is the
input predicted (noisy) contact matrix, G(N) is the denoised matrix and D(G(N)) is the discriminator’s
prediction of the denoised map, which ranges between 0 to 1. We optimize the negative of D(G(N)), as
we want to fool the discriminator to consider that the denoised map to be as good as the native map. The
content loss is defined by the Mean Squared Error (MSE) between the denoised map and the native map.
The adversarial loss is given as the negative softmax probabilities of the discriminator predictions.

We employed the Two Time-scale Update Rule (TTUR)* to use separate learning rates for
the generator and the discriminator for stable GAN training. We used learning rates of 0.0001 for the
generator and 0.0004 for the discriminator. The batch size was set to 1 as contact maps (i.e. proteins in
the dataset) are of different sizes. ContactGAN is trained for 50 epochs. We choose the best performing

model on the validation dataset for testing the CASP13 test dataset.

Building structure models from a contact map

To build protein structure models from the predicted contact map, we used the energy minimization
protocol, MinMover, in pyRosetta?®. We added scoring terms that account for CB-CP contact predictions,
which come from an input contact map, and backbone dihedral angle predictions, which was computed

by SPOT-1D, in the energy function.
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Contact predictions were represented as a flat-harmonic contact potential, f{x), and added to

the Rosetta energy:
0 for x<8.0
X) = 2
f&) (i) for x>8.0

4.0

)
where x is the CB-Cp distance between a residue pair. Contact potentials were added to only for the
residue pairs that have a contact probability higher than a cutoff value (0.3 and 0.5 were used).
As for the backbone dihedral angle prediction, we added circular harmonic constraints as

follows:

_ 2
g(x) _ ((ang ané;.(z)) mod Zn) (6)

where ang is the dihedral angle in the model, ang0 is a predicted dihedral angle by SPOT-1D. Dihedral
angle constraints were added only for residues with a probability of helix or strand that is higher than a
cutoff value (0.3 and 0.5 were used).

We used two probability cutoff values, 0.5 and 0.3 for the predicted contact and angle
probability cutoff. We used three different folding strategies that differ in the way we consider the short-,
medium- and long-range contacts during the energy minimization?'. Resulting models were relaxed
using the FastRelax protocol in pyRosetta. For each combination of the probability cutoff and the
modeling strategy, we generated 10 models. Thus, in total of 60 models were generated for a target

protein. In Figure 5 we reported the model with the largest GDT-TS among the 60 models.
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