

1 Population genomic and historical analysis reveals a global invasion by
2 bridgehead processes in *Mimulus guttatus*

3

4 Mario Vallejo-Marín^{1,*}, Jannice Friedman², Alex D. Twyford^{3,4}, Olivier Lepais⁵, Stefanie M. Ickert-
5 Bond⁶, Matthew A. Streisfeld⁷, Levi Yant⁸, Mark van Kleunen^{9,10}, Michael C. Rotter¹¹, Joshua R.
6 Puzey¹¹

7

8 ¹ Biological and Environmental Sciences, University of Stirling. Stirling, Scotland, United Kingdom. FK9 4LA

9 ² Biology Department, Queen's University. Kingston, Ontario, Canada. K7L 3N6

10 ³ School of Biological Sciences, University of Edinburgh. Edinburgh, Scotland, United Kingdom. EH9 3FL

11 ⁴ Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR

12 ⁵ INRAE, Univ. Bordeaux, BIOGECO, Cestas, France. F-33612

13 ⁶ Herbarium (ALA), University of Alaska Museum of the North, University of Alaska Fairbanks, Fairbanks, Alaska.
14 United States of America. 99775

15 ⁷ Institute of Ecology and Evolution, University of Oregon. Eugene, Oregon, United States of America. 97403

16 ⁸ Future Food Beacon and School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom

17 ⁹ Department of Biology, University of Konstanz. Konstanz, Germany. D-78457

18 ¹⁰ Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou,
19 China. 318000

20 ¹¹ Department of Biological Sciences, Northern Arizona University. Flagstaff, Arizona, United States of America. 86011

21 ¹² Biology Department, College of William and Mary. Williamsburg, Virginia, United States of America. 23185

22

23 * Author for correspondence: mario.vallejo@stir.ac.uk

24

25 **Running title:** Global invasion of monkeyflowers

26 Abstract

27 Humans are transforming species ranges worldwide. While artificial translocations trigger
28 biological invasions with negative effects on biodiversity, invasions provide exceptional
29 opportunities to generate ecological and evolutionary hypotheses. Unfortunately, imperfect
30 historical records and exceedingly complex demographic histories present challenges for the
31 reconstruction of invasion histories. Here we combine historical records, extensive worldwide
32 and genome-wide sampling, and demographic analyses to investigate the global invasion of
33 yellow monkeyflowers (*Mimulus guttatus*) from North America to Europe and the Southwest
34 Pacific. By sampling 521 plants from 158 native and introduced populations genotyped at
35 >44,000 loci, we determined that invasive North American *M. guttatus* was first likely
36 introduced to the British Isles from the Aleutian Islands (Alaska), followed by rapid admixture
37 from multiple parts of the native range. Populations in the British Isles then appear to have
38 served as a bridgehead for vanguard invasions worldwide into the rest of Europe, New Zealand
39 and eastern North America. Our results emphasise the highly admixed nature of introduced *M.*
40 *guttatus* and demonstrate the potential of introduced populations to serve as sources of
41 secondary admixture, producing novel hybrids. Unravelling the history of biological invasions
42 provides a starting point to understand how invasive populations adapt to novel environments.

43

44 **Keywords:** Admixture; Approximate Bayesian Computation, bridgehead invasion; *Erythranthe*,
45 genotype-by-sequencing; hybridisation; multiple origins; naturalisation.

46 Introduction

47 Increasing global connectivity is leading to widespread species translocations (Chapman, Purse,
48 Roy, & Bullock, 2017). Most biological communities now include introduced members that have
49 recently moved beyond their native ranges, often with negative impacts (Pysek et al., 2012;
50 Seebens et al., 2017; Seebens et al., 2015; van Kleunen, Dawson, et al., 2015; Vila et al., 2011).
51 Finding the origins of invaders helps develop strategies for prevention, management and
52 eradication (Hufbauer, 2004; Hulme et al., 2008). It is also crucial for understanding to what
53 extent invaders adapted to novel environments, along with the mechanisms of such adaptations
54 (Dlugosch & Parker, 2008; Welles & Dlugosch, 2019).

55 Tracing the migration and spread of invasives is typically very challenging. Inferring
56 introduction histories is often accomplished using historical records, genetic analyses, or a
57 combination of both (Estoup & Guillemaud, 2010; Lombaert et al., 2010; van Boheemen,
58 Atwater, & Hodgins, 2019). In most cases, historical records of first introduction are unavailable
59 or unreliable. Genetic data has greatly improved our ability to study the origins of invasions, and
60 often uses information derived from extant populations (Welles & Dlugosch, 2019). However,
61 genetic inferences are usually confounded by demographic processes that shape the introduced
62 populations, including multiple introduction events, bottlenecks, evolution in the introduced
63 range, admixture and hybridisation (Bock et al., 2015; Dlugosch, Anderson, Braasch, Cang, &
64 Gillette, 2015; Estoup & Guillemaud, 2010).

65 Here we use historical and genomic data to generate and test hypotheses in order to unravel
66 the rapid worldwide invasion by the common yellow monkeyflower, *Mimulus guttatus* Fischer ex
67 DC. (*Erythranthe* spp. (L.) G. L. Nesom; Phrymaceae), a herbaceous plant native to Western North
68 America that was introduced across the world in the 19th century (Da Re, Olivares, Smith, &
69 Vallejo-Marín, 2020; Grant, 1924; Stace, 2010; Tokarska-Guzik & Dajdok, 2010; Vallejo-Marín &
70 Lye, 2013). Unlike many invasive and non-native species, detailed historic botanical records
71 (Sims, 1812) and travel diaries of early explorers (von Langsdorff, 1817) allow us to clearly
72 retrace the history of the first introduction of *M. guttatus* into Europe. Historical records of *M.*
73 *guttatus* reaching the UK paint a clear picture, but beyond this little is known. Here we test the
74 hypothesis that the UK acted as a bridgehead for worldwide invasion.

75 The first European record of *M. guttatus* appears in *Curtis's Botanical Magazine* (Sims, 1812),
76 which presents a plate of *Langsdorff's Mimulus* (*Mimulus langsdorffii* Donn ex Sims), featuring a
77 flowering individual of *M. guttatus*. The provenance of the depicted material is from Grigori von
78 Langsdorff who "...brought it, as we are informed, from Unalashka, one of the Fox Islands"
79 (Unalaska, Aleutian Islands) (Sims, 1812), in his capacity as a naturalist on a Russian expedition

80 to the Alaskan territories in 1805. Langsdorff describes how the expedition reaches Unalaska on
81 16 July 1805, and, after anchoring in Sea-Otters Bay (probably present-day Ugadaga Bay), they
82 travelled on foot to Iluluk (Dutch Harbor). Here, Langsdorff first encounters *M. guttatus*:
83 “splendid flowers were in blow upon the shore, among which a new *Mimulus* and *Potentilla*, which
84 has never yet been described, were particularly to be distinguished.” (von Langsdorff, 1817, p.
85 329). Material brought by Langsdorff made its way to various Botanic Gardens including
86 Moscow (where is listed as *M. guttatus* Fischer nom. nudum) and Montpellier (where De
87 Candolle validly published the name *M. guttatus*). The seeds of *M. guttatus* also reached the
88 Botanic Gardens at Cambridge in 1812, and it is therefore almost certain that the original species
89 description included specimens collected by Langsdorff in Unalaska (Grant, 1924).

90 Presciently, the *Botanical Magazine* recognized the potential for *M. guttatus* to become
91 established outside western North America, and the 1812 entry states that because the taxon
92 has showy flowers and is “easily propagated by seeds, and most probably by its runners, must soon
93 be very common.” (Sims, 1812). In fact, the first naturalised populations in the British Isles are
94 recorded by 1830 (Roberts, 1964), rapidly spreading throughout the United Kingdom (UK)
95 (Preston, Pearman, & Dines, 2002). The introduction history of *M. guttatus* outside of the UK is
96 much less well understood. *Mimulus guttatus* seems to have reached New Zealand and become
97 naturalised by 1878 (Owen, 1996), and the introduction of this taxon to eastern North America
98 may have occurred much later in the second half of the 20th century (Murren, Chang, & Dudash,
99 2009). Therefore, the material brought in by Langsdorff represents the first introduction of *M.*
100 *guttatus* outside its native range, and the subsequent arrival and naturalisation on the British
101 Isles is the best documented, and currently most widespread, monkeyflower invasion (Da Re et
102 al., 2020; McArthur, 1974; Preston et al., 2002; Roberts, 1964; Stace, 2010; Stace & Crawley,
103 2015).

104 The historical hypothesis of an Alaskan origin of European monkeyflowers is consistent
105 with results from previous genetic analysis of *M. guttatus* in the United Kingdom (Pantoja,
106 Simón-Porcar, Puzey, & Vallejo-Marín, 2017; Puzey & Vallejo-Marín, 2014). However, these
107 studies did not include material from the putative origin (Aleutian Islands), and due to their
108 focus on UK populations, did not examine genetic relationships between native populations and
109 introduced populations in other parts of the range such as in Eastern North America, the Faroe
110 Islands, mainland Europe and New Zealand. Native *M. guttatus* presents an enormous breadth of
111 ecological and genetic diversity (Vickery, 1978; Wu et al., 2008), and it remains unknown how
112 much of this diversity is represented among introduced populations and the extent to which
113 non-native populations have diverged. Recently, Da Re et al. (2020) used ecological niche
114 modelling to compare the climatic envelope of native and introduced *M. guttatus* populations,

115 finding no evidence of niche shift in the introduced UK populations compared to the native ones.
116 Moreover, the highest niche similarity of invasive UK populations occurred in the Aleutian
117 Islands (Da Re et al., 2020), lending support to the historical hypothesis that traces their origin
118 to Langsdorff.

119 Here we provide the first global genetic analysis of native and introduced populations of *M.*
120 *guttatus* by marrying historical information with genomic analyses. Specifically, we: (1) Resolve
121 range-wide relationships at the population level in the introduced range, as well as in the native
122 range including the previously under-sampled regions of the Aleutian Islands and mainland
123 Alaska; and (2) use genomic data to reconstruct the population genetic history of introduced UK
124 populations and test the hypothesis that UK populations have a simple Aleutian origin or are the
125 product of a more complex invasion history.

126 Materials and Methods

127 Study system and population sampling

128 *Mimulus guttatus* Fischer ex DC (section *Simiolus*, Phrymaceae), the common monkeyflower, is a
129 widespread species with a native range extending across western North America from northern
130 Mexico to the farthest reaches of the Aleutian Island chain in Alaska (Da Re et al., 2020; Vickery,
131 1978). The invasive range includes much of the UK, the Faroe Islands, parts of mainland Europe,
132 New Zealand, and Eastern North America (Da Re et al., 2020). The species is self-compatible and
133 predominantly outcrossing (Ritland, 1989). Most populations are diploid, although tetraploid
134 populations occur throughout the native range (Vickery, Crook, Lindsay, Mia, & Tai, 1968) and
135 tetraploid populations have also evolved in the introduced range (Simón-Porcar, Silva, Meeus,
136 Higgins, & Vallejo-Marín, 2017; Vickery et al., 1968). In the native range, populations comprise
137 either small annual plants that reproduce exclusively by seed or perennial plants that reproduce
138 by both seed and vegetative stolons. Only perennial plants are documented in the invasive range.

139 We sampled populations of *M. guttatus* in the native range of western North America and
140 the main areas of introduction in eastern North America, Europe and New Zealand for a total of
141 521 individuals from 158 populations (Figure 1, Table 1). In the native range, the samples
142 included 70 previously genotyped populations (Twyford & Friedman, 2015), spanning Arizona
143 to British Columbia, plus an additional population from Vancouver Island. To fill the gap of
144 previous studies, and to specifically address the hypothesis of an Alaskan origin of introduced
145 UK populations, we collected samples from 32 populations in Alaska, including 14 populations
146 from the Aleutian Islands (Attu, Unalaska, Akutan and Unimak) (Table S1). Voucher specimens of
147 the newly sampled populations are deposited in the University of Alaska herbarium (ALA). In
148 the introduced range, we sampled four populations in eastern North America, one from the

149 Faroe Islands, one from Germany, six from New Zealand, and 43 from UK populations from
150 Cornwall to the Shetland Islands. As an outgroup we included three diploid individuals from a
151 population of *M. glabratus* from Michigan, USA. We also sampled three tetraploid UK *M. guttatus*,
152 19 individuals of *M. luteus* from both native and introduced ranges (with which *M. guttatus*
153 hybridises in the introduced range to produce a sterile but widespread triploid, *M. x robertsii*),
154 three *M. x robertsii*, and three *M. peregrinus* (the allohexaploid species derived by whole genome
155 duplication from *M. x robertsii*; (Vallejo-Marin, Buggs, Cooley, & Puzey, 2015) (Table S1). In
156 total, we had samples from 103 populations of *M. guttatus* from the native range, and 55
157 populations from the introduced range (Table 1). Full sample details are provided in Table S1.

158 Genotyping

159 To obtain DNA for genotyping, we germinated field-collected seeds from all new populations in a
160 controlled environment facility at the University of Stirling. We extracted genomic DNA from
161 fresh leaves or flower buds using the DNeasy Plant Kit (Qiagen, Germantown, MD), with samples
162 standardised to 100ng DNA for library preparation. We used genotyping by sequencing (GBS) to
163 generate genome-wide polymorphism data (Elshire et al., 2011). For GBS library preparation,
164 we used the same protocol as Twyford and Friedman (2015), using the enzyme PstI, and pooling
165 samples in a 95-plex (plus one blank water control) for 100bp single-end sequencing on the
166 Illumina HiSeq 4000 at the University of Oregon. We analysed raw sequence reads using the
167 Tassel5-GBSv2Pipeline (Glaubitz et al., 2014), using the *M. guttatus* v2 genome (Hellsten et al.,
168 2013) as a reference. For population genetic analyses, we retained only variable sites (SNPs), but
169 for tree reconstruction, we generated a sequence matrix with both SNPs and invariant sites
170 (setting MAF = 0).

171 Tree building

172 We sought to resolve evolutionary relationships between populations and species using
173 polymorphism-aware phylogenetic models implemented in IQ-TREE (Nguyen, Schmidt, von
174 Haeseler, & Minh, 2015). These models use population site frequency data, and therefore
175 account for incomplete lineage sorting (Schrempf, Minh, De Maio, von Haeseler, & Kosiol, 2016).
176 This phylogeographic approach generates an initial visualisation of population history and
177 broad scale geographic genetic structure from the genome-wide signal, prior to more detailed
178 characterisation with population-level approaches (described below). We analysed two datasets,
179 one for all sampled *Mimulus* taxa, and one for *M. guttatus*, with both datasets including *M.*
180 *glabratus* as an outgroup. Each analysis used the full GBS sequences with invariant sites, filtered
181 to include 8,798 sites with less than 50% missing data. We calculated population allele
182 frequencies using the counts file library (cflib) python scripts that accompany (Schrempf et al.,
183 2016). Model-fitting was performed with ModelFinder (Kalyaanamoorthy, Minh, Wong, von

184 Haeseler, & Jermiin, 2017). IQ-TREE analyses subsequently used the best-fitting model
185 (TVM+F+G4) allowing for excess polymorphism (+P) and with five chromosome sets per
186 population (+N5). Tree searches were performed with settings recommended for short
187 sequences, including a small perturbation strength (-pers 0.2) and large number of stop
188 iterations (-nstop 500). Topological support was assessed using an ultrafast bootstrap
189 approximation approach (Minh, Nguyen, & von Haeseler, 2013), with 1000 bootstrap replicates.
190 Trees were visualised with *FigTree* (Rambaut, 2014).

191 Population genetic structure

192 For population genetic analyses in *M. guttatus*, we filtered the SNP data (44,552 loci from 521 *M.*
193 *guttatus* individuals) using VCF Tools and kept only biallelic loci that were genotyped in at least
194 75% of all individuals, which reduced the number of genotyped SNPs to 1,820 loci. We then
195 removed individuals with less than 50% genotyped loci, reducing the number of individuals
196 from 521 to 474. Finally, we used PLINK to thin the data set to reduce linkage disequilibrium
197 among SNPs using a pairwise correlation coefficient of 0.5 (--indep-pairwise 50 5 0.5). The final
198 *M. guttatus* dataset contained 1,498 SNPs from 474 individuals in 155 populations.

199 To analyse population genetic structure, we conducted a principal component analysis
200 using the *glPca* function in *adegenet* (Jombart & Ahmed, 2011) in *R* ver. 4.0.0 (R Development
201 Core Team, 2020). We used *K*-means grouping implemented with the function *find.clusters* in
202 *adegenet* to identify clusters of individuals in the data without using a priori groupings. For this
203 analysis, we used 100 randomly chosen centroids for each run, and calculated the goodness of fit
204 for each model for values of *K* between two and 15. For the selected *K* value, we also ran a
205 Discriminant Analysis of Principal Components (DAPC) (Jombart, Devillard, & Balloux, 2010)
206 using the inferred groups for assigning individual membership. We further used *fastStructure*
207 (Raj, Stephens, & Pritchard, 2014) to infer population structure across *M. guttatus* populations
208 using a Bayesian framework. For this analysis, we randomly subsampled the data to include a
209 maximum of three individuals per population (408 individuals in total) from both native and
210 introduced ranges, and analysed values of *K* from 2-8.

211 Introduction history reconstruction by ABC

212 Our preliminary analyses indicated that introduced *M. guttatus* had a complex origin with
213 multiple introductions in different non-native regions. In order to gain a more detailed
214 understanding of the demographic history of non-native populations, we focused on the
215 introduction of *M. guttatus* to the UK, which has been best studied both historically and
216 genetically (Pantoja et al., 2017; Puzey & Vallejo-Marin, 2014). Therefore, we implemented an
217 approximate Bayesian computation (ABC) approach to determine the most likely *M. guttatus*

218 introduction history in the UK. For this analysis, we used the pruned data set consisting of 1,498
219 SNPs but included only individuals from the native range or the UK (399 individuals).
220 Individuals from the native range were grouped into one of five groups ("genetic group")
221 delimited by the genetic clustering and phylogenetic tree analysis (see Results section): North
222 (NORTH; N=62), South (SOUTH; N=42), Coastal (COAST; N=30), Alaska and British Columbia
223 (AKBC; N=70) or Aleutian (ALE; N=45). Six individuals from two populations (SWC and HAM)
224 that formed a separate genetic group in the native range were not included in this analysis.
225 Individuals from the UK were considered to belong to a single population (UK; N=150).

226 Because all possible scenarios of divergence between the five native groups would have
227 been computationally impossible to test, native group genetic relationships were determined
228 from the phylogenetic tree topology (see Results section). All the simulations assumed that the
229 North population diverged from an ancestral population at time t_4 , from which the South
230 population diverged at time t_5 . In addition, the Coastal population diverged from the ancestral
231 population at time t_3 from which the Alaska-British Columbia population diverged at time t_2 , and
232 the Aleutian population diverged from there at time t_1 . The simulated demographic models
233 share this native population divergence history and only differed by their introduction history
234 into the UK.

235 We first considered simple introduction models where the UK population was derived
236 from a single native origin at time t_{0a} (models A1 to A5, Supporting Materials File 1). We then
237 simulated UK introduction from a single origin at time t_{0a} followed by a second introduction at
238 time t_{0b} (two-waves introduction models; models B). This strategy resulted in the definition of
239 eight different two-waves introduction models (models B1 to B8, Supporting Materials File 1).
240 We then tested more complex introduction models using a similar logic, modelling three-waves
241 (models C1 to C9), four-waves (models D1 to D8) and five-waves (models E1 to E5) introduction
242 models by integrating the most likely origins identified in previous sets of models to define a
243 restricted number of models to compare. A full version of other assumptions and simulation
244 parameters is given in Supplemental Materials S1.

245 For each demographic model, we simulated 10,000 genetic datasets consisting of 1435
246 independent SNP genotypes for 798 haploid individuals distributed following the sample size of
247 all six populations in the real dataset using *Fastsimcoal2* version 2.6.0.3 (Excoffier, Dupanloup,
248 Huerta-Sanchez, Sousa, & Foll, 2013) called by *ABCtoolbox* version 1 (Wegmann, Leuenberger,
249 Neuenschwander, & Excoffier, 2010). We passed a custom bash script to *ABCtoolbox* to add
250 missing genotypes to the simulated dataset at an identical rate to the observed level in the real
251 data. Then, we used *ABCtoolbox* to call the *arlsumstat* program (Excoffier & Lischer, 2010) to
252 compute summary statistics from the simulated genotypes. We computed all available statistics

253 within and between populations for bi-allelic loci (67 summary statistics). In addition, we
254 computed summary statistics within and between three defined regional groups (NORTH and
255 SOUTH in one group; COASTAL, AKBC and ALE in a second group; and UK in a third group)
256 representing an additional set of 29 summary statistics.

257 **ABC model comparisons**

258 We performed iterative model comparisons by comparing increasingly complex models (Table
259 2). In the first round, the introduction models assume a single introduction from one of the five
260 native genetic groups. Then in round two, we considered two introductions models that
261 necessarily involved the population origin from round one. This allowed us to define two sets of
262 two-waves introduction models: One set consisting of four models with the most likely origin in
263 previous rounds as the first introduction origin, followed by a second introduction from one of
264 the four other native populations. And a second set of four models, which assume that the most
265 likely origin in the previous round constitutes the second introduction, while the first
266 introduction originated from one of the four other native populations (Table 2). We compared
267 the most likely single introduction model and the eight two-waves introduction models. We then
268 considered more complex models, comparing nine three-waves introduction models and the
269 most likely single and two-waves introduction models (Table 2). We subsequently compared
270 models assuming four-waves and five-waves of introduction while still including more simple
271 models in the comparisons (Table 2). Demographic models were compared using a random
272 forest approach implemented in the *R* package *abcrf* (Pudlo et al., 2016).

273 We built a classification random forest model using 1000 trees and a training dataset
274 consisting of the summary statistics computed for the 10,000 simulated genetic datasets for each
275 model. We estimated the classification error rate for each model using an “out-of-bag” procedure
276 to quantify the power of the genetic data given the models and prior distribution specifications
277 to differentiate the different demographic models. Then, we used the summary statistics
278 computed based on the observed genotypic data to predict the demographic model that best fit
279 the data using a regression forest with 1000 trees. We report the number of “votes” for each
280 demographic scenario and the approximation of the posterior probability of the most likely
281 model. We used the overall most likely scenario to simulate 100,000 genetic datasets using
282 parameters and prior distributions described above to estimate demographic model parameters.
283 We built a regression random forest model implemented in *abcrf* based on the summary
284 statistics using 1000 trees. We estimated the posterior median, 0.05 and 0.95 quantiles of the
285 model parameters by random forest regression model based on the summary statistics of the
286 observed genotypic composition.

287 **Results**

288 **Demographic relationships in the native range**

289 The global sampling of *M. guttatus*, including populations sampled across ~5000km of its
290 distribution in North America (Figure 1), allowed us to resolve demographic groupings in both
291 native and introduced ranges. In the native range, including the newly sampled Alaskan region,
292 strong geographic structure is evident from phylogenetic analysis (Figure 2), with four well-
293 resolved North, South, Coastal and North Pacific clades (Twyford & Friedman, 2015). The newly
294 sampled populations in Alaska and the Aleutian Islands form part of the North Pacific Clade
295 (Figure 2). This clade is sister to the Coastal clade and includes populations from northern
296 Washington to the westernmost Aleutian Islands (Attu Island). Phylogenetic analysis revealed
297 an unexpected placement of some populations from inland Oregon, including those from Iron
298 Mountain, which conflicts with previous analyses and their expected relationships based on
299 simple geography. The tetraploid *M. guttatus* population sampled in the Shetland Islands in the
300 UK is nested among other geographically proximate populations, further supporting the local
301 origin of this autopolyploid in the introduced range (Simón-Porcar et al., 2017). Finally, *M. luteus*
302 formed a strongly supported clade, and the triploid and allohexaploid hybrids, *M x robertsii* and
303 *M. peregrinus* can be clearly distinguished from both parental taxa (*M. guttatus* and *M. luteus*).

304 **Global invasion of *Mimulus guttatus***

305 At a global scale (Figure 1), introduced *M. guttatus* populations are scattered across the
306 phylogeny, indicating many independent introductions from across the native range (Figure 2).
307 In contrast, however, all UK *M. guttatus* populations form a sister group to the North Pacific
308 clade. The UK group also includes other non-native populations from New Zealand, Canada and
309 Germany, suggesting it may be the source for these. Other New Zealand populations are
310 grouped within the Coastal clade, suggesting a potential second introduction. Moreover,
311 interesting geographic discontinuities exist in North America, with a non-native New York
312 population nested in the native North clade. Finally, two additional populations from eastern
313 North America, as well as the single sampled population from the Faroe Islands are grouped
314 together with the native HAM-SWC group from Oregon (Figure 2). Thus, the UK populations are
315 genetically similar to each other and are closely related to some of the introduced populations of
316 *M. guttatus* in New Zealand and eastern North America. However, the placement of other non-
317 native populations within various native clades clearly indicates additional, independent
318 introductions to New Zealand, eastern North America and the Faroe Islands, suggesting a
319 complex history of colonisation.

320 Among native populations those from the UK form a separate genetic cluster, as seen in
321 principal component analysis (PCA) (Figure 3). As in the phylogenetic reconstruction, the UK
322 group is closely associated with non-native populations from New Zealand, Germany and
323 eastern North America. The PCA is also consistent with two separate introductions into New
324 Zealand, one of them closely related to UK populations, and three independent origins of non-
325 native populations in eastern North America. One of these origins of eastern North American
326 populations is shared with the population from the Faroe Islands, forming a distinct group with
327 two native populations from Oregon (SWC and HAM; Figure 3). An interactive version of Figure
328 3 with labelled individuals and populations is available at <https://plot.ly/~mvallejo6/1/>.
329 Population structure in the native range is less clear from the worldwide PCA, although the
330 North Pacific clade and particularly the Aleutian Islands populations are well differentiated
331 along the first principal component (Figure 3).

332 Worldwide groupings by *K*-means cluster analysis (Figure 4) partition North American
333 samples into three groups, New Zealand into two groups, and the single populations from
334 the Faroe Islands and Germany in one group each, largely consistent with the results above.
335 Non-native UK populations form two groups, one mixed with European and Eastern North
336 American samples, and another with New Zealand samples. Native, non-Alaskan populations are
337 distributed in five groups. Aleutian populations form a separate group not shared with other
338 geographic regions. The *fastStructure* analysis with the selected *K* = 8 value (Figure S2) provides
339 further support for these groupings. UK populations form a separate group with which multiple
340 affinities with New Zealand and eastern North American samples are evident. Furthermore, the
341 distinctiveness of Aleutian populations relative to other native populations is also obvious (e.g.,
342 cluster 4 at *K* = 8, Figure S2).

343 Introduction history in the UK

344 To estimate a most likely scenario for the origin and history of introduction of UK populations,
345 we next performed a coalescent analysis with ABC. Our analysis of demographic models allowed
346 us to compare different scenarios for the origin and history of introduction of UK populations
347 relative to five genetic groups in the native range: Aleutians (ALE) and Alaska-British Columbia
348 (AKBC), both of which form part of the North Pacific clade, and the North (NORTH), South
349 (SOUTH), and Coastal (COAST) clades (see Figure 2). When assuming a single introduction event,
350 the most likely source of UK individuals is the AKBC group (Table 2, posterior probability
351 $p=0.89$). However, model comparisons favour scenarios with additional waves of introductions
352 (Table 2). When we model two introductions, a first introduction from AKBC followed by a
353 second introduction wave from NORTH has greatest support (Table 2, $p=0.48$) and is more likely
354 than a single introduction scenario (237 votes against 32 votes, Table 2). Similarly, three

355 introduction models result in selecting an introduction history with a first introduction from
356 AKBC followed by additional introductions from NORTH and COAST ($p=0.53$, Table 2) and then
357 four introduction models identify a first introduction from SOUTH followed by additional
358 introductions from AKBC, NORTH and COAST as the most likely scenario ($p=0.55$, Table 2).
359 Finally, when comparing all best one- to four-wave introduction models, with all possible five-
360 wave introduction models, the most likely introduction history identified consisted of a first
361 introduction from ALE followed by four subsequent waves from the AKBC, NORTH, SOUTH and
362 COAST (E4 model; $p=0.55$, Table 2). Full demographic parameters (e.g., estimated population
363 sizes and introduction times per genetic group; E4 model) are presented in Table S2.

364 Classification of the datasets simulated under a five-wave introduction scenario showed
365 that 83.4% of the simulations classified were correctly assigned to a five-wave introduction
366 scenario, and 23.7% to the correct model (E4) (Table 3). Thus, the combination of the type and
367 number of molecular markers and model prior specifications we used here contain enough
368 information to confidently differentiate scenarios with different number of introductions (e.g.,
369 single introduction vs five-wave introductions). Nevertheless, distinguishing the most likely
370 scenario among these complex and sometimes very similar five-wave introduction scenarios
371 proved more difficult (Table 3, Supporting Material File 1). In other words, our ability to
372 distinguish the order of introductions of the five genetic groups is more limited.

373 The posterior probability of 55.1% for the E4 model (Table 2), supports a first
374 introduction from ALE followed by additional introductions from the other four other origins
375 (Figure S3). However, most of the posterior distributions of demographic parameters (e.g.,
376 effective population size, number of generations since introduction) for model E4 were nearly
377 identical to the prior distributions (Table S2, Supporting Material File 2), indicating limited
378 information content of the genetic dataset to estimate the demographic parameters of this
379 complex introduction history.

380 Discussion

381 Here we provide the first global picture of the genetic relationships between native and
382 introduced populations of *Mimulus guttatus*, including targeted sampling of a historically-
383 indicated origin for the UK bridgehead population. Our results can be summarised in three main
384 findings: (1) *Mimulus guttatus* achieved a broad distribution across geographic boundaries
385 through multiple repeated introductions from genetically distinct source populations; (2) In
386 some cases, the establishment of *M. guttatus* in the invasive range was achieved via a bridgehead
387 process, where invasive populations serve themselves as sources for further, more distant
388 vanguard invasions. This is well illustrated in our discovery of the establishment of invasive

389 populations in New Zealand and eastern North America by way of UK invasive populations; (3)
390 Admixture in the introduced range has given rise to genetically distinct populations generating
391 novel genetic, and therefore phenotypic, combinations.

392 **Multiple introductions and bridgehead invasions**

393 Widely distributed taxa that serve as a source of invasive populations pose a particular challenge
394 for molecular studies aiming to reconstruct the history of biological invasions. The distribution
395 of *M. guttatus* spans from Mexico to the Aleutians and covers more than 6000km of coastline
396 (Vickery, 1978). To identify potential sources of specific invasion events, sampling large
397 geographic regions is required. *Mimulus guttatus* has been the subject of continuous study for
398 the last 60 years (Wu et al., 2008), and previous work has collected population samples across
399 nearly its entire native range (Friedman, Twyford, Willis, & Blackman, 2015; Lowry, Hall, Salt, &
400 Willis, 2009; Oneal, Lowry, Wright, Zhu, & Willis, 2014). Our analyses of large-scale population
401 samples from the native range builds on the recent finding of geographic genetic structure
402 corresponding to separate coastal and northern colonisation events in North America (Twyford
403 et al., *in press*). Here we fill-in crucial gaps with sampling from Alaska and the Aleutian Islands,
404 which reveals strong geographic structure in the far north west of the species range, with
405 genetic clusters by islands in the Aleutians. This extensive sampling in the native range allows us
406 to show that Aleutian populations have acted as important conduits to the invasion of *Mimulus*
407 in Europe and beyond.

408 Many biological invasions by both plants and animals are associated with multiple
409 introductions, to the extent that single introduction invasions are considered the exception
410 (Dlugosch & Parker, 2008). Here we found clear evidence that introduction of *M. guttatus* into
411 various geographic regions has occurred by colonisation from multiple genetically distinct
412 sources. For example, among the four populations we sampled in eastern North America, where
413 *M. guttatus* was introduced in the last century, there is evidence of three genetically distinct
414 groups, one of which also occurs in the Faroe Islands (Figure 3). Similarly, introduced
415 populations in New Zealand have at least two separate genetic origins, including a close affinity
416 with native populations (near Santa Cruz, California) located 11,000km away and with non-
417 native populations in the UK. The multiple origins of invasive populations found in the same
418 geographic region is important for several reasons. From a management perspective, multiple
419 introductions can help identify locations of transport routes that are susceptible for further
420 invasions. Moreover, multiple introductions may help invasive populations overcome
421 demographic and genetic bottlenecks associated with introduction events (Dlugosch & Parker,
422 2008). In species that are introduced via the ornamental trade, as was probably the case for
423 monkeyflowers, repeated introductions may not be unusual. To date it is still possible to freely

424 purchase monkeyflowers in UK garden centres. However, because the type sold is no longer *M.*
425 *guttatus* but horticultural varieties of its close relative *M. luteus*, we speculate that the multiple
426 introductions detected in the invasive range of *M. guttatus* reflect historical events (19th and 20th
427 centuries) rather than recent reintroductions. In addition, we did not find evidence of large-scale
428 admixture from *M. luteus* shaping genetic variation in *M. guttatus*, consistent with the strong
429 reproductive barriers imposed by differences in ploidy level between these *Mimulus* taxa
430 (Meeus, Šemberová, De Storme, Geelen, & Vallejo-Marín, 2020).

431 The genetic history of these invasions reveals a complex series of introduction events
432 associated with early establishment (19th century). Our ABC analyses reconstruct this history
433 and show that extant populations are composed of a combination of multiple genetic groups
434 from across the native range. Reconstruction of demographic events during introduction (Figure
435 7) supports an initial introduction of *M. guttatus* from the Aleutian Islands, which is consistent
436 with the historical records of Langsdorff's expedition and subsequent transfer of material to
437 Russian, European and British collections. The colonisation of the UK by these exotic Aleutian
438 monkeyflowers may have been facilitated by the close similarity of the ecological niche of *M.*
439 *guttatus* in the British Isles and the Aleutian Islands (Da Re et al., 2020). Climatic pre-adaptation
440 of Aleutian monkeyflowers provided early arrivals with an opportunity for initial establishment.
441 It is also clear that an initial introduction from the Aleutian Islands was accompanied or quickly
442 followed by multiple introductions from other parts of the range. The UK seems to have become
443 a melting pot for *M. guttatus* resulting in admixture of previously differentiated populations,
444 which resulted in the creation of a unique set of genotypes that are now characteristic of UK
445 populations (Figures 4 & 5).

446 Invasive populations can themselves become sources for subsequent invasions, a
447 phenomenon termed the "bridgehead effect" (Lombaert et al., 2010). For example, the invasion
448 of Australia by ragweed (*Ambrosia artemisiifolia*, Asteraceae) occurred not from native North
449 American populations, but from populations in the introduced European range (van Boheemen
450 et al., 2017). Our results indicate that UK populations served as a stepping-stone for secondary
451 invasions in other parts of the non-native range. This bridgehead effect in invasive
452 monkeyflowers is most clearly illustrated in the invasion of New Zealand. Some invasive
453 populations there share a close genetic affinity to UK populations. The genetic similarity is
454 consistent with the exchange of biological material, including horticultural taxa, in the 19th
455 century, as British people migrated to New Zealand (Bridge & Fedorowich, 2004). The single
456 sampled population in continental Europe (Germany) also shows a close relationship to UK
457 populations. Unfortunately, without further sampling it is difficult to establish whether UK
458 populations contribute to the extant populations of *M. guttatus* in Europe. Morphologically, *M.*

459 *guttatus* populations in Russia, Germany and the Czech Republic resemble UK material (Vallejo-
460 Marín, *pers. obs.*) but the genetic identity of continental Europe populations remains to be
461 investigated. In this regard, genomic analyses of herbarium specimens could provide important
462 additional insights (Gutaker, Reiter, Furtwangler, Schuenemann, & Burbano, 2017). Particularly
463 tantalising would be to compare specimens from herbaria in Russia, France and the UK, where
464 historical links connect early *Mimulus* collections with Langsdorff's expedition to Alaska in the
465 early 19th century. Finally, we also detected a close affinity between UK populations and a
466 population in the non-native range in eastern North America. Populations of *M. guttatus* in
467 eastern North America are generally small, occurring in the states of Michigan, New York, USA
468 and in New Brunswick, Canada (Murren et al., 2009). These small and sparsely distributed
469 populations show diverse genetic origins and seem to be much more recently established
470 (second half of the 20th century). The mechanism of introduction of UK material into eastern
471 North America is unknown but it could be associated with horticultural exchanges (Chapman et
472 al., 2017; Haeuser et al., 2018; Seebens et al., 2015).

473 Admixture and adaptive potential

474 Multiple introductions and admixture can, in principle, both increase or decrease the
475 performance and adaptive potential of invasive populations (Barker et al., 2019; Rius & Darling,
476 2014; Verhoeven, Macel, Wolfe, & Biere, 2011). Multiple introductions from genetically distinct
477 sources introduce variation and alleviate the negative effects of demographic bottlenecks
478 associated with colonisation. Moreover, genetically diverse populations are less likely to
479 experience the deleterious effects of inbreeding depression (Dudash, Murren, & Carr, 2005;
480 Verhoeven et al., 2011) and can increase individual fitness through heterosis (Rius & Darling,
481 2014). In contrast, admixture may reduce overall fitness if gene flow results in outbreeding
482 depression (Frankham et al., 2011), a phenomenon that can occur due to epistatic interactions
483 or, for example, the breakdown of locally adapted genotypes. In *M. guttatus*, experimental work
484 indicates that both positive and negative effects of admixture can be observed in invasive
485 populations. For example, crossing native and introduced populations results in an increase in
486 biomass, and both clonal and sexual reproduction in greenhouse conditions (Li, Stift, & van
487 Kleunen, 2018; van Kleunen, Rockle, & Stift, 2015). In field conditions, the effects of admixture
488 can be reversed, and a common garden study shows that admixture between UK *M. guttatus* and
489 both annual and perennial populations from the native range result in lower fitness as estimated
490 using population growth rates (Pantoja, Paine, & Vallejo-Marin, 2018). The effects of admixture
491 may be particularly strong on invasive species with a widespread, highly diverse native
492 distribution, such as *M. guttatus*. Native populations that occur over large, biogeographically
493 diverse areas may serve as reservoirs of genetic and ecological variation. This wide range of

494 ecogeographic variation may facilitate the colonisation of new regions in the introduced range
495 and potentiate the effects of subsequent introductions and admixture on the performance and
496 adaptive potential of invasive populations.

497 Acknowledgements

498 We thank John Willis and current and former members of his lab, including David Lowry and
499 Kevin Wright, for providing access to North American seed material collected over many years,
500 and to the Botanical Society of Britain and Ireland for their continued support locating UK
501 *Mimulus* populations. Arielle Cooley kindly provided seed material from Chilean populations of
502 *M. luteus* var. *variegatus*. We are very grateful to Claudia Buser and John Bailey for providing the
503 New Zealand material, and Nils Bunnefeld, Anna Maria Fosaa and Símun Arge for their help
504 while collecting *Mimulus* in the Faroe Islands. We thank Oregon Genomics (University of Oregon)
505 for sequencing services, the University of Stirling Controlled Environment Facility for access to
506 plant growth facilities, and Sophie Webster for help in the laboratory. Computer time for the ABC
507 analysis was provided by the computing facilities MCIA (Mésocentre de Calcul Intensif Aquitain)
508 of the Université de Bordeaux and of the Université de Pau et des Pays de l'Adour. LY was
509 supported by the European Research Council (ERC) under the European Union's Horizon 2020
510 research and innovation programme [grant number ERC-StG 679056 HOTSPOT], via a grant to
511 LY. This project was made possible by a grant from the Global Exploration Fund, Northern
512 Europe from National Geographic (GEFNE164-15) to MVM, JRP and SMI-B, and a grant from the
513 Natural Environment Research Council (NERC; NE/J012645/1) to MVM. We thank all the people
514 who helped us during fieldwork in Alaska, particularly Suzi Golodoff (Unalaska Island) and Stacy
515 Studebaker (Kodiak Island) for providing their exceptional knowledge of the local flora, and
516 Roger Topp (U. Alaska, Fairbanks/Museum of the North) who documented the expedition with
517 his outstanding photographs and video.

518 References

519 Barker, B. S., Cocio, J. E., Anderson, S. R., Braasch, J. E., Cang, F. A., Gillette, H. D., & Dlugosch, K. M.
520 (2019). Potential limits to the benefits of admixture during biological invasion. *Molecular
521 Ecology*, 28(1), 100-113.
522 Bock, D. G., Caseys, C., Cousens, R. D., Hahn, M. A., Heredia, S. M., Hubner, S., . . . Rieseberg, L. H.
523 (2015). What we still don't know about invasion genetics. *Molecular Ecology*, 24(9),
524 2277-2297. doi:10.1111/mec.13032
525 Bridge, C., & Fedorowich, K. (2004). *The British world: diaspora, culture and identity*: Routledge.
526 Chapman, D., Purse, B. V., Roy, H. E., & Bullock, J. M. (2017). Global trade networks determine the
527 distribution of invasive non-native species. *Global Ecology and Biogeography*, 26(8), 907-
528 917.
529 Da Re, D., Olivares, A. P., Smith, W., & Vallejo-Marín, M. (2020). Global analysis of ecological niche
530 conservation and niche shift in invasive and hybrid populations of monkeyflowers

(*Mimulus guttatus*, *M. luteus* and *M. × robertsii*). *Plant Ecology & Diversity*. doi:10.1080/17550874.2020.1750721

Dlugosch, K. M., Anderson, S. R., Braasch, J., Cang, F. A., & Gillette, H. D. (2015). The devil is in the details: genetic variation in introduced populations and its contributions to invasion. *Molecular Ecology*, 24(9), 2095-2111. doi:10.1111/mec.13183

Dlugosch, K. M., & Parker, I. M. (2008). Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. *Molecular Ecology*, 17(1), 431-449. doi:10.1111/j.1365-294X.2007.03538.x

Dudash, M. R., Murren, C. J., & Carr, D. E. (2005). Using *Mimulus* as a model system to understand the role of inbreeding in conservation: Genetic and ecological approaches. *Annals of the Missouri Botanical Garden*, 92(1), 36-51.

Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. *Plos One*, 6(5), e19379. doi:10.1371/journal.pone.0019379 [doi]

Estoup, A., & Guillemaud, T. (2010). Reconstructing routes of invasion using genetic data: why, how and so what? *Molecular Ecology*, 19(19), 4113-4130. doi:10.1111/j.1365-294X.2010.04773.x

Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C., & Foll, M. (2013). Robust demographic inference from genomic and SNP data. *Plos Genetics*, 9(10).

Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. *Molecular Ecology resources*, 10(3), 564-567.

Frankham, R., Ballou, J. D., Eldridge, M. D. B., Lacy, R. C., Ralls, K., Dudash, M. R., & Fenster, C. B. (2011). Predicting the probability of outbreeding depression. *Conservation Biology*, 25(3), 465-475. doi:10.1111/j.1523-1739.2011.01662.x

Friedman, J., Twyford, A. D., Willis, J. H., & Blackman, B. K. (2015). The extent and genetic basis of phenotypic divergence in life history traits in *Mimulus guttatus*. *Molecular Ecology*, 24(1), 111-122. doi:10.1111/mec.13004

Glaubitz, J. C., Casstevens, T. M., Lu, F., Harriman, J., Elshire, R. J., Sun, Q., & Buckler, E. S. (2014). TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline. *Plos One*, 9(2).

Grant, A. L. (1924). A monograph of the genus *Mimulus*. *Annals of the Missouri Botanical Garden*, 11(2-3), 99-380.

Gutaker, R. M., Reiter, E., Furtwangler, A., Schuenemann, V. J., & Burbano, H. A. (2017). Extraction of ultrashort DNA molecules from herbarium specimens. *BioTechniques*, 62(2), 76-79. doi:10.2144/000114517

Haeuser, E., Dawson, W., Thuiller, W., Dullinger, S., Block, S., Bossdorf, O., . . . Essl, F. (2018). European ornamental garden flora as an invasion debt under climate change. *Journal of Applied Ecology*, 55(5), 2386-2395.

Hellsten, U., Wright, K. M., Jenkins, J., Shu, S., Yuan, Y., Wessler, S. R., . . . Rokhsar, D. S. (2013). Fine-scale variation in meiotic recombination in *Mimulus* inferred from population shotgun sequencing. *Proceedings of the National Academy of Sciences of the United States of America*, 110(48), 19478-19482. doi:10.1073/pnas.1319032110

Hufbauer, R. A. (2004). Population genetics of invasions: Can we link neutral markers to management? *Weed Technology*, 18, 1522-1527. doi:10.1614/0890-037X(2004)018[1522:PGOICW]2.0.CO;2

Hulme, P. E., Bacher, S., Kenis, M., Klotz, S., Kühn, I., Minchin, D., . . . Pergl, J. (2008). Grasping at the routes of biological invasions: a framework for integrating pathways into policy. *Journal of Applied Ecology*, 45(2), 403-414.

Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. *Bioinformatics*, 27(21), 3070-3071. doi:10.1093/bioinformatics/btr521

Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. *BMC Genetics*, 11, 94-94. doi:10.1186/1471-2156-11-94

585 Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017).
586 ModelFinder: fast model selection for accurate phylogenetic estimates. *Nature Methods*,
587 14(6), 587-+.

588 Li, Y., Stift, M., & van Kleunen, M. (2018). Admixture increases performance of an invasive plant
589 beyond first-generation heterosis. *Journal of Ecology*, 106(4), 1595-1606.
590 doi:10.1111/1365-2745.12926

591 Lombaert, E., Guillemaud, T., Cornuet, J.-M., Malausa, T., Facon, B., & Estoup, A. (2010).
592 Bridgehead effect in the worldwide invasion of the biocontrol harlequin ladybird. *Plos
593 One*, 5(3), e9743-e9743. doi:10.1371/journal.pone.0009743

594 Lowry, D. B., Hall, M. C., Salt, D. E., & Willis, J. H. (2009). Genetic and physiological basis of
595 adaptive salt tolerance divergence between coastal and inland *Mimulus guttatus*. *New
596 Phytologist*, 183(3), 776-788. doi:10.1111/j.1469-8137.2009.02901.x

597 McArthur, E. D. (1974). The cytotaxonomy of naturalized British *Mimulus*. *Watsonia*, 10, 155-
598 158.

599 Meeus, S., Šemberová, K., De Strome, N., Geelen, D., & Vallejo-Marín, M. (2020). Effect of whole-
600 genome duplication on the evolutionary rescue of sterile hybrid monkeyflowers. *in prep.*

601 Minh, B. Q., Nguyen, M. A. T., & von Haeseler, A. (2013). Ultrafast approximation for phylogenetic
602 bootstrap. *Molecular Biology and Evolution*, 30(5), 1188-1195.

603 Murren, C. J., Chang, C. C., & Dudash, M. R. (2009). Patterns of selection of two North American
604 native and nonnative populations of monkeyflower (Phrymaceae). *New Phytologist*,
605 183(3), 691-701.

606 Nguyen, L. T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective
607 stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular Biology
608 and evolution*, 32(1), 268-274.

609 Oneal, E., Lowry, D. B., Wright, K. M., Zhu, Z., & Willis, J. H. (2014). Divergent population structure
610 and climate associations of a chromosomal inversion polymorphism across the *Mimulus
611 guttatus* species complex. *Mol Ecol*, 23(11), 2844-2860. doi:10.1111/mec.12778

612 Owen, S. J. (1996). Ecological weeds on conservation land in New Zealand: a database. Retrieved
613 22/05/2019, from Department of Conservation
614 http://www.hear.org/weedlists/other_areas/nz/nzecoweeds.htm

615 Pantoja, P. O., Paine, C. E. T., & Vallejo-Marin, M. (2018). Natural selection and outbreeding
616 depression suggest adaptive differentiation in the invasive range of a clonal plant.
617 *Proceedings of the Royal Society B: Biological Sciences*, 285(1882), 20181091.
618 doi:10.1098/rspb.2018.1091

619 Pantoja, P. O., Simón-Porcar, V. I., Puzey, J. R., & Vallejo-Marin, M. (2017). Genetic variation and
620 clonal diversity in introduced populations of *Mimulus guttatus* assessed by genotyping at
621 62 single nucleotide polymorphism loci. *Plant Ecology & Diversity*, 10(1), 5-15.
622 doi:10.1080/17550874.2017.1287785

623 Preston, C. D., Pearman, D. A., & Dines, T. D. (2002). *New Atlas of the British and Irish Flora*.
624 Oxford: Oxford University Press.

625 Pudlo, P., Marin, J. M., Estoup, A., Cornuet, J. M., Gautier, M., & Robert, C. P. (2016). Reliable ABC
626 model choice via random forests. *Bioinformatics*, 32(6), 859-866.

627 Puzey, J. R., & Vallejo-Marin, M. (2014). Genomics of invasion: diversity and selection in
628 introduced populations of monkeyflowers (*Mimulus guttatus*). *Molecular Ecology*, 23(18),
629 4472-4485. doi:10.1111/mec.12875

630 Pysek, P., Jarosik, V., Hulme, P. E., Pergl, J., Hejda, M., Schaffner, U., & Vila, M. (2012). A global
631 assessment of invasive plant impacts on resident species, communities and ecosystems:
632 the interaction of impact measures, invading species' traits and environment. *Global
633 Change Biology*, 18(5), 1725-1737. doi:10.1111/j.1365-2486.2011.02636.x

634 Raj, A., Stephens, M., & Pritchard, J. K. (2014). fastSTRUCTURE: Variational Inference of
635 Population Structure in Large SNP Data Sets. *Genetics*, 197(2), 573-U207.
636 doi:10.1534/genetics.114.164350

637 Rambaut, A. (2014). FigTree version 1.4.0. <https://github.com/rambaut/figtree>

638 Ritland, K. (1989). Correlated matings in the partial selfer *Mimulus guttatus*. *Evolution*, 43(4),
639 848-859.

640 Rius, M., & Darling, J. A. (2014). How important is intraspecific genetic admixture to the success
641 of colonising populations? *Trends in Ecology & Evolution*, 29(4), 233-242.
642 doi:10.1016/j.tree.2014.02.003

643 Roberts, R. (1964). Mimulus hybrids in britain. *Watsonia*, 6, 70-75.

644 Schrempf, D., Minh, B. Q., De Maio, N., von Haeseler, A., & Kosiol, C. (2016). Reversible
645 polymorphism-aware phylogenetic models and their application to tree inference.
646 *Journal of Theoretical Biology*, 407, 362-370.

647 Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., ... Essl, F.
648 (2017). No saturation in the accumulation of alien species worldwide. *Nature
649 Communications*, 8. doi:10.1038/ncomms14435

650 Seebens, H., Essl, F., Dawson, W., Fuentes, N., Moser, D., Pergl, J., ... Blasius, B. (2015). Global
651 trade will accelerate plant invasions in emerging economies under climate change.
652 *Global Change Biology*, 21(11), 4128-4140. doi:10.1111/gcb.13021

653 Simón-Porcar, V. I., Silva, J. L., Meeus, S., Higgins, J. D., & Vallejo-Marín, M. (2017). Recent
654 autoploidization in a naturalized population of *Mimulus guttatus* (Phrymaceae).
655 *Botanical Journal of the Linnean Society*, 185(2), 189-207.
656 doi:10.1093/botlinnean/box052

657 Sims, J. (1812). *Curtis's Botanical Magazine. Flower-Garden Displayed*. Vol. 35. London: Sherwood,
658 Neely & Jones.

659 Stace, C. A. (2010). *New Flora of the British Isles* (Vol. Third Edition). Cambridge: Cambridge
660 University Press.

661 Stace, C. A., & Crawley, M. J. (2015). *Alien Plants*. London: William Collins.

662 Team, R. D. C. (2020). R: A language and environment for statistical computing. R Foundation for
663 Statistical Computing, Vienna, Austria. URL <http://www.R-project.org>. Retrieved from
664 http:// www.R-project.org.

665 Tokarska-Guzik, B., & Dajdok, Z. (2010). NOBANIS. *Invasive Alien Species Fact Sheet: Mimulus
666 guttatus*. Retrieved from Date of access 2/2/2012:

667 Twyford, A. D., & Friedman, J. (2015). Adaptive divergence in the monkey flower *Mimulus
668 guttatus* is maintained by a chromosomal inversion. *Evolution*, 69(6), 1476-1486.
669 doi:10.1111/evo.12663

670 Twyford, A. D., Wong, E. L. Y., Friedman, J. (in press) Multi-level patterns of genetic structure and
671 isolation by distance in the widespread plant *Mimulus guttatus*. *Heredity (Edinb)*
672 <https://doi.org/10.1038/s41437-020-0335-7>

673 Vallejo-Marin, M., Buggs, R. J. A., Cooley, A. M., & Puzey, J. R. (2015). Speciation by genome
674 duplication: Repeated origins and genomic composition of the recently formed
675 allopolyploid species *Mimulus peregrinus*. *Evolution*, 69(6), 1487-1500.
676 doi:10.1111/evo.12678

677 Vallejo-Marin, M., & Lye, G. C. (2013). Hybridisation and genetic diversity in introduced *Mimulus*
678 (Phrymaceae). *Heredity (Edinb)*, 110(2), 111-122. doi:10.1038/hdy.2012.91

679 van Boheemen, L. A., Atwater, D. Z., & Hodgins, K. A. (2019). Rapid and repeated local adaptation
680 to climate in an invasive plant. *New Phytologist*, 222(1), 614-627.

681 van Boheemen, L. A., Lombaert, E., Nurkowski, K. A., Gauffre, B., Rieseberg, L. H., & Hodgins, K. A.
682 (2017). Multiple introductions, admixture and bridgehead invasion characterize the
683 introduction history of *Ambrosia artemisiifolia* in Europe and Australia. *Molecular
684 Ecology*, 26(20), 5421-5434.

685 van Kleunen, M., Dawson, W., Essl, F., Pergl, J., Winter, M., Weber, E., ... Nishino, M. (2015). Global
686 exchange and accumulation of non-native plants. *Nature*, 525, 100-103.

687 van Kleunen, M., Rockle, M., & Stift, M. (2015). Admixture between native and invasive
688 populations may increase invasiveness of *Mimulus guttatus*. *Proceedings of the Royal
689 Society B-Biological Sciences*, 282(1815). doi:10.1098/rspb.2015.1487

690 Verhoeven, K. J. F., Macel, M., Wolfe, L. M., & Biere, A. (2011). Population admixture, biological
691 invasions and the balance between local adaptation and inbreeding depression.

692 *Proceedings of the Royal Society B-Biological Sciences*, 278(1702), 2-8.
693 doi:10.1098/rspb.2010.1272
694 Vickery, R. K. (1978). *Case studies in the evolution of species complexes in Mimulus*: Springer.
695 Vickery, R. K., Crook, K., Lindsay, D., Mia, M., & Tai, W. (1968). Chromosome counts in section
696 *Simiolus* of the genus *Mimulus* (Scrophulariaceae). VII. New numbers for *M. guttatus*, *M.*
697 *cupreus*, and *M. tilingii*. *Madrono*, 19(6), 211-218.
698 Vila, M., Espinar, J. L., Hejda, M., Hulme, P. E., Jarosik, V., Maron, J. L., . . . Pysek, P. (2011).
699 Ecological impacts of invasive alien plants: a meta-analysis of their effects on species,
700 communities and ecosystems. *Ecology Letters*, 14(7), 702-708. doi:10.1111/j.1461-
701 0248.2011.01628.x
702 von Langsdorff, G. H. (1817). *Voyages and Travels in Various Parts of the World*. Philadelphia:
703 George Philips.
704 Wegmann, D., Leuenberger, C., Neuenschwander, S., & Excoffier, L. (2010). ABCtoolbox: a
705 versatile toolkit for approximate Bayesian computations. *BMC bioinformatics*, 11.
706 Welles, S. R., & Dlugosch, K. M. (2019). Population Genomics of Colonization and Invasion.
707 *Population Genomics: Concepts, Approaches and Applications*, 655-683.
708 Wu, C. A., Lowry, D. B., Cooley, A. M., Wright, K. M., Lee, Y. W., & Willis, J. H. (2008). *Mimulus* is an
709 emerging model system for the integration of ecological and genomic studies. *Heredity*
710 (*Edinb*), 100(2), 220-230. doi:10.1038/sj.hdy.6801018
711

712 Data Accessibility

713 Genotype data will be made available upon publication as VCF files in a public repository
714 (DATAStorre, U. Stirling). Location data of sampled populations is available in the
715 Supplementary Materials. Herbarium specimens of newly collected material in Alaska is
716 deposited at the ALA herbarium.

717 Author contributions

718 MVM, JRP, SMIB, JF and ADT designed the research. MVM, JRP, JF, SMIB, MCR and MvK collected
719 material. MVM, ADT, and OL analysed the data. MVM, JF, LY, ADT and JRP wrote the manuscript
720 with input from all the authors.

721 **Tables**

722 **Table 1.** Summary of the number of populations and individuals sampled and sequenced. A
723 detailed breakdown by population is shown in Table S1.

	Region	Number of populations	Number of individuals
Native	Western North America (excluding Alaska)	71	182
	Western North America (Alaska only)	32	106
Introduced	Eastern North America	4	34
	Faroe Islands	1	4
	United Kingdom	43	161
	Germany	1	9
	New Zealand	6	25
Total		158	521

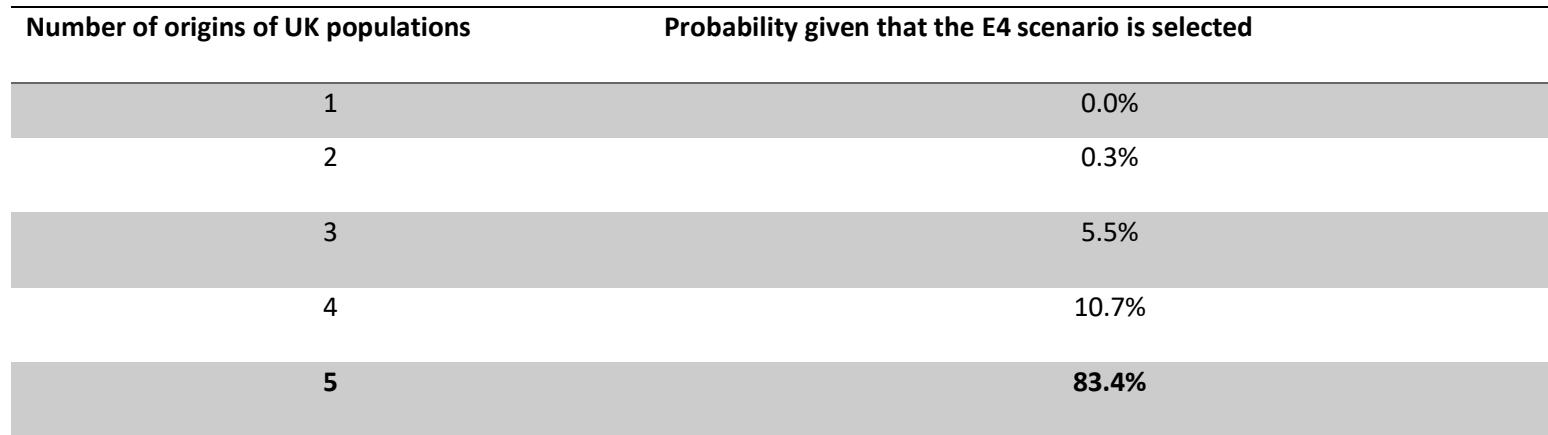
724

725 **Table 2.** Stepwise comparison of demographic models of the invasion of *Mimulus guttatus* into
 726 the United Kingdom using 10,000 simulations for each of the model and random forest ABC
 727 model selection approach. At each step (model groups A-E), more complex introduction
 728 histories are considered while keeping the most likely models selected in previous comparison
 729 steps. The most likely model at each step is indicated in bold.

Model group	Number of introduced origins	Mode	First introduced origin	Following introduced origins	Votes (posterior probability of best model)
A	1	A1	ALE		121
	1	A2	AKBC		276 (0.89)
	1	A3	COAST		219
	1	A4	NORTH		206
	1	A5	SOUTH		178
B	1	A2	AKBC		32
	2	B1	AKBC	ALE	45
	2	B2	AKBC	COAST	78
	2	B3	AKBC	NORTH	237 (0.48)
	2	B4	AKBC	SOUTH	172
	2	B5	ALE	AKBC	30
	2	B6	COAST	AKBC	92
	2	B7	NORTH	AKBC	183
	2	B8	SOUTH	AKBC	131
C	1	A2	AKBC		28
	2	B3	AKBC	NORTH	30
	3	C1	AKBC	NORTH,ALE	60
	3	C2	AKBC	NORTH,COAST	160 (0.53)
	3	C3	AKBC	NORTH,SOUTH	74
	3	C4	NORTH	AKBC,ALE	98
	3	C5	NORTH	AKBC,COAST	118
	3	C6	NORTH	AKBC,SOUTH	114
	3	C7	ALE	AKBC,NORTH	96
	3	C8	COAST	AKBC,NORTH	136
D	3	C9	SOUTH	AKBC,NORTH	86
	1	A2	AKBC		22
	2	B3	AKBC	NORTH	34
	3	C2	AKBC	NORTH,COAST	106
	4	D1	AKBC	NORTH,COAST,ALE	116
	4	D2	AKBC	NORTH,COAST,SOUTH	98
	4	D3	NORTH	AKBC,ALE,COAST	86
	4	D4	NORTH	AKBC,COAST,SOUTH	122
	4	D5	COAST	AKBC,NORTH,ALE	92
	4	D6	COAST	AKBC,NORTH,SOUTH	78
E	4	D7	ALE	AKBC,NORTH,COAST	110
	4	D8	SOUTH	AKBC,NORTH,COAST	136 (0.55)
	1	A2	AKBC		46
	2	B3	AKBC	NORTH	42

3	C2	AKBC	NORTH,COAST	127
4	D8	SOUTH	AKBC,NORTH,COAST	106
5	E1	SOUTH	AKBC,NORTH,COAST,ALE	133
5	E2	AKBC	NORTH,COAST,SOUTH,ALE	134
5	E3	NORTH	AKBC,SOUTH,COAST,ALE	120
5	E4	ALE	AKBC,NORTH,SOUTH,COAST	151 (0.55)
5	E5	COAST	AKBC,NORTH,SOUTH,ALE	141

731 **Table 3. (A)** Power to discriminate between alternative demographic models using an “out-of-bag” procedure given the parameter model
 732 specification. The comparisons are made at the final selection step between the most likely one- to four-wave introduction models and all possible
 733 five-wave introduction models. The table shows how many of the 10,000 simulated datasets generated under a given scenario (A2 to E5, rows) were
 734 classified into each demographic scenario (A2 to E5 columns). The number of incorrect classifications is then used to compute the overall
 735 classification error. The last column shows the percentage of simulated models classified as E4 (which was the most likely scenario for the observed
 736 genetic dataset). Bold numbers indicate correct classification, and underlined numbers indicate >10% incorrect classification. **(B)** Probability of a
 737 given number of origins given that the E4 model is selected.


738 **A.**

Classified models	A2	B3	C2	D8	E1	E2	E3	E4	E5	Total	Classification error	Probability that E4 is selected
Simulated models												
A2	8902	<u>1043</u>	24	12	2	9	0	1	7	10000	11.0%	0.0%
B3	<u>2151</u>	7616	26	15	4	73	11	25	79	10000	23.8%	0.3%
C2	210	463	4844	<u>1576</u>	675	642	534	469	587	10000	51.6%	5.5%
D8	447	330	<u>3067</u>	1905	<u>1039</u>	662	908	911	731	10000	81.0%	10.7%
E1	355	336	<u>2094</u>	<u>1342</u>	1462	735	<u>1323</u>	<u>1339</u>	<u>1014</u>	10000	85.4%	15.8%
E2	400	<u>1317</u>	2161	<u>1039</u>	643	1473	756	<u>1062</u>	<u>1149</u>	10000	85.3%	12.5%
E3	28	625	<u>1894</u>	<u>1173</u>	<u>1277</u>	857	1641	<u>1438</u>	<u>1067</u>	10000	83.6%	17.0%
E4	344	<u>1096</u>	1024	993	<u>1219</u>	918	<u>1313</u>	2009	<u>1084</u>	10000	79.9%	23.7%

E5	435	<u>1291</u>	<u>1491</u>	777	963	<u>1170</u>	<u>1006</u>	<u>1228</u>	1639	10000	83.6%	14.5% ⁷³⁹
Total	13272	14117	16625	8832	7284	6539	7492	8482	7357			740

741

742 **B.**

743

744 Figure Legends

745 **Figure 1.** Global sampling of *Mimulus guttatus* populations. Native populations in western North
746 America are shown in green in the inset.

747 **Figure 2.** Maximum likelihood phylogenetic reconstruction of the relationship between studied
748 *Mimulus guttatus* populations, and including populations from *M. luteus* (LUT10COL, UK), *M.*
749 *luteus* var. *variegatus* (MLvRC, Chile) *M x robertsii* (12WAN) and *M. peregrinus* (11LED). The tree
750 is rooted using a population of *M. glabratus* from Michigan (15NAU)

751 **Figure 3.** Principal Component Analysis (PCA) of 474 individuals of *Mimulus guttatus* from both
752 native and introduced populations genotyped at 1,498 binary SNP loci. (A) Scatterplot of the
753 first two principal components (PC2 vs PC1). (B) Scatterplot of first and third principal
754 components (PC3 vs PC1). Colours indicate sample regions. An interactive 3D figure with
755 individually labelled data points is available at: <https://plot.ly/~mvallejo6/1/>

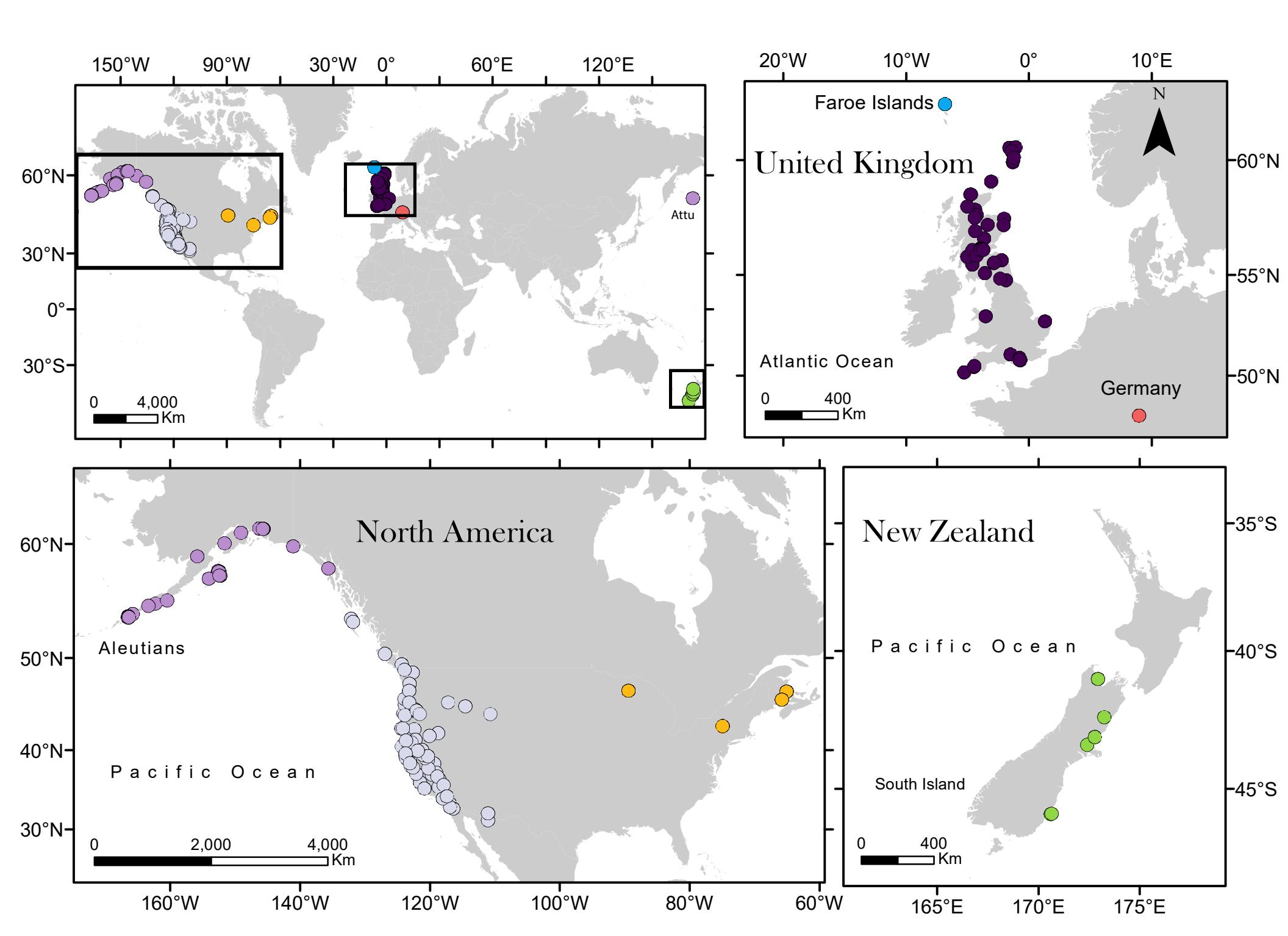
756 **Figure 4.** K-means clustering analysis of native and introduced populations of *Mimulus guttatus*.
757 The analysis is based on the first 300 Principal Components. (A) Bayesian Information Criterion
758 values for models ranging from 2 to 15 clusters. (B) Group membership of each geographic
759 group for the optimal number of clusters (K=8). (C) Principal Component Analysis depicted in
760 Figure 3 but coloured by the groups identified in the K-means cluster analysis (K=8). Colours
761 indicate sample regions as follows: Alaska = Alaska; E NA = Eastern North America; GER =
762 Europe (Germany); FO = Faroe Islands; NAm = Western North America; NZ = New Zealand; UK =
763 United Kingdom.

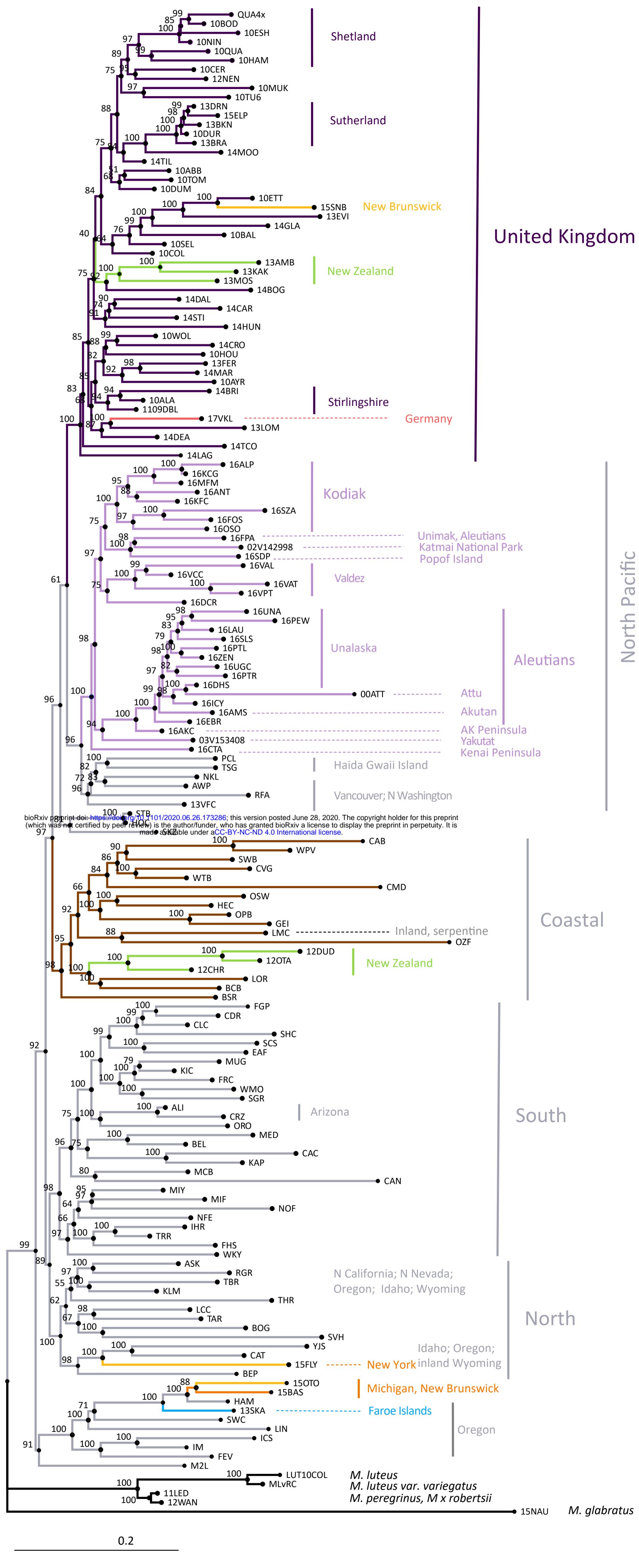
764

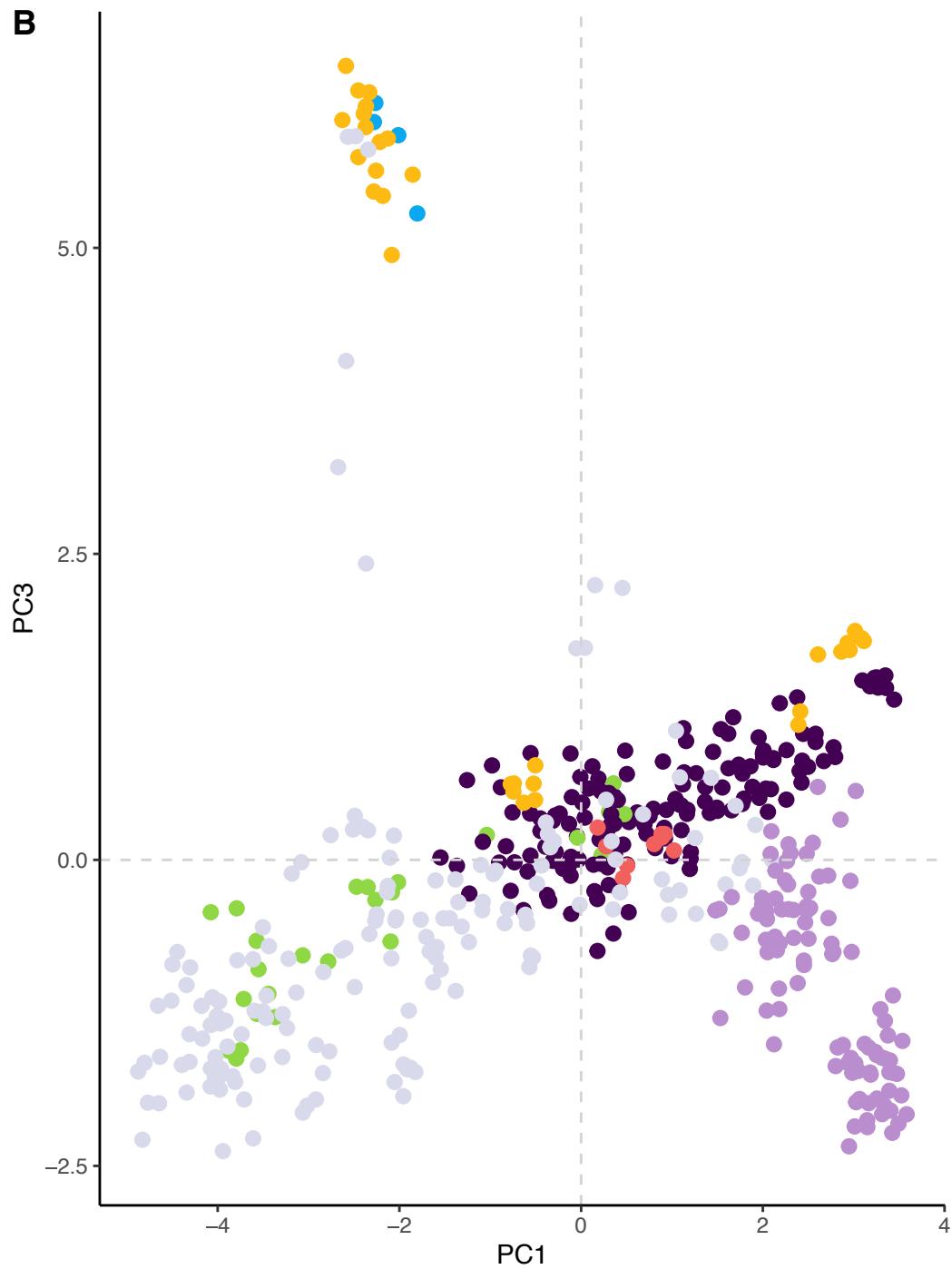
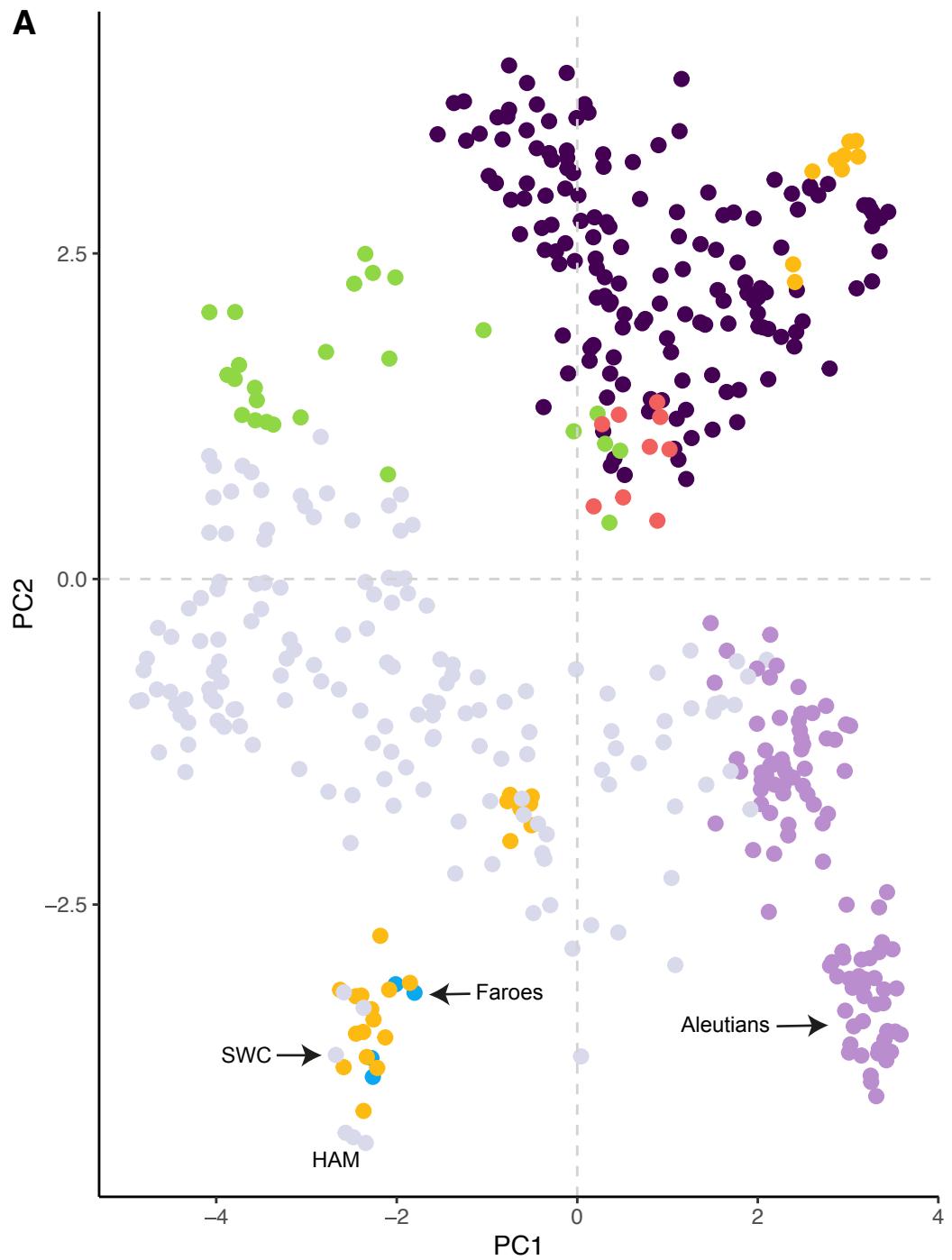
765 Supplementary Material

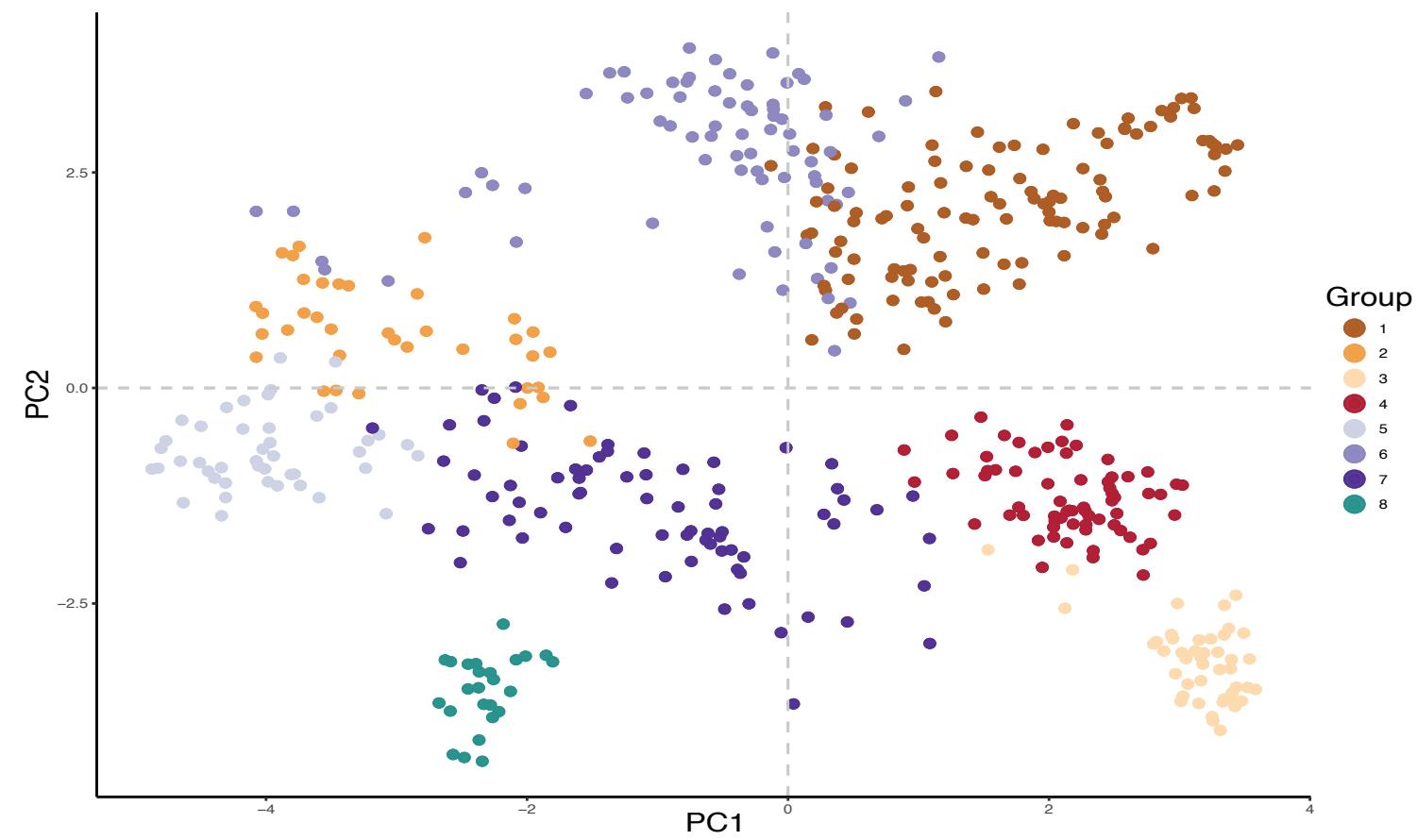
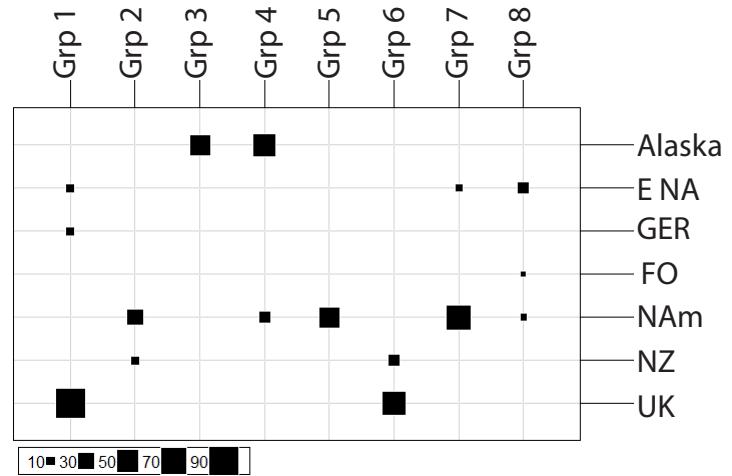
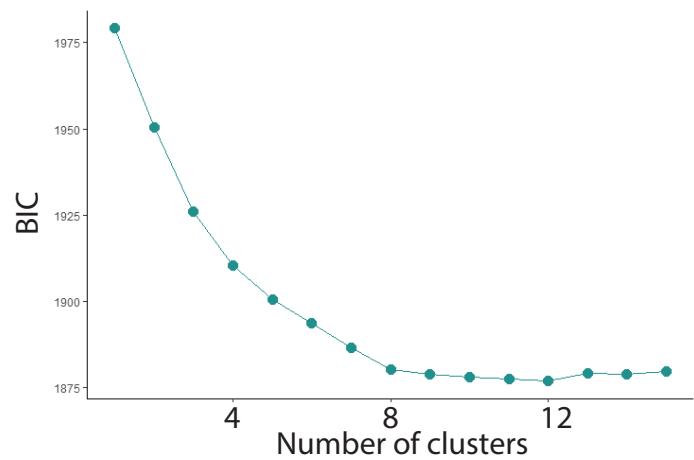
766 **Table S1.** Populations sampled and sequenced. Taxon: gut = *M. guttatus*; gut4x = tetraploid *M. guttatus*, lut = *M. luteus*; rob = *M. x robertsii*; per = *M. peregrinus*, gla = *M. glabratu*s. Region: ak = Alaska; nam = western North America; enam = eastern North America; fo = Faroe Islands; uk = United Kingdom; eur = continental Europe (Germany); sam = South America; nz = New Zealand.

769 Life history: A = annual; P = perennial; NA = not available.


771 **Table S2.** Posterior estimation of the demographic parameter of model E4. the introduced
772 effective population size over current UK effective population size N0, divided by the time of
773 first introduction to UK t0a).


774 **Figure S1.** Map of North America showing five groups of native *M. guttatus*. Groups were
775 estimated using the global data set by *kmeans* clustering (k=8). Red = South group; yellow =
776 North group; dark yellow = Coastal group; Blue = North Pacific group; orange = Aleutian group.



777 **Figure S2.** Population genetic structure of native and introduced populations of *Mimulus*
778 *guttatus* inferred in a Bayesian approach using *fastStructure* (K=2 to K=8). For this analysis, all
779 populations were limited to a maximum of 3 individuals per population. Individuals within
780 geographic regions are arranged by cluster membership. Alaska (native), Western North
781 America (native); ENA = Eastern North America (introduced); GER = Germany (introduced); FO
782 = Faroe Islands (introduced); NZ = New Zealand (introduced); United Kingdom (introduced).




783 **Figure S3.** Demographic reconstruction of the origin of invasive populations of *Mimulus*
784 *guttatus* in the United Kingdom using Approximate Bayesian Computation (ABC). The scenario
785 shown here (E4) was selected by hierarchical testing increasingly complex models starting with
786 a single origin of extant UK populations. The model shown here, suggests a first introduction
787 from the Aleutian Islands followed by additional introductions from other parts of the native
788 range of *M. guttatus*.

789

