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Abstract

Background

Genome-wide association studies (GWAS) uncovered a wealth of associations between common
variants and human phenotypes. These results, widely shared across the scientific community as
summary statistics, fostered a flurry of secondary analysis: heritability and genetic correlation
assessment, pleiotropy characterization and multitrait association test. Amongst these secondary
analyses, a rising new field is the decomposition of multitrait genetic effects into distinct profiles of
pleiotropy.

Results

We conducted an integrative analysis of GWAS summary statistics from 36 phenotypes to decipher
multitrait genetic architecture and its link to biological mechanisms. We started by benchmarking
multitrait association tests on a large panel of phenotype sets and established the Omnibus test as the
most powerful in practice. We detected 322 new associations that were not previously reported by
univariate screening. Using independent significant associations, we investigated the breakdown of
genetic association into clusters of variants harboring similar multitrait association profile. Focusing on
two subsets of immunity and metabolism phenotypes, we then demonstrate how SNPs within clusters
can be mapped to biological pathways and disease mechanisms, providing a putative insight for
numerous SNPs with unknown biological function. Finally, for the metabolism set, we investigate the
link between gene cluster assignment and success of drug targets in random control trials. We report
additional uninvestigated drug targets classified by clusters.
Conclusions

Multitrait genetic signals can be decomposed into distinct pleiotropy profiles that reveal consistent
with pathways databases and random control trials. We propose this method for the mapping of
unannotated SNPs to putative pathways.
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Main

Genome-wide association studies (GWAS) have identified thousands of significant genetic
associations for multiple traits and diseases’. Publicly available summary statistics from these GWAS
have proven invaluable in human genetic studies, enabling a range of secondary analyses without
requiring individual-level genotype data and thus, averting major practical and ethical issues®>. Among
others, the estimation of phenotype heritability’, the derivation of polygenic risk score’, and the
assessment of causal relations between phenotypes® are paragons of their critical utility. GWAS
summary statistics have also been extremely useful to investigate pleiotropy and the genetic
relationship between human phenotypes. For example, recent works assessed whether significant loci
for a given phenotype are also associated with other traits®” while others estimated genome-wide®® and
regional'® genetic correlations among phenotypes. The joint analysis of multiple traits is also an efficient
way to detect variants missed by univariate screening®* ™, especially variants with association patterns
that deviate from the observed phenotypic correlation®®. Nevertheless, while simulation studies and
examples from real data applications in best case scenarios have confirmed the relevance of multitrait
association tests, there have seldom been applied to large-scale dataset.

Here, we argue that, besides the detection of new associated variants, multitrait GWAS summary
statistics analysis offers a powerful framework to decipher the complex inter and intra-phenotype
genetic architecture. We performed series of analyses on GWAS summary statistics from 36 phenotypes
categorized into five clinically relevant sets (Immunity, Anthropometry, Metabolism, Cardiovascular and
Brain) that demonstrate how such data can be used to reveal potential genetic pathways and their links
to diseases. First, characterizing and comparing the relative performances of alternative multitrait
association models, we found strong specificity of the signal identified by each approach, both in terms
of association patterns and expressed tissue enrichment. We then used a Gaussian mixture model on
the phenotypes by variants association matrix to identify potential clusters of variants displaying similar
genetic multitrait association profiles. In-depth functional analysis of the resulting clusters demonstrates
a connection between those profiles and tissue specific expression. This breakdown of multitrait
association signal highlighted how the overall genetic correlation between phenotypes can be
decomposed into likely distinct genetic pathways. Finally, we used the phenotypes from the Immunity
and Metabolism sets as case studies to demonstrate the matching between the identified profile and
known biological pathways. Noteworthy, mapping SNPs with unknown functions to pleiotropy profiles
can indicate putative pathways. We conclude by investigating the potential clinical utility of the
identified clusters for drug targeting.

Results

Multitrait genetic association signal

We analyzed the 36 GWAS studies of European ancestry (Tables S1 to S3) using two approaches
applied to seven phenotype sets: five medical-based sets (Immunity, Anthropometry, Metabolism,
Cardiovascular and Psychiatric), a BMI related set including anthropometry traits and lipids (referred
further as the Composite set), and finally all 36 phenotypes jointly (Fig. 1). Note that, we included Bone
mineral density traits in the immunity set because an enrichment of BMD genome wide significant loci in
immune pathways and immune cell regulatory regions has been previously reported””*®. The first step
of our study consisted in maximizing the number of associated genetic variants by performing multitrait
association tests using existing methods. In brief, we denote the single nucleotide polymorphisms (SNP)
vectors of Z-scores z = (Zl, ...,ZK'), where K is the number of phenotypes (i.e. the number of GWAS
analyzed jointly). The first model we used, which we refer to as sumZ, assumes that genetic effects
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across the phenotype analyzed follow a prior direction specified by a vector of weights w, to form a
weighted sum of Z-scores. Here we considered four weighting schemes: i) uniform weighting (sumZ;); ii)
weighting according to the first principal component of the phenotypic correlation matrix (sumz,); iii)
weighting according to the first principal component of the overall genetic correlation matrix (sumzZ);
and iv) weighting according to the independent component analysis of the Z-scores matrix (sumZ;,). The
second approach, which we refer to as omnibus, does not rely on prior specification on the direction
and/or magnitude of the SNP effect across traits. In brief, it compares, for one SNP, the vector of genetic
effects z with the expected multivariate normal distribution under the null. It is a standard omnibus test
based on summary statistics that allows for one degree of freedom per outcome (here per phenotype).
We performed in-depth validation of each approach using both simulation and real data from the UK
Biobank cohort, characterizing their robustness (Figs S1 to $3) and their link to methods based on
individual-level data (Figs $4 to S6 and Supplementary Note). We also developed corrections for several
critical real data issues related to model misspecification (Figs $7 to $12) and missing data (Fig.S13).

To empirically determine the detection ability of each approach, we derived the overlap of significant
loci of the multitrait tests per phenotypes set (Figs $14 to S20), and after merging all analyses (Fig. 2A).
Univariate phenotype association were included in the comparison using the minimum of univariate p-
value across all outcomes (noted P,,;,). Across all phenotype sets, 391 associations were identified by
the multitrait tests only, 392 were identified by univariate association tests only, and 1557 were
significant for both univariate and multitrait tests (see Fig. 2A). The largest number of new associations
were detected by the Omnibus test. The performances of the sumZ tests varied substantially depending
on the phenotype set. For example, the weighting scheme based on phenotypic correlation (SumZz,),
detects slightly more signals than other weights for the Immunity set (Fig. S18) but fewer associations in
other phenotype sets (Fig. 2A). While the Omnibus detected the largest number of new associations, the
substantial share of signals found by other models suggests that applying several multivariate tests,
especially the combination omnibus, sumZ., sumZ, could be an interesting solution to maximize
detection. Finally, we checked the 392 associations identified by the multitrait test only in this data
against previously reported associations from the GWAS catalogue' for the same phenotypes.
Altogether, we report a total of 322 new associations (Tables $4 to S10).

To understand further the relative performance of those three tests (omnibus, sumZ,., sumZ,) along
the univariate test, we explored which multitrait signal was associated with the largest increase in
detection per test. For that aim, we listed all loci found associated with at least one of the four
approaches, and assigned each locus to a test based on the lowest p-value. We then derived the median
chi-squared z-score by phenotype across the loci assigned to each test. As showed in Fig. 2B-H, the
median pattern varied substantially across tests and phenotype sets. Higher power for the univariate
test was, as expected, observed for strong association signals for a single phenotype, and mostly
reflected a very large sample size for that phenotype and/or a strong heritability (e.g. height in the
anthropometry set, Fig. 2B, or atrial fibrillation in the cardiovascular set, Fig. 2C). Strong association
signal for the omnibus test was linked to the inclusion of correlated phenotypes and sample overlap
resulting in a high residual covariance (X, Table S2). For example, median chi-squared were elevated for
the any strokes (AS), any ischemic strokes (AlS) and cardioembolic strokes (CES) in the cardiovascular
set. The pattern preferentially detected by the sumZ, test are harder to interpret. Yet, we notice that
sumZ, displays strong signal for SNPs associated with physiologically related traits (e.g. T2D and fasting
glucose in the metabolism set, Fig. 2E, or bone mineral density of neck and spine in the immunity set,
Fig. 2D).

To confirm the relevance of association detected by multivariate tests, we also conducted a tissue
enrichment analysis to significant variants identified by the multitrait approaches and by the univariate
analyses separately (Tables $11 and S$12). Overall, univariate variants and with multitrait variants
harbored a very similar functional enrichment landscape (Fig. S21). Most enriched tissues are already
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known to be involved in the phenotype in question, including for example liver, fat and pancreas for the
Metabolism set, immune cell types and thymus for the Immunity set, and heart for the Cardiovascular
set. Our enrichment study also confirmed less obvious observations, which have nevertheless been
noted before: the involvement of immunity in brain-related traits (e.g. autisms and schizophrenia)®®>*°
and the over-representation of brain tissues in the Metabolism set’**?.

Distinct genetic association profiles correspond to distinct genetic correlation

Our comparison of approaches highlights that associated genetic variants display a broad range of
multitrait association profiles. We investigated how these profiles can be broken down into groups of
homogeneous multivariate genetic effects. This is directly related to the principle of genetic correlation,
which quantifies the concordance of genetic effects across traits (e.g. °). The difference here, is that
genetic correlation captures only the average over the whole genome, and as discussed in recent
studies, more localized genetic structures likely exist for many pairs of traits'’. To detect such structure,
we implemented a multivariate Gaussian mixture model (MGMM)** for the identification of clusters
among SNP found associated with at least one approach. We applied MGMM assuming between 2 to 10
clusters and use the BIC and silhouette criteria to determine the most relevant number of clusters. We
further bootstrapped the computation of the clustering criteria to ensure the robustness of the
selection (Supplementary Material). The best suited number of clusters is 6, 8, 8, 9, 3, 2 and 5 for the
Metabolism, Immunity, Cardiovascular, Anthropometry, Psychiatric, Composite, and All sets, respectively
(Fig. S22). As illustrated for the Metabolism set in Fig. $23, adding significant SNPs from the multitrait
tests on top of those identified by the univariate tests enabled us to detect more clusters.

The resulting clustering are presented in Fig. 3 for the Metabolism set and in Figs S24 to S30 for the
other sets. Each figure presents a heatmap of Z-scores along with an alluvial plot displaying both the
shared explained variance between phenotypes and the proportion of explained variance by clusters for
each phenotype. The complete list of SNP for the Metabolism set per cluster is presented in Table $16.
The multivariate effects vary substantially from one cluster to another. For instance, in Metabolism
clusters, SNPs from the cluster 3 display increased HDL-C and decrease triglycerides, while SNPs from
cluster 5 are more specific to triglycerides. We ensured the uniformity of the multitrait association
profiles inside clusters by filtering out SNPs with uncertain cluster assignation (i.e. those with entropy
above 0.75, see Fig. 3C and Supplementary Material).

The alluvial figures and heatmaps provide an overview of the magnitude of genetic effect from one
cluster to another. To further characterize concordance or discordance of genetic contributions across
phenotypes, we computed the pairwise SNP-based genetic correlations for each cluster (see
Supplementary Material). Fig. 4 presents those estimates for a subset of phenotypes within the
Metabolism and Immunity phenotype sets. In the Immunity set, the correlations between Rheumatoid
Arthritis (RA), Ulcerative Colitis (UC) and Crohn disease (CD) provide a striking illustration how the
genome-wide genetic correlation can be composed of smaller structures. The genome-wide genetic
correlations between UC and CD is strong (0.41), but near 0 and not significant for RA (see Table S3). In
Fig. 4B, we can yet notice a fairly large negative correlation in cluster 2 and 3 between RA versus CD or
UC, whereas, the cluster 5 captures a group of variants displaying strong positive correlation across the
three traits. Similar negligible genome-wide correlation along opposite genetic correlation across
clusters are observed in the Metabolism set. For example, variants from cluster 1 display strong
concordant effect between LDL and T2D, but variants from cluster 6 harbor an equally strong negative
correlation. Fig. 4 also highlights that significant genome-wide genetic correlation across highly related
phenotypes such as UC-CD and LDL-TG are not distributed evenly across variants.
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Biological meaning of genetic clusters

These distinct multitrait association profiles might arise because their variants belong to distinct
genetic functional groups. Understanding whether those genetic functional groups are only statistical
construction or correspond to meaningful biologically mechanism is critical. In the latter, it means that
data-driven approach, such as the one proposed in the present study, can be used to dissect the genetic
contribution of many complex human phenotypes. To assess this hypothesis, we conducted series of in
silico functional analyses with the objective of mapping clusters to candidate biological functions. For
each phenotype set, we evaluated two types of enrichment: tissue-specific chromatin mark enrichment
per cluster (Table $13), and pathway enrichment framework (Tables $14 and S15) which integrates
multiple databases such as Gene Ontology (GO) and KEGG. Here, we focused on the Immunity and
Metabolism sets as a case study.

For the Immunity set, clusters 1 and 4 are predominantly capturing genetic effect on bone-mineral
density; clusters 2, 3 and 5 effect on inflammatory bowel disorder (IBD); and clusters 6, 7 and 8 capture
variants with pleiotropic effects on rheumatoid arthritis and IBD (Fig. $26). Both enrichment analyses
pointed toward an overrepresentation of the immune system with all clusters —even the ones affecting
primarily bone-mineral density— being enriched for at least one immunologic pathway or one
immunological tissue. We highlight the top enriched tissues and top pathways in Table 1. Concerning
pathway enrichment, immune related pathways regulating the shape of the immune response such as
cytokines and the JAK-STAT signaling pathway were recurrent. Interestingly, variants from those clusters
map to a distinct set of cytokines and cluster of differentiation genes (e.g. IL4, I1L13, IL33 for cluster 1 and
IL3, IL5, IL10, IL19, IL20, IL21, IL27 for cluster 5) which suggests that they may impact different
components of the immune system. Concerning tissue-specific active chromatin mark enrichment,
clusters 2 and 3 contain multiple SNPs enriched primarily in transcriptionally active regions of “Primary
Natural Killer cells from peripheral blood” whereas cluster 7 and 8 are enriched for “Primary T helper
cells.” We also observed enrichment in the tissue where the immune damages occur for the cluster 5
(colonic mucosa) which highlight the complex interaction between the immune system and the inflamed
tissue.

The Metabolism set includes several molecular phenotypes, which we expect to be closer to
biological mechanisms than some of the macro-phenotypes from other sets. Overall, cluster 1 is mostly
associated to an increase of fasting glucose and an impaired B-cell function; cluster 2 is highly pleiotropic
and notably increases the risk of T2D, clusters 3 to 6 are mostly associated with lipids, and with LDL-TC,
HDL-TC-TG (Fig. 3). Accounting for the direction of effects, we also note that the genetic associations in
cluster 5 match the known phenotypic correlation with the inverse relationship between circulating
levels of HDL-C with those of LDL-C and more especially TG observed in epidemiological studies®. At the
tissue level, we observed modest enrichment for adipocytes in clusters 1 and 2 (FDR p-value 0.028 and
0.01 respectively, Table $13) and cluster 3 SNPs are up-regulated in the Liver (FDR p-value 0.005).

As shown in Table S14, each cluster was significantly enriched for a large number of GO terms. We
report some specific and illustrative examples: cluster 1 is enriched for carbohydrate homeostasis set (g-
value= 2.5 x 10°%), cluster 3 is enriched for reverse cholesterol transport set (g-value= 2.8 x 10™), cluster
4 is enriched for plasma lipoprotein clearance set (g-value= 1.7 x 10), cluster 5 is enriched for protein
lipid complex assembly set (g-value= 1.08x10°) and cluster 6 is enriched for low density lipoprotein
particle remodeling set (g-value= 1.07x107). Cluster 4 also exhibits active chromatin tissue enrichment
in immune T cells (g-value=2.3x10"%), highlighting the link between cholesterol and immunity. Indeed,
cholesterol as well as modified forms of cholesterol such as oxidized cholesterol and cholesterol crystals,
promote inflammatory and immune responses through multiple pathways including activation of the
Toll-like receptor (TLR) signaling, NLRP3 inflammasome and myelopoiesis35'36. While the promotion of
inflammation and immunity is carried by LDL particles, HDL particles were proposed to counteract this
effect in part through reverse cholesterol transport®’. However, cluster 3 which is enriched for reverse
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cholesterol transport did not exhibit such a tissue enrichment in immune T cells indicating that the link
between HDL and immunity may harbor more complexity, as recently pointed by out by Madsen et al*,

Metabolism pathways and diseases

To provide a perspective on the specificity of genetic variants across clusters and their potential
contribution to human diseases, we investigated the lipids from the Metabolism set. We first projected
each cluster gene onto KEGG pathways. Here, we used only maps corresponding to enriched GO gene
sets identified or to tissue identified in the enrichment analysis at the previous stages (Tables $14 and
S$15): fat digestion and absorption, cholesterol metabolism, PPAR signaling pathways. We constructed a
synthesis of these observations on the metabolic map presented on Fig. 5A-B. Genes associated to
clusters (Table $16) had functions in agreement with their effects on blood lipid levels: cluster 3 (HDL-
C++) is enriched in genes involved in HDL-C biogenesis and metabolism (LCAT, ABCA1, SR-B1, CETP, PLTP,
LIPG, APOAx and APOCx), clusters 4 and 6 with genes related to LDL-C clearance (SORT1, PCSK9, LDLR,
LDLRAP1, APOB and APOE), and cluster 5 to genes related to triglycerides and chylomicron transport
(LPL, APOAx and APOCx).

We then assessed the effect of variants from each cluster with three diseases known to be associated
with serum lipids: coronary artery diseases (CAD), stroke, and obesity (defined as a BMI > 30) (Table
§19). Within each cluster, we aligned the SNPs alleles with the main trend of the corresponding cluster,
so that all coded alleles fit the multitrait pattern defined in Fig. 5C (see Supplementary Material). For
example, all SNPs from cluster 5 were re-coded to be associated with an increase in TG, TC and LDL-C,
and a decrease in HDL-C. We plotted in Fig. 5D and in Fig. S31 the genetic effect of each SNP on the
three diseases (using effect on BMI as a proxy for obesity) after the aforementioned alignment, and
performed a sign test to assess the significance of the observed trend (Table $19). SNPs from several
clusters display a significant increase in risk of CAD: cluster 2 (P=6.6x10"), cluster 4 (P=2.9x107%), cluster
5 (P=3.9x10) and cluster 6 (P=2.8x10™). SNPs from cluster 2 also display a nominally significant increase
in risk of stroke (P-value =1.6x107). Finally, a large fraction of SNPs from cluster 3 has negative effect on
BMI (P =6.4x10"). Interestingly, several SNPs from this cluster show association with CAD, but with
heterogeneous effects —some associated with an increased risk and other associated with a decreased
risk— so the absence of a global trend. The associations of cluster 4 and 6 with CAD add to the evidences
of a causal effect of LDL-C on CAD*, which has been established by prospective epidemiological
studies®®, mendelian randomization*" and randomized clinical trials evaluating the effect of LDL-C
reducing therapies*. Moreover, cluster 5 association to CAD risks corroborates a potential causal role of
TG®> and remnant cholesterol**** on CAD. The role of TG in CAD has also been confirmed by
epidemiological studies®’, genome-wide association studies’, mendelian randomization studies*® and
randomized controlled trials aiming the lowering of TG*'. Cluster 3 which is associated with increases in
HDL-C does not have a protective effect on CAD is again in agreement with mendelian randomization
analyses reporting no link between HDL and CAD**2, Finally, the association of cluster 2 with CAD and
Strokes supports further the potential causal effect of type 2 diabetes on CAD and stroke®.

As a final exploratory analysis, we reported the cluster and multitrait genetic effect of genes targeted
to mitigate hyperlipemia to prevent CAD (Table 2). It shows that drug target corresponding to the
cluster 3 (ABCA1, CETP, NR1H3) did not lead to successful clinical trials whereas targets (PCSK9, NPC1L1,
APOC3, HMGCR) in cluster 4, 5 and 6 are mostly successful or promising. The example of the CETP gene
which is classified in cluster 3, a cluster not associated with CAD, is of particular interest. CETP has been
the target of failed clinical trials which attempted to prevent CAD by inhibiting CETP and consequently
increasing circulating HDL-C™*>*. Cholesteryl ester transfer protein (CETP) promotes the heteroexchange
of cholesteryl esters and TG between HDL-C and APOB-containing lipoproteins connecting HDL-C and TG
metabolism™. Pharmacological inhibition of CETP was motivated by GWAS® and prospective cohorts™
that indicated that CETP variants were associated with higher circulating HDL-C levels, lower LDL-C, TG
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and CVD risk. However, although all CETP inhibitors achieved an effective increase in HDL-C, only
anacetrapib led to a significant lower incidence of major coronary events> in patient who were
receiving statin therapy, an effect which might be accounted for the reduction of ApoB (non-HDL-C)
rather than the elevation of HDL as suggested by mendelian randomization analyses®. Additionally to
these well-known drugs, we provide a systematic listing of potential drug targets by cluster (Table S20)
based on the druggable genome database™.

Altogether, those results suggest that drug development might be more effective by accounting for
the gene context, i.e. by selecting candidate gene not from their individual feature, but based on the
disease association trend of genes displaying similar multitrait association profile. Under this working
hypothesis, the proposed inference of genetic functional groups can provide a means to identify those
genes and therefore to select potential candidates.

Discussion

In this study, we conducted a multitrait analyses of GWAS summary statistics from 36 human
phenotypes combining association tests and clustering to detect the shared and specific genetic
substructure underlying those phenotypes, and explore the links between those substructures and
biological pathways and diseases. The question of substructures underlying genome-wide genetic
correlation has been partially explored in other recent studies®'°. Our work is in agreement with these
studies, confirming the presence of regional genetic correlation differences and offering a data-driven
approach for identifying primary substructures across millions of possibilities. Using two complementary
functional enrichment analysis, we mapped these multitrait association profiles to pathways, and report
a detailed view of these profiles for the immunity and the metabolism phenotype set.

The variability in pleiotropy profiles across identified GWAS SNP has been previously discussed. For
example, earlier reports®® on inflammatory diseases have highlighted such patterns, or proposed
grouping of SNPs based on the direction of association®®. However, those studies used only a handful of
SNPs identified at the time of publication. Our analysis based on a formal clustering and functional
enrichment analyses, and using GWAS results perform in much larger sample size, offers a new and
much more detailed qualitative perspective on these profiles. More recent publications have also
discussed approaches focusing on the characterization of SNPs displaying pleiotropic effets®’, the
inference of shared and distinct genetic pathways between related phenotypes®, and on the
identification of genetic components linked to disease subtypes®*®>. Our approach shares objectives
with some of these methods but has also unique features and advantages. Approaches that rely on
individuals’ genotypes are limited by the ethical and practical cumbersome aspects tied to this type of
data®. Studies based on component decomposition techniques alike principal component analysis®>®?,
while being efficient as data compression techniques, yields endotypes based on components that are of
interest from a biological standpoint, but do not provide the SNP-level genetic decomposition that we
are addressing.

Past studies showed that sufficiently curated genetic information can enhance the chance of success
of clinical trials®*®>. We further argue that fine analysis of pleiotropic effects, as performed in the
present study, is a very promising path forward to help identifying drug targets with a minimal risk of
serious side effects. In particular, the picture of the links between coronary artery diseases risk and lipid
pathways inferred from our analysis are coherent with the state-of-the-art, while providing critical new
evidences. While the association of LDL-C and TG with CAD is largely documented®”®®, the relation
linking HDL-C with CAD is more complex as both low and high HDL-C levels have been associated with a
risk of cardiovascular disease and mortality®”*®. Recent studies pointed out that functionality of HDL
rather that the static measure of its circulating cholesterol level accounts for the relationship between
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HLD-C and CVD and mortality®®®®, with a potential role of HDL in the remnant cholesterol transport.
Overall, evidence for the presence or absence of a causal effect between lipid cholesterol measures and
CAD as reported by mendelian randomization analyses should be considered with caution as lipid traits
result from a complex interconnexion of multiple biological pathways. Our analysis suggests that the
genetic contribution to the established negative correlation between HDL-C and CAD might be driven
only by a subset of genes within a few specific genetic pathways. Under this hypothesis, drugs targeting
mechanisms outside these pathways would be ineffective in decreasing CAD risk.

A number of further analyses can be conducted base on the results we obtained. First, we focused on
a limited number of phenotype sets. Extending analyses to other sets of phenotypes might help refining
potential genetic functional groups and better characterize theirs link to biological mechanisms. To our
knowledge, there are no trivial solutions to solve the intrinsic combinatorial issue (i.e. one can build over
6x10™ sets of phenotypes from 36 GWAS). Also note that we worked with a data freeze dated from
December 2018. Hence, at the date of the publication of this paper, newer summary statistics are
available for few traits. We accounted for these new publications when counting newly identified
variants by filtering associations reported in the latest version of the GWAS catalogue. Another critical
component of our analysis is the methodological choices for clustering. Here we considered a Gaussian
mixture model, mainly to enable missing values and used BIC and silhouette for deciding the optimal
number of clusters. Other methods and alternative criteria might result in slightly different clusters.
Moreover, we assume that genetic variants belong to distinct clusters, but it is likely that some variants
belong to multiple biclogical pathways. Note that GMM provides posterior probability of cluster
assignment and has the potential to explore overlapping clusters, but better approaches might
potentially exist to address that specific question. Also, our implementation does not automatically
address the problem of allele coding (i.e. the choice of the coded allele) inducing, in some cases,
symmetric clusters which we had to merge a posteriori. Again, alternative approaches might offer the
possibility of solving this issue.

To summarize, we ensured the theoretical reliability of a panel of multitrait tests and demonstrated
their capacity to detect new associations on diverse set of traits. Considering independent significant
associations, we stratified SNPs in multitrait profiles corresponding to biological pathways. We believe
this stratification to be relevant for multiple applications ranging from functional annotation to drug
targeting.
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Online methods

Multivariate association test

Consider a vector z of K Z-scores statistics for a single nucleotide polymorphism (SNP) obtained from
standard univariate genome-wide association screenings of K phenotypes. Under the null hypothesis,
z = (2, ..., zg ) follows a normal distribution N(0,X;), where X is the residual phenotypic covariance
matrix (Supplementary Note), while under the alternative, z is expected to display additional covariance
due to shared genetics (defined by a genetic correlation matrix Xg). We first considered an Omnibus test
of the vector of Z-scores, which can be performed using the multivariate Wald statistics:

1

Tomni = th; z

where T,y follows a chi-square with K degree of freedom (df) under the null hypothesis of no
phenotype-genotype association. We also considered a classic weight-based test which defined as:

(w'z)?

T = —
sumZ WtZrW

where w is a vector of K weights applied to the Z-score. Under the null, T, follows a chi-squared
distribution with 1 degree of freedom. Note that this approach shares similarities with both standard
fixed effect meta-analysis'* and with dimensionality reduction methods (e.g. principal component
analysis®®). One can also note that the Omnibus statistics can be expressed as a combination of the sumZ
statistics over all eigenvectors of I, (Supplementary Note). We note v; the i eigen vector of Z,:
K
Tomni = Tsumz |lw =V
i=1

We considered four weighting schemes for the sumZ tests: (i) in the SumZ;, w is equal to the unit
vector so all traits have the same weight; (ii) in the SumZ, w is equal to the first eigen vector of X, so its
direction represents phenotypic correlation between traits, (iii) in the SumZ, w is equal to the first eigen
vector to X, so its direction represents genetic correlation between traits, (iii) in the SumZi, w is
computed by applying an Independent component analysis (ICA) to the complete matrix of Z-score. To
compute the weight vector w of the SumZ,., for a given phenotype set, the genome wide Z-score matrix
was extracted and an independent component analysis was performed with the scikit-learn python
package. The component yielding the most novel association was selected as loadings. We verified that
this selection procedure did not lead to an inflation under the null hypothesis by simulation (see Fig. $2).

Performing the omnibus test requires inverting the Z-score covariance matrix X.. When this matrix
does not have a full rank, we use a pseudo inverse of the matrix based on the singular value
decomposition (Supplementary Note). Briefly, as X is a variance-covariance matrix, it can be written
PDP' where D = diag((Ax)k=1.x), (Ax)x=1.x are the eigenvalues of X. and P is the orthogonal
matrix whose columns correspond to the eigenvectors of X,. If it is not invertible, only K’ eigenvalues
are different from 0 (where K’ denotes the rank of X;) and an inverse X1 of the matrix can be
computed as X; ' = P/Di Py, where Dl = diag((1/2;)—1.x") and Pgr denotes the K x K’
matrix whose columns are the K’ eigenvectors corresponding to the eigenvalues different from 0. Note
that the Omnibus statistics computed with .1 follows a y? distribution with K’ degree of freedom.

Characterization and validation of the multitrait tests

In simulation under an ideal situation, that is in the absence of missing data and knowing the true Z-
score covariance matrix under the null (X,), the two models show correct type | error rate (Figs S1 to
§2). Using both simulated data and over 330K individuals and 5 quantitative traits from UK Biobank
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cohort, we next show that in the specific case of complete sample overlap between GWAS, the omnibus
test is asymptotically similar to a MANOVA applied to individual level data (Figs S4 to S6 and
Supplementary Note). The major potential source of bias we identified is the misspecification of X,
which can lead to severe type | error inflation (Figs $7 and S$8). Comparing various approaches, we found
that X, can be accurately estimated using the LDscore regession® (Fig. $9), which was therefore used to
estimate X, along the genome-wide genetic correlation (X;) for the 36 phenotypes analyzed (Tables S2
and S3). Nevertheless, as X, depends on the sample overlap between traits, we found that even though
X, is correctly estimated, one can face invalid inferences for variants with statistics derived from a
smaller subset of individuals than the average, a common situation in consortium studies (Fig. $10). To
address this issue, we implemented additional tools to estimate the per SNPs sample size when missing
and subsequently filter the variants with heterogeneous sample size (Figs S11 and $12). Finally, another
challenging issue was the merging of multiple GWAS that have missing data. Indeed, out of 10 million
variants reported for some GWAS, fewer than 1,000 had complete summary statistics for all 36
phenotypes analyzed. While methods exist to impute missing GWAS statistics, they appear inaccurate
for multitrait analyses and we implemented an approach we recently developed to ensure valid
imputation for our context’ (Fig. $13). All pre-processing steps were also recently incorporated into a
publicly available toolset’*. After applying our pre-processing pipeline to all 36 GWAS analyzed, there
remained 6,978,319 SNPs with a missing data rate of 45% (59% before imputation).

Robust estimation of Z-score covariance

The validity of the proposed multivariate tests mostly relies on the accurate estimation of X.. In
practice, the covariance between Z-scores from null SNPs from two GWAS will deviate from O when
there is both sample overlap and correlation among the traits analyzed. When combining results from
two independent studies, or when the trait analyzed has negligible correlation, X, will be a diagonal
matrix, so that the Omnibus test can be performed by summing chi-squared statistics for each SNP to
form a K degree of freedom chi-square, and the sumZ test becomes a standard weighted meta-analysis
of fixed effect. Yet, in the large-scale GWAS era, this situation is unlikely as most of the large GWAS are
conducted in the consortium setting, where samples likely overlap across multiple GWAS. It follows that
X, can contain non-zero off-diagonal terms. Under the complete null model, the expected Z-score
covariance for null SNPs between two traits equals o, = pn,/+/n;n, where n, is the sample size of the
first study, n, is the sample size of the second study and p is the phenotypic covariance among the ny
overlapping samples (see Supplementary Note and e.g. *”*®). In some specific cases, one can obtain
these parameters directly from the data (e.g. when analyzing multivariate omics data). Conversely,
obtaining all four parameters (p, ny, n4, n,) from consortium GWAS based on dozen or even hundreds of
cohorts can be a practically daunting and risky task. Moreover, accurate phenotypic covariance
estimation would be particularly challenging when study-specific and trait—specific covariates
adjustment has been performed. Recent studies proposed to estimate X, using available SNPs from the
GWAS in question using all available single SNPs Z-score’” or using a random subset of pruned variants’?,
though some discussed removing GWAS hits™>, focusing on a subset of SNPs in regions less likely to
contain causal variants’®, or using tetrachoric estimator™®. The validity of these estimators mostly relies
on the assumption that the vast majority of the SNP effects in the genome are distributed under the null
hypothesis. While this is likely to be true in some cases, associated variants can potentially lead to either
upward or downward pairwise covariance between Z-scores. Instead, we leverage recent work by Bulik-
Sullivan et al*® that allows for estimation of this covariance (and the diagonal variance terms) under a
polygenic model and assuming multivariate normality of effect sizes across traits (see Supplementary
Note). The estimation of X was performed on Z-scores before the imputation step described in the next
section. For a few traits the estimated variance is markedly inferior to 1. As indicated in the LDSC
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regression method, this phenomenon happens when the original GWAS was corrected with a genomic
control factor.

Data pre-processing: an overview

The analysis of the 36 GWAS required substantial pre-processing, including the inference of several
parameters. First, for many publicly available GWAS, sample size per SNP was not readily available and
retrospectively collecting this information can be very challenging as it implies requesting this
information from each individual cohort. For such a situation, we propose inferring a proxy for missing
sample size as 1/(65[;05), where GEG is the variance of f3;, the estimated SNP effect, and 62 the
variance of the SNP, derived from the coded allele frequency which is either provided with the GWAS or
extracted from a reference panel (see Supplementary Note). For linear regression this approximate
NoZ2, where N is the true sample size and o2 is a residual variance of the outcome in the regression
model. For logistic regression our estimator is a proxy for the term Np(1 — p), where p is the in-sample
proportion of cases, and it therefore assumes that the proportion of cases is relatively stable across
SNPs with different sample size.

Another challenging issue was the merging of multiple GWAS with different set of assayed SNPs.
Indeed, out of 10 million variants reported for some GWAS, fewer than 1,000 had complete summary
statistics for all 36 phenotypes analyzed. We performed an imputation of missing Z-scores in each study
using the RAISS”® method we recently developed. The approach uses correlation between SNPs to
predict Z-score at missing SNPs using available ones and achieves a level of imputation accuracy suitable
for multitrait analysis (Supplementary Note). Here we used the European panels from the 1,000
Genomes project’”” as a reference for the estimation of the correlation between SNPs. Overall,
imputation did not lead to any observable inflation of the omnibus statistic (Fig. $13). Nevertheless, as a
supplementary quality control (QC), we excluded significant SNPs that were not surrounded by SNPs in
linkage disequilibrium with significant or near significant p-values (P < 10'®).

These two parameter inferences were integrated along other pre-processing operations into a
pipeline that is fully described here’. Given a reference panel with no ambiguous strand, it consists in
the following steps (i) Extract, the coded and alternative alleles, signed statistics (regression coefficient
or odds ratio), standard error, p-value, and sample size ; (ii) Remove all SNPs that are not in the
reference panel ; (iii) Derive Z-score for each SNP from signed statistics and p-value ; (iv) Infer sample
size when not available ; (v) Remove all SNPs whose sample size is less than 70% of the maximum
sample size ; and (vi) Infer missing Z-scores statistics based on the 1K genome reference panel. After
applying our pre-processing pipeline to all 36 GWAS analyzed, there remained 6,978,319 SNPs with a
missing rate of 45% (59% before imputation).

Characterization of new loci

To determine new and existing trait-associated loci we used genome regions formed by linkage
disequilibrium (LD) blocks as defined in Berisa et al’’ using a reference panel of individuals of European
ancestry. It included a total of 1,704 independent regions ranging from 10 kb to 26 Mb in length, with an
average size of 1.6 Mb. For each independent LD region, we extracted the minimum p-value over all
SNPs contained in the region, and a single univariate analysis p-value defined as the minimum across all
single phenotype GWAS and all SNPs in the region. We consider that a region is newly detected by a
multitrait test if the joint analysis p-value is genome-wide significant while its univariate p-value is not
(joint analysis p-value < 1x10°® and univariate p-value > 1x 10°®). We determined SNPs carrying the signal
inside significant region with the plink “clump” function using the following parameters: --clump-p1, 10°
& —-clump-r2, 0.2. We kept the lead SNP by clump for further analysis (gene mapping and clustering).
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To report associations exclusively detected in the current report (Table S4 to S10), we filtered out
association present in the GWAS catalogue® at the date of the 14" of September 2020 (univariate p-
value > 5x 10°®) for traits corresponding to our phenotype set. The following trait labels were used to
retrieve associations : (Metabolism set) ‘Fasting blood glucose’, ‘Triglycerides’, ‘LDL cholesterol’, ‘LDL
cholesterol levels’, ‘HDL cholesterol’, ‘HDL cholesterol levels’, ‘Total cholesterol levels’, ‘HOMA-B’,
"HOMA-IR’, ‘Hemoglobin Alc levels’, ‘Type 2 diabetes’; (Psychiatric set) ‘Schizophrenia’, ‘Bipolar
disorder’, ‘Major depressive disorder’, 'Alzheimer's disease’, ‘Educational attainment’; (Anthropometry
set) ‘Height’, ‘Waist circumference’, ‘Waist-hip ratio’, ‘Body mass index’, ‘Hip circumference’; (Immunity
set) ‘Bone mineral density’, ‘Rheumatoid arthritis’, ‘Ulcerative colitis’, ‘Inflammatory bowel disease’,
Crohn's disease’, ‘Asthma’; (Cardiovascular set) ‘Coronary artery disease’, ‘Ischemic stroke’, ‘Large
artery stroke’, ‘Stroke’, ‘Atrial fibrillation’, ‘Heart rate’, ‘Heart rate variability traits’; (Composite set)
‘Body mass index’, ‘Waist-hip ratio’, ‘Triglycerides’, ‘LDL cholesterol’, ‘LDL cholesterol levels’, ‘HDL
cholesterol’, ‘HDL cholesterol levels’, ‘Total cholesterol levels’.

FUN-LDA tissue enrichment

We computed enrichment for SNPs belonging to regions of open chromatin (more likely to contain
expressed genes’®’®) in specific tissues in three cases: i) when comparing results across phenotype sets,
ii) when comparing univariate results, and iii) when comparing results across clusters. For all analyses we
used functional annotations on 127 Roadmap tissues and cell lines defined by integrating activating
histone marks (H3K4mel, H3K4me3, H3K9ac, and H3K27ac) with a latent Dirichlet allocation model as
implemented in FUN-LDA®’. The enrichment score for a tissue is based on the number significant SNPs
compared with the total number of SNPs in open chromatin region (see Supplementary Note).
Enrichment results are reported in Tables S11 to S13.

Multitrait genetic association clustering and selection of the optimal number of clusters

We performed a clustering of top associated SNPs for each phenotype set using a Gaussian Mixture
model (GMM). One major difficulty in applying the GMM was to deal with incomplete data. Indeed,
even after imputation of some missing statistics, our datasets still contained some missing values. To
solve the clustering, we implemented the statistical framework described by Ghahramani et al** which
we recently implemented in a R package MGMM?®. The model gives for each SNP the posterior
probabilities to belong to each cluster, and was therefore assigned to its most likely cluster, as long as its

entropy was larger than 0.75. For a given variant SN P;, the entropy was derived as follow:
k

S(SNP) = Z P(SNP; € clusterj) X log (P(SNP; € cluster;))

j=1
where k is the total number of clusters and P(SNPi € clusterj) is the posterior probability of SNP; to
belong to cluster j. The higher the entropy the more the SNP attribution to one cluster is ambiguous.
SNPs with an entropy higher than 0.75 were filtered out of the clustering results.

Clustering was performed on all independent significant SNPs. For each SNP, we defined three p-
values on the phenotypic group traits: the minimum univariate p-value (P), the SumZz, p-value and
the omnibus p-value. All SNPs with at least one of the three p-value under 10 were selected for further
analysis. For the Metabolism univariate clustering, we only considered the univariate p-value to perform
the selection. We then applied the plink¥ clump function to retrieve practically independent
associations using the 0.2 as clump-r2 parameter and 10 as clump-p1 parameter. For each clump we
selected a representative SNPs as the one with the smallest p-value across the three tests and having
more than 60% of its values observed. Note that for a negligible number of occurrences, the
representative SNPs has a p-value above 10 (Table $15 and Table $16). We applied MGMM within each
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phenotype set and varied the pre-specified number of clusters between 2 and 10. To select the optimal
number of clusters k, we performed the clustering 100 times on a random subset of 80% of the SNPs for
each k. For each resulting clustering we computed the Bayesian Information Criteria and the
Silhouette® (see Figs $22 and S$23). Except for the Metabolism set, the silhouette appears conservative
and the BIC criterion anticonservative, i.e. the latter criteria tends to select a larger number of clusters.
We decided to use the following ad hoc compounded criterion:

1. If the optimal number of clusters determined by the BIC criteria is higher than the one determined
by the silhouette criteria, starting from the silhouette optimal, increase the number of clusters until
one of these two conditions is met: 1) adding one cluster significantly decrease the silhouette
criterion, 2) the BIC optimal number is reached.

2. In other cases, set the optimal number of clusters to the one determined by silhouette.

Cluster genetic correlation

We defined pairwise genetic covariance per cluster for as pg ciuser= BiB,/M where B, and j3, are
the vector of genetic effects for the pair of phenotypes considered and M is the number of SNPs in the
cluster. To estimate properly this quantity from the observed 3, we accounted for the bias introduced
by sample overlap and phenotypic correlation using the following estimator (see supplementary notes):

E(Bi'B:) n,
E(B1"B2) = (;,, 2)—npy

nyn,;

where py is the phenotypic covariance, and ng , n; and n, are respectively the sample size shared
between the two traits, for the trait 1, and for the trait 2. To assess whether the estimated genetic
covariances are significantly different from zero, we performed for each pair of phenotypes within each
. 5 B nsp .
cluster, a t-test on the vector of random variables (X3, X; ,..., Xy), were X; = B; 10, — ﬁ is the

contribution of SNP j to the covariance. Note that we used only independent SNPs selected using LD-
clumping with squared-correlation parameter equals 0.2.

Functional enrichment of metabolism clusters

We used FUMA® SNP2GENE function to associate SNPs with genes based on two criteria, the
physical position (in 30kb radius of a protein coding gene) and eQTLs (all significant cis-eQTL from GTEx
up to a distance of 1Mb). Note that we restrained the eQTLs to the one that were found in relevant
tissue for the Immunity and Metabolism set: immune cells for Immunity and adipose, intestine, liver and
brain tissues for Metabolism (see Supplementary Data 1 for complete parameters). After chaining genes
to clusters based on SNPs, we performed a functional enrichment for pathways defined in KEGG® and
GO® databases and derived report p-values using FUMA GENE2FUNC function. Here, cluster’s gene
were compared against a background of protein coding genes. Finally, we used the R package
pathview® to project genes onto KEGG pathways maps.

Disease-clusters association

For the metabolism phenotype set, to provide an indicator of the relative contribution of genetic
variants to phenotypes in each cluster from the Metabolism set, we performed a principal component
analysis (PCA) of the SNP-by-phenotype association matrix within each cluster. For this analysis, we used
scaled beta coefficients, i.e. Z-scores divided by the square root of the phenotype GWAS sample size. To
avoid bias in due to the arbitrary choice of the coded allele, we randomly shuffled 20 times the coded
allele, and repeated the PCA after each shuffling. We report in Fig. 5, the average of the loadings of the
first PC over all shuffling. Note that the first PC only provides the multidimensional direction explaining
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the largest variance and therefore do not fully capture the distribution of genetic effect within each
cluster. Nevertheless, those first PCs explained a substantial amount of the total variance, equal to 75%,
38%, 53%, 64%, 80% and 93% of the variance in betas for cluster 1 to 6, respectively.

Then, we assessed the association between SNPs within the inferred cluster and three traits (none of
which being included in the Metabolism set): cardiovascular diseases, any stokes and BMI. SNP alleles
were aligned according to the first principal by clusters determined in the last section. We applied a sign
test to assess the concordance of the sign of the projection on PC1 and the sign of Z-score for on the
three tested additional traits. For this analysis we used more stringent criteria to ensure the SNPs
independence. We selected the subset of Metabolism SNPs for which linkage disequilibrium does not
exceed 0.2 (clump-r2 set to 0.05), which diminishes the number of SNPs considered from 391 to 285.
Concerning the association of SNPs to drug target, we associated drug target to a representative SNPs by
selecting the SNP with the lowest entropy and having a positive silhouette.
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Figures
Figure 1. Analysis overview

The diagram below presents the overall analysis pipeline. A total of 36 GWAS were included covering
several common diseases and quantitative traits. All GWAS summary statistics went through extensive
pre-processing and quality control filtering, and missing single SNP statistics were imputed when
possible. Multitrait approaches were then applied to all clean GWAS data and on each clinically based
set (All, Immunity, Metabolism, Brain, Cardiovascular, Anthropometry, and Composite). After combining
univariate and multivariate results, and merging SNPs within locus, a total of 6,767 associations were
identified. After a comparison of results per approach, a clustering analysis was performed for variants
within each set. Finally, we performed in-silico functional analysis of the clusters derived in the
Metabolism set to assess their biological relevance.
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Figure 2. Multitrait approach comparison

Panel (A) shows independent variants detected across the six approaches: univariate test {univ),
omnibus test (omni), weighted sum of Z-score with uniform weight (sumZ;), weight defined as the
loading of the first principal component of the phenotypic correlation (sumZ,), the genetic correlation
(sumz,), or defined using the loadings of an independent component analysis (sumZc,). Each line
corresponds to a test and each column to a set of significant variants. For each set, the test for which
variants are significant are represented with a black dot on the test line. The barplot at the left
represents the total number of significant independent signals detected by each approach. The stack bar
at the top represents the cardinality of the sets. The next panels show the link between strengths of
univariate association signal and the relative performance (i.e. larger power) of the four most tests: univ,
omni, sumZ,, and sumZ,, for each phenotype set: anthropometry (B), cardiovascular (C), immunity (D),
metabolism (E), brain (F), composite (G), and all phenotypes (H). Within each phenotype set, we split the
top associated SNPs per region based on the most significant test, and derived the median chi-squared
for each test. The radar plots show the derived median per test and illustrate the strong heterogeneity
in patterns identified. For example, out of the 1605 SNPs from the anthropometry set, 1235 had
stronger signal with univ as compared with other tests. The median chi-squares in that group were 49.1,
1.1, 2.0, 1.0, and 0.7 for height (Height), body mass index (BMI), hip circumference (HipC), waist
circumference (WaistC), and waist to hip ratio (WHR). Comparatively, the 267 SNPs harboring a stronger
signal with omnibus, had median of 6.8, 20.1, 15.9, 11.2, and 7.2 for the same phenotypes.
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Figure 3. Multitrait genetic association clusters for the Metabolism set.

The panels summarize the clustering of the 392 independent SNPs selected from the Metabolism set
analysis. The set includes 10 phenotypes: triglyceride (TG), total cholesterol (TC), type 2 diabetes (T2D),
low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), glycated
hemoglobin (HbAlc), Homeostasis model assessment of [@-cell function (HOMA-B), homeostasis model
assessment of insulin resistance (HOMA-IR), fasting insulin, and fasting glucose. The alluvial plot in panel
A) represents the decomposition of univariate genetic association and its rewiring to the six inferred
clusters. The flow widths represent the proportion of phenotype’s variance explained by the subset of
SNPs assigned to each specific cluster, relative to the total genetic variance explained by all 392 SNPs.
For example, SNPs from cluster 6 capture approximatively 41.7% and 54.6% of that genetic variance for
TC and LDL, respectively. For clarity, flows explaining less than 0.1% of the variance are not represented.
Panel B) shows the heatmap of normalized beta coefficients per phenotype within each cluster. Each
column is a SNP, with blue and red colors indicating negative and positive beta, respectively. Coded
alleles have been defined according to the per cluster first principal component. The boxplots in panel C)
shows the distribution per cluster of SNP’s entropy, an indicator of the fitness of the SNP-cluster
assignment. SNPs perfectly assigned are expected to have entropy close to zero.
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Figure 4 Heterogeneity of genetic correlation across clusters for the Metabolism and Immunity sets.

We derived the genome-wide genetic correlation between phenotypes using LDscore regression and
using Pearson correlation from all SNP Z-scores (top panels), and for SNPs within the identified clusters.
Results for the Metabolism set are presented in panel (A) using only the four key traits, LDL, HDL,
Triglyceride (TG) and type 2 diabetes (T2D). Results for the Immunity set are presented in the panel (B).
For clarity only significant correlation are represented. The boldness of the line is proportional to the
strength of the genetic correlation. Positive correlations are represented in blue and negative
correlations in red. The values of the genetic correlation are indicated by the blue number next to the
trait. Solid lines represent significant correlation (after Bonferroni correction) whereas dashed lines
represent correlation significant only before Bonferroni correction. Note that because the clusters are
inferred from the multivariate associations, the absolute value of the significance of the correlations is
of limited interest. Nevertheless, it provides a useful descriptive statistic to identify the key structures
within each cluster.
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Figure 5. Mapping clusters to pathways

We projected cluster’s genes from the Metabolism phenotype set onto KEGG pathways and
reconstructed a synthetic metabolic map. Panel A) presents the results for the lipoprotein component
and panel B) for the lipid component. Gene names are highlighted by the colors of their associated
clusters. When a gene is associated to several SNPs belonging to different clusters it is represent with
several colors. To improve interpretation, we also present in panel C) a proxy for the relative
contribution of each phenotype per cluster, defined as the loadings of the first principal component
derived from the matrix of Z-score for the subset of SNPs in that cluster. Finally, panel D) shows the
distribution of standardized beta for association between SNPs from each cluster and three diseases:
any stroke (AS), coronary artery disease (CAD), and obesity (using body mass index as a proxy).
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Tables

Table 1. Top tissue associations and Immune related Genes by Clusters for the Immunity set.

Cl #SNP® #igene Top GTEx Tissue (g-val) Top Immunologic (g-val) Immunity related genes
. b pathways

IL4, IL13,IL33, STAT6, TNFSF11, TSLP,

-3
1 32 55 - - GO _CYTOKINE ACTIVITY (1.9 x107) FAM3C, TNFRSF11B

Primary Natural Killer
2 40 55 cells from peripheral (6.2x10'5)
blood

KEGG JAK STAT SIGNALING
PATHWAY

IL10, IL12B, IL3, IL4, IL5, IL13, IL19,
IL3,IL12RB2, IL23R, CSF2

(1.9x10%)

IL3, IL26, IFNG,IL12RB2, IL17REL,
KEGG _JAK STAT SIGNALING (6'2)(10,7) IL23R, IFNGR2, CD244, CD274,
PATHWAY STATSA, STAT3, LIF, OSMR, CSF2,
CCL13, CCL1, TNFSF15, TNFSF8, JAK2

Primary Natural Killer
3 83 190 cells from peripheral (2.8x10'4)
blood

Bone Marrow Derived

Cultured . KEGG JAK STAT SIGNALING IL2, IL21, IL1R1, IL1RL2, CSF3, STAT3,
4 39 96 3.5x10 0.020,
Mesenchymal Stem (3:5x10°) PATHWAY ( ) SPRY1, TSLP
Cells
IL3, IL5, IL10, IL19, IL20, IL21, 1L27,
. 5. GO_IMMUNE SYSTEM_ PROC g IL12RB2, IL18R1, IL1R2, IL1RL1, IL23R,
5 170 430 Colonic Mucosa (7.5 x107) ESs (1.8 x107) D19, CCL2, CCL7, CCL11, NOD2,
TNFRSF9, JAK2
6 90 198 -- GO _IMMUNE_RESPONSE (1.3x10’7) ILF3, IL12RB2, IL18RAP, IL23R,

CD28,CD40, C5, STAT4, STAT1, TYK2

Primary T helper naive
7 20 18 cells from peripheral (7.5 x107) - -
blood

Primary T helper
8 121 59 memory cells from (2.5x10™) - IL6R, TNFAIP3
peripheral blood 2

Cluters (Cl.) not mapping to neither tissues nor pathways are indicated by a “-” sign. All reported p-value are FDR corrected.

? Count includes only the most associated SNP per region. ®Count of genes mapped to SNPs.
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Table 2. Drug target genes and associated SNPs in the metabolism set

Target® Drug (phase) rsID Clu. SNP-phenotype association® Comment

HDL LDL TC TG CAD AS BMI

ABCA1 Probucol (4) rs11789603 3 770 16 466 2.07 142 0.25 -1.50 ThisLDL-c lowering drug was approved but
subsequently discontinued because of its
lowering effect on HDL-c

Cetrapid (4) rs12448528

CETP 3 27.79 -461 496 -4.60 0.25 -0.28 1.21 Three clinical trials were halted because they
showed adverse effect and/or no therapeutic
efficacy, except in the case of anacetrapid use
for preventing new acute coronary events in
high-risk individuals.

NR1H3  HDCA (1) rs12575609 3 9.11 -0.19 1.89 -3.26 0.76 0.06 -3.9 The RCT results were not produced due to
AtheroNova Inc. bankruptcy.

PCSK9 alirocumab, rs7523242 4  -1.16 10.49 9.28 1.92 3.25 1.03 -0.29 Approved second line treatment for high
Evolocumab (4) cholesterol individuals whose cholesterol is
not controlled by Statin alone.
Ezetimibe (4) rs217386 .
NPC1L1 4 -0.80 6.60 5.96 2.44 2.19 0.86 -1.47 Currently used to lower the absorption of
cholesterol and is often used in association
with statin.

APOC3, Volanesorsen (3) rs1815787 5 -2.09 545 941 16.60 0.39 0.26 0.614 A triglyceride-reducing drug currently in phase
APOA1 3 RCT.

HMGCR Statins (4) rs59014134 6 0.79 15.79 16.06 1.34 2.01 -0.36 -4.59 The most common cholesterol lowering drugs.

APOB Mipormersen (4) rs1041968 6 -6.96 22.94 20.92 9.38 2.45 -1.20 -1.75 Can be used for risk management in familial
hypercholesterolemia but can cause fatty liver
disease.

°Note that for probucol, the molecule inhibit ABCA1, but is not specific to ABCAL.
bPrimary associated SNP and corresponding cluster. But note that for several loci, there is a few other SNPs from other cluster.

‘Define as the association Z-score for the most associated variant in the gene..
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