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Abstract 1 

Understanding the genetic architecture of adaptive phenotypes is a key question in 2 

evolutionary biology. One particularly promising approach is Evolve and Resequence 3 

(E&R), which combines advantages of experimental evolution such as time series, replicate 4 

populations and controlled environmental conditions, with whole genome sequencing.  5 

The recent analysis of replicate populations from two different Drosophila simulans 6 

founder populations, which were adapting to the same novel hot environment, uncovered 7 

very different architectures - either many selection targets with large heterogeneity among 8 

replicates or fewer selection targets with a consistent response among replicates.  9 

Here, we exposed the founder population from Portugal to a cold temperature regime. 10 

Although almost no selection targets were shared between the hot and cold selection 11 

regime, the adaptive architecture was similar: we identified a moderate number of loci 12 

under strong selection (19 selected alleles, mean selection coefficient = 0.072) and very 13 

parallel responses in the cold evolved replicates. This similarity across different 14 

environments indicates that the adaptive architecture depends more on the ancestry of the 15 

founder population than the specific selection regime. These observations have a 16 

pronounced impact on our understanding of adaptation in natural populations.  17 
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Introduction 18 

Adaptation of natural populations to environmental change may either occur from standing 19 

genetic variation or by the acquisition of new mutations. The relative importance of these two 20 

paths crucially depends on the underlying adaptive architecture (Barghi et al. 2020) of the focal 21 

trait. The adaptive architecture differs from the genetic architecture, which is inferred by QTL 22 

mapping and GWAS, by accounting for pleiotropic constraints as well as for the large body of 23 

deleterious mutations (Gazal et al. 2017; Zeng et al. 2018). Depending on the context, two 24 

different aspects of the adaptive architecture are emphasized. The focus is either the identity of 25 

specific loci/SNPs or the general characteristics of the adaptive architecture characterized by the 26 

number of contributing loci and their effect sizes and frequency in the focal population (Barghi 27 

et al. 2020). 28 

Contributing loci are either identified by QTL/GWAS studies (Flint and Mott 2001; McCarthy et 29 

al. 2008) or with genomic selection scans, which apply statistical tests to detect selection 30 

signatures from population polymorphism data (Storz 2005; Vitti et al. 2013). Some selection 31 

scans assume that selection targets are shared among populations exposed to the same 32 

environment, because such parallel signatures provide additional statistical support (Turner et al. 33 

2010; Lee and Coop 2017; Harris and DeGiorgio 2020). Many selection targets were 34 

successfully identified with these strategies and have contributed to our understanding of the 35 

molecular basis of adaptation processes (e.g. Turner et al. 2010; Jones et al. 2012; Roesti et al. 36 

2014; Reid et al. 2016; Johnson and Voight 2018). It is, nevertheless, not apparent to what extent 37 

these results can be generalized, because most adaptive traits have a polygenic basis (Barton and 38 

Keightley 2002; Sella and Barton 2019) and either only small allele frequency changes (Sella 39 

and Barton 2019) or non-parallel responses are expected (Barghi et al. 2020).  40 

The key concept of polygenic adaptation is that multiple loci are contributing to the phenotype, 41 

and rather than focusing on particular loci, the collective effect of all loci needs to be considered 42 

to estimate the phenotypic value of a given trait. This has important implications for the 43 

understanding of the adaptive architecture (Barghi et al. 2020). 44 

The infinitesimal model (Fisher 1918; Bulmer 1971; Barton et al. 2017) is the most extreme case 45 

of polygenic adaptation and is frequently approximated by very many contributing loci, each of 46 
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very small effect. When many loci are contributing to a phenotype under stabilizing selection, 47 

any selection regime changing the trait optimum will result only in very small allele frequency 48 

shifts (Bulmer 1971; Sella and Barton 2019) - almost impossible to detect with classic 49 

population genetic tests (Pritchard et al. 2010; Field et al. 2016; Jain and Stephan 2017a).  50 

Even when these conditions are relaxed and a distribution of effect sizes with some large effect 51 

alleles is considered, no pronounced allele frequency changes are expected when the populations 52 

are large and in mutation selection equilibrium: alleles with large effects are segregating at low 53 

frequencies only and do not contribute much to the phenotypic variance of the population upon 54 

which selection is operating (de Vladar and Barton 2014; Jain and Stephan 2017b). Theory 55 

predicts that as the pool of contributing loci to the selected phenotype becomes smaller (i.e. a 56 

decreased mutational target), larger allele frequency changes are expected that will progressively 57 

be detected in population genetic analyses (Höllinger et al. 2019). Therefore, traits with an 58 

intermediate number of contributing loci are particularly interesting, because the response of 59 

these loci can be sufficiently strong to be detected in experiments while, at the same time, being 60 

informative about polygenic adaptation: more loci are segregating in the population than 61 

required to reach a new trait optimum (i.e. genetic redundancy). 62 

The consequence of this genetic redundancy is that the contribution to the phenotype can be 63 

highly heterogeneous for individual loci in differentiated populations if they vary in frequency. 64 

This expectation nicely conforms with empirical data, mostly from QTL studies, which find 65 

heterogeneous sets of contributing loci among different populations (Adeyemo et al. 2009; Wu et 66 

al. 2013; Al Olama et al. 2014; Li and Keating 2014; Conte et al. 2015; Horikoshi et al. 2018; 67 

Takata et al. 2019; Wojcik et al. 2019; Zan and Carlborg 2019; Hodonsky et al. 2020). In the 68 

case of adaptation to a new trait optimum, genetically differentiated populations will adapt by 69 

frequency changes of different sets of loci. Hence, for polygenic adaptation the identity of 70 

individual selected loci is not very important to describe the adaptive architecture, rather 71 

information about the number of loci, effect sizes and frequencies are needed to understand the 72 

selective response.  73 

Selection signatures not shared among natural populations are difficult to interpret, as the 74 

distinction between population-specific selection targets and false positive/negative signals can 75 
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be challenging given the high impact of a largely obscure demography on selection signatures 76 

(Jensen et al. 2005; Stajich and Hahn 2005; Li et al. 2012; Lohmueller 2014; Pavlidis and 77 

Alachiotis 2017; Johri et al. 2020). Experimental evolution, in contrast, provides the advantage 78 

of replicate populations, which evolve from the same founder population under controlled 79 

experimental conditions (Kawecki et al. 2012). The potential of experimental evolution to study 80 

the genomic signatures of polygenic adaptation has, however, not yet been fully exploited since 81 

most studies apply truncating selection. Thus, the contributing alleles experience continued 82 

selection pressure throughout the entire experiment, causing a parallel selection response in the 83 

replicate populations towards an extreme phenotype. Laboratory natural selection is a specific 84 

experimental evolution design, where the evolving populations are exposed to a new 85 

environment (Garland and Rose 2009). In contrast to truncating selection, populations are 86 

expected to reach a new phenotypic optimum. In combination with whole genome sequencing, it 87 

provides an interesting approach to study the adaptive architecture experimentally.  88 

Two previous experimental evolution studies conducted in the same novel hot laboratory 89 

environment revealed very different adaptive architectures (Mallard et al. 2018; Barghi et al. 90 

2019). In the Portugal experiment, five strongly selected genomic regions were identified and 91 

this selection signal was highly parallel across replicates. For the Florida experiment, 99 92 

selection targets were identified and considerable heterogeneity was observed between the 93 

replicates. One possible explanation for this different adaptive architecture is that the ancestral 94 

trait optima differed between the two founder populations (Barghi and Schlötterer 2020), leading 95 

to a more intense selection in the Portugal experiment, because it was less well adapted than the 96 

Florida founder population to high temperatures. Alternatively, more large effect alleles may 97 

have been segregating at higher frequencies in the Portugal founder population. 98 

Here, we exposed replicate populations of the Portugal founders to a cold temperature regime to 99 

shed more light on the different selection responses. Interestingly, we found very little overlap 100 

between the genomic position of the selection targets in the hot and cold temperature regimes. 101 

Most large effect loci detected in the hot environment did not respond in the cold, suggesting that 102 

hot and cold temperature adaptation may be different traits, rather than a simple shift in optimum 103 

of the trait 8temperature adaptation9. Nevertheless, adaptation to both, hot and cold, temperature 104 
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regimes had a very similar adaptive architecture - with a comparable number of selection targets 105 

and effect sizes. We conclude that the adaptive architecture differs between populations and may 106 

be trait independent. We discuss to what extent this phenomenon can be explained by the 107 

infinitesimal model. 108 

 

Results 109 

We studied the genetic architecture of cold adaptation in Drosophila simulans by combining 110 

experimental evolution with whole genome re-sequencing (Evolve and Resequence, E&R). Five 111 

replicate populations originating from the Portuguese founder population described by Mallard et 112 

al. (2018) evolved for more than 50 generations (about four years) in a cold temperature regime 113 

with daily fluctuations between 10°C and 20°C. Genome-wide allele frequencies were 114 

determined in 10 generation intervals by sequencing pools of individuals (Pool-Seq (Schlötterer 115 

et al. 2014)). Contrasting generation 0 with 51 we identified 6,527 SNPs, which changed in 116 

frequency more than expected by genetic drift either across all five replicates (adapted CMH test 117 

(Spitzer et al. 2020), 6,510 SNPs) or at least in one replicate (adapted Ç2 test (Spitzer et al. 2020), 118 

additional 17 SNPs). The X chromosome harbored only 142 SNPs. Such a low number of 119 

candidate SNPs on this chromosome was not seen in other Drosophila E&R studies that 120 

observed similar numbers of candidate SNPs on the X chromosome and autosomes (Jha et al. 121 

2015; Jha et al. 2016; Barghi et al. 2019; Kelly and Hughes 2019; Michalak et al. 2019). 122 

The pronounced peak structure in the Manhattan plot (Figure 1A) indicates that many candidate 123 

SNPs are not independent due to linkage (Nuzhdin and Turner 2013; Franssen et al. 2017a). We 124 

accounted for this and employed a correlation-based haplotype reconstruction approach to 125 

identify independently selected haplotype blocks based on their distinct trajectories (Franssen et 126 

al. 2017a; Otte and Schlötterer 2017) and treated each of these haplotype blocks as a single target 127 

of selection (Barghi et al. 2019).  128 
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Figure 1: Manhattan plots of the genomic selection signature in response to cold temperature.  129 
A) p-values were obtained from an adapted CMH test (Spitzer et al. 2020) comparing the founder 130 
generation (F0) to the most advanced (F51) generation. The dotted line indicates the significance 131 
threshold (p-value < 0.05 after correction for multiple testing). B, C) A close up of the Manhattan plot in 132 
panel A for chromosomes 2 and 3. Each selected haplotype block and the corresponding candidate SNPs 133 
are shown in a distinct color. Numbered bars above the Manhattan plot indicate the position of the 134 
selected haplotype blocks. Some blocks, which can be further subdivided by the analysis of earlier time 135 
points, are labeled with letters (e.g. 10a, 10b etc.). SNPs with significant allele frequency changes in both, 136 
hot and cold, selection regimes (shared SNPs) are colored in dark red. 137 
 

 

Selected haplotype blocks in the cold-evolved D. simulans population 138 

Because the small number of candidate SNPs precluded haplotype block reconstruction on the X 139 

chromosome, all 15 haplotype blocks were identified on the major autosomes (Figure 1B, 1C). 140 

The size of the haplotype blocks ranged from 5 kb to 6 Mb. Three of the 15 blocks were located 141 

on chromosome 2 while all others fell on chromosome 3. 142 

The 15 selected haplotype blocks were identified by clustering SNPs with similar allele 143 

frequency trajectories in the five replicates and six time points. A conservative assumption is that 144 

each of the selected haplotype blocks contains one selection target. Nevertheless, multiple 145 

selection targets can recombine during the experiment onto a single haplotype block, which 146 

outcompetes the individual parental haplotype blocks (Otte and Schlötterer 2019). Such 147 

multiple-target haplotypes will dominate the later phases of the experiment and are considered as 148 

a single selected haplotype. To identify such cases, we repeated the haplotype block 149 

reconstruction with fewer generations - four time points up to generation 31 - and found that two 150 

reconstructed haplotype blocks could be further broken up: block 4 and 10 were split into three 151 

different blocks each (4a, 4b, 4c and 10a, 10b, 10c, see Figure 1C). This observation confirms 152 

that the number of inferred independent haplotype blocks is a conservative estimate of the 153 

number of selection targets, and we used the sub-blocks for subsequent analyses whenever 154 

applicable, analyzing a total of 19 selected alleles.  155 

Selected haplotype blocks are characterized by a set of marker SNPs which show correlated 156 

allele frequency trajectories across replicates. Nevertheless, the correlation is not very stringent 157 

to account for sequence diversity among the haplotypes carrying the selection target (Otte and 158 
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Schlötterer 2019). Hence, not all of the haplotype block marker SNPs describe the frequency 159 

trajectory of the (unidentified) selection target equally well. Reasoning that SNPs with the most 160 

pronounced allele frequency change are the best representatives of the selection target, we used 161 

the 10% most significant marker SNPs of each haplotype block and refer to them as the selected 162 

allele. The frequency of each selected allele at every time point is determined as the median 163 

frequency of these 10% most significant SNPs. We used only replicates with a selection 164 

coefficient large enough to be significantly different from neutrality (p-value < 0.05), therefore 165 

we excluded replicates in which a given selected allele did not increase in frequency. The 166 

starting frequencies were highly variable among the 19 selected alleles. We detected selected 167 

alleles with starting frequency as low as 0.06, but also as high as 0.4 (Figure 2A). The selection 168 

coefficients were rather high and ranged from 0.04 to 0.11 (Figure 2A). 169 

Overall, we noticed a striking relationship between starting frequency and selection coefficients. 170 

Selected alleles starting with lower frequencies had higher selection coefficients than selected 171 

alleles with higher starting frequencies. This relationship was significant when analyzing the full 172 

set of 19 blocks including the broken-up haplotype blocks (i.e. replacing block 4 and 10 by sub-173 

blocks 4a, 4b, 4c and 10a, 10b, 10c) and was not significantly influenced by block size (linear 174 

regression; factor: starting allele frequency p = 0.004 and factor: block size p = 0.130). The 175 

inverse relationship between starting allele frequency and selection coefficient was robust with 176 

respect to the definition of a selected allele (see Supplementary Figure S1).  177 

While a negative correlation between frequency and effect size is expected by theory and has 178 

been previously reported for GWAS (Eyre-Walker 2010; Simons et al. 2014; Mancuso et al. 179 

2016; Zeng et al. 2018) and E&R (Barghi et al. 2019) studies, it is important to note that a 180 

Beavis-like effect (Beavis 1998; Xu 2003) may also contribute to this observation: alleles with 181 

low starting frequencies require stronger selection to result in detectable allele frequency 182 

changes than alleles starting from intermediate frequencies.  183 
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Figure 2: Inverse relationship between starting allele frequency and selection strength. For all 184 
experiments, the selected alleles were identified using the same protocol and are based on the top 10% 185 
SNPs in reconstructed haplotypes. A) The relationship is shown for the Portugal cold experiment. The 186 
color code reflects the size of the selected haplotype block, and starting allele frequencies and selection 187 
coefficient of the selection targets are plotted on x- and y-axis. The numbers relate to the selected 188 
haplotype blocks from Figure 1B and 1C with numbers indicating blocks detected in the analysis using all 189 
time points. Sub-blocks resulting from an analysis using earlier time points are labeled with the letters a, b 190 
or c. B) A qualitatively similar relationship between starting allele frequency of each haplotype block and 191 
selection strength is found in the cold-evolved Portugal (blue), hot-evolved Portugal (red) and hot-192 
evolved Florida (pink) population. Nevertheless, the distribution in the Florida experiment was shifted 193 
towards lower selection coefficients while the two temperature regimes in the Portugal population were 194 
highly similar. We conclude that the adaptive architecture is population-specific but does not depend on 195 
the temperature regime.  196 

 

With a median size of 1.5 Mb, the selected haplotype blocks were rather large. The median 197 

number of genes per selected haplotype block is 20 but it can reach up to 154 (see 198 

Supplementary Figure S2) in the largest reconstructed block (block 2, see Figure 1B). The 199 

smallest block contained only a single candidate gene (block number 3, 4.8 kb). All 23 marker 200 

SNPs were located within one intronic region of the gene M-spondin (mspo, FBgn0020269), an 201 

extra-cellular matrix protein of Drosophila, putatively involved in muscle development (Bataille 202 
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et al. 2010). The role of this gene in temperature adaption is not apparent and further studies are 203 

required for a better understanding of this selection signature.  204 

 

Temperature-specific adaptation 205 

Replicates from the same Portuguese founder population were also exposed to a hot selection 206 

regime fluctuating between 18°C and 28°C (Mallard et al. 2018). Both temperature regimes have 207 

the same daily temperature amplitude of 10°C (cold 10/20°C and hot 18/28°C), but mean 208 

temperatures differ (15°C in the cold and 23°C in the hot regime). The temperatures were chosen 209 

such that one of the temperatures is stressful, whereas the other temperature is benign (David 210 

1983; Petavy et al. 2001). Contrasting the founder population with hot-evolved generation 59, 211 

Mallard et al. (2018) identified few (five) very pronounced selection peaks, some of them related 212 

to metabolic alterations in the hot-evolved populations. 213 

For an unbiased comparison of the two experiments, we added time series data for the hot-214 

evolved populations (F0, F15, F37, F59) and applied the same haplotype reconstruction pipeline 215 

as described above. Similar to the cold-evolved population, the X chromosome had too few 216 

outlier SNPs (114 SNPs) for haplotype reconstruction. 16 selected haplotype blocks were 217 

identified on the two major autosomes (Supplementary Figure S3) and their selection 218 

coefficients ranged from 0.05 to 0.13 (Figure 2B). It is remarkable that not only the number of 219 

inferred selection targets, but also the distribution of selection coefficients is highly similar for 220 

the two temperature regimes (hot-evolved = 16 blocks, cold-evolved = 19 blocks).  221 

Only two haplotype blocks shared more SNPs than expected by chance between the two 222 

temperature regimes. Furthermore, the shared region was in both cases only a small part of the 223 

total haplotype block (Figure 1B and 1C, blocks 2 and 15). A prominent similarity between the 224 

selection regimes could be identified in block 15, where the majority of overlapping SNPs were 225 

located in the gene Ace (FBgn000024). Nevertheless, the selection pattern for Ace differs 226 

between both temperature regimes (Langmüller et al. 2020). The shared SNPs of block 2 were 227 

located in several genes, and therefore no clear candidate for common adaptation could be 228 

identified in this region.  229 
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We further scrutinized the haplotype blocks that were not shared between the selection regimes 230 

and had a starting frequency higher than 0.15 to rule out that a selection signature in opposite 231 

direction - as expected for a polygenic trait selected in contrasting environments - was missed. 232 

The allele frequency change of all candidate SNPs in a haplotype block was always higher in the 233 

focal temperature regime. Importantly, in both, hot and cold, selection regimes we very rarely 234 

observed a frequency change in the opposite direction (Supplementary Figure S4). We conclude, 235 

therefore, that we have no support for alleles being selected in opposite direction in hot and cold 236 

temperatures. Rather, most alleles show a temperature-specific response.   237 

 

Population-specific adaptation 238 

Independent of the temperature regime the evolved populations derived from the Portugal 239 

founder population revealed only a moderate number of selection targets. This contrasts a recent 240 

experiment using the same hot temperature regime but a founder population from Florida 241 

(Barghi et al. 2019). For a consistent comparison to the Portugal population, we repeated the 242 

analysis of the Florida population using our haplotype reconstruction pipeline but focused only 243 

on the two major autosomes. 31 selected haplotype blocks were identified on chromosome 2 and 244 

3 (Supplementary Figure S5), which are considerably fewer selected alleles than the 88 reported 245 

by Barghi et al. (2019) for these two chromosomes. This difference reflects an alternative 246 

strategy to identify candidate SNP sets for the haplotype reconstruction rather than the clustering 247 

method (Otte and Schlötterer 2019). Following the same protocol as for the Portugal 248 

experiments, 9,197 outlier SNPs were identified, which is more conservative than the 52,199 249 

outlier SNPs used by Barghi et al. (2019) for haplotype reconstruction. The Florida population 250 

harbored about twice as many selected haplotype blocks as the hot-evolved Portugal population. 251 

For all experiments we identified the same relationship between starting frequency and selection 252 

coefficients, but the distribution for Portugal was shifted towards higher selection coefficients 253 

(Figure 2B). This result is robust with respect to the definition of selected alleles (see 254 

Supplementary Figure S6). This difference in selection coefficients remains significant when we 255 

account for allele frequencies in the founder populations (contrasts between estimated marginal 256 

means Portugal cold - Florida hot p < 0.0001 and Portugal hot - Florida hot p < 0.0001). No 257 
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significant difference was observed between the two temperature regimes of the Portugal 258 

population (Portugal cold - Portugal hot p=0.98).  259 

The Florida experiment was based on twice the number of replicates as the Portugal experiment. 260 

To rule out that the number of replicates affects the inferred adaptive architecture, we repeated 261 

the analysis with 100 sets of five randomly sampled Florida replicates. In all 100 random subsets 262 

the selection coefficient was not different from the full data set (Wilcoxon rank-sum test p > 0.05 263 

adjusted for multiple testing using the Benjamini-Hochberg method), suggesting that the 264 

difference between the Portugal and Florida data sets cannot be explained by a different number 265 

of replicates.  266 

We quantified the degree of parallelism between the experiments using the Jaccard index on the 267 

selected haplotype blocks with s significantly different from zero. High values indicate parallel 268 

genetic responses whereas low values reflect heterogeneous, non-parallel genetic responses 269 

between replicates. Jaccard indices were high for the two Portugal experiments (median 270 

similarity between replicates 80% and 82%, respectively). For the Florida experiment, the 271 

Jaccard index was significantly lower (median similarity between replicates 70% for the full data 272 

set; Wilcoxon rank-sum test p-value < 0.001 against each Portugal data set), indicating less 273 

parallel genetic responses and therefore increased realized genetic redundancy. This pattern was 274 

robust with respect to the method used to define a selected allele in a given replicate (Figure 3 275 

and Supplementary Figure S7).  276 
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Figure 3: More parallel selection signatures among evolved replicate populations derived from Portugal 277 
founders than from those with Florida ancestry. Jaccard indices comparing the different replicates in the 278 
cold-evolved Portugal (top left), hot-evolved Portugal (top right) and hot-evolved Florida (bottom) 279 
population. Jaccard index was computed based on estimation of significant selection coefficients (p-value 280 
< 0.05). 281 

 

The comparison of selected haplotype blocks between evolved populations derived from 282 

different founder populations is difficult because the selected haplotype blocks are reconstructed 283 

only for significant SNPs. Even if the selected haplotype block is shared, the remaining 284 

haplotypes differ between the populations. As the frequency change at a given SNP on the 285 

selected haplotype depends on the frequency of this SNP in the non-selected haplotypes, 286 

different candidate SNPs are being identified - even if the same haplotype block is selected. 287 

Thus, the same selected haplotype block may have different marker SNPs in two different 288 

populations - suggesting that different haplotype blocks are selected. Furthermore, the low 289 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2020. ; https://doi.org/10.1101/2020.06.25.170878doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.170878
http://creativecommons.org/licenses/by/4.0/


15 

linkage disequilibrium in natural Drosophila populations (Charlesworth and Charlesworth 1973; 290 

Langley et al. 1974) implies that very few haplotypes are expected to be shared between samples 291 

from different populations. For these reasons, we did not attempt to test whether the same 292 

haplotype blocks are selected in Portugal and Florida.  293 

 

Discussion 294 

D. simulans populations of different origin (Portugal and Florida) had very distinct adaptive 295 

architectures in the same hot temperature regime (Mallard et al. 2018; Barghi et al. 2019): 296 

Portugal had fewer selection targets, which were strongly selected in a highly parallel manner. 297 

Florida harbored more selection targets with more heterogeneity among replicates and lower 298 

selection coefficients compared to Portugal. In this report, we studied replicate populations 299 

derived from the Portugal founder population, which adapted to a cold temperature regime to 300 

understand why such different adaptive architectures were inferred in these two populations. 301 

Below, we discuss several possible explanations for the differences in adaptive architecture. 302 

 

Different trait optima in the ancestral populations 303 

Both founder populations were collected on different locations with their own specific 304 

temperature profile and in different phases of the seasonal cycle (Portugal in July 2008, Florida 305 

in November 2010). Assuming that temperature adaptation is a single high-level trait, the 306 

ancestral trait optimum may differ on the phenotypic axis. This implies that a population, which 307 

is less adapted to hot environments should be better adapted to cold environments. Less well 308 

adapted populations will experience stronger and more parallel selection responses across 309 

replicates (Franssen et al. 2017b; Barghi et al. 2020), consistent with the pattern observed in the 310 

hot Portugal population. Different trait optima of the founder populations were further supported 311 

by the observation that the Portugal founder population is less fecund than the Florida founder 312 

population when assayed in the novel hot environment (Barghi et al., unpublished results). This 313 

implies that the mean phenotype of the Portugal population is more distant from the new trait 314 

optimum in the hot laboratory environment than the Florida population.  315 
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The analysis of the cold-evolved replicates casts some doubts on this simple interpretation. We 316 

assumed that the hot and cold experiments shifted the trait optimum into opposite directions 317 

relative to the (unknown) trait optimum of the ancestral Portugal population. Hence, contributing 318 

alleles segregating at sufficiently high frequency in the ancestral population should be selected in 319 

opposite direction in the two temperature regimes. Nevertheless, the results did not fit our 320 

expectations - most selected haplotype blocks were not shared between the two temperature 321 

regimes. While selected haplotype blocks starting from low frequencies may not be identified as 322 

selection targets in the opposite temperature regime, also haplotype blocks with higher allele 323 

frequencies in the founder population were not selected in opposite direction. 324 

Hence, we conclude that temperature adaptation may not be a single high-level phenotype. 325 

Rather, several sub-phenotypes on a lower level, which are not all shared for the different 326 

temperature regimes, are contributing to adaptation. This conclusion is further supported by 327 

different genomic signatures of hot and cold stressors in E&R (Tobler et al. 2014) and QTL 328 

mapping (Morgan and Mackay 2006) studies.  329 

 

Differences in adaptive variation 330 

Autosomal polymorphism levels differ between the two founder populations with Florida being 331 

more variable than Portugal (ÃFlorida = 0.0076 and ÃPortugal = 0.0062, Wilcoxon rank-sum test on 332 

non-overlapping 10 kb windows, p-value < 0.001). Assuming that neutral variability is a good 333 

approximation of adaptive variation, which is not always the case (Kellermann et al. 2009), 334 

Portugal is expected to harbor less adaptive variation than Florida. This implies that Florida 335 

reaches the trait optimum faster than Portugal (Thornton 2019; Barghi and Schlötterer 2020), but 336 

in absence of phenotypic time series data, we cannot assess this hypothesis. A particularly 337 

interesting hypothesis related to the different polymorphism levels is that Portugal harbors so 338 

little adaptive variation that it does not have much genetic redundancy. This would imply that no 339 

(or only limited) excess of adaptive genetic variation is segregating in the Portugal founder 340 

population that can be used to reach the trait optimum.  341 
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The Florida founder population, in contrast, harbors a considerable excess. Such differences in 342 

the number of contributing loci can generate quite different patterns of parallel selection 343 

responses (Barghi and Schlötterer 2020), matching the Portugal and Florida experiments. 344 

Nevertheless, it is not apparent that the moderate differences in genome-wide polymorphism 345 

levels are sufficiently large to explain this pattern. 346 

 

Linkage disequilibrium  347 

The above discussion about the heterogeneity of the inferred genetic architectures between 348 

populations and selection regimes rests on the central assumption that the major contributing loci 349 

were identified and could be distinguished with a recently developed haplotype reconstruction 350 

approach (Otte and Schlötterer 2019). In other words, it is assumed that only a moderate number 351 

of distinct loci contribute to adaptation.  352 

Alternatively, the observed selection response may be explained by many loci of small effect - 353 

an idea that matches in its extreme form the infinitesimal model (Barton et al., 2017). Empirical 354 

support for a highly polygenic architecture of many traits comes from the strong correlation 355 

between chromosome length and the fraction of heritability explained (Visscher et al. 2007; 356 

Yang et al. 2011; Shi et al. 2016). If multiple small effect loci cluster together this may result in 357 

a signature that will be interpreted as a single selection target (Yeaman and Whitlock 2011). 358 

Short genomic segments with a local clustering of favored loci can even introgress and leave the 359 

strong selection signature of a local allele frequency change (Sachdeva and Barton 2018). 360 

Empirical support for the clustering of contributing loci comes from the molecular dissection of 361 

candidate loci identified in QTL mapping studies. Single QTL loci can be broken into multiple 362 

SNPs contributing to the corresponding trait (Stam and Laurie 1996; King et al. 2012; Kerdaffrec 363 

et al. 2016; Gibert et al. 2017; Zan et al. 2017; Shahandeh and Turner 2020).  364 

The situation in polymorphic founder populations is significantly more complicated than the 365 

simple two genotype case studied by Sachdeva and Barton (2018), but we propose that blocks of 366 

linked loci can not only generate pronounced selection signatures, but may also explain the 367 

differences in adaptive architecture between the Portugal and Florida experiment. Depending on 368 

the extent of linkage disequilibrium (LD) the clustering of contributing loci can vary. Hence, 369 
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populations with different levels of LD may also harbor more or less clustered contributing loci. 370 

The influence of haplotype structure can be illustrated by two extreme cases: in the case of 371 

complete linkage equilibrium (LE), in any genomic window the haplotypes segregating in the 372 

population should have similar fitness despite being highly diverse. As a consequence, changes 373 

in trait optimum will result only in rather small frequency changes of the haplotypes in this 374 

genomic window. This pattern becomes more pronounced with an increasing number of 375 

contributing loci.  376 

On the other hand, in the presence of strong linkage disequilibrium, fewer distinct haplotypes are 377 

present in a given genomic window. Sampling variation in the ancestral population generates 378 

haplotypes with different numbers of contributing loci in a given genomic window. The more 379 

pronounced the difference in the number of loci among haplotypes in a genomic window is, the 380 

stronger will be the fitness differences among them and thus the allele frequency change after a 381 

shift in trait optimum. Hence, because the difference in the number of contributing loci among 382 

haplotypes differs among genomic windows, linkage disequilibrium generates heterogeneity in 383 

selection response along the chromosome.  384 

We illustrated the impact of LD by assuming about 1200 contributing loci genome-wide and 385 

simulated a window size of 1 Mb in a typical E&R setting. For high LD and LE the same 386 

number of chromosomes with beneficial alleles was used. 100 different genomic windows were 387 

simulated and simulations with higher LD resulted in a more heterogeneous response to 388 

selection. Consistent with a larger phenotypic variance (Figure 4A) also much more pronounced 389 

allele frequency changes were observed for some windows in the presence of linkage 390 

disequilibrium (Figure 4B). Hence, while very homogeneous moderate frequency shifts were 391 

observed for beneficial alleles in linkage equilibrium, some pronounced sweep windows were 392 

detected for windows with LD. We also assessed the degree of parallelism in the response 393 

between replicates and found a more parallel response for the high LD simulations (Figure 4C).  394 
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Figure 4: Influence of linkage disequilibrium on the genomic response of a polygenic trait. We simulated 395 
50 generations of polygenic adaptation after a shift in trait optimum. 100 replicates, each with 10 loci in a 396 
1 Mb region either with linkage equilibrium (blue) or strong LD (yellow) are shown in violin plots. A) 397 
Independent of linkage structure, the same mean phenotype was reached, but simulations with high LD 398 
were considerably more scattered. B) Pronounced allele frequency changes were obtained for both, 399 
linkage equilibrium und high LD. For linkage equilibrium, the genomic windows were all rather similar, 400 
indicating that no window showed a strong selection signature distinguishing it from the genomic 401 
background. Simulations with strong LD, however, resulted in highly heterogeneous selection responses, 402 
with some windows having a frequency change larger than 0.6, which is a strong selection signature 403 
distinguishing it from the remaining genomic windows. C) The heterogeneity among five replicate 404 
populations is measured by the coefficient of variation. The selection response in simulations with linkage 405 
equilibrium was less parallel than in those with strong LD.  406 
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Thus, for polygenic traits the inferred adaptive architecture can be strongly affected by linkage in 407 

the ancestral population. A previous study on the impact of recombination on the response to a 408 

shift in trait optimum with truncating selection observed more heterogeneity among replicates in 409 

the case of linkage equilibrium than for complete linkage (Zhang and Hill 2005). We attribute 410 

these differences to the small population sizes in Zhang and Hill (2005).  411 

Nevertheless, does this scenario of a highly polygenic architecture with differences in LD apply 412 

to the Florida and Portugal experiments? Following the same rationale as Shi et al. (2016), 413 

Barghi et al. (2019) tested whether longer haplotype blocks were more strongly selected than 414 

shorter ones, but no significant correlation was found. Similar results were observed for the cold 415 

evolved Portugal populations. We caution, however, that these negative results do not provide 416 

strong support for the identification of distinct selection targets. Possible, not mutually exclusive, 417 

reasons for the lack of significance even in the presence of a highly polygenic architecture are:  418 

1) the contributing loci have different effect sizes, thus small haplotype blocks with large effect 419 

loci may be more strongly selected ones than larger blocks, 2) larger blocks may harbor more 420 

loci with effects in opposite direction than smaller ones, 3) since haplotype blocks are still 421 

relatively short (compared to full chromosomes) stochastic sampling and heterogeneity in the 422 

density of contributing loci may obscure the correlation between size of the selected haplotype 423 

block and the selection response.  424 

The hypothesis that LD differences can explain the heterogeneity in inferred adaptive 425 

architecture is supported by the observation that the two founder populations differed across all 426 

chromosomes in their pattern of linkage disequilibrium (Figure 5). The higher LD in Portugal 427 

compared to Florida is fully consistent with the prediction that founder populations with higher 428 

LD are more likely to show stronger and more parallel sweep signatures than populations with 429 

lower LD. Although this pattern fits our observations, in absence of more information about the 430 

degree of polygenicity and the distribution of contributing loci across the chromosomes and their 431 

effect sizes, it is not possible to determine whether the observed differences in LD are sufficient 432 

to explain our empirical data.  433 
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Figure 5: Linkage disequilibrium in the ancestral Portugal und Florida population as measured by the 434 
mean r2 of loci with distances up to 10,000 kb based on 34 individual haplotype sequences. 435 
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Temperature adaptation may involve multiple, temperature-specific traits 436 

While we cannot pinpoint the cause for the differences in the inferred adaptive architecture 437 

between Portugal and Florida, the analysis of cold-evolved replicates shed some important light 438 

on our understanding of temperature adaptation.  439 

Many studies, in particular theoretical ones, considered high level phenotypes, such as 440 

temperature adaptation, as a single adaptive trait, where shifts in mean temperature are treated as 441 

a simple shift in trait optimum (e. g. Bridle et al. 2009; Chevin et al. 2010; Hoffmann 2010; 442 

Kopp and Matuszewski 2014). This implies that all segregating contributing loci affect the 443 

optimal phenotype - irrespective of the position of the optimum - i.e. in the case of temperature 444 

adaptation irrespective of whether the optimum is in the hot or cold. The limited overlap between 445 

the selection targets in hot- and cold-evolved replicates is striking, as it contradicts this 446 

assumption. With the exception of the genomic region around the Ace locus and a region across 447 

the centromere of chromosome 2, which changed in the same direction in both temperature 448 

regimes, no shared haplotype blocks were detected. To some extent, the lack of shared haplotype 449 

blocks can be attributed to low starting frequencies, which implies that selection in the opposite 450 

direction does not result in allele frequency changes sufficiently large to be detected. 451 

Nevertheless, even for haplotype blocks starting from intermediate frequency, no selection 452 

signature in the opposite direction was noticed.  453 

This implies that different loci are contributing to adaptation in hot and cold environments - 454 

irrespective of whether a highly or moderately polygenic architecture is assumed. A very similar 455 

lack of shared candidates was also noticed in a D. melanogaster experiment, where replicate 456 

populations were exposed to the same hot and cold temperature regimes (Tobler et al. 2014). 457 

This experiment was, however, conducted for a much smaller number of generations, and the 458 

selection signature was analyzed on the SNP-level, which makes the interpretation of the results 459 

particularly challenging given the contribution of large segregating inversions to temperature 460 

adaptation in this species (Hoffmann et al. 2002; Rako et al. 2007).  461 

The observation of different selection targets in hot and cold environments is particularly 462 

interesting, because seasonal changes were found to be associated with cycling allele frequencies 463 

in natural D. melanogaster populations (Bergland et al. 2014), which suggests that the same 464 
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SNPs are being selected in opposite direction in hot and cold environments. One possible 465 

explanation for these differences to our study is that in natural populations only a moderate 466 

number of generations separates the two temperature regimes, while in our experiment the 467 

temperature regime remained constant across more than 50 generations.  468 

 

Population-specific adaptive architectures 469 

Various studies, mainly using QTL mapping and GWAS, have identified different loci 470 

contributing to the same trait in diverged populations (Adeyemo et al. 2009; Wu et al. 2013; Al 471 

Olama et al. 2014; Li and Keating 2014; Conte et al. 2015; Horikoshi et al. 2018; Takata et al. 472 

2019; Wojcik et al. 2019; Zan and Carlborg 2019; Hodonsky et al. 2020; Kemppainen et al. 473 

2020). A recent experimental evolution study using D. subobscura populations with different 474 

genetic background also observed very little overlap in the genomic regions responding to a 475 

common selection regime (Seabra et al. 2018). Hence, the different selection targets obtained 476 

from Portugal and Florida experiments conducted in the same hot environment are not 477 

particularly surprising and emphasize the limited insights about the genetic basis of a polygenic 478 

trait from single population studies. Very surprising, however, was the observation that the 479 

adaptive architecture (number of contributing loci, effect sizes and starting frequencies) was 480 

different between Portugal and Florida, but strikingly similar between the hot and cold selection 481 

regime.  482 

 

Although more experiments are needed to nail down why the adaptive architecture is highly 483 

dependent on the founder population and not on the selection regime, our results have important 484 

implications for all studies attempting to characterize the adaptive architecture. The analysis of a 485 

single population cannot be sufficient to understand the genetic basis of adaptive traits. Thus, 486 

multiple diverged populations need to be studied to reach conclusions that can be generalized 487 

beyond a limited number of focal populations.  488 
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Material and Methods 489 

Unless stated otherwise, analysis was conducted using R v3.6.1 (R Core Team 2019). 490 

 

Experimental Populations and Selection Regime 491 

The set-up of the evolution experiment is described in detail elsewhere (Mallard et al. 2018). In 492 

brief, female flies were sampled from a natural Drosophila simulans population in Northern 493 

Portugal in the summer of 2008 and used to establish 250 isofemale lines. These lines were kept 494 

for 10 generations in the laboratory before starting the experiment. Mated females of all lines 495 

were used to create the starting populations. Ten replicates were created by combining an equal 496 

number of flies from each line. Five of the replicates were then kept in a 12h:12h day and night 497 

cycle with temperatures of 20°C during the day and 10°C during the night (cold regime). The 498 

population size was kept constant at 1250 per replicate in non-overlapping generations. 499 

The other five replicates were used to start the evolution experiment described by Mallard et al. 500 

(2018), which was identical to the cold regime except for the temperature which fluctuated 501 

between 28°C during the day and 18°C at night (hot regime).  502 

 

Evolve & Resequence 503 

For the founder population, we used the sequences described by Mallard et al. (2018), but added 504 

new sequence data from two replicates of generation F3 from the cold regime to increase  505 

coverage. To avoid biases related to different sequencing approaches, all reads were pooled and 506 

then randomly split into five subsets with a coverage of 100x each. These subsets were used as 507 

founder population replicates throughout the analysis of the cold-evolved and the (re-)analysis of 508 

the hot-evolved populations. While sequence data for the F59 in the hot regime were available 509 

from Mallard et al. (2018), we added new Pool-Seq data for the intermediate time points F15 and 510 

F37 in the hot regime to allow for the time series analysis and haplotype reconstruction in this 511 

study. All sequences used for the founder population (including the F3 from the cold regime) and 512 

all sequences of the hot regime were derived from females only. 513 
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Sequencing data from the time points F11, F21, F31, F41 and F51 in the cold regime were newly 514 

generated from pooled females and males. Paired-end libraries were generated with different 515 

protocols and sequenced on different Illumina platforms (see Supplementary Table S1). 516 

 

Data processing 517 

Sequencing reads were trimmed using Readtools TrimFastq version 0.2. (Gomez-Sanchez and 518 

Schlötterer 2017) with the parameters --minReadLength 50 --disable5pTrim --519 

mottQualityThreshold 20. The D. simulans genome sequence created by Palmieri et al. (2015) 520 

was used as reference for read mapping. To avoid false positive outlier SNPs, which might arise 521 

when libraries with different read lengths and insert sizes are combined in one analysis (Kofler et 522 

al. 2016), three different mappers were used to map reads of the two time points used for outlier 523 

testing (cold regime: F0 and F51; hot regime: F0 and F59). Reads were mapped using Bowtie2 524 

version 2.2.6 (Langmead and Salzberg 2012) with parameters --end-to-end --X 1500, bwa mem 525 

version 0.7.13 (Li and Durbin 2010) with default parameters and novoalign version 3.03.2 526 

(Novocraft 2014) with parameters -i 350,100 -F STDFQ -o SAM -r RANDOM.  527 

The intermediate time points (cold regime: F11, F21, F31, F41; hot regime F15, F37) used for 528 

the detection of selected haplotype blocks were mapped with novoalign only, as this mapper is 529 

known to estimate allele frequencies most accurately (Kofler et al. 2016).  530 

Mapped reads were filtered for mapping quality g 20 and proper pairs using SAMtools view 531 

version 1.3.1 (Li et al. 2009). Duplicates were removed using picard MarkDuplicates version 532 

2.1.1 (Broad Institute 2019). Barcoded files were split using Readtools 533 

AssignReadGroupByBarcode version 0.2.2 (Gomez-Sanchez and Schlötterer 2017) with 534 

parameters --maximumMismatches 1. The BAM files were then used to create mpileup files with 535 

SAMtools mpileup version 1.3.1 (Li et al. 2009), and finally, PoPoolation2 mpileup2sync.jar 536 

version 1.201 (Kofler et al. 2011) was used to create sync files from mpileup files. All 537 

subsequent analysis was conducted on the basis of these sync files.  538 
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SNP calling and masking 539 

Single nucleotide polymorphisms (SNPs) were called from the founder population by creating 540 

sync files from BAM files as described above but filtering for polymorphic sites that had a 541 

mapping quality of at least 30 and a minimal count of at least 5 and were detected by the three 542 

mapping algorithms in all founder replicates. Filtering resulted in 3.8 million SNPs that were 543 

used for further analysis. Indels were detected using the PoPoolation2 identify-indel-regions.pl 544 

script, and transposable elements were detected with repeatmasker v 1.332 (Smit et al. 2015). 545 

Custom databases made by combining RepeatMasker database Dfam_Consensus-20181026, 546 

RepBase-20181026, and transposon_sequence_set.embl.txt from flybase.org (FB 2018_06), and 547 

search engine NCBI/RMBLAST v 2.2.27+ were used for repeats > 500 bp. All sync files were 548 

masked for these repetitive regions and for known Y chromosome translocations (Tobler et al. 549 

2017) using the PoPoolation2 filter-sync-by-gtf.pl script. 550 

 

Correcting for different insert sizes 551 

To correct for false positive outlier SNPs created by libraries with different insert sizes (Kofler et 552 

al. 2016), mapping results from the three different mappers for the founder (F0) and most 553 

evolved (cold regime: F51; hot regime F59) population were used. Ç2 tests were conducted to 554 

compare the results of the different mappers per replicate and time point. After correcting for 555 

multiple testing using the Benjamini-Hochberg procedure (Benjamini and Hochberg 1995), only 556 

SNPs that showed a consistent response across comparisons (p.adjust g 0.05) were kept for 557 

further analysis.  558 

 

Candidate SNPs 559 

Candidate outlier SNPs were detected in the filtered sync files created from novoalign mapping 560 

results after correcting for false positive outliers as described above. Allele frequency changes 561 

between the founder and the most evolved population were analyzed using CMH and Ç2 tests 562 

which are adapted for genetic drift and pool sequencing noise as implemented in the R package 563 

ACER version 1.0 (Spitzer et al. 2020). SNPs within the top 1% of coverage were excluded from 564 
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the analysis to avoid copy number variants. Intermediate generations were included in the 565 

correction approach. Effective population size per replicate was calculated using the R package 566 

poolSeq version 0.3.5 (Taus et al. 2017) with the function estimateWndNe (window size 10 kb, 567 

method P.planI, pool size and census size 1250) and used for CMH and Ç2 tests. The CMH test 568 

was performed using all population replicates per time point whereas Ç2 tests were performed for 569 

each replicate separately. All results were corrected for multiple testing (Benjamini-Hochberg). 570 

Finally, candidate SNPs detected by either test (p.adjust < 0.05) were combined to include 571 

consistent responses across replicates (CMH test) and replicate-specific responses (Ç2 test). 572 

 

Selected haplotype blocks 573 

Selected haplotype blocks were reconstructed from candidate SNP allele frequency data of all 574 

time points and replicates using the R package haplovalidate with MNCS of 0.01 (Otte and 575 

Schlötterer 2019). Haplotype blocks were reconstructed for all time points. As haplotype blocks 576 

might contain more than one selected allele, early time points (cold regime: F11, F21 and F31; 577 

hot regime: F15 and F37) were used for fine-mapping of selected haplotype blocks (Otte and 578 

Schlötterer 2019). Here, the analysis detected the characteristic signal of reconstructed haplotype 579 

blocks with multiple selection targets, which is the presence of a single haplotype block in the 580 

most evolved generation but several reconstructed haplotype blocks when analyzing the early 581 

generations separately. Haplotype blocks from the early generations showing this pattern were 582 

included in the final analysis.  583 

Selection coefficients for the detected haplotype blocks per replicate were computed using the 584 

allele frequency trajectories of the top 10% outlier SNPs based on CMH and Ç2 test result and 585 

using the poolSeq v0.3.5 function estimateSH (method LLS) (Taus et al. 2017). Only selection 586 

coefficients with p-value < 0.05 were used to calculate the median selection coefficient for each 587 

selected allele. Relationship of selection coefficient, starting allele frequency and block size were 588 

tested using a linear model with log10 transformation of selection coefficients. To test the 589 

robustness of our definition for selected alleles, we repeated the estimation of selection 590 

coefficients using a) the top 20% SNPs or b) all SNPs that had an allele frequency change > 0.1 591 

(Supplementary Figure S1). Candidate genes per block were detected from the gene annotation 592 
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of the reference genome (Palmieri et al. 2015) including also SNPs 200 bp up- and downstream 593 

of the focal gene.  594 

  

Comparison to other experimentally evolved D. simulans populations 595 

We used data from the same D. simulans population evolving under a hot temperature regime 596 

(Mallard et al. 2018) to contrast adaptation to different temperatures. For this population, we 597 

included two additional time points, so that four time points in total were available: F0, F15, 598 

F37, F59. The data set was filtered, candidate SNPs were detected and haplotypes were 599 

reconstructed in the same way as described above including the combined analysis of all (F0-600 

F59) and early (F0-F37) time points. To estimate how many shared marker SNPs were expected 601 

by chance, we randomly sampled the number of shared SNPs from the haplotype blocks, 602 

calculated the fraction per haplotype block (N=10,000) and finally applied a 95 % cut-off.  603 

In addition, a different published hot-evolved D. simulans population from Florida (Barghi et al. 604 

2019) was used for the comparative analysis. The data set was filtered and candidate SNPs were 605 

detected in the same way as described above. As intermediate time points were available for this 606 

data set (every 10th generation from F0 to F60), haplovalidate (Otte and Schlötterer, 2019) with 607 

MNCS of 0.01 was used to detect selected haplotype blocks including the combined analysis of 608 

all (F0-F60) and early (F0-F30) time points as described for the Portugal population. Selection 609 

coefficients were computed as described above.  610 

We fitted a linear model with log10 transformed selection coefficients as response and main 611 

effects of population as fixed categorical effect with three levels (Florida hot, Portugal hot, 612 

Portugal cold) and a linear and quadratic covariate for starting allele frequency, to account for 613 

their non-linear relationship with the response, as explanatory variables. Residuals from this 614 

model were normally distributed and displayed variance homogeneity. The model with linear 615 

and quadratic covariate for starting allele frequency fit significantly better than a model with 616 

only a linear term. Contrasts between populations were compared based on estimated marginal 617 

means (R package emmeans).  618 

We compared the similarity of replicates calculating the Jaccard indices for the Portugal and the 619 

Florida population using the R package philentropy (Drost 2018). We created binary data based 620 
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on the replicate-specific selection response, i.e. whether or not a significant selection coefficient 621 

could be estimated by the poolSeq package (see above) for the corresponding replicate and allele 622 

(p-value <0.05). Following Barghi et al. (2019), we created binary data by applying a cut-off of 623 

0.1 to the median allele frequency change of selected alleles per replicate. Jaccard indices 624 

between populations were compared using the two-sample Wilcoxon rank-sum test. To analyze 625 

the effect of the different number of replicates (10 in the Florida and five in the Portugal 626 

population) we repeated the analysis of selection coefficients and Jaccard indices on a 627 

downsampled set of Florida replicates. For this analysis, we took 100 random samples of five 628 

replicates from the Florida population data set and repeated the analysis for each of them as 629 

described above.  630 

 

Nucleotide diversity in the ancestral populations 631 

Nucleotide diversity (Ã) of each autosome in the ancestral populations was calculated from the 632 

allele frequency data using the formula of Tajima (1989). For maintaining a comparable number 633 

of low-frequency alleles we subsampled the Florida data set to five replicates. As different sets 634 

of five Florida replicates resulted in very consistent Ã estimates (data not shown) we only used 635 

one set for the direct comparison to Portugal. 636 

 

Linkage disequilibrium in the ancestral populations 637 

To quantify linkage disequilibrium, we used 189 haplotype sequences of the Florida founder 638 

population (Howie et al. 2019) and 34 haplotype sequences of the Portugal founder population 639 

which are described in Langmüller et al. (2020). For maintaining a comparable number of low-640 

frequency alleles, we subsampled the Florida data set to 34 haplotypes. We calculated the mean 641 

r2 for loci (minor allele count = 3, minimum SNP quality = 50) within 10,000 kb distance. As 642 

different sets of 34 Florida haplotypes resulted in very consistent mean estimates (see 643 

Supplementary Figure S8) we only used one set for the direct comparison to Portugal. 644 
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Linkage disequilibrium simulations 645 

We illustrated the effect of linkage equilibrium (LE) or strong linkage disequilibrium (LD) on 646 

polygenic adaptation after a shift in trait optimum with computer simulations using MimicrEE2 647 

v208 (Vlachos and Kofler 2018) in qff mode. We used parameters that matched the Portugal D. 648 

simulans E&R experiment with five replicates, each starting with the same 1000 homozygous 649 

individuals which evolved for 50 generations. For computational simplicity, we assumed that all 650 

10 loci contributing to the phenotype, each with a starting allele frequency of 0.05 and effect size 651 

of 0.05, are restricted to a 1 Mb region. 100 independent simulations were performed to mimic 652 

100 different genomic regions. We used a Gaussian fitness function as previously described (e.g. 653 

Barghi and Schlötterer 2020): minimum fitness 0.5, maximum fitness 4.5, standard deviation of 654 

the phenotype 1.2, heritability of 0.5. The mean fitness of the ancestral population was -0.44 and 655 

the new trait optimum was 0.5. We used the average recombination rate of D. simulans 656 

(Dsim_recombination_map_LOESS_100kb_1.txt, (Howie et al. 2019)). We generated two 657 

different sets of founder populations, one with strong LD and one with linkage equilibrium (LE). 658 

Both sets of founder populations contained 200 chromosomes with favored alleles and 800 659 

chromosomes without. For strong LD, four different sets of selected haplotypes were generated, 660 

and the number of contributing loci was randomly distributed between the four sets of selected 661 

haplotypes. Hence, 50 haplotypes had the same number of contributing loci, but due to stochastic 662 

sampling the number of contributing loci differs among the four sets of 50 haplotypes. To 663 

generate starting populations in LE, we randomly distributed the selected alleles across 200 664 

haplotypes until each of the alleles had a final frequency of 0.05.  665 

After 50 generations, we generated <Pool-seq data= with 50x coverage and added sequencing 666 

noise by binomial sampling based on the allele frequencies. We recorded the phenotypic and 667 

mean frequency change across loci and replicates as well as the coefficient of variation in the 668 

mean allele frequency change across the five replicates as an indicator for the degree of parallel 669 

response.  670 
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Data Availability 671 

Sequence data were deposited at the European Nucleotide Archive (ENA) under the accession 672 

number XXX. Population sync files, all results and scripts were deposited on Dryad Digital 673 

Repository XXX.  674 

 

Acknowledgments 675 

We thank Neda Barghi for sharing unpublished fecundity data and for providing information 676 

concerning the hot-evolved D. simulans data set. Anna Langmüller, Thomas Taus and Claire 677 

Burny shared code to remove SNPs with allele frequency estimates that are sensitive to the insert 678 

sizes of NGS sequencing libraries. The authors also thank the members of the Institute of 679 

Population Genetics for discussion and support on the project. Special thanks to Marlies Dolezal 680 

for in depth statistical advice. KAO was supported by a DFG Research Fellowship (OT 532/1-1). 681 

FM was supported by a Marie Sklodowska-Curie Individual Fellowship (H2020-MSCA-IF-682 

661149). CS was supported by the European Research Council grant <ArchAdapt= and the 683 

Austrian Science Funds (FWF, P27630, P29133). Illumina sequencing for a subset of the data 684 

was performed at the VBCF NGS Unit (www.viennabiocenter.org/facilities).  685 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2020. ; https://doi.org/10.1101/2020.06.25.170878doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.170878
http://creativecommons.org/licenses/by/4.0/


32 

References 686 

Adeyemo A, Gerry N, Chen G, Herbert A, Doumatey A, Huang H, Zhou J, Lashley K, Chen Y, 687 

Christman M et al. 2009. A genome-wide association study of hypertension and blood 688 

pressure in African Americans. PLoS Genet 5: e1000564. 689 

Al Olama AA Kote-Jarai Z Berndt SI Conti DV Schumacher F Han Y Benlloch S Hazelett DJ 690 

Wang Z Saunders E et al. 2014. A meta-analysis of 87,040 individuals identifies 23 new 691 

susceptibility loci for prostate cancer. Nat Genet 46: 1103-1109. 692 

Barghi N, Hermisson J, Schlötterer C. 2020. Polygenic adaptation: a unifying framework to 693 

understand positive selection. Nature reviews Genetics: in press. 694 

Barghi N, Schlötterer C. 2020. Distinct patterns of selective sweep and polygenic adaptation in 695 

evolve and re-sequence studies. Genome biology and evolution doi:10.1093/gbe/evaa073. 696 

Barghi N, Tobler R, Nolte V, Jaksic AM, Mallard F, Otte KA, Dolezal M, Taus T, Kofler R, 697 

Schlötterer C. 2019. Genetic redundancy fuels polygenic adaptation in Drosophila. PLoS 698 

biology 17: e3000128. 699 

Barton NH, Etheridge AM, Veber A. 2017. The infinitesimal model: Definition, derivation, and 700 

implications. Theoretical population biology 118: 50-73. 701 

Barton NH, Keightley PD. 2002. Understanding quantitative genetic variation. Nature reviews 702 

Genetics 3: 11-21. 703 

Bataille L, Delon I, Da Ponte JP, Brown NH, Jagla K. 2010. Downstream of identity genes: 704 

muscle-type-specific regulation of the fusion process. Dev Cell 19: 317-328. 705 

Beavis WD. 1998. QTL analyses: power, precision, and accuracy. 706 

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful 707 

approach to multiple testing. . J R Stat Soc Ser 57: 2893300. 708 

Bergland AO, Behrman EL, O'Brien KR, Schmidt PS, Petrov DA. 2014. Genomic evidence of 709 

rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PLoS 710 

genetics 10: e1004775. 711 

Bridle JR, Gavaz S, Kennington WJ. 2009. Testing limits to adaptation along altitudinal 712 

gradients in rainforest Drosophila. Proceedings Biological sciences / The Royal Society 713 

276: 1507-1515. 714 

Broad Institute. 2019. Picard toolkit. http://broadinstitute.github.io/picard/. 715 

Bulmer MG. 1971. Effect of Selection on Genetic Variability. Am Nat 105: 201-&. 716 

Charlesworth B, Charlesworth D. 1973. A study of linkage disequilibrium in populations of 717 

Drosophila melanogaster. Genetics 73: 351-359. 718 

Chevin LM, Lande R, Mace GM. 2010. Adaptation, plasticity, and extinction in a changing 719 

environment: towards a predictive theory. PLoS biology 8: e1000357. 720 

Conte GL, Arnegard ME, Best J, Chan YF, Jones FC, Kingsley DM, Schluter D, Peichel CL. 721 

2015. Extent of QTL Reuse During Repeated Phenotypic Divergence of Sympatric 722 

Threespine Stickleback. Genetics 201: 1189-1200. 723 

David JR, Allemand, R., Van Herrewege, J. and Cohet, Y. . 1983. Ecophysiology: abiotic 724 

factors. In The Genetics and Biology of Drosophila, Vol 3d (ed. M Ashburner, Carson, H. 725 

L. & Thompson, J. N. Jr ), pp. 1053170. Academic Press, London. 726 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2020. ; https://doi.org/10.1101/2020.06.25.170878doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.170878
http://creativecommons.org/licenses/by/4.0/


33 

de Vladar HP, Barton N. 2014. Stability and response of polygenic traits to stabilizing selection 727 

and mutation. Genetics 197: 749-767. 728 

Drost HG. 2018. Philentropy: Information Theory and Distance Quantification with R. Journal 729 

of Open Source Software 3: 765. 730 

Eyre-Walker A. 2010. Evolution in health and medicine Sackler colloquium: Genetic 731 

architecture of a complex trait and its implications for fitness and genome-wide 732 

association studies. Proc Natl Acad Sci U S A 107 Suppl 1: 1752-1756. 733 

Field Y, Boyle EA, Telis N, Gao Z, Gaulton KJ, Golan D, Yengo L, Rocheleau G, Froguel P, 734 

McCarthy MI et al. 2016. Detection of human adaptation during the past 2000 years. 735 

Science 354: 760-764. 736 

Fisher RA. 1918. The correlation between relatives on the supposition of Mendelian Inheritance. 737 

Trans Roy Soc Edinburgh 52: 339-433. 738 

Flint J, Mott R. 2001. Finding the molecular basis of quantitative traits: successes and pitfalls. 739 

Nat Rev Genet 2: 437-445. 740 

Franssen SU, Barton NH, Schlötterer C. 2017a. Reconstruction of haplotype-blocks selected 741 

during experimental evolution. Molecular biology and evolution 118: 42-51. 742 

Franssen SU, Kofler R, Schlötterer C. 2017b. Uncovering the genetic signature of quantitative 743 

trait evolution with replicated time series data. Heredity 118: 42-51. 744 

Garland T, Rose MR. 2009. Experimental Evolution: concepts, methods, and applications of 745 

selection experiments. University of California Press, Berkeley. 746 

Gazal S, Finucane HK, Furlotte NA, Loh PR, Palamara PF, Liu X, Schoech A, Bulik-Sullivan B, 747 

Neale BM, Gusev A et al. 2017. Linkage disequilibrium-dependent architecture of human 748 

complex traits shows action of negative selection. Nature genetics 49: 1421-1427. 749 

Gibert JM, Blanco J, Dolezal M, Nolte V, Peronnet F, Schlötterer C. 2017. Strong epistatic and 750 

additive effects of linked candidate SNPs for Drosophila pigmentation have implications 751 

for analysis of genome-wide association studies results. Genome biology 18: 126. 752 

Gomez-Sanchez D, Schlötterer C. 2017. ReadTools: A universal toolkit for handling sequence 753 

data from different sequencing platforms. Molecular ecology resources 754 

doi:10.1111/1755-0998.12741. 755 

Harris AM, DeGiorgio M. 2020. Identifying and Classifying Shared Selective Sweeps from 756 

Multilocus Data. Genetics 215: 143-171. 757 

Hodonsky CJ, Baldassari AR, Bien SA, Raffield LM, Highland HM, Sitlani CM, Wojcik GL, 758 

Tao R, Graff M, Tang W et al. 2020. Ancestry-specific associations identified in genome-759 

wide combined-phenotype study of red blood cell traits emphasize benefits of diversity in 760 

genomics. BMC Genomics 21: 228. 761 

Hoffmann AA. 2010. Physiological climatic limits in Drosophila: patterns and implications. J 762 

Exp Biol 213: 870-880. 763 

Hoffmann AA, Anderson A, Hallas R. 2002. Opposing clines for high and low temperature 764 

resistance in Drosophila melanogaster. Ecol Lett 5: 614-618. 765 

Höllinger I, Pennings PS, Hermisson J. 2019. Polygenic adaptation: From sweeps to subtle 766 

frequency shifts. PLoS genetics 15: e1008035. 767 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2020. ; https://doi.org/10.1101/2020.06.25.170878doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.170878
http://creativecommons.org/licenses/by/4.0/


34 

Horikoshi M, Day FR, Akiyama M, Hirata M, Kamatani Y, Matsuda K, Ishigaki K, Kanai M, 768 

Wright H, Toro CA et al. 2018. Elucidating the genetic architecture of reproductive 769 

ageing in the Japanese population. Nat Commun 9: 1977. 770 

Howie JM, Mazzucco R, Taus T, Nolte V, Schlotterer C. 2019. DNA motifs are not general 771 

predictors of recombination in two Drosophila sister species. Genome biology and 772 

evolution doi:10.1093/gbe/evz082. 773 

Jain K, Stephan W. 2017a. Modes of rapid polygenic adaptation. Molecular biology and 774 

evolution 34: 3169-3175. 775 

Jain K, Stephan W. 2017b. Rapid Adaptation of a Polygenic Trait After a Sudden Environmental 776 

Shift. Genetics 206: 389-406. 777 

Jensen JD, Kim Y, DuMont VB, Aquadro CF, Bustamante CD. 2005. Distinguishing between 778 

selective sweeps and demography using DNA polymorphism data. Genetics 170: 1401-779 

1410. 780 

Jha AR, Miles CM, Lippert NR, Brown CD, White KP, Kreitman M. 2015. Whole-genome 781 

resequencing of experimental populations reveals polygenic basis of egg-size variation in 782 

Drosophila melanogaster. Molecular biology and evolution 32: 2616-2632. 783 

Jha AR, Zhou D, Brown CD, Kreitman M, Haddad GG, White KP. 2016. Shared Genetic Signals 784 

of Hypoxia Adaptation in Drosophila and in High-Altitude Human Populations. Mol Biol 785 

Evol 33: 501-517. 786 

Johnson KE, Voight BF. 2018. Patterns of shared signatures of recent positive selection across 787 

human populations. Nat Ecol Evol 2: 713-720. 788 

Johri P, Charlesworth B, Jensen JD. 2020. Toward an Evolutionarily Appropriate Null Model: 789 

Jointly Inferring Demography and Purifying Selection. Genetics 215: 173-192. 790 

Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, Swofford R, Pirun M, Zody 791 

MC, White S et al. 2012. The genomic basis of adaptive evolution in threespine 792 

sticklebacks. Nature 484: 55-61. 793 

Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC. 2012. Experimental 794 

evolution. Trends in ecology & evolution 27: 547-560. 795 

Kellermann V, van Heerwaarden B, Sgro CM, Hoffmann AA. 2009. Fundamental evolutionary 796 

limits in ecological traits drive Drosophila species distributions. Science 325: 1244-1246. 797 

Kelly JK, Hughes KA. 2019. Pervasive Linked Selection and Intermediate-Frequency Alleles 798 

Are Implicated in an Evolve-and-Resequencing Experiment of Drosophila simulans. 799 

Genetics 211: 943-961. 800 

Kemppainen P, Li Z, Rastas P, Löytynoja A, Fang B, Guo B, Shikano T, Yang J, Merilä J. 2020. 801 

Genetic population structure constrains local adaptation and probability of parallel 802 

evolution in sticklebacks. bioRxiv. 803 

Kerdaffrec E, Filiault DL, Korte A, Sasaki E, Nizhynska V, Seren U, Nordborg M. 2016. 804 

Multiple alleles at a single locus control seed dormancy in Swedish Arabidopsis. Elife 5. 805 

King EG, Merkes CM, McNeil CL, Hoofer SR, Sen S, Broman KW, Long AD, Macdonald SJ. 806 

2012. Genetic dissection of a model complex trait using the Drosophila Synthetic 807 

Population Resource. Genome Res 22: 1558-1566. 808 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2020. ; https://doi.org/10.1101/2020.06.25.170878doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.170878
http://creativecommons.org/licenses/by/4.0/


35 

Kofler R, Langmüller AM, Nouhaud P, Otte KA, Schlötterer C. 2016. Suitability of Different 809 

Mapping Algorithms for Genome-wide Polymorphism Scans with Pool-Seq Data. G3 810 

doi:10.1534/g3.116.034488. 811 

Kofler R, Pandey RV, Schlötterer C. 2011. PoPoolation2: identifying differentiation between 812 

populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics 27: 813 

3435-3436. 814 

Kopp M, Matuszewski S. 2014. Rapid evolution of quantitative traits: theoretical perspectives. 815 

Evol Appl 7: 169-191. 816 

Langley CH, Tobari YN, Kojima KI. 1974. Linkage disequilibrium in natural populations of 817 

Drosophila melanogaster. Genetics 78: 921-936. 818 

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature methods 9: 819 

357-359. 820 

Langmüller AM, Nolte V, Galagedara R, Poupardin R, Dolezal M, Le
i� S, S. S. 2020. Fitness 821 

effects for Ace insecticide resistance mutations are determined by ambient temperature. 822 

submitted. 823 

Lee KM, Coop G. 2017. Distinguishing Among Modes of Convergent Adaptation Using 824 

Population Genomic Data. Genetics 207: 1591-1619. 825 

Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. 826 

Bioinformatics 26: 589-595. 827 

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 828 

Genome Project Data Processing S. 2009. The Sequence Alignment/Map format and 829 

SAMtools. Bioinformatics 25: 2078-2079. 830 

Li J, Li H, Jakobsson M, Li S, Sjodin P, Lascoux M. 2012. Joint analysis of demography and 831 

selection in population genetics: where do we stand and where could we go? Mol Ecol 832 

21: 28-44. 833 

Li YR, Keating BJ. 2014. Trans-ethnic genome-wide association studies: advantages and 834 

challenges of mapping in diverse populations. Genome Med 6: 91. 835 

Lohmueller KE. 2014. The impact of population demography and selection on the genetic 836 

architecture of complex traits. PLoS Genet 10: e1004379. 837 

Mallard F, Nolte V, Tobler R, Kapun M, Schlötterer C. 2018. A simple genetic basis of 838 

adaptation to a novel thermal environment results in complex metabolic rewiring in 839 

Drosophila. Genome biology 19: 119. 840 

Mancuso N, Rohland N, Rand KA, Tandon A, Allen A, Quinque D, Mallick S, Li H, Stram A, 841 

Sheng X et al. 2016. The contribution of rare variation to prostate cancer heritability. Nat 842 

Genet 48: 30-35. 843 

McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN. 844 

2008. Genome-wide association studies for complex traits: consensus, uncertainty and 845 

challenges. Nat Rev Genet 9: 356-369. 846 

Michalak P, Kang L, Schou MF, Garner HR, Loeschcke V. 2019. Genomic signatures of 847 

experimental adaptive radiation in Drosophila. Molecular ecology 28: 600-614. 848 

Morgan TJ, Mackay TF. 2006. Quantitative trait loci for thermotolerance phenotypes in 849 

Drosophila melanogaster. Heredity 96: 232-242. 850 

Novocraft. 2014. NovoAlign.  doi:http://www.novocraft.com/products/novoalign/. 851 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2020. ; https://doi.org/10.1101/2020.06.25.170878doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.170878
http://creativecommons.org/licenses/by/4.0/


36 

Nuzhdin SV, Turner TL. 2013. Promises and limitations of hitchhiking mapping. Current 852 

opinion in genetics & development 23: 694-699. 853 

Otte KA, Schlötterer C. 2017. Polymorphism-aware protein databases - a prerequisite for an 854 

unbiased proteomic analysis of natural populations. Molecular ecology resources 855 

doi:10.1111/1755-0998.12656. 856 

Otte KA, Schlötterer C. 2019. A generalised approach to detect selected haplotype blocks in 857 

Evolve and Resequence experiments. bioRxiv. 858 

Palmieri N, Nolte V, Chen J, Schlötterer C. 2015. Genome assembly and annotation of a 859 

Drosophila simulans strain from Madagascar. Molecular ecology resources 15: 372-381. 860 

Pavlidis P, Alachiotis N. 2017. A survey of methods and tools to detect recent and strong 861 

positive selection. J Biol Res (Thessalon) 24: 7. 862 

Petavy G, David JR, Gibert P, Moreteau B. 2001. Viability and rate of development at different 863 

temperatures in Drosophila: a comparison of constant and alternating thermal regimes. J 864 

Therm Biol 26: 29-39. 865 

Pritchard JK, Pickrell JK, Coop G. 2010. The genetics of human adaptation: hard sweeps, soft 866 

sweeps, and polygenic adaptation. Current biology : CB 20: R208-215. 867 

R Core Team. 2019. R: A Language and Environment for Statistical Computing. R Foundation 868 

for Statistical Computing, Vienna, Austria (http://www.r-project.org/index.html). 869 

Rako L, Blacket MJ, McKechnie SW, Hoffmann AA. 2007. Candidate genes and thermal 870 

phenotypes: identifying ecologically important genetic variation for thermotolerance in 871 

the Australian Drosophila melanogaster cline. Molecular ecology 16: 2948-2957. 872 

Reid NM, Proestou DA, Clark BW, Warren WC, Colbourne JK, Shaw JR, Karchner SI, Hahn 873 

ME, Nacci D, Oleksiak MF et al. 2016. The genomic landscape of rapid repeated 874 

evolutionary adaptation to toxic pollution in wild fish. Science 354: 1305-1308. 875 

Roesti M, Gavrilets S, Hendry AP, Salzburger W, Berner D. 2014. The genomic signature of 876 

parallel adaptation from shared genetic variation. Mol Ecol 23: 3944-3956. 877 

Sachdeva H, Barton NH. 2018. Introgression of a Block of Genome Under Infinitesimal 878 

Selection. Genetics 209: 1279-1303. 879 

Schlötterer C, Tobler R, Kofler R, Nolte V. 2014. Sequencing pools of individuals - mining 880 

genome-wide polymorphism data without big funding. Nature reviews Genetics 15: 749-881 

763. 882 

Seabra SG, Fragata I, Antunes MA, Faria GS, Santos MA, Sousa VC, Simoes P, Matos M. 2018. 883 

Different Genomic Changes Underlie Adaptive Evolution in Populations of Contrasting 884 

History. Mol Biol Evol 35: 549-563. 885 

Sella G, Barton NH. 2019. Thinking About the Evolution of Complex Traits in the Era of 886 

Genome-Wide Association Studies. Annu Rev Genomics Hum Genet 20: 461-493. 887 

Shahandeh MP, Turner TL. 2020. The complex genetic architecture of male mate choice 888 

evolution between Drosophila species. Heredity (Edinb) 124: 737-750. 889 

Shi H, Kichaev G, Pasaniuc B. 2016. Contrasting the Genetic Architecture of 30 Complex Traits 890 

from Summary Association Data. Am J Hum Genet 99: 139-153. 891 

Simons YB, Turchin MC, Pritchard JK, Sella G. 2014. The deleterious mutation load is 892 

insensitive to recent population history. Nat Genet 46: 220-224. 893 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2020. ; https://doi.org/10.1101/2020.06.25.170878doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.170878
http://creativecommons.org/licenses/by/4.0/


37 

Smit AFA, Hubley R, Green P. 2015. RepeatMasker Open-4.0 (2013-2015) 894 

(http://www.repeatmasker.org/). 895 

Spitzer K, Pelizzola M, Futschik A. 2020. Modifying the Chi-square and the CMH test for 896 

population genetic inference: Adapting to overdispersion. Ann Appl Stat 14: 202-220. 897 

Stajich JE, Hahn MW. 2005. Disentangling the effects of demography and selection in human 898 

history. Mol Biol Evol 22: 63-73. 899 

Stam LF, Laurie CC. 1996. Molecular dissection of a major gene effect on a quantitative trait: 900 

the level of alcohol dehydrogenase expression in Drosophila melanogaster. Genetics 144: 901 

1559-1564. 902 

Storz JF. 2005. Using genome scans of DNA polymorphism to infer adaptive population 903 

divergence. Molecular ecology 14: 671-688. 904 

Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA 905 

polymorphism. Genetics 123: 585-595. 906 

Takata R, Takahashi A, Fujita M, Momozawa Y, Saunders EJ, Yamada H, Maejima K, Nakano 907 

K, Nishida Y, Hishida A et al. 2019. 12 new susceptibility loci for prostate cancer 908 

identified by genome-wide association study in Japanese population. Nat Commun 10: 909 

4422. 910 

Taus T, Futschik A, Schlötterer C. 2017. Quantifying Selection with Pool-Seq Time Series Data. 911 

Molecular biology and evolution 34: 3023-3034. 912 

Thornton KR. 2019. Polygenic Adaptation to an Environmental Shift: Temporal Dynamics of 913 

Variation Under Gaussian Stabilizing Selection and Additive Effects on a Single Trait. 914 

Genetics doi:10.1534/genetics.119.302662. 915 

Tobler R, Franssen SU, Kofler R, Orozco-Terwengel P, Nolte V, Hermisson J, Schlötterer C. 916 

2014. Massive habitat-specific genomic response in D. melanogaster populations during 917 

experimental evolution in hot and cold environments. Molecular biology and evolution 918 

31: 364-375. 919 

Tobler R, Nolte V, Schlotterer C. 2017. High rate of translocation-based gene birth on the 920 

Drosophila Y chromosome. Proceedings of the National Academy of Sciences of the 921 

United States of America 114: 11721-11726. 922 

Turner TL, Bourne EC, Von Wettberg EJ, Hu TT, Nuzhdin SV. 2010. Population resequencing 923 

reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nature genetics 42: 924 

260-263. 925 

Visscher PM, Macgregor S, Benyamin B, Zhu G, Gordon S, Medland S, Hill WG, Hottenga JJ, 926 

Willemsen G, Boomsma DI et al. 2007. Genome partitioning of genetic variation for 927 

height from 11,214 sibling pairs. Am J Hum Genet 81: 1104-1110. 928 

Vitti JJ, Grossman SR, Sabeti PC. 2013. Detecting natural selection in genomic data. Annual 929 

review of genetics 47: 97-120. 930 

Vlachos C, Kofler R. 2018. MimicrEE2: Genome-wide forward simulations of Evolve and 931 

Resequencing studies. PLoS computational biology 14: e1006413. 932 

Wojcik GL, Graff M, Nishimura KK, Tao R, Haessler J, Gignoux CR, Highland HM, Patel YM, 933 

Sorokin EP, Avery CL et al. 2019. Genetic analyses of diverse populations improves 934 

discovery for complex traits. Nature 570: 514-518. 935 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2020. ; https://doi.org/10.1101/2020.06.25.170878doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.170878
http://creativecommons.org/licenses/by/4.0/


38 

Wu Y, Waite LL, Jackson AU, Sheu WH, Buyske S, Absher D, Arnett DK, Boerwinkle E, 936 

Bonnycastle LL, Carty CL et al. 2013. Trans-ethnic fine-mapping of lipid loci identifies 937 

population-specific signals and allelic heterogeneity that increases the trait variance 938 

explained. PLoS Genet 9: e1003379. 939 

Xu S. 2003. Theoretical basis of the Beavis effect. Genetics 165: 2259-2268. 940 

Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N, Cunningham JM, de Andrade M, 941 

Feenstra B, Feingold E, Hayes MG et al. 2011. Genome partitioning of genetic variation 942 

for complex traits using common SNPs. Nat Genet 43: 519-525. 943 

Yeaman S, Whitlock MC. 2011. The genetic architecture of adaptation under migration-selection 944 

balance. Evolution; international journal of organic evolution 65: 1897-1911. 945 

Zan Y, Carlborg O. 2019. A Polygenic Genetic Architecture of Flowering Time in the 946 

Worldwide Arabidopsis thaliana Population. Mol Biol Evol 36: 141-154. 947 

Zan Y, Sheng Z, Lillie M, Ronnegard L, Honaker CF, Siegel PB, Carlborg O. 2017. Artificial 948 

Selection Response due to Polygenic Adaptation from a Multilocus, Multiallelic Genetic 949 

Architecture. Molecular biology and evolution 34: 2678-2689. 950 

Zeng J, de Vlaming R, Wu Y, Robinson MR, Lloyd-Jones LR, Yengo L, Yap CX, Xue A, 951 

Sidorenko J, McRae AF et al. 2018. Signatures of negative selection in the genetic 952 

architecture of human complex traits. Nature genetics 50: 746-753. 953 

Zhang XS, Hill WG. 2005. Predictions of patterns of response to artificial selection in lines 954 

derived from natural populations. Genetics 169: 411-425. 955 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2020. ; https://doi.org/10.1101/2020.06.25.170878doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.25.170878
http://creativecommons.org/licenses/by/4.0/

