

1 Comparison of 12 molecular detection assays for SARS-CoV-2

2

3 Yasufumi Matsumura^{a#}, Tsunehiro Shimizu^b, Taro Noguchi^a, Satoshi Nakano^a, Masaki
4 Yamamoto^a, Miki Nagao^a

5

6 ^aDepartment of Clinical Laboratory Medicine, Kyoto University Graduate School of
7 Medicine, Kyoto, Japan

8 ^bDepartment of Infectious Diseases, Kyoto City Hospital, Kyoto, Japan.

9

10 Running Head: 12 molecular detection assays for SARS-CoV-2

11

12 #Address correspondence to Yasufumi Matsumura, yazblood@kuhp.kyoto-u.ac.jp

13

14

15 **Abstract**

16 Molecular testing for SARS-CoV-2 is the mainstay for accurate diagnosis of the infection,
17 but the diagnostic performances of available assays have not been defined. We compared
18 12 molecular diagnostic assays, including 8 commercial kits using 155 respiratory
19 samples (65 nasopharyngeal swabs, 45 oropharyngeal swabs, and 45 sputum) collected at
20 2 Japanese hospitals. Sixty-eight samples were positive for more than one assay and one
21 genetic locus and were defined as true positive samples. All the assays showed a
22 specificity of 100% (95% confidence interval, 95.8 to 100). The N2 assay kit of the US
23 Centers for Disease Control and Prevention (CDC) and the N2 assay of the Japanese
24 National Institute of Infectious Disease (NIID) were the most sensitive assays with 100%
25 sensitivity (95% confidence interval, 94.7 to 100), followed by the CDC N1 kit, E assay
26 by Corman, and NIID N2 assay multiplex with internal control reactions. These assays
27 are reliable as first-line molecular assays in laboratories when combined with appropriate
28 internal control reactions.

29

30 **Introduction**

31 Accurate detection tests for severe acute respiratory syndrome coronavirus 2
32 (SARS-CoV-2) are important to combat the coronavirus disease 2019 (COVID-19)
33 pandemic (1). Various molecular diagnostic assays have been developed and used
34 worldwide (1-4), but the differences in their diagnostic performances remain poorly
35 understood. In this study, we aimed to compare the performance of 12 molecular assays.

36

37 **Materials and Methods**

38 **Clinical specimens**

39 A total of 923 upper or lower respiratory tract samples (nasopharyngeal swabs
40 and oropharyngeal swabs in viral transport media or sputum) were collected from 446
41 patients who were suspected to have COVID-19 between January and May 2020 at Kyoto
42 University Hospital and Kyoto City Hospital. In this study, we included all 68
43 SARS-CoV-2-positive samples and 87 randomly selected negative samples from 107
44 patients.

45 **RNA extraction**

46 The respiratory samples were prospectively stored at -80°C after stabilization by
47 mixing an equal volume of DNA/RNA Shield (2X concentrate; Zymo Research, Irvine,
48 CA). The thawed samples were centrifuged at 20,000×g for 2 min. RNA was extracted
49 from 140 µL of the supernatant using the QIAamp Viral RNA Mini Kit (Qiagen, Hilden,
50 Germany) with RNA extraction controls—5 µL of LightMix® Modular EAV RNA
51 Extraction Control (EAV; Roche, Basel, Switzerland) or 10 µL of MS2 phage (Thermo
52 Fisher Scientific, Waltham, MA, USA)—and eluted in a final volume of 60 µL.

53 **Molecular assays**

54 Table 1 shows the molecular assays evaluated in this study. Real-time RT-PCRs
55 were performed using N1, N2, and RNaseP (RP) internal control assays developed by the
56 Centers for Disease Control and Prevention, USA (2019-nCoV CDC EUA kit (5),

57 obtained from Integrated DNA Technologies, Coralville, Iowa, USA), N2 assay
58 developed and distributed by the National Institute of Infectious Disease (NIID) in Japan
59 (4) (with/without EAV), N and E assays developed by Charité in Germany (1) (Corman)
60 with TaqPath™ 1-Step RT-qPCR Master Mix, CG (Thermo Fisher Scientific). We also
61 tested the LightMix® Modular assays (Roche) for E, RdRP, and N genes multiplexed
62 with EAV, the Real-Time Fluorescent RT-PCR kit for detecting 2019-nCoV (BGI
63 Biotechnology, Wuhan, China), and the TaqPath™ COVID-19 Combo Kit (Thermo
64 Fisher Scientific) according to the manufacturers' instructions. The above reactions were
65 performed using a LightCycler® 480 System II (Roche), and cycle threshold (Ct) values
66 were determined by the second derivative maximum method, except for the CDC N1/N2
67 and TaqPath™ COVID-19 Combo Kit assays, which were performed using Applied
68 Biosystems® 7500 Fast or QuantStudio5 Real-Time PCR Systems (Thermo Fisher
69 Scientific) using a fixed threshold of 0.1. A loop-mediated isothermal amplification
70 (LAMP) assay was performed using a Loopamp® SARS-CoV-2 detection kit and
71 LoopampEXIA® real-time turbidimeter (Eiken Chemical, Tokyo, Japan).

72 **Analytical sensitivity**

73 We determined the limit of detection (LOD) of each assay using a minimum of
74 four replicates of two-fold serial dilutions of recombinant Sindbis virus containing a
75 partial SARS-CoV-2 genome (AccuPlex™ SARS-CoV-2 Reference Material Kit, 5,000
76 copies/mL; SeraCare, Milford, MA, USA). We calculated the 95% limit of detection
77 (LOD) using probit analysis.

78 **Statistical analysis**

79 At the time manuscript preparation, no gold standard exists. In this study, to
80 ensure the presence of SARS-CoV-2 RNA and to avoid false-positives, a sample was
81 defined as positive when positive test results were obtained for more than one genetic
82 locus and assay and the others were defined as negative. The agreement of the assays was
83 assessed by the Cohen's kappa concordance coefficient. The sensitivity and specificity

84 were compared using the McNemar test. The sensitivity of different specimen types was
85 compared using the Fisher's exact test. The Ct value were compared using the Kruskal–
86 Wallis test or a Mann–Whitney U test. A *P*-value <0.05 was considered statistically
87 significant. All statistical analyses were performed using SAS® Studio 3.8 (SAS Institute
88 Inc., Cary, NC).

89 **Ethical statement**

90 The Ethics Committee of Kyoto University Graduate School and the Faculty of
91 Medicine approved this study (R2379).

92

93 **Results**

94 A total of 155 study samples (65 nasopharyngeal swabs, 45 oropharyngeal swabs,
95 and 45 sputum samples) were tested using the 12 assays. Sixty-eight samples (35
96 nasopharyngeal swabs, 15 oropharyngeal swabs, and 18 sputum samples) were positive
97 for more than one assay and one genetic locus and were defined as true positive samples;
98 the other samples were considered true negative. A full list of the results with Ct values
99 is available as Dataset S1.

100 All the assays exhibited a specificity of 100%, while sensitivity varied (Table 2). The
101 CDC N1, CDC N2, NIID N2 (with/without EAV), and Corman E assays were the most
102 sensitive assays with $\geq 95.6\%$ sensitivity. These 5 assays displayed high overall
103 agreement compared with the reference standard (kappa values of ≥ 0.96) and between
104 any two of them (kappa values of ≥ 0.95). The CDC N2 and NIID N2 assays exhibited
105 100% sensitivity; thus, their results were equal to the defined reference standard. The
106 sensitivities of the remaining 7 assays (Corman N, Roche E, Roche RdRP, Roche N,
107 Thermo Combo, BGI and LAMP assays; $\leq 88.2\%$) were significantly lower than those of
108 the most sensitive assays.

109 The CDC protocol requires both N1 and N2 assays, and a sample will be
110 considered positive if both produced positive results. In this study, one true positive

111 nasopharyngeal sample was positive only for the N2 assay even after retesting. The
112 sample was considered inconclusive and the performance of the CDC protocol was
113 considered the same as the CDC N1 assay. The NIID protocol includes both NIID N2 and
114 Corman N assays, and a sample will be considered positive if either assay produces a
115 positive result. In this study, 69.1% of samples were positive for both assays, and 30.9%
116 were positive for only the N2 assay. The protocol by Corman recommended an E assay
117 that detects SARS-related viruses (*Sarbecovirus*) as a first-line screening assay and then
118 SARS-CoV-2 specific RdRP assay for confirmatory testing (1). This approach defined
119 only 49.2% of the Roche E assay-positive samples as SARS-CoV-2, although a single
120 positive result of the Corman E or Roche E assay can be interpreted as SARS-CoV-2
121 positive in the absence of other *Sarbecovirus*. Assays with multiplexed internal control
122 reactions and the CDC RNaseP assay yielded positive signals for all samples.

123 Table 3 shows diagnostic performances for each specimen type. Nasopharyngeal
124 swabs tended to have a higher sensitivity than the other samples. The sensitivity of
125 Corman N assay for sputum samples and that of Roche N assay for oropharyngeal swabs
126 and sputum samples were significantly lower than those for nasopharyngeal swabs. The
127 Ct values of CDC N2 and NIID N2 assays for nasopharyngeal swabs (median
128 [interquartile range], 27.1 [23.6–31.1] and 29.7 [26.3–33.3], respectively) were lower
129 than those for oropharyngeal swabs (31.5 [29.9–35.0] and 33.0 [32.0–34.6]) or sputum
130 samples (30.0 [25.6–33.5] and 30.9 [28.3–34.0]) but the differences did not reach
131 statistical significance (P=0.11 and 0.16 by comparison among 3 specimen types,
132 respectively). The sputum samples had the lower Ct values of the CDC RNaseP assay
133 (25.6 [23.6–27.8]) than nasopharyngeal or oropharyngeal swabs (28.2 [26.9–29.6],
134 P<0.001 and 28.8 [26.9–31.0], P<0.001, respectively).

135 The lowest LOD was observed for the CDC N2 assay (136 copies/mL or 1.6
136 copies/reaction). The other assays which showed the high sensitivities in clinical samples
137 (CDC N1, NIID N2, and Corman E assays) displayed LODs of 191–271 copies/mL. The

138 LODs of the Roche RdRP and N assays were high (>5,000 copies/mL).

139

140 **Discussion**

141 The current diagnosis of COVID-19 mainly relies on RT-PCR tests (6). We
142 performed manufacturer-independent evaluation of the molecular assays, including
143 commercial kits that utilize otherwise-extracted RNA templates. We found that the
144 specificity was perfect for all the assays and that the CDC N1, CDC N2, NIID N2, and
145 Corman E assays were the most sensitive and highly concordant (7). Genetic variations
146 that may compromise sensitivity of the CDC N1, N2, and Corman E assays have been
147 rarely observed as of week 21 of 2020 (8). False negatives by the other assays occurred
148 among low-copy number samples (presenting high Ct values by the CDC N2 or NIID N2
149 assay; Dataset S1), suggesting a lack of sensitivity of these assays.

150 The Roche assays were based on Corman's assays (1) but had lower sensitivity
151 for their E and N assays. This is likely due to lower Ct cutoffs for the Roche assays,
152 rather than differences in reagents and reaction conditions (Table 1 and Dataset S1).
153 Previous studies reported that N assay was less sensitive than the E and RdRP assays (1)
154 and the RdRP assay was less sensitive than the Roche E assay (3). The low sensitivity of
155 the Roche RdRP and N assays were concordant with their high LODs (Table 4). The low
156 sensitivity of the BGI assay may be due to the inclusion of human gene internal controls
157 in the same reaction, which could prevent amplification of viral genes, especially in
158 human genome-enriched samples. The LAMP assay can be used in a resource-poor
159 setting and has the fastest assay time due to its isothermal reaction. However, it had a
160 low sensitivity and no control reaction. The lower sensitivities observed for
161 oropharyngeal and/or sputum samples might be related to higher viral copies (lower Ct
162 values) in nasopharyngeal swabs and/or higher copies of human genes (lower Ct values
163 of the CDC RNaseP Assay) in sputum samples.

164 To avoid false negatives due to technical errors such as extraction problems or

165 PCR inhibition, it is recommended to include internal control reactions. The CDC assays
166 were designed to be combined with a separate internal control reaction (Table 1).
167 Different from multiplex assays that incorporate internal controls such as Roche, Thermo,
168 or BGI kits, this approach needs extra reagents, time, and space in a reaction plate but
169 can be combined with other in-house assays (NIID N2 or Corman E) without any
170 modification. For the multiplex approach, we selected the NIID N2 assay to be
171 multiplexed with the Roche EAV kit, resulting in the similar performance as the original
172 NIID N2 assay.

173 To date, two published reports have compared performances of multiple RT-PCR
174 assays using clinical samples. Nalla (9) et al. compared CDC N1/N2/N3 and Corman
175 E/RdRP among 10 SARS-CoV-2-positive samples. They reported that the CDC N2 and
176 Corman E assays were the most sensitive. van Kasteren et al. compared 7 commercial
177 kits, including 13 positive and 6 negative samples (10). When compared with the Corman
178 E assay, the R-Biopharm AG performed the best, followed by BGI, KH Medical, and
179 Seegene. These reports are in agreement with our findings.

180 The study limitations included a relatively small sample size of each specimen
181 type and lack of clinical information, measurements by multiple investigators, and
182 genomic variation analysis.

183 In conclusion, we validated the NIID N2 assay with EAV control reaction and
184 found that the CDC EUA kit (N1/N2/RNaseP), NIID N2 with/without EAV, and Corman
185 E assays were the most sensitive assays. They are feasible as references and clinical
186 diagnostic tests until commercial kits with internal control reactions or fully automated
187 systems that have high diagnostic performances are available in clinical laboratories.
188 Continuous efforts to improve COVID-19 diagnostics are important to control this
189 pandemic.

190

191 **Acknowledgments**

192 This research received no specific grant from any funding agency in the public,
193 commercial, or not-for-profit sectors. We have no conflict of interest to declare.
194 We thank Akihiko Matsuo (Department of Clinical Laboratory, Kyoto University
195 Hospital, Kyoto, Japan) and Akihiko Hayashi (Department of Clinical Laboratory, Kyoto
196 City Hospital, Kyoto, Japan) for their technical assistance.

197

198 **References**

- 199 1. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, Bleicker T,
200 Brünink S, Schneider J, Schmidt ML, Mulders DG, Haagmans BL, van der Veer B,
201 van den Brink S, Wijsman L, Goderski G, Romette JL, Ellis J, Zambon M, Peiris
202 M, Goossens H, Reusken C, Koopmans MP, Drosten C. 2020. Detection of 2019
203 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 25:2000045.
- 204 2. Waggoner JJ, Stittleburg V, Pond R, Saklawi Y, Sahoo MK, Babiker A, Hussaini L,
205 Kraft CS, Pinsky BA, Anderson EJ, Roush N. 2020. Triplex Real-Time
206 RT-PCR for Severe Acute Respiratory Syndrome Coronavirus 2. Emerg Infect Dis
207 doi:10.3201/eid2607.201285.
- 208 3. Chan JF, Yip CC, To KK, Tang TH, Wong SC, Leung KH, Fung AY, Ng AC, Zou Z,
209 Tsoi HW, Choi GK, Tam AR, Cheng VC, Chan KH, Tsang OT, Yuen KY. 2020.
210 Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and
211 Specific COVID-19-RdRp/HeL Real-Time Reverse Transcription-PCR Assay
212 Validated. J Clin Microbiol 58:e00310-20.
- 213 4. Shirato K, Nao N, Katano H, Takayama I, Saito S, Kato F, Katoh H, Sakata M,
214 Nakatsu Y, Mori Y, Kageyama T, Matsuyama S, Takeda M. 2020. Development of
215 Genetic Diagnostic Methods for Novel Coronavirus 2019 (nCoV-2019) in Japan.
216 Jpn J Infect Dis doi:10.7883/yoken.JJID.2020.061.
- 217 5. Centers for Disease Control and Prevention. 2020. CDC 2019-Novel
218 Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel.
219 <https://www.fda.gov/media/134922/download>. Accessed 24 Mar 2020.
- 220 6. Sethuraman N, Jeremiah SS, Ryo A. 2020. Interpreting Diagnostic Tests for
221 SARS-CoV-2. JAMA doi:10.1001/jama.2020.8259.
- 222 7. Landis JR, Koch GG. 1977. The measurement of observer agreement for
223 categorical data. Biometrics 33:159-74.
- 224 8. Penarrubia AL, Ruiz M, Porco R, Rao SN, Juanola-Falgarona M, Manisero D,

225 López-Fontanals M, Pareja J. 2020. Multiple assays in a real-time RT-PCR
226 SARS-CoV-2 panel can mitigate the risk of loss of sensitivity by new genomic
227 variants during the COVID-19 outbreak. *Int J Infect Dis*
228 doi:10.1016/j.ijid.2020.06.027.

229 9. Nalla AK, Casto AM, Huang MW, Perchetti GA, Sampoleo R, Shrestha L, Wei Y,
230 Zhu H, Jerome KR, Greninger AL. 2020. Comparative Performance of
231 SARS-CoV-2 Detection Assays using Seven Different Primer/Probe Sets and One
232 Assay Kit. *J Clin Microbiol* 58:e00557-20.

233 10. van Kasteren PB, van der Veer B, van den Brink S, Wijsman L, de Jonge J, van
234 den Brandt A, Molenkamp R, Reusken CBEM, Meijer A. 2020. Comparison of
235 seven commercial RT-PCR diagnostic kits for COVID-19. *J Clin Virol*
236 128:104412.

237

238

239 **Table 1. Summary of the molecular assays used in this study.**

Assay	Target	gene	Volume of				Reaction
	(position	in	template				
	SARS-CoV-2	Internal	RNA/reac		PCR	time	Regulato
Assay	genome ^{a)}	control	tion (μL)	Thermal cycling condition	reagent	(min.)	ry status
CDC N1 kit	N (28286–28357)	RNaseP	in 5/20	10 min at 50°C, 2 min at 95°C, 45 cycles of 3 s at 95°C and 30 s at 55°C	TaqPath	88	EUA
			separate reaction				
CDC N2 kit	N (29163–29229)	RNaseP	in 5/20	10 min at 50°C, 2 min at 95°C, 45 cycles of 3 s at 95°C and 30 s at 55°C	TaqPath	88	EUA
			separate reaction				
CDC RP kit	Human RNaseP	-	5/20	10 min at 50°C, 2 min at 95°C, 45 cycles of 3 s at 95°C and 30 s at 55°C	TaqPath	88	EUA
NIID N2	N (29142–29280)	None	5/20	15 min at 50°C, 2 min at 95°C, 45 cycles of 3 s at 95°C and 30 s at 60°C	TaqPath	68	RUO ^b
NIID N2 with N (29142–29280)	EAV		5/20	15 min at 50°C, 2 min at 95°C, 45	TaqPath	68	RUO

			Extraction		cycles of 3 s at 95°C and 30 s at			
			Control kit		60°C			
Corman E	E (26268–26380)	None	5/20	15 min at 50°C, 2 min at 95°C, 45	TaqPath	68		RUO
				cycles of 3 s at 95°C and 30 s at				
				60°C ^c				
Corman N	N (28555–28682)	None	5/20	15 min at 50°C, 2 min at 95°C, 45	TaqPath	68		RUO ^b
				cycles of 3 s at 95°C and 30 s at				
				60°C ^c				
Roche E kit	E	EAV	5/20	5 min at 55°C, 5 min at 95°C, 45	LightCycl	65		RUO ^b
		Extraction		cycles of 5 s at 95°C, 15 s at 60°C, er				
		Control kit		and 15 s at 72°C				
Roche RdRP kit	RdRP	EAV	5/20	5 min at 55°C, 5 min at 95°C, 45	LightCycl	65		RUO
		Extraction		cycles of 5 s at 95°C, 15 s at 60°C, er				
		Control kit		and 15 s at 72°C				
Roche N kit	N	EAV	5/20	5 min at 55°C, 5 min at 95°C, 45	LightCycl	65		RUO ^b
		Extraction		cycles of 5 s at 95°C, 15 s at 60°C, er				
		Control kit		and 15 s at 72°C				
Thermo	Combo	ORF1ab, S, N	MS2 phage	5/20	10 min at 53°C, 2 min at 95°C, 40	Included	67	CE-IVD

kit		extraction		cycles of 3 s at 95°C and 30 s at			, EUA,
		control		60°C			JP-IVD
BGI kit	ORF1ab (3180–3280)	Human beta-actin gene	10/30	20 min at 50°C, 10 min at 95°C, 40 cycles of 15 s at 95°C and 30 s at	Included	90	CE-IVD
				60°C			, EUA,
							JP-IVD
LAMP kit	Proprietary	Not included	10/25	35 min at 62.5°C	Included	35	JP-IVD
240	TaqPath, TaqPath™ 1-Step RT-qPCR Master Mix, CG; LightCycler, LightCycler® Multiplex RNA Virus Master; EUA, the US Food						
241	and Drug Administration Emergency Use Authorization; RUO, research use only; CE-IVD, European conformity-in vitro diagnostics;						
242	JP-IVD, in vitro diagnostics in Japan.						
243	^a Accession no. MN908947.						
244	^b RUO but approved for clinical diagnostic use in Japan. The Corman N assay is combined with the NIID N2 assay, and the Roche N						
245	assay is combined with the Roche E assay.						
246	^c Modified from the original condition (58°C). For the Corman N assay, the NIID recommended reaction was at 60°C (4).						

247 **Table 2. Overall diagnostic performance of 12 molecular assays.**

Assay	Sensitivity ^a (95% CI)	Specificity ^a (95% CI)	Kappa ^a (95% CI)
CDC N1 kit ^b	98.5% (92.1–100)	100% (95.8–100)	0.99 (0.96–1)
CDC N2 kit ^b	100% (94.7–100)	100% (95.8–100)	1 ^c
NIID N2	100% (94.7–100)	100% (95.8–100)	1 ^c
NIID N2 with EAV ^d	95.6% (87.6–99.1)	100% (95.8–100)	0.96 (0.91–1)
Corman E	98.5% (92.1–100)	100% (95.8–100)	0.99 (0.96–1)
Corman N	69.1% ^e (56.7–79.8)	100% (95.8–100)	0.72 (0.60–0.83)
Roche E kit ^{d,f}	86.8% ^e (76.3–93.8)	100% (95.8–100)	0.88 (0.80–0.96)
Roche RdRP kit ^{d,f}	42.6% ^e (30.7–55.3)	100% (95.8–100)	0.46 (0.33–0.58)
Roche N kit ^{d,f}	67.6% ^e (55.2–78.5)	100% (95.8–100)	0.70 (0.59–0.82)
Thermo Combo kit ^{d,g}	85.3% ^e (74.6–92.8)	100% (95.8–100)	0.87 (0.78–0.95)
BGI kit ^{d,h}	88.2% ^e (78.1–94.8)	100% (95.8–100)	0.89 (0.82–0.97)
LAMP kit	80.9% ^e (69.5–89.5)	100% (95.8–100)	0.83 (0.73–0.92)

248 CI, confidence interval.

249 ^a Calculated against the defined reference standard.

250 ^b All samples yielded positive signals in separate CDC RNaseP reactions. The CDC N1 assay
251 was negative, but CDC N2 assay was positive for 2 true positive samples. Repeat testing showed
252 that one sputum sample was positive for both assays while results of the other nasopharyngeal
253 sample were unchanged. Thus, the former was considered positive and the latter was considered
254 inconclusive as the results of the CDC assay.

255 ^c 95% CI could not be calculated.

256 ^d All reactions yielded positive signals for control targets.

257 ^e P < 0.05 in comparison with the defined reference standard.

258 ^f Cutoff was defined by 2 cycles higher than the observed Ct value for 10 copies according to the

259 manufacturer's instructions (E, 36.7; RdRP, 40; N, 39.3). When the fixed cutoff shown in the
260 instructions was used (E, 36; RdRP, 39; N, 37), the sensitivity were changed as follows: E,
261 83.8%; RdRP, 36.8%; N, 50.0%, and the specificity were unchanged.

262 ^g Seven samples were positive for only the N gene that warranted repeat testing. Repeat testing
263 showed that 4 samples (2 true positive sputum samples, 1 true positive pharyngeal sample, and 1
264 true negative sputum sample) were negative for all genes, and these were considered negative.
265 The other 3 true positive sputum samples were positive again for only the N gene and were
266 considered positive.

267 ^h Four samples were positive, but the Ct values were >38, which warranted repeat testing. Repeat
268 testing showed that 2 true negative pharyngeal samples and 1 true negative nasopharyngeal
269 sample were negative and they were considered negative. The other true positive sputum sample
270 was positive again with Ct value of 39.12 and was considered positive.

271

272 **Table 3. Diagnostic performance of 12 molecular assays according to specimen types.**

Assay	Nasopharyngeal swab (n=65)			Oropharyngeal swab (n=45)			Sputum (n=45)		
	Sensitivity ^a (95% CI)	Specificity ^a (95% CI)	Kappa ^a (95% CI)	Sensitivity ^a (95% CI)	Specificity ^a (95% CI)	Kappa ^a (95% CI)	Sensitivity ^a (95% CI)	Specificity ^a (95% CI)	Kappa ^a (95% CI)
CDC N1 kit	100% (90.0–100)	100% (88.4–100)	1 ^b	93.3% (68.0–99.9)	100% (88.4–100)	0.95 (0.85–1)	100% (81.4–100)	100% (87.2–100)	1 ^b
CDC N2 kit	100% (90.0–100)	100% (88.4–100)	1 ^b	100% (78.2–100)	100% (88.4–100)	1 ^b	100% (81.4–100)	100% (87.2–100)	1 ^b
NIID N2	100% (90.0–100)	100% (88.4–100)	1 ^b	100% (78.2–100)	100% (88.4–100)	1 ^b	100% (81.4–100)	100% (87.2–100)	1 ^b
NIID N2 with EAV	100% (90.0–100)	100% (88.4–100)	1 ^b	93.3% (68.0–99.9)	100% (88.4–100)	0.95 (0.85–1)	88.9% (65.2–98.7)	100% (87.2–100)	0.91 (0.77–1)
Corman E	100% (90.0–100)	100% (88.4–100)	1 ^b	93.3% (68.0–99.9)	100% (88.4–100)	0.95 (0.85–1)	100% (81.4–100)	100% (87.2–100)	1 ^b
Corman N	82.9% ^c (66.3–93.5)	100% (88.4–100)	0.82 (0.67–0.96)	60.0% ^c (32.2–83.7)	100% (88.4–100)	0.67 (0.43–0.91)	50.0% ^{c,d} (26.0–74.0)	100% (87.2–100)	0.55 (0.30–0.79)
Roche E kit	94.3%	100%	0.94	73.3% ^c	100%	0.79 (0.58–0.91)	83.3%	100%	0.86 (0.70–0.91)

			(80.8–99.3)	(88.4–100)	(0.85–1)	(44.9–92.3)	(88.4–100)	0.99)	(58.5–96.5)	(87.2–100)	1)
Roche	RdRP	48.6% ^c	100%	0.49	33.3% ^c	100%	0.73	(0.51–	38.9% ^c	100%	0.43 (0.19–
kit ^e		(33.9–68.7)	(88.4–100)	(0.31–	(38.3–88.2)	(88.4–100)	0.95)	(17.3–64.3)	(87.2–100)	0.68)	
Roche N kit		82.9% ^c	100%	0.82	53.3% ^{c,d}	100%	0.60	(0.35–	50.0% ^{c,d}	100%	0.55 (0.30–
		(66.3–93.5)	(88.4–100)	(0.67–	(26.5–78.8)	(88.4–100)	0.86)	(26.0–74.0)	(87.2–100)	0.96)	
Thermo Combo	kit	91.4%	100%	0.91	73.3% ^c	100%	0.79	(0.58–	83.3%	100%	0.86 (0.70–
BGI kit		94.3%	100%	0.94	80.0%	100%	0.84	(0.67–	83.3%	100%	0.86 (0.70–
		(80.8–99.3)	(88.4–100)	(0.85–1)	(51.9–95.7)	(88.4–100)	1)		(58.5–96.5)	(87.2–100)	1)
LAMP kit		91.4%	100%	0.91	66.7% ^c	100%	0.73	(0.51–	72.2%	100%	0.86 (0.70–
		(76.9–98.2)	(88.4–100)	(0.80–1)	(38.3–88.2)	(88.4–100)	0.95)		(58.5–96.5)	(87.2–100)	1)

273 CI, confidence interval.

274 ^a Calculated against the defined reference standard.

275 ^b 95% CI could not be calculated.

276 ^c P < 0.05 in comparison with the defined reference standard.

277 ^d P < 0.05 in comparison with the sensitivity for nasopharyngeal swabs.

279

Table 4. Analytical sensitivity of 12 molecular assays.

Assay	Limit of detection ^a , copies/mL (95% CI)	Viral copies/sample mL, positive rate (no. of replicates, positive/tested)				
		Dilution 1	Dilution 2	Dilution 3	Dilution 4	Dilution 5
CDC N1 kit	191 (116–2,490)	625, 100% (5/5)	313, 100% (5/5)	156, 100% (5/5)	78, 20% (1/5)	39, 20% (1/5)
CDC N2 kit	136 (86–1,910)	313, 100% (5/5)	156, 100% (4/4)	78, 60% (3/5)	39, 20% (1/5)	20, 0% (0/6)
NIID N2	220 (153–759)	625, 100% (6/6)	313, 100% (6/6)	156, 78% (7/9)	78, 30% (3/10)	39, 0% (0/7)
NIID N2 with EAV	271 (184–1,470)	625, 100% (5/5)	313, 100% (5/5)	156, 57% (4/7)	78, 10% (1/10)	39, 14% (1/7)
Corman E	228 (126–1,900)	313, 100% (6/6)	156, 83% (5/6)	78, 57% (4/7)	39, 43% (3/7)	20, 0% (0/4)
Corman N	649 (404–6,300)	1250, 100% (5/5)	625, 100% (5/5)	313, 40% (2/5)	156, 20% (1/5)	78, 0% (0/5)
Roche E kit	1,630 (891–30,900)	2500, 100% (4/4)	1250, 75% (3/4)	625, 80% (4/5)	313, 25% (1/4)	156, 0% (0/4)
Roche RdRP kit	>5,000 ^c	5000, 0% (4/4)	2500, 0% (4/4)			
Roche N kit	7,610 ^c	5000, 75% (3/4)	2500, 25% (1/4)	1250, 0% (0/4)		
Thermo Combo kit	298 ^b (199–1,540)	313, 100% (8/8)	156, 40% (2/5)	78, 14% (1/7)		
BGI kit	424 (184–11,600)	313, 100% (5/5)	156, 60% (3/5)	78, 57% (4/7)	39, 38% (3/8)	20, 20% (1/5)
LAMP kit	178 ^c	625, 100% (5/5)	313, 100% (7/7)	156, 60% (3/5)	78, 0% (0/4)	

280

CI, confidence interval.

281

^a Calculated using probit analysis.

282

^b The LOD may be underestimated because all samples were positive for only N gene. The reference material may not contain targets

283 corresponding to Orf1ab and S genes.

284 ^c 95% CI could not be calculated.

285