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Geospatial datasets of population are becoming more common

in models used for health policy. Publicly-available maps of hu-

man population in sub-Saharan Africa make a consistent pic-

ture from inconsistent census data, and the techniques they use

to impute data makes each population map unique. Each map-

ping model explains its methods, but it can be difficult to know

which map is appropriate for which policy work. Gold-standard

census datasets, where available, are a unique opportunity to

characterize maps by comparing them with truth. We use cen-

sus data from Bioko Island, in Equatorial Guinea, to evalu-

ate LandScan (LS), WorldPop (WP), and the High-Resolution

Settlement Layer (HRSL). Each layer is compared to the gold-

standard using statistical measures to evaluate distribution, er-

ror, and bias. We investigated how map choice affects burden

estimates from a malaria prevalence model. Specific popula-

tion layers were able to match the gold-standard distribution

at different population densities. LandScan was able to most

accurately capture highly urban distribution, HRSL matched

best at all other lower population densities and WorldPop per-

formed poorly everywhere. Correctly capturing empty pixels is

key, and smaller pixel sizes (100 m vs 1 km) improve this. Nor-

malizing areas based on known district populations increased

performance. The use of differing population layers in a malaria

model showed a disparity in results around transition points

between endemicity levels. The metrics in this paper, some of

them novel in this context, characterize how these population

maps differ from the gold standard census and from each other.

We show that the metrics help understand the performance of

a population map within a malaria model. The closest match to

the census data would combine LandScan within urban areas

and the HRSL for rural areas. Researchers should prefer par-

ticular maps if health calculations have a strong dependency on

knowing where people are not, or if it is important to categorize

variation in density within a city.
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Introduction

With the implementation of national malaria elimination

campaigns in many countries across the globe, planning,

monitoring, and evaluation of malaria interventions have be-

come more critical than ever (1). Advances in mapping and

modeling of disease risk and spread have accelerated since

the turn of the century, accomplished through increases in

GIS and satellite imagery and survey data (2, 3). These ad-

vances have led to the creation of publicly available global

population datasets that have often been used to inform many

public health studies in areas without first-rate census data,

as in most of the developing world, where much of the in-

fectious disease burden resides. The inherent uncertainty in

models and estimates of infectious disease burden is usually

recognized while the fundamental uncertainty in the denom-

inator of such disease estimates, the human population data

layer, is commonly assumed to be completely correct.

The premise of precision public health is that evidence can be

used to improve the efficiency and effectiveness of interven-

tions to benefit those most in need (4, 5). Data describing the

geographical distribution of humans—accurate human popu-

lation density maps—are among the most important compo-

nents of evidence, along with observational or intervention

studies, as they describe the needs for resource provisioning

and the denominators for the analyses used to identify pop-

ulations at risk. Risk factors, health catchment populations,

access to resources, and operational constraints on provision-

ing resources are intrinsically related to population density

and geographical location. In the context of malaria, pop-

ulation surfaces are also increasingly used as covariates for

geostatistical models for mapping prevalence, incidence and

other metrics (6–9). Information about the geographical lo-

cation of human households is required to weigh resource

allocation decisions to identify and serve populations in need

(10, 11). Making effective policy thus requires having accu-

rate maps of human populations (10). The last two decades

have seen significant advances in mapping technologies, and

the publication of several gridded population surfaces using

different modeling approaches (11).

The basic notion of accuracy for population maps is quite in-

tuitive. Information in maps is complicated, however, and
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while a perfect map is accurate in every way, an inaccurate

map can be inaccurate in many different ways. An open ques-

tion is how to measure the accuracy of maps for different pur-

poses. Two questions for precision public health are how to

measure the accuracy of these maps, and how to set standards

for accuracy for various purposes. Maps need not be perfect,

but they should be suited to the task at hand.

Here, we measure the accuracy of published overlapping

maps of human population density using a high quality map

of one locale as a gold standard (12). We use several metrics

to evaluate these maps, including a new goodness-of-fit met-

ric and a new application of accuracy profiles. We evaluate

their suitability in the context of malaria control and elimina-

tion policy on Bioko Island. The Bioko Island Malaria Elim-

ination Project (BIMEP) has developed highly detailed and

constantly updated housing cartography as a basis for dis-

tributing interventions, monitoring impact and implementing

surveillance (12). Accompanying this housing database is

a recent population census that allocates inhabitants to their

households. We use these BIMEP population data as the gold

standard against which we evaluate several publicly available

gridded population surfaces. We also discuss the functional

consequences of accuracy by using these surfaces to develop

maps of Plasmodium falciparum parasite rate (Pf PR) using

well-documented methods, where the population density sur-

face is used both as a covariate and as the population weight

on the Pf PR surface.

Methods

Study area Bioko is the largest island of Equatorial Guinea,

at 2017 km2. It is located approximately 40 km off the coast

of Cameroon, in the Bight of Bonny. Malabo, the main urban

centre and country capital, concentrates around 85 % of the

human population of the island. Administratively, Bioko is

divided into two provinces (second administrative division)

and four districts (third administrative division; Figure 1).

Population data

BIMEP health census data This health population cen-

sus was part of a bed-nets mass distribution campaign in

2018 (13). People present during the campaign were counted

and registered to their house mapping code for geographical

reference (12). Each house is GPS-located on the island. The

census underestimates the total household count by approxi-

mately 12 %, due to BIMEP census workers only being able

to reach approximately 88 % of them during the bed net in-

tervention campaign. The underestimate in the actual popula-

tion is likely different, however, due to the heterogeneous dis-

tribution of intra-household population counts. Despite this

discrepancy, the 2018 BIMEP population census represents

the most accurate and most up-to-date rendering of popu-

lation distribution on Bioko Island. This census followed a

similar population count in 2015 during the preceding bed-

nets distribution campaign, so the data were validated against

this previous effort and are used here as the gold standard for

analyses.

Gridded population data We selected all population maps

that are publicly available and nearly complete across Africa:

WorldPop (WP) 2015 (14), LandScan (LS) 2017 (15) and the

High Resolution Settlements Layer (HRSL) (16). WP uti-

lizes a mixed approach for mapping populations that includes

areal weighting of census data and dasymetric modelling, a

type of thematic geospatial map that incorporates ancillary

remotely-sensed and geospatial data (14, 17). The WP input

population for Equatorial Guinea corresponds to third admin-

istrative level (district) census data dated 2001, and we used

the layer that is adjusted to UN estimates of total population.

LS uses census data and dasymetric mapping that incorpo-

rates multiple data layers including land cover, roads, slope

and human settlements (15). The HRSL uses machine learn-

ing algorithms to map buildings at very high spatial resolu-

tion (1 arc second, or approximately 30 m) (16). All build-

ings identified in this layer are then proportionally allocated

human population from second administrative level census

data. All three datasets are on grids in latitude and longitude.

At Bioko’s latitude, the median side length of a grid square

varies from 30.8 m for HRSL, to 92.4 m for WP and 924 m

for LS.

We needed to compute a density per square kilometer in or-

der to measure urban fraction. While the gridded popula-

tion surfaces can be treated as density per pixel, we gener-

ated separate population density surfaces by taking the sum

of all people within a radius of 1000/
√

π meters of the grid

square centroid. This algorithm assumes the density within

each pixel is constant.

When there is direct comparison between the house-level

BIMEP data and a gridded dataset, we aggregated the BIMEP

data to the same grid as the dataset. This way, each map is

compared without added interpolation from alignment to a

common grid. When algorithms called for BIMEP data to be

gridded, we used the finest grid, that of the HRSL. Where the

size of a grid cell might affect comparison, we aggregated the

HRSL 32-fold and LS 11-fold, in order to construct nearly

1 km grids. We refer to these as 1 km maps.

It seems possible that the exact alignment of the raster grid

over the island might affect metrics. In order to investigate

this, we rasterized the BIMEP data hundreds of times to grids

of the same resolution, but shifted slightly in latitude or lon-

gitude. We recalculated the basic metrics in Table 1 for each

shift, and it is the standard deviation of the resulting distribu-

tion of metrics that appears as plus-minus values in that table.

Of these metrics, the maximum population is most sensitive

to grid placement, especially for the coarsest grid choice.

Goodness of Fit Ratios A commonly used distance met-

ric to measure statistical models’ goodness of fit is the sum of

squared errors (10); this metric is related to variance (average

distance of a random variable from its mean) by noting that

the mean sum of squared errors is equal to bias plus variance.

We propose a new measure of the utility of a map is whether

a measure of goodness of fit based on the sum of squared er-

rors is better than the variance, which is the goodness of fit

for a “null" map that assigned to each pixel the average pop-

ulation density. We call this a goodness-of-fit ratio (GOFR).
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A GOFR of 0 indicates a perfect fit. A GOFR greater than

one indicates the fit was worse than the null. A GOFR of

1 indicates that the map is as good as a null map. We ap-

ply GOFR both to the whole of Bioko and separately to each

second administrative level.

Let H(x) denote the true population density at pixel x. De-

note the observed map value with Ĥ(x). For any subset of

map pixels, the GOFR is the ratio of mean squared error per

pixel to variance of the expected. Using n for the number of

pixels in a region, the GOFR for that region is

G(Ĥ) =

∑
x(Ĥ(x)−H(x))2/n

Var(H)
.

We can also compute a normalized by district GOFR to

compare relative population densities, to remove any ef-

fect of having different total population sizes. Let h(x) =
H(x)/

∑
y H(y). The normalized version is

g(ĥ) =

∑
x(ĥ(x)−h(x))2/n

Var(h)
.

If G = 0 then the candidate map is perfect over the region.

If G < 1, then the map improves the goodness of fit over the

constant value, and if G ≥ 1, the goodness of fit is worse than

just using the average population density.

Urban Fraction Countries measure urban fraction in ways

that are germane to their needs for planning and assessment,

so the measure can include observations of human movement

patterns and availability of resources. Because we are look-

ing only at the maps, the urban fraction here is the percent-

age of pixels for which the density within a square kilometer

was greater than a thousand people. It may be that Equato-

rial Guinea uses a cutoff of 1500 people per square kilometer

(18), but the relative information in these maps is the same

for either choice of cutoff.

Pareto Number The Pareto number is a single value that

characterizes the tendency of population to aggregate. A

smaller value indicates more aggregation. For instance, if

95 % of the population is in 5 % of the pixels, the Pareto num-

ber would be 5. We find the Pareto number by sorting pixels

in increasing population size. The Pareto number is the in-

dex, normalized to 100, of the pixel for which the fraction of

pixels that are larger equals the fraction of total population in

pixels that are smaller.

Accuracy Profiles We used binary classification statistics

to construct an accuracy profile for the 1 km maps (Table

2). Binarization of population quantity numbers was done to

allow comparison of accuracy statistics across multiple pop-

ulation surfaces. For a threshold population density, τ , each

pixel in a map is classified as being either above or below the

threshold. Using BIMEP as the gold standard, we assessed

the accuracy of the other maps against it and each other.

We computed: true positives (TP), the proportion above the

threshold in both maps; true negatives (TN), the proportion

below the threshold in both maps; false negatives (FN), the

proportion above in BIMEP but below in the other map; and

false positives (FP), the proportion below the threshold in

BIMEP but above in the other map. We define accuracy

as the proportion correct (i.e. (TP + TN)/(TP + TN +
FP + FN)); recall or sensitivity as the proportion above a

threshold in the gold standard that were correctly assigned:

TP/(TP + FN); and precision or positive predictive value

as the proportion above the threshold in the alternative map

that were correctly assigned: TP/(TP + FP ). Each thresh-

old value on population density, τ , gives different measures

of accuracy, recall, and precision. We also computed accu-

racy metrics for classification of the landscape into popula-

tion density categories: empty (strictly equal to zero), and

for breakpoints at 1, 50, 250, and 1,000 people per km2 with

1,000 and up classified as urban areas.

PfPR mapping We estimated the prevalence of malaria par-

asites, a Pf PR surface, for Bioko Island using the same set

of covariates, replacing only the population surfaces one at

a time. Data and methods described elsewhere (8, 9). The

population surfaces were then used to construct density val-

ues to assign as population weights for use in the calcula-

tion of Pf PR. The response data corresponded to Pf PR at

household-level spanning the period 2015–2018. We ran this

exercise for each of the 1x1 km population grids since en-

vironmental covariates were not available for Bioko at finer

spatial resolution. We also estimated relative populations at

risk using each population surface and expressed them as cu-

mulative distribution and probability density functions.

Results

Population distribution Much of the habitable land area

on Bioko Island is sparsely inhabited and the bulk of the

population is concentrated in the North, within and nearby

Malabo. The rest of the population is distributed in pockets,

mostly rural, along the East and West coasts. There are two

large, uninhabited nature reserves in the North and South of

the island (Fig. 1). Fig. 2 and 3 illustrate the population

distribution according to each of the four surfaces at 1x1 km

and 100x100 m, respectively. In the BIMEP surface (Fig.

2A), the population is highly concentrated around the cen-

ter of Malabo, with areas housing as many as 17,130 people

per square kilometer. Fig. 3A illustrates a highly heteroge-

neous human population distribution in the center of Malabo

at 100x100 m pixels. Given the small size of Bioko and ag-

gregation of its population, it’s a success for the metrics to

present a consistent picture of map performance.

The population according to WP distinguishes average den-

sity between Bioko North and Bioko South but diverges lit-

tle from mean values, including within the nature reserves

(Fig. 2B). The 100x100 m WP surface does show increased

densities around the Malabo area, but they intersperse with

low populations in the urban city center (Fig. 3B).

The 1 km LS population surface, while correctly identify-

ing the general shape of settlement around the Malabo area,

fails to predict the extreme abundance of zero population

Fries et al. | Accuracy Metrics bioRχiv | 3

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.18.160101doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.160101
http://creativecommons.org/licenses/by-nd/4.0/


pixels in the rest of the island. Within Malabo, the LS

model severely over-predicts extreme population aggrega-

tion, estimating 34.6 % of the total population is concentrated

amongst two square kilometers with population density as

high as 34,344 people/sq km (Fig. 2C).

The HRSL surface renders a more accurate population distri-

bution overall, particularly in rural areas (Fig. 2D). It fails to

provide an accurate picture of urban Malabo, however, where

the population appears more evenly distributed than the gold

standard, with a maximum population density of 6,085 per

square kilometer. This pattern is also manifest in the 100x100

m HRSL surface, representative of an overly uniform popu-

lation distribution across Malabo (Fig. 3C).

Per-pixel Scatter Plot The biases and exactness of the al-

gorithms used to generate the maps are more obvious in the

scatter plots (Fig. 4). In particular, the raw plots for the

30x30 m and 100x100 m maps for HRSL and WP show dis-

tinct horizontal striping patterns (Fig. 4E,F). The distinct hor-

izontal stripes observed in these plots indicate that for a large

range of actual (BIMEP) population densities, WP and, to a

lesser extent, HRSL predicted constant density; this is a vi-

sual indication of model inability to fully characterize spatial

variation in population density. The HRSL’s estimated map

is produced by an algorithm which, in this case, identifies a

maximum of 20 households in each pixel, and allocates the

total population evenly among households, producing here an

integer multiple of 10.144 individuals to each household. In

WP, each grid square is assigned to one of seven distinct pop-

ulation density values. These patterns are obscured in popu-

lation density estimates or in aggregating data up to 1 km grid

cells. The adjusted R2 values for the per-km maps are higher

than for their respective estimated population density, which

are higher than for the population size as well.

Cumulative Distribution by Area Some of the same pat-

terns are evident in the empirical cumulative distribution

functions (eCDFs) and smoothed density plots showing pop-

ulation density and its distribution by land area (Fig. 5),

which highlight the large fraction of empty space in most

of the maps (Fig. 5A). In the BIMEP maps, the fraction of

empty pixels was 98 % for the 100m map and 88.4 % for the

1km map; both the HRSL and LS were similar (Fig. 4B).

WorldPop, by way of contrast, reported a positive popula-

tion density for almost every pixel. We have also plotted the

eCDFs of population density vs. the proportion of the hu-

man population living at that density, and also the empirical

probability distribution functions (Fig. 5B,C). These maps

highlight important differences, such as maximum popula-

tion density: 34,344 per km2 for the LS map, 17,130 for the

BIMEP map, 6,085 for the HRSL map, and 1018 for WP (Ta-

ble 1).

Goodness of Fit Ratios We applied the goodness of fit ra-

tio (GOFR) to all population maps at the 1 km resolution for

comparison. The HRSL was an improvement over the aver-

age population density for all of Bioko Island and for each

one of the third administrative levels (Table 3). The LS map

was an improvement for all but the Luba district. The WP

map was remarkably close to an average population density

map. The GOFR values for Luba and Riaba were larger, in

general. A small registration error in a map could result in

a large GOFR because their populations are small (5500 in

Luba, 2300 in Riaba) and highly aggregated.

Accuracy Profiles The accuracy profile shows measures of

accuracy, recall, and precision as binary classification statis-

tics for a mesh on τ for values spanning the range of the

gold standard (Fig. 6). The BIMEP and HRSL maps were

the most similar across all three binary metrics. LS and WP

had a much higher fraction of pixels in the lowest population

category (Fig. 6A). Overall, the HRSL tended to be the most

accurate and with the best recall for population densities up to

5,000 per km2, which was the upper limit of population den-

sities in that map (Fig. 6B,C). The precision of the LS map

was highest from 250 people per km2 up to around 2,000
people per km2 (Fig. 6D).

The HRSL map identified 96 % of the empty pixels and 90 %

of the urban pixels correctly (i.e. by recall or sensitivity),

while LS identified 98 % of the urban pixels correctly. No-

tably, the accuracy metrics are dominated by true negatives,

since there are so many empty cells (Table 4).

HRSL had the highest precision (i.e. positive predictive

value) for “empty": if a pixel was reported empty in LS, it

was empty in the BIMEP map 99 % of the time. The HRSL

was a close second at 98 % PPV. The PPV values for urban

classification were lower: LS was the highest at 77 %, while

HRSL had 56 % (Table 4).

Malaria Mapping In our analysis, human population den-

sity was only weakly correlated with Pf PR on Bioko Island,

so the resulting Pf PR maps were virtually indistinguishable.

The main difference was how the distribution of people af-

fected calculation of average Pf PR: 11.3% for the BIMEP

map, 12.3% for the HRSL, 13.4% for WP, and 10.6% for LS

(Fig. 7A). Calculating the fraction of the population at great-

est risk, with Pf PR above 20%, was sensitive to the map’s

ability to identify urban areas, leading to 2.5% in BIMEP,

2.6% in LS, 6.2% in the HRSL, and 12.4% in WP (Fig. 7B).

Discussion

The individual metrics, described above, together provide in-

sight into optimal use and limitation of these datasets, both

for malaria and wider public health applications. Comparing

with a gold standard dataset gives us some sense of the effects

each approach’s assumptions and use of ancillary data.

WorldPop The WorldPop results consistently under-

reported population levels in urban areas (Fig. 6). In Table 1,

WP has the lowest population totals and lowest max popula-

tion density, this is likely due to WP maxing out population

at 1000 people per km2, which is a low estimation for a

primarily urban population like we see in Bioko Island where

a majority of the population lives in Malabo. The average

population density of Malabo is around 14,000 per km2 (9)
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which results in a significant under count, and this effect is

increased when the resolution is increased to 100 m. On

the opposite end of the population spectrum, WP severely

overestimates population densities everywhere else, with the

lowest number of empty pixels (Fig. 5). This has been seen

before in other African countries and may be a product of the

random-forest model approach (14). WP is the only surface

to show people living in the large nature reserves in the North

and South of the island (Figure 1). Both underestimation of

high population areas and overestimation of low population

areas may be the result of the WP population model being

anchored by official census data at the second administrative

division (14). Heavy reliance on the mean of census data

could be problematic for countries where census data are

reported only at higher administrative levels.

LandScan The LandScan global gridded population surface

was the best at characterizing high-density urban population

distribution but was the only of the three to overestimate pop-

ulation density compared to BIMEP (Table 1). The LS 1 km

grid layer had the highest accuracy and precision in Malabo

and high density (greater than 1000 people per pixel) areas

(Table 3). If the two highest density pixels were removed,

the LS layer’s GOFR scores improved significantly. Simi-

larly, LS was only able categorize 55% of the empty pix-

els, which results in high GOFR scores for rural districts of

Bioko, but when normalization for each district by popula-

tion was applied, the GOFR score improved in Riaba and

Baney, which are largely rural districts. Since LS is not cur-

rently available at the 100 m resolution, we do not know if it

would improve performance at categorizing empty space as

we observed in the HRSL and WP. The distribution of the

mapped population density compared to the BIMEP popula-

tion density was the most linear relationship and did not show

the binning of population which is seen in the other gridded

surfaces. The mis-allocated pixels on the y-axis were also

distributed from both high and low population distributions

without an obvious skew. LS outperforms WP at all pop-

ulation densities (Figure 6) and outperforms HRSL at high

population densities in precision and recall. The construction

of LS datasets incorporates population area weights based on

administrative areas as well as land use classification down

to the 1 km pixels. In the absence of reliable official local

geo-referencing, this could result in the LS surface distribut-

ing the entire district population according to only the popu-

lation likelihood locations and not from imagery and census

data (19). Fuzzy spatial characterization of land use assign-

ments, which is common in Africa at the fine scale gridded

resolutions we are looking at, could result in an output reflec-

tive of a residential only population distribution rather than

an ambient population distribution with mixed use or areas

where people do not live.

High-resolution Settlement Layer The HRSL had the

best performance overall. The HRSL still underestimated the

maximum population density compared to the BIMEP grid-

ded census data by around 66% in both the 1 km and 100 m

pixel grid surfaces (Table 1). Both BIMEP and HRSL were

very close in percent urban, percent empty, and overall is-

land population total. It also provides the highest population

accuracy, recall, and precision across the majority of the pop-

ulation density categories, especially for all the empty pixels

(Table 3). The HRSL had the lowest GOFR ratio after nor-

malization across all four districts and visually was the most

like BIMEP (Figure 2). The HRSL scatter plot at 1 km had

the best R2 value of any surface at 65%. Interestingly, for 100

m the HRSL scatter plot showed population density binning

lines like we observed in WP, but with significantly more,

and a lower R2 value of 56%, which would infer that the 1

km surface better matched the BIMEP distribution and had

a more natural spread. We found the HRSL did not match

the BIMEP distribution only at population densities greater

than 1,000 (Figure 5B), and this was true for both 1 km and

100 m maps. The HRSL defines an urban area as 10,000

people or greater, so it is possible that the HRSL is unable to

assign greater than 10,000 people to a single gridded pixel.

The proportion of population by density for HRSL was clos-

est to BIMEP at each density category (Figure 6), but while

HRSL had the greatest accuracy across all population densi-

ties, there was a drop off in recall and precision at the same

point before 10,000 people per pixel as before. The HRSL

settlement layer most closely matched the BIMEP surface,

which indicated that for Bioko Island it was the most cor-

rect human population map we examined. The challenges

the HRSL population surface had characterizing high den-

sity populations bear further examination but may be due

to the structural image mining approach the model is based

on. Even with this consideration, our findings show that ap-

proaches to human population maps that rely more on remote

sensing and image processing are better able to discern where

there are not any people, which, in combination with official

census data, produces an informative map.

Malaria Burden Estimation The disparity in the results for

Pf PR values computed from the population density surfaces

was consistent with previous studies examining the effect of

population layers on malaria modeling estimates (20). The

Pf PR estimates were very similar between WP, LS, and the

HRSL but there was a noticeable difference between the esti-

mated population fraction infected between layers when the

Pf PR was between 10% and 30% (Figure 7A). LS tended

to overestimate the population fraction at Pf PR around 10%
compared to BIMEP but at 20% and greater had similar cu-

mulative and probability density curves. WP had a consis-

tently lower population fraction at Pf PR levels than BIMEP

and along with the HRSL, however the HRSL had a smaller

difference in population fraction in both the cumulative dis-

tribution and probability density functions (Figure 7B). Al-

though the HRSL had a more similar dispersal overall com-

pared with BIMEP, the LS surface had a more accurate distri-

bution of population in central Malabo, which would explain

its better fit to BIMEP population densities at Pf PR cutoffs

above 15%. While the population fractions were only several

percentage points different between surfaces, on an island

wide scale this represents several thousand potential malaria

cases. Additionally, the range where we see the difference in
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results is around the mesoendemic to hypoendemic transmis-

sion threshold, which is where Bioko Island’s parasite preva-

lence rate is currently estimated (21). Our results suggest the

disparity in models is most apparent at these transition points

between endemicity levels, which demonstrates the impor-

tance of using the most correct human population maps for

modeling and estimating malaria.

Conclusion

Having gold standard data, even for relatively small places

such as Bioko Island, is useful as a benchmark for gridded

human population density surfaces. This data provides the

scale with which to evaluate the GOFR. It provides true val-

ues for accuracy profiles, whose recall metric was a strong

discriminator of these maps. Even in the absence of gold

standard data, plots of eCDFs for some representative area

would give a detailed understanding of biases among avail-

able population maps. All of these metrics are demonstrated

in the repository of code for this article, provided for Guide-

lines for Accurate and Transparent Health Estimates Report-

ing (GATHER) compliance (22, 23).

Fig. 2 gives an immediate sense of how these population

maps compare, but it’s a comparison of maps available at the

time of writing. New ancillary data and new algorithms may

arrive this year to produce better versions of all three popu-

lation maps. We are confident about the comparison because

we have gold standard data for one small region and because

the metrics quantify that comparison.

All of these maps are, themselves, models, which carry traces

of their chosen source data and algorithms. This quantitative

analysis highlighted strengths and limitations of those mod-

els, from caps on population per pixel to remarkably good

identification of rural house locations. If, in the future, the

HRSL could improve its estimation of the relative size of

each household, it could provide both a single source for both

urban and rural populations at 30 m resolution. Meanwhile,

some combination of LS and HRSL would be the closest

match in BIMEP.
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Tables

BIMEP HRSL LS WP BIMEP HRSL WP

Grid Size 985.3 m 985.3 m 923.7 m 1016.0 m 30.8 m 30.8 m 92.4 m

Total 239056 231210 218044 204820 239056 231210 204820

Max. Pop. Dens. 17130±1200 6085 34344 1018 22212±125 7525 1017

% Empty 88.61±0.2 86.32 56.29 0.6536 99.13±0.001 98.92 1.137

% Urban 2.007±0.1 3.175 2.075 0.2011 2.029±0.1 3.283 0.1588

Pareto Number 3.875±0.001 5.696 5.275 24.13 3.904±0.000 5.643 24.7

Table 1. Basic summary statistics for all the maps. The plus-minus values on the BIMEP columns reflect how much the exact grid alignment, in latitude and longitude, matters.

We shifted the grid a hundred times in either direction and recalculated metrics. Only the maximum population density is sensitive to the exact location of pixels.

x ≥ τ x ∈ Mτ x /∈ Mτ

x ∈ Gτ TP FN

x /∈ Gτ FP TN

Table 2. Let a threshold, τ , define a categorization of population density. In a gold standard map, G, a pixel is in the category if it is above the threshold: x ∈ Gτ if and only

if x > τ . Otherwise, x /∈ Gτ . Similarly, the categorization is applied to a candidate map, M . Pixels are classified as true positives (TP), true negatives (TN), false negatives

(FN), and false positives (FP) as described in the table. Accuracy profiles are plotted in Figure 6.

GOFR Normalized GOFR

HRSL LS WP HRSL LS WP

Bioko Island 0.383 0.472 0.956 0.374 0.545 0.953

Baney 0.150 0.374 1.028 0.140 0.136 0.991

Luba 2.266 5.484 1.012 0.266 1.658 0.992

Malabo 0.412 0.487 0.987 0.377 0.570 0.974

Riaba 2.381 0.824 1.157 0.825 0.458 0.996

Table 3. This compares the goodness-of-fit ratio across the three maps, aggregating HRSL and WorldPop to 1 km resolution to match LandScan. The HRSL is an

improvement overall and, after normalizing, provides a good fit in each one of the districts. Normalization discounts the effect of uniform changes in population size. WorldPop

is approximately as informative as the "null" map.

H (0,1) [1,50) [50,250) [250,1000) [1000,∞)

Accuracy

HRSL 0.9430 0.9410 0.9600 0.9700 0.9850

LS 0.6720 0.6740 0.9530 0.9750 0.9890

WP 0.1290 0.3440 0.7540 0.9120 0.9800

Recall

HRSL 0.9550 0.3120 0.4160 0.4520 0.9070

LS 0.6320 0.7500 0.5380 0.2270 0.7450

WP 0.0124 0.4880 0.3010 0.5150 0.0256

Precision

HRSL 0.9800 0.3150 0.4440 0.2300 0.5740

LS 0.9970 0.0869 0.3770 0.3030 0.7290

WP 0.9570 0.0312 0.0542 0.0955 0.2500

Table 4. The accuracy, recall, and precision for the population classifications shown in the header and illustrated in Figure 6.
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Figures

Malabo Baney

RiabaLuba

Bioko North

Bioko South

0 5 10
km

Fig. 1. Second and third administrative divisions on Bioko Island. The thick black lines demarcate the four districts. Malabo and Baney make Bioko North and Luba and

Riaba, Bioko South. Green areas are uninhabited nature reserves.
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Fig. 2. Bioko population rendered at 1x1 km resolution. A. BIMEP; B. WP; C. LS; D. HRSL. Grey pixels represent uninhabited areas (population = 0).

Fries et al. | Accuracy Metrics bioRχiv | 9

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.18.160101doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.160101
http://creativecommons.org/licenses/by-nd/4.0/


Fig. 3. Bioko population rendered at 100x100 m spatial resolution. The maps are zoomed into the Malabo area as visualization of a highly populated area for comparison. A.

BIMEP; B. WP; C. HRSL. Grey pixels represent uninhabited areas.
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Fig. 4. Scatter plots reveal the accuracy and biases of the algorithms used to generate the maps. The one-to-one line is plotted in black and the grey vertical and horizontal

lines are plotted at a population density or size of 1. Figure A has a color legend for all panels. A-D) Scatter plots of the population densities from all the different population

surfaces plotted against the gold standard of BIMEP. E-F) The population size for the 100x100 m maps. A) All 100 m and 1 km maps are plotted on the same axis. The

100 m pixels are smaller but follow the same patterns as the corresponding 1 km maps. The visual impression is dominated by the 100 m maps (because there 10,000

times more pixels), so we have also plotted the 1;km maps, if relevant, with the 100 m map as a grey background. B) Landscan at 1 km. Adjusted R2 was 43%; C) HRSL

at 1 km (yellow) and 100 m (grey). Adjusted R2 was 65% for the 1 km map and 56% for the 100 m map; D) WorldPop at 1km (yellow) and 100 m (grey). Adjusted R2

was 5% for the the 1 km map and 3% for the 100 m map. E) Population size in the BIMEP vs. HRSL maps at 100 m; adjusted R2 was 34%. F) Population size in the

BIMEP vs. WorldPOP maps at 100 m. Adjusted R2 was 2%.
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Fig. 5. A comparison of the distributions by land area and population density. Solid lines are 1km maps, and dashed lines are 100m maps. A) To show how the population

is distributed, we plotted the empirical cumulative distribution functions (eCDFs) of population density by land area; B) To show how the population is aggregated, we plotted

the eCDFs by log population density. C) The population density binned by powers of 1.2.
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Fig. 6. A) The proportion of the population in density categories defined by breakpoints of 1, 50, 250, and 1,000 people. B) The accuracy profile; C) The recall profile; D) The

precision profile.
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Fig. 7. Fraction of the population according to PfPR, expressed as cumulative distribution (A) and probability density functions (B).
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