

1 **Testing evolutionary explanations for the lifespan benefit of dietary restriction in**
2 ***Drosophila melanogaster***

3

4 Eevi Savola¹, Clara Montgomery¹, Fergal M. Waldron¹, Katy Monteith¹, Pedro Vale¹, Craig
5 Walling¹

6

7 1: Institute of Evolutionary Biology, School of Biological Sciences, The University of
8 Edinburgh, Ashworth Laboratories, Edinburgh EH9 3FL, UK

9 **ABSTRACT:**

10 Dietary restriction (DR), limiting calories or specific nutrients, extends lifespan across
11 diverse taxa. This lifespan extension has been explained as diet-mediated changes in the trade-
12 off between lifespan and reproduction, with survival favoured with scarce resources. Another
13 evolutionary hypothesis suggests the selective benefit of the response is the maintenance of
14 reproduction. This hypothesis predicts that lifespan extension is a side effect of benign
15 laboratory conditions, where DR individuals are frailer and unable to deal with additional
16 stressors, and thus lifespan extension should disappear under more stressful conditions. We
17 tested this by rearing outbred female *Drosophila melanogaster* on 10 different
18 protein:carbohydrate diets. Flies were either infected with a bacterial pathogen (*Pseudomonas*
19 *entomophila*), injured or unstressed. We monitored lifespan, fecundity and ageing measures.
20 DR extended lifespan and reduced reproduction irrespective of injury and infection. These
21 results do not support lifespan extension under DR being a side effect of benign laboratory
22 conditions.

23

24 **Key words:** dietary restriction, nutrition, diet, infection, injury, *Drosophila*, *Pseudomonas*
25 *entomophila*, resource reallocation

26 **INTRODUCTION:**

27 Nutrition has long been of interest in the field of aging research, particularly due to its
28 potential applications to an ageing human population (reviewed in Bertozzi et al., 2016;
29 Redman & Ravussin, 2011; Speakman & Mitchell, 2011). Dietary restriction (DR), the
30 limitation of a particular nutrient or the overall caloric intake, has been shown to extend lifespan
31 and delay ageing across a range of organisms (reviewed in Mair & Dillin, 2008). Its prevalence
32 and taxonomic diversity suggests the response is evolutionarily conserved and acts via
33 conserved mechanisms (reviewed by Fontana et al., 2010). As such, a large body of research
34 has focused on using the DR paradigm to try to understand the mechanisms underlying
35 variation in ageing and lifespan (e.g. Fontana & Partridge, 2015; Gems & Partridge, 2012;
36 Gibbs & Smith, 2016). However, the evolutionary basis of the response has been much less
37 well investigated (Raubenheimer et al., 2016; Regan et al., 2020; Travers et al., 2020;
38 Zajitschek et al., 2016). This is surprising given that knowledge of the evolutionary basis of
39 the DR response is important to understanding under what conditions it may be applicable in
40 human health. Here we test the two main evolutionary explanations for lifespan extension
41 under DR, which make contrasting predictions about how this response should vary across
42 environments.

43 The predominant evolutionary explanation, termed the resource reallocation hypothesis
44 (RRH) (Adler & Bonduriansky, 2014; Regan et al., 2020), explains the observed DR response
45 as an adaptive shift in relative investment of resources into survival versus reproduction (Adler
46 & Bonduriansky, 2014; Kirkwood, 1977; Shanley & Kirkwood, 2000). A food shortage signals
47 a sub-optimal environment, where the number and survival probability of any offspring
48 produced is likely to be low (Holliday, 1989; Shanley & Kirkwood, 2000). Under such
49 conditions, an individual could maximise fitness by temporarily delaying reproduction and
50 instead investing resources into survival and somatic maintenance. Once food availability
51 returns, the individual could then maximise fitness by investing resources back into
52 reproduction. By maintaining individuals chronically on low food, aging rates decrease and the
53 individual lives longer (Holliday, 1989; Shanley & Kirkwood, 2000). The RRH requires a
54 trade-off between investing resources into reproduction versus somatic maintenance (Holliday,
55 1989) and that the response evolved in an environment which fluctuates between low and high
56 food availability (Adler & Bonduriansky, 2014).

57 In contrast to the predictions of the RRH, some studies suggest that survival and
58 reproduction can be uncoupled under DR (Flatt, 2011). In addition, wild systems have much
59 higher levels of extrinsic mortality than laboratory conditions (for example, from predators or
60 disease), potentially making an individual less likely to live long enough to benefit from
61 delayed reproduction. These observations have been used to suggest that improved survival
62 may not be the selective benefit of the DR response (Adler & Bonduriansky, 2014). Instead,
63 another hypothesis proposes that the selective benefit of the DR response is through its effect
64 on immediate reproduction (Adler & Bonduriansky, 2014), termed the nutrient recycling
65 hypothesis (NRH) (Regan et al., 2020). This hypothesis is based on the general finding that DR
66 results in the inhibition of nutrient sensing pathways, e.g. TOR and IIS pathways (Adler &
67 Bonduriansky, 2014). Inhibition of these pathways disinhibits (upregulates) nutrient recycling
68 mechanisms such as apoptosis (James et al., 1998) and autophagy (Hansen et al., 2008;
69 Kenyon, 2010; Fontana et al., 2010, both reviewed in Longo & Fontana, 2010). The NRH
70 suggests that apoptosis and autophagy allow the organism to use stored nutrients from cells
71 whilst limiting the number of cells (Adler & Bonduriansky, 2014). The individual can use
72 available resources more efficiently, with a possible lower resource requirement for
73 reproduction (Adler & Bonduriansky, 2014).

74 The NRH posits that lifespan extension is an artefact of laboratory conditions.
75 Upregulation of apoptosis and autophagy may promote survival and limit rates of aging due to
76 protecting against common laboratory causes of death, such as cancer or other old age
77 pathologies (Adler & Bonduriansky, 2014; Longo & Fontana, 2010; Salomon & Rob Jackson,
78 2008; Spindler, 2005; Zhang & Herman, 2002). However, the limit on cell numbers and cellular
79 growth rate may also limit the ability of individuals under DR to respond to additional stresses
80 (Adler & Bonduriansky, 2014), with the prediction that DR would not extend lifespan in the
81 wild (Adler & Bonduriansky, 2014). Thus, in contrast to the RRH, there is a clear prediction
82 from the NRH that the addition of stressors, particularly injury and infection, should result in
83 the removal or even reversal of the lifespan benefit of DR (Adler & Bonduriansky, 2014).

84 The effect of DR has been subject to relatively few studies in the context of injury and
85 infection stress. In terms of injury stress, decreased calorie intake slows down wound repair in
86 both rodents and reptiles (French et al., 2007; Hunt et al., 2012; Reed et al., 1996; Reiser et al.,
87 1995). However, studies manipulating both overall calories and macronutrient content suggest
88 that the main driver of the DR response, particularly in insects, is macronutrient ratio, with low
89 protein and high carbohydrate diets leading to longer lifespans (e.g. Le Couteur et al., 2016;

90 Kwang Pum Lee et al., 2008; Nakagawa et al., 2012; Simpson & Raubenheimer, 2009). In
91 terms of infection stress, evidence for effects of protein to carbohydrate (P:C) ratios on proxies
92 of survival after infection are mixed. In infected caterpillars, higher protein increases
93 performance, measured as the product of weight gain and survival to pupation (K P Lee et al.,
94 2006; Povey et al., 2009, 2014), and lengthens the time to death for caterpillars dying post-
95 infection prior to pupation (Cotter et al., 2019; Wilson et al., 2020). In adult *Drosophila*
96 *melanogaster*, higher protein increased survival 24 hours post-infection with bacterial infection
97 (Kutzer et al., 2018) and higher protein as extra yeast on top of food increased number of days
98 alive post-infection with a fungal pathogen (Le Rohellec & Le Bourg, 2009). In contrast, higher
99 protein decreased survival measured up to 160 hours post-infection (J.-E. Lee et al., 2017), 16
100 days post-infection in *D. melanogaster* (Ponton et al., 2020), and decreased survival 9 days
101 post-infection in *Bactrocera tryoni* (Dinh et al., 2019). However, to date none of these
102 experiments have directly measured the key trait of lifetime survival. Additionally, studies
103 often only use a small number of diets (Dinh et al., 2019; Kutzer et al., 2018; Le Rohellec &
104 Le Bourg, 2009; J.-E. Lee et al., 2017; Ponton et al., 2020), or manipulate both P:C and calories
105 at the same time (Kutzer et al., 2018; Le Rohellec & Le Bourg, 2009; J.-E. Lee et al., 2017),
106 making it hard to disentangle which aspect of the diet is affecting survival with injury or
107 infection. Furthermore, no experiments have directly compared the effect of multiple diets on
108 lifetime survival and reproduction in control, injured and infected individuals and thus tested
109 the alternative predictions of the current evolutionary explanations of the DR response.

110 Here we address this gap in our knowledge by testing the contrasting predictions of the
111 current evolutionary explanations of the DR response by including additional stressors of injury
112 and infection to dietary restricted *D. melanogaster*. We achieved DR by altering the P:C ratio
113 of food (e.g. Jensen et al., 2015; Kwang Pum Lee et al., 2008) and thus throughout use the term
114 protein restriction, although we acknowledge here this also means the associated increase in
115 carbohydrate. We measured lifespan, reproduction, and indicators of aging, specifically the
116 maintenance of gut integrity and climbing ability. These measures of aging are often used to
117 track treatment specific declines in function (e.g. Grotewiel et al., 2005; Martins et al., 2018)
118 and allows us to measure whether ageing is delayed with DR under all stress treatments. We
119 predict that if the RRH explains DR responses, all treatments would see the usual pattern of
120 DR, where decreasing protein increases survival up to a point and then survival declines again
121 due to malnutrition (see review Mair & Dillin, 2008). Regardless of the stress treatment,
122 reproduction would increase with increasing protein and ageing would be delayed with lower

123 protein. If the NRH explains DR responses, we would expect to see that with injury and
124 infection, the lifespan increase expected under DR would disappear and injured and infected
125 flies would not have the usual hump shape response of lifespan to decreasing protein in the
126 diet. In addition, infected or injured individuals would not show delayed ageing with DR.
127 Overall, only the control group with no stress treatment would show the usual DR responses.

128 **METHODS:**

129 *FLY STOCKS AND MAINTENANCE CONDITIONS:*

130 We used an outbred population of *Drosophila melanogaster*, created by crossing 113
131 Drosophila Genetic Resource Panel (DGRP) (Mackay et al., 2012) lines in 100 pairwise crosses
132 (consisting of two age-matched virgin females and two age-matched males from different
133 DGRP lines; see supplementary methods) in vials containing modified Lewis food (Lewis,
134 1960, see Table S1, 14% protein diet). The first generation of the outcross, referred to as the
135 Ashworth outcrossed DGRP population, was made by placing all offspring from these initial
136 pairwise crosses in a population cage and allowing them to interbreed and lay eggs. These were
137 collected and deposited into bottles containing Lewis food, following the method of Clancy
138 and Kennington (2001) for maintaining *Drosophila* populations at constant densities. To
139 generate the next generation, each month the emerged adult flies from these bottles were pooled
140 into a population cage to lay eggs following the same method of Clancy and Kennington (2001)
141 (more information in supplementary methods). In this way, the outcrossed population was
142 housed in plastic bottles and outbred for 19 non-overlapping generations of complete
143 outcrossing in 12 h light:dark cycles, at 25 °C (± 1 °C) and constant humidity. Many of the
144 original DGRP lines carry the bacterial endosymbiont Wolbachia (Mackay et al., 2012). The
145 DGRP panel maintained the lab was cleared of Wolbachia over seven years prior to the creation
146 of the outcrossed population.

147 From the 20th overlapping generation of this outcrossed population, 4 μ l of egg solution
148 were placed into 20 plastic vials with modified Lewis food. After one generation, the adults
149 were split into 50 vials, and to 60 vials from the second generation onwards. To create each
150 generation, adults were transferred to new vials and allowed to lay eggs for two days before
151 removal. Flies used for the experiment were offspring of the fifth generation from this protocol.
152 The DGRP outcrossed population tested negative for common *Drosophila* laboratory viruses
153 using primers described in Webster et al. (2015) with RT-PCR (M. A. Wallace, data not shown,
154 March-April 2017).

155 *EXPERIMENTAL METHODS:*

156 Adults of the fifth generation were density controlled (10 females/vial) to minimise
157 subsequent variation in larval densities across vials, which can affect adult life-history traits
158 (Graves & Mueller, 1993). Mated females were allowed to lay eggs for two days and then were

159 removed. Vials were checked daily for adult eclosion. Flies were then maintained in vials for
160 five days after adult eclosion began to allow mating to occur after which mated female flies
161 from over 30 of these vials were transferred into the experiment following handling under CO₂
162 anaesthetisation. At this point, individual flies were singly housed on one of the ten diet
163 treatments for the first experimental day (see below). On experimental day 2, flies from each
164 diet treatment were assigned to one of three stress treatments: control, injury or infection (see
165 below). There were 20 replicate flies per diet and stress treatment combination (20 individuals
166 x 3 treatments x 10 diets = 600 flies in total).

167 **DIET TREATMENTS:**

168 For the adult lifespan of each fly, flies were maintained on one of ten diets varying in
169 protein to carbohydrate (P:C) ratio. These diets were made by altering the mass of yeast or
170 sugar added to the modified Lewis food recipe (Lewis, 1960, Table S1). These diets were a
171 span of P:C values (from 1:26 to 2.5:1 P:C), where protein restriction has previously been
172 shown to extend lifespan (Kwang Pum Lee, 2015).

173 **STRESS TREATMENTS:**

174 On experimental day 2, flies were exposed to one of three stress treatments: control,
175 injury or infection. The control treatment involved handling flies under CO₂ anaesthetisation
176 and then transferring these to a new vial containing the relevant diet. The injury treatment
177 involved the same protocol, however an enamelled pin was dipped in sterile LB broth and used
178 to pierce the pleural suture under the left wing. For the infection treatment, the pin was dipped
179 in a *Pseudomonas entomophila* bacterial broth from an overnight culture in LB at 30 °C and
180 used to pierce the pleural suture under the left wing (following Dieppois et al., 2015; Troha &
181 Buchon, 2019, see also Chakrabarti et al., 2012; Vodovar et al., 2005 for more information on
182 the pathogen). To avoid lethal or negligible doses, an OD of 0.005 of *P. entomophila* culture
183 was used for infections, as determined in a previous pilot study (J. A. Siva-Jothy, data not
184 shown, November, 2017).

185 **SURVIVAL AND FECUNDITY MEASURES:**

186 Individuals were followed for life with survival scored daily. For the first two weeks of
187 the experiment, individuals were tipped into fresh vials daily and afterwards every second day,
188 with eggs (hatched and unhatched) counted when tipped. Any additional eggs in the vial were
189 counted if a fly died on a day without a scheduled egg count. Diets and stress treatments were

190 randomised across trays and trays were moved around the incubator daily to minimise
191 microclimate effects.

192 ***MEASURES OF PHYSIOLOGICAL AGEING:***

193 **GUT DETERIORATION (SMURF) ASSAY:**

194 In *D. melanogaster*, and other species (Martins et al., 2018), physiological ageing is
195 associated with increased gut permeability, which can be assessed by feeding flies food with a
196 blue dye and observing a change in body colour if the dye leaks from the gut (Rera et al., 2011).
197 All diets included a blue food dye following Rera et al. (2011) at a lower concentration (Table
198 1), to allow individuals to be scored for the “smurf” phenotype with age (Rera et al., 2011).
199 Flies were scored as smurfs if the full body was blue, rather than just a small amount of blue
200 in the abdomen (Rera et al., 2011).

201 **NEGATIVE GEOTAXIS (NG) ASSAY:**

202 As flies age, their escape response declines and this deterioration can be measured with
203 a negative geotaxis (NG) assay (e.g. Arking & Wells, 1990; Gargano et al., 2005; Linderman
204 et al., 2012). NG was measured once every two weeks from week three, with a method modified
205 from Arking and Wells (1990, see supplementary methods). Briefly, flies were individually
206 tipped into clean vials, knocked down to the bottom and then scored for whether they climbed
207 to 4 cm on the vial within 60 seconds (1 for passing line, 0 for not passing the line).

208 ***STATISTICAL METHODS:***

209 The data were analysed using R software, version 3.5.2 (R Core Team, 2014) and all
210 graphs were drawn using ggplot2 (Wickham, 2016). Diet was analysed as a continuous
211 covariate representing the percentage of protein in the diet (Table S1) and its quadratic effect
212 to allow for non-linear effects, while stress treatment was analysed as a categorical fixed effect.
213 To avoid scaling errors when fitting quadratic effects, all variables were standardised to a mean
214 of zero with a standard deviation of one. This was done separately for each test due to different
215 sample sizes for different traits.

216 **SURVIVAL:**

217 We used the R Survminer package (Kassambara & Kosinski, 2018) to graph Kaplan-
218 Mayer curves individually for each stress treatment with diet as a factor. Our survival data did
219 not follow the assumptions of a Cox proportional hazards model (see supplementary methods),

220 and therefore we used an event history model where survival was analysed as a binomial trait,
221 with each day a fly scored as a 0 for being alive and 1 for dead, following Moatt et al. (2019).
222 We used the R package MCMCglmm (Hadfield, 2010) to model survival as a binomial variable
223 with a categorical model. The model contained the fixed effects of stress treatment, protein
224 content and its squared term (to model non-linear effects) and their interaction. Censored flies
225 were included in the analysis (27 individuals, so 4.5% of the total), scoring a 0 until the day of
226 censoring. A random effect of individual identity was included to account for repeated
227 measures on the same individual and a random effect of experimental day was added to account
228 for variation in survival across days. Parameter expanded priors were placed on all random
229 effects ($V = 1$, $nu = 1$, $alpha.mu = 0$, $alpha.V = 1000$). The residual variance was fixed
230 to 1, as it is inestimable in a binomial model. The model was run for 5,200,000 iterations, with
231 a burnin of 1,200,000 iterations and a thinning interval of 4,000 iterations to minimise
232 autocorrelation. Autocorrelation was checked from plots of the posterior distribution of all
233 estimates for this and all subsequent models.

234 We also analysed lifespan to confirm the results of the survival analysis. Lifespan, the
235 number of days an individual survived, was analysed using a generalised linear model with
236 MCMCglmm. Censored flies were removed from the analysis. A Poisson family error
237 distribution was assumed and the model was run for 65,000 iterations with a thinning interval
238 of 50 iterations and a burnin of 15,000 iterations to minimise autocorrelation. Protein content,
239 its squared term, stress treatments and their interactions were included as fixed effects. An
240 inverse Gamma prior was placed on the residual variance ($V = 1$ and $nu = 0.002$).

241 **REPRODUCTION:**

242 Lifetime reproduction was measured as the sum of all eggs counted per female over her
243 life. The effect of stress treatment, protein content, its squared term and their interactions were
244 analysed using a MCMCglmm model with a Poisson error distribution. The model was run for
245 130,000 iterations, with a burnin of 30,000 iterations and a thinning interval of 100 iterations
246 to minimise autocorrelation. An inverse Gamma prior was placed on the residual variance ($V =$
247 1 and $nu = 0.002$). To remove the effect of lifespan on reproduction, the same model with the
248 effect of mean centered lifespan for each fly was analysed separately, except with 650,000
249 iterations, a burnin of 150,000 iterations and a thinning interval of 500. As an additional
250 analysis to remove the effect of lifespan on reproduction and to compare our data with other
251 studies using measures of early reproduction, early egg production was analysed separately.

252 Egg counts from experimental day 2 (day after stress treatment) to day 7 were considered, as
253 the first day egg counts were very low and were very similar across diets (Figure S1). Only
254 individuals which lived to day 7 were considered. A MCMCglmm model with a Poisson error
255 distribution was run with 260,000 iterations, a burnin of 60,000 iterations and a thinning
256 interval of 200 iterations. An inverse Gamma prior was placed on the residual variance ($V = 1$
257 and $nu = 0.002$). The effect of stress treatment, protein content and its squared term were
258 included in the model.

259 **REPRODUCTIVE AGEING:**

260 To investigate reproductive senescence, daily egg counts were analysed using
261 MCMCglmm with a Poisson error distribution. When egg counts changed from daily to every
262 second day counting, all values that correspond to eggs produced over two days were divided
263 by two and rounded down to the nearest integer. Fixed effects included stress treatment, protein
264 content and age (in days) and their squared terms, and all interactions. Mean centred lifespan
265 was included as a fixed effect to control for selective disappearance (Van de Pol & Verhulst,
266 2006) and individual ID was included as a random effect to control for repeated measures on
267 the same individual. Models were run for 2,600,000 iterations, with a thinning interval of 1,500
268 and a burnin of 600,000. A parameter expanded prior was used for the random effect of
269 individual ($V = 1$, $nu = 1$, $alpha.mu = 0$, $alpha.V = 1000$) and an inverse Gamma prior
270 placed on the residuals ($V = 1$ and $nu = 0.002$).

271 **GUT DETERIORATION (SMURF) ASSAY:**

272 A fly was scored as a smurf if it developed a non-disappearing blue body appearance
273 (1 for smurf, 0 for no smurf) at any point during its life. This binomial variable was analysed
274 with a categorical model using MCMCglmm. This model included the fixed effects of stress
275 treatment, protein content, its squared term and their interactions. Models were run for
276 26,000,000 iterations, with a thinning interval of 20,000 and a burnin of 6,000,000. The
277 residuals variance was fixed to 1 as explained above.

278 **NEGATIVE GEOTAXIS (NG) ASSAY:**

279 We analysed the data from the negative geotaxis experiments as a binomial variable (1
280 for climbing 4 cm in 60 seconds, 0 for failing to do this) using a categorical family in
281 MCMCglmm. Stress treatment, protein content and age and their squared terms, their
282 interactions and mean centred lifespan were included as fixed effects and individual identity as

283 a random effect. The model was run for 3,900,000 iterations, with a thinning interval of 3,000
284 and a burnin of 900,000. A parameter expanded prior was used for individual identity ($V = 1$,
285 $nu = 1$, $alpha.mu = 0$, $alpha.V = 1000$) and the residual variance was fixed to 1 as
286 explained above.

287 **RESULTS:**

288 *SURVIVAL AND LIFESPAN:*

289 Analysing the survival data with an event history binomial model, protein had a
290 significant non-linear effect on survival, with survival highest on diets containing an
291 intermediate protein level (Figure 1 and S2; Table S2; Protein² = 0.48 (95% credible interval
292 (CI) = 0.26 to 0.71), p = <0.001). Stress treatment had a significant effect on survival, with
293 individuals exposed to infection having a greater risk of death compared to control individuals
294 for the duration of the experiment (Table S2; Infection = 0.66 (95% CI = 0.28 to 1.10) p =
295 0.002). There was no significant difference between injury and control treatments (Table S2;
296 Injury = 0.14 (95% CI = -0.32 to 0.57), p = 0.54). There was a significant interaction between
297 protein and stress, with survival increasing more rapidly from low to intermediate protein levels
298 for the infected treatment than for any other treatment (Figure 1 and S2; Table S2;
299 Infection:Protein = -0.31 (95% CI = -0.57 to -0.10), p = 0.004). Survival was still maximised
300 at relatively similar protein levels across treatments and the improvement in survival with
301 reduced protein from very high protein levels (i.e. the classical DR response in *D.*
302 *melanogaster*) did not differ across treatments (Figure 1 and S2; Table S2; Injury:Protein² = -
303 0.16 (95% CI = -0.51 to 0.18), p = 0.36; Infection:Protein² = -0.01 (95% CI = -0.33 to 0.30), p
304 = 0.99). Analysing lifespan (in days) showed very similar patterns to the binomial survival
305 analysis (Figure S3 and S4; Table S3). Although our survival data violated the Cox proportional
306 hazards model assumptions (see supplementary methods), the results from a Cox proportional
307 hazards model were similar to those from the event history and lifespan models (Figure S5;
308 Table S4).

309 *REPRODUCTION:*

310 Lifetime egg production was highest at high but not the highest protein levels, with flies
311 on low protein diets in particular producing very few eggs (Figure 2 and S6; Table S5; Protein
312 = 1.45 (95% CI = 1.23 to 1.64), p = <0.001; Protein² = -1.36 (95% CI = -1.68 to -1.02), p =
313 <0.001). Stress treatment had no significant effect on the lifetime number of eggs produced
314 (Table S5; Injury = 0.19 (95% CI = -0.34 to 0.72), p = 0.49; Infection = -0.33 (95% CI = -0.90
315 to 0.16), p = 0.26), but there was a significant interaction between stress treatment and both
316 protein and its squared term (Table S5; Infection:Protein = 0.47 (95% CI = 0.16 to 0.77), p =
317 0.01; Infection:Protein² = -0.47 (95% CI = -0.93 to -0.04), p = 0.04). These interactions
318 suggests that infected individuals had a higher linear increase in lifetime eggs with increasing

319 protein, but this relationship was also more curved, than in either the control or injury group.
320 Despite these significant interactions, the broad pattern of change in egg counts with changing
321 protein level is similar across stress treatments (Figure 2).

322 To control for variation in lifetime egg production due to differences in lifespan, early-
323 life egg production was also analysed. For eggs produced in the first week, excluding the first
324 day, the patterns were similar to those of lifetime egg production (Figure S6, S7 and S8; Table
325 S5 and S6). However, the decline in egg production at higher protein levels was reduced, such
326 that early-life egg production plateaus after reaching a maximum at intermediate protein levels,
327 with a slight decline at very high protein levels (Figure S8; Table S6; Protein² = -0.86 (95% CI
328 = -1.34 to -0.41), p = <0.001). There was no effect of stress treatment on early-life egg
329 production (Figure S8; Table S6; Infection:Protein = -0.24 (95% CI = -0.74 to 0.20), p = 0.32;
330 Infection:Protein² = -0.14 (95% CI = -0.85 to 0.57), p = 0.74). Similar patterns were seen in
331 models of lifetime egg production with mean centred lifespan included in the model (Figure
332 S9; Table S7), suggesting that differences in lifetime reproduction between stress treatments
333 are driven by the short lifespan of infected flies on low protein diets (Figures 2, S8 and S9). As
334 might be expected, flies with longer lifespans had more eggs over their life than shorter-lived
335 flies (Table S7, Lifespan = 0.93 (95% CI = 0.83 to 1.04), p = <0.001).

336 *AGEING:*

337 DAILY EGG PRODUCTION:

338 Overall, individuals produced most eggs per day early in life, with significantly
339 declining egg production with age (Figure 3 and S10; Table S8; Age = -0.32 (95% CI = -0.40
340 to -0.23), n = <0.001), but this decline was non-linear (Figure 3 and S10; Table S8; Age² = -
341 0.52 (95% CI = -0.59 to -0.44), p = <0.001). With higher protein, individuals were able to
342 produce significantly more eggs per day (Figure 3 and S10; Table S8; Protein = 1.31 (95% CI
343 = 1.12 to 1.52), p = <0.001). However, at very low and high levels of protein, egg production
344 reduced (Figure 3 and S10; Table S8; Protein² = -1.5 (95% CI = -1.51 to -1.81), p = <0.001).
345 There were numerous significant two-, and three-way interactions in the model. Overall, these
346 interactions suggest that the curved relationship between reproduction and age is greatest for
347 infected individuals on intermediate to high (but not the highest) protein diets (Figure 3 and
348 S10; Table S8). Injured individuals show a similar pattern to infected individuals, but the
349 curvature with age is generally less than for infected individuals (Figure 3 and S10; Table S8).
350 For control individuals, again the decline in reproduction with age is steepest at higher protein

351 levels, but not at the highest protein levels and the relationship between age and daily egg
352 production is least curved. There was a significant effect of lifespan on daily egg production,
353 suggesting that longer-lived individuals produced more eggs per day (Table S8; Lifespan =
354 0.21 (95% CI = 0.11 to 0.31), $p = <0.001$).

355 **GUT DETERIORATION (SMURF) ASSAY:**

356 To assess gut integrity as a measure of ageing, flies were fed blue food and were scored
357 as a smurf if they turned blue due to the blue food leaking from the gut. Only 11.0% of flies
358 (63/573, excluding censored flies) became smurfs throughout the experiment, so these results
359 should be interpreted with some caution. Diets lower in protein had more smurfs (Figure S11
360 and S12; Table S9; Protein = -0.75 (95% CI = -1.24 to -0.21), $p = 0.004$). There was a
361 significant two-way interaction between injury treatment and protein content, where the decline
362 in the proportion of smurfs with increasing protein content was stronger in the injury treatment
363 than in the control treatment (Figure S12; Table S9; Injury:Protein = -1.96 (95% CI = -4.07 to
364 -0.11), $p = 0.01$). There was also a significant interaction between stress treatment and the
365 quadratic effect of protein (Table S9; Injury:Protein² = -2.09 (95% CI = -4.22 to -0.47), $p =$
366 0.14; Infection:Protein² = -1.73 (95% CI = -3.13 to -0.37), $p = 0.01$). This suggests that in
367 infected individuals, the proportion of smurfs peaked at intermediate protein levels and then
368 declined at both high and low protein levels. As smurfs start appearing at a later-life stage, low
369 survival in the infected individuals on high and low protein diets may be driving this effect.

370 **NEGATIVE GEOTAXIS (NG) ASSAY:**

371 By assessing escape response as a measure of ageing, protein had a significant non-
372 linear effect on the proportion of flies passing the negative geotaxis test (Figure S13 and S14;
373 Table S10). The likelihood of passing the test decreased with increasing protein (Table S10;
374 Protein = -0.65 (95% CI = -1.01 to -0.32), $p = <0.001$), but the rate of this decline slowed at
375 the highest protein levels (Table S10; Protein² = -0.70 (95% CI = -1.21 to -0.21), $p = 0.01$).
376 Overall, there were no differences between control, injured or infected flies in passing the test
377 (Figure S13 and S14; Table S10). Older flies were less likely to pass the test (Table S10; Age
378 = -3.57 (95% CI = -4.04 to -3.07), $p = <0.001$). There was an effect of selective disappearance,
379 where longer-lived individuals passed the test at a higher rate than individuals with shorter
380 lifespans did (Table S10, Lifespan = 0.84 (95% CI = 0.64 to 1.02), $p = <0.001$). Having
381 controlled for lifespan, the proportion of flies passing the NG test declined more steeply with

382 age on higher protein diets (Figure S14, Table S10, Protein:Age = -0.78 (95% CI = -1.06 to -
383 0.49), p = <0.001).

384 **DISCUSSION:**

385 Our results provide a rare test of the predictions of two alternative evolutionary
386 explanations for the commonly observed extension of lifespan in response to dietary restriction
387 (DR). In particular, we tested the predictions of the nutrient recycling hypothesis (NRH) that
388 DR will not extend lifespan with the addition of injury and infection to the usually benign
389 laboratory environment (Adler & Bonduriansky, 2014). Alternatively, the resource reallocation
390 hypothesis (RRH) does not make this prediction (Shanley & Kirkwood, 2000). We applied
391 both multiple stressors and diets ranging in protein to carbohydrate (P:C) ratios to a population
392 of outbred female *Drosophila melanogaster* to test these predictions. Our data showed that
393 lifespan extension and delayed ageing with DR remained even with the addition of injury and
394 infection, therefore supporting the RRH.

395 A small number of other studies have also considered predictions from the NRH. One
396 tested the prediction that reproduction should decline if autophagy is inhibited under DR, but
397 found that this was not the case in *Caenorhabditis elegans* (Travers et al., 2020). An
398 experimental evolution study in *D. melanogaster* males hypothesised that according to the
399 NRH, individuals under DR should be more efficient at using the available resources, and thus
400 under long-term DR, experimental evolution lines should evolve to have higher reproductive
401 performance and increased survival with DR (Zajitschek et al., 2016). Against their predictions
402 for support of the NRH, there was no change in survival, although the DR selection lines did
403 have higher reproductive performance (Zajitschek et al., 2016). One of the most direct tests of
404 the NRH would be to investigate the effect of DR on lifespan in the wild. A recent study using
405 wild and captive antler flies found that protein restriction lowered mortality rate even in non-
406 laboratory conditions (Mautz et al., 2019), contradicting the suggestion of the NRH that DR
407 would have no benefit in the wild due to higher extrinsic mortality rate and stressors (Adler &
408 Bonduriansky, 2014). This pattern was only present in one of the two years included in the
409 study, highlighting the need for further studies. In general it appears that the predictions of the
410 NRH are not being met in the studies conducted to date (Adler & Bonduriansky, 2014).

411 Across all stress treatments, survival and lifespan were maximised at intermediate
412 protein levels and declined at very high and low protein levels, typical of the DR response
413 through P:C ratios (Carey et al., 2008; Kwang Pum Lee, 2015; Skorupa et al., 2008) or through
414 other methods of DR (e.g. Bishop & Guarente, 2007; Clancy et al., 2002; K P Lee et al., 2006;
415 Magwere et al., 2004; Pletcher et al., 2005 see also meta-analysis Nakagawa et al., 2012). In

416 particular, survival on low protein diets was very low for infected flies, suggesting that protein
417 is important for survival when exposed to infection. Although our use of multiple stressors and
418 diets and monitoring lifetime survival rather than survival proxies is novel, some previous work
419 on DR and stress treatments in insects is relevant to our results. In a study using a range of
420 temperatures and P:C diets in *D. melanogaster*, increasing temperature both reduced lifespan
421 and reduced the decrease in lifespan with higher protein, although there still appeared to be a
422 slight decrease in lifespan on the highest protein diets (Kim et al., 2020). In terms of infection,
423 higher protein increased larval performance (a product of survival and weight gain) of infected
424 caterpillars prior to pupation in *Spodoptera littoralis* (K P Lee et al., 2006) and *Spodoptera*
425 *exempta* (Povey et al., 2009, 2014). Also, for *Spodoptera littoralis* caterpillars which died post-
426 infection, time to death is lengthened on higher protein diets (Cotter et al., 2019; Wilson et al.,
427 2020). Similar protein effects have been found in *D. melanogaster* even though survival was
428 only measured for a short time post-infection. With a fungal infection, the addition of live yeast
429 on top of food was found to increase the number of days alive post-infection (Le Rohellec &
430 Le Bourg, 2009). In the same host-pathogen study as used here, yeast restriction reduced *D.*
431 *melanogaster* survival 24 hours post-infection with *Pseudomonas entomophila*, but there was
432 no effect of yeast restriction on survival 24 hours post-infection with *Lactococcus lactis*
433 (Kutzer et al., 2018). It should be noted that this study only changed the amount of yeast and
434 therefore includes both calorie and protein restriction. Together these results suggest that,
435 although increased protein may improve survival under exposure to a stressor, there may be an
436 optimal level of protein above which survival is reduced.

437 There are also a small number of recent studies that show the opposite pattern to our
438 results, where infected individuals on lower protein diets have improved performance (Dinh et
439 al., 2019; J.-E. Lee et al., 2017; Ponton et al., 2020). Several methodological differences make
440 direct comparison difficult. These studies only use two or three diets, with one using liquid
441 diets (Dinh et al., 2019), with much lower protein to carbohydrate ratios to the ones used in our
442 study. In the one study that did use diets with comparable protein levels to ours (one diet at
443 52% protein), survival on this diet for 16 days post treatments in all treatments was very low
444 (Ponton et al., 2020). In comparison, this diet is similar to the diet with the highest survival in
445 our study. Other than methodological differences, the particular host-parasite system used
446 across studies may be driving these differences. In a meta-analysis of the effect of host nutrition
447 on pathogen virulence, nutrition quality or quantity did not have a consistent effect on the host
448 performance, with both positive or negative effects on virulence depending on the system (Pike

449 et al., 2019). To understand what effects protein has on short-term infection outcomes, many
450 different measures of the host or pathogen have been studied. For example, higher protein has
451 been found to decrease (Kutzer & Armitage, 2016; Wilson et al., 2020), increase (Dinh et al.,
452 2019; J.-E. Lee et al., 2017), or have no effect on bacterial growth (Kutzer et al., 2018) post-
453 infection. A measure of the immune response, the production of antimicrobial peptides, has
454 either increased (K P Lee et al., 2006; Povey et al., 2009, 2014) or decreased (Ponton et al.,
455 2020) on higher protein post-infection. In caterpillars, higher protein has been seen to increase
456 the functional immune response post-infection (Cotter et al., 2019) and increase the amount of
457 protein in the haemolymph (Cotter et al., 2010; Povey et al., 2009), which might be affecting
458 the growth of bacteria (Wilson et al., 2020). To understand why lower protein lowers survival
459 in the infected flies in our host-pathogen system in comparison to other studies better, further
460 work on measures of the host response and pathogen are needed.

461 Injured flies in our study also showed a lifespan benefit in response to modest protein
462 restriction. Surprisingly, injury had no measurable effect on survival. In *D. melanogaster*, there
463 are conflicting results of injury effects, potentially due to the methods of applying injury. Injury
464 to the thorax has been seen to increase lifespan in young male flies but this effect was absent
465 in young female or older flies (Henten et al., 2016). In contrast, injury by removing leg parts
466 increased mortality rates in the first 28 days post-injury in male but not female flies (Sepulveda
467 et al., 2008). Both studies housed flies in groups, limiting direct comparisons to our results. In
468 terms of diet effects on injury, injured *D. melanogaster* have been found to have similar
469 survival to control flies 16 days post-injury but only if they were on the lowest protein diet (4%
470 protein) of the three tested (Ponton et al., 2020). In contrast, protein had no statistically
471 significant effect on performance prior to pupation for injured caterpillars (Povey et al., 2009).
472 As injury in *D. melanogaster* activates immune response pathways (e.g. Agaisse et al., 2003;
473 Hoffmann & Reichhart, 2002), indicating it is a stressor to the flies, understanding why flies
474 on different diets do not show lifespan differences if injured is an interesting area of future
475 research.

476 Although the pattern of a tent-shaped response of survival and lifespan to increasing
477 levels of protein restriction seen here is typical of many other studies (Carey et al., 2008; Kim
478 et al., 2020; Kwang Pum Lee, 2015; Skorupa et al., 2008), it does contrast with recent studies
479 suggesting lifespan is maximised on diets with very low protein:carbohydrate (e.g. mice
480 (Solon-Biet et al., 2014), crickets (Harrison et al., 2014; Maklakov et al., 2008), *B. tryoni*
481 (Fanson et al., 2009, 2012), and *D. melanogaster* (Jensen et al., 2015; Kwang Pum Lee et al.,

482 2008). These studies use a nutritional geometry approach where a very large number of diets
483 that vary in both calories and macronutrient ratio are used in order to separate the effects of
484 these two variables. One reason our results may differ is due to difference in the delivery of the
485 diets. Most studies using nutritional geometry in *D. melanogaster* have used liquid diets that
486 allow fine scale measures of intake, but result in very low survival rates across all diets (Jensen
487 et al., 2015; Kwang Pum Lee et al., 2008). One nutritional geometry study using *D.*
488 *melanogaster* with solid diets found that lifespan was maximised on intermediate protein and
489 lifespan was overall greater than in the liquid diet results (Skorupa et al., 2008). A study using
490 eight solid diets in male *D. melanogaster* found that low P:C ratio diets maximised lifespan,
491 but that the lowest P:C ratio decreased lifespan (Bruce et al., 2013). A study using both male
492 and female *D. melanogaster* found that low P:C ratios with solid food increased lifespan in
493 females, but that this response was curved and the longest lifespan was at 1:4 P:C (Kim et al.,
494 2020). This suggests that diet delivery may have effects on survival, at least in *D. melanogaster*.
495 In comparison, *B. tryoni* have longer lifespans on liquid diets (Fanson et al., 2009, 2012)
496 compared to *D. melanogaster* liquid diets. Other studies in crickets (Harrison et al., 2014;
497 Maklakov et al., 2008) or mice (Solon-Biet et al., 2014) use solid diets, so more work is needed
498 to understand the causes of the differences between studies.

499 Lifetime reproduction was maximised at intermediate protein levels, although at a
500 slightly higher protein level than lifespan, a result which has been seen in other studies (Fanson
501 et al., 2009; Harrison et al., 2014; Jensen et al., 2015; Kwang Pum Lee et al., 2008; Maklakov
502 et al., 2008). However, some studies have shown that lifetime egg production is maximised at
503 the highest protein level (Carey et al., 2008; Moatt et al., 2019). Patterns in lifetime
504 reproduction could be driven by differences in lifespan rather than reproductive rate, especially
505 as longer-lived flies have been seen to lay more eggs (Jensen et al., 2015). By incorporating
506 lifespan into our model of lifetime egg production and by analysing early-life egg production,
507 we found that egg production still peaked at intermediate protein levels, but with higher protein,
508 the decline in egg production was not as steep as with lifetime eggs. Similarly, measures of egg
509 laying rate have been found to peak at intermediate protein diets in other studies (Fanson et al.,
510 2009, 2012; Harrison et al., 2014; Jensen et al., 2015; Kim et al., 2020; Kwang Pum Lee et al.,
511 2008; Maklakov et al., 2008) as with early-life reproduction (Rapkin et al., 2018). However,
512 early-life egg production has also been seen to peak at the highest protein diet (Kwang Pum
513 Lee, 2015; Skorupa et al., 2008). These inconsistencies may be due to the slight differences in
514 diet composition used in these studies, for example by using chemically defined diets (Kwang

515 Pum Lee, 2015) or by not including cornmeal in the diets (Skorupa et al., 2008). However, the
516 broad pattern that reproduction is maximised on higher protein diets than lifespan appears
517 consistent across studies.

518 In terms of stress treatment and reproduction, across control, injury and infection
519 treatments, we saw the same patterns of highest egg counts on intermediate protein. Infected
520 flies overall produced fewer eggs in comparison to the control or injured flies, as seen in many
521 studies focusing on the reproduction-immunity trade off (reviewed in Schwenke et al., 2016).
522 If lifespan was accounted for in the lifetime reproduction models, or only early-life
523 reproduction was considered, there was no difference in reproduction between the stress
524 treatments. This suggests that the pattern of lower lifetime reproduction in infected flies is most
525 likely due to infected flies having shorter lifespans. Similar to our results, in *D. melanogaster*
526 yeast restriction had a larger effect on early-life egg production than infection (Kutzer et al.,
527 2018; Kutzer & Armitage, 2016). Contrary to our results, limited availability of food and an
528 immune challenge with dead bacteria reduced egg production rate in early-life in crickets
529 (Stahlschmidt et al., 2013). Injury in the form of leg removal reduced egg production in the
530 first 10 days of *D. melanogaster* housed in groups (Sepulveda et al., 2008). Additionally, oral
531 infection with *Pseudomonas aeruginosa* increased early-life egg production but only on higher
532 protein diets (Hudson et al., 2019). Using a range of temperatures, egg production rate in early-
533 life in *D. melanogaster* was reduced at high and low temperatures, however intermediate to
534 high protein diets had the highest egg production rates at intermediate temperatures (Kim et
535 al., 2020). Higher temperatures increased egg production rate at higher protein diets (Kim et
536 al., 2020). Therefore, the methods of stress response or the particular host-pathogen system
537 may have an effect on the response of host reproduction on different diets.

538 The patterns of reproductive ageing involved complex interactions between diet and
539 stress treatment. Broadly, there were similar patterns of ageing across treatments and diets,
540 with an increase in egg production early in the experiment, followed by a peak and then
541 diminishing egg numbers, as seen in other experiments (Carey et al., 2008; Le Rohellec & Le
542 Bourg, 2009). These peaks were higher for the high protein diets (but not necessarily the
543 highest), most likely due to the requirement of protein for egg production (Mirth et al., 2019;
544 Wheeler, 1996). Diets with low protein levels (e.g. 3 to 18% protein) had the slowest rate of
545 decline in egg production with age. This could simply be a result of high protein diets having
546 much higher egg production earlier in life and thus a greater potential decline than low protein
547 diets. It is notable that high protein diets decline rapidly in egg production early in life before

548 the rate of decline reduces to that of lower protein diets later in life, suggesting there is an
549 initially higher rate of ageing on higher protein diets. Additionally, the control flies have a more
550 linear decline in egg laying, suggesting that injury and infection might slightly delay egg
551 production. Previous studies have also found ageing in female reproduction was quicker on
552 higher protein diets (Jensen et al., 2015; Moatt et al., 2019). Without directly testing for ageing
553 in egg production, similar patterns of quicker declines in egg production on higher protein and
554 calorie diets have been seen in the tephritid fruit fly (Carey et al., 2008) and in *D. melanogaster*
555 supplemented with live yeast on top of food (Le Rohellec & Le Bourg, 2009). One study in
556 crickets found no significant relationship between ageing in egg laying and protein in diet in
557 females (Maklakov et al., 2009). Overall, these similarities across studies suggest diet interacts
558 with reproductive ageing in a broadly similar way across species.

559 Other than ageing in reproduction, we also investigated ageing in traits that are not
560 implicated in the survival-reproduction trade-off, as delayed ageing is a known DR response
561 (e.g. Ingram et al., 1987; Le Rohellec & Le Bourg, 2009; Mattson et al., 2001; Regan et al.,
562 2016; Rera et al., 2012). Measuring escape response across lifespan, we used the negative
563 geotaxis (NG) assay, and found that ageing was delayed on lower protein diets, as has been
564 found in another study limiting the addition of live yeast on food (Le Rohellec & Le Bourg,
565 2009). This is also consistent with the pattern that DR animals have an increased activity pattern
566 (Duffy et al., 1997). A study using two genetic backgrounds of *D. melanogaster* found the
567 effect of DR on NG was inconsistent across genotype (Bhandari et al., 2007), however they
568 simultaneously manipulated calories and nutrient composition making direct comparison to our
569 results difficult. We did not see effects of stress treatment on NG, in contrast to a study where
570 infection reduced the NG response in one of two tested *D. melanogaster* genetic backgrounds
571 (Linderman et al., 2012). These differences suggest there may be dissimilarities in the response
572 to DR depending on the genetic background. Given the flies used in our study are genetically
573 heterogeneous, the patterns we observe should be representative of the average genotype in
574 this population.

575 We also measured the loss of gut integrity of flies with age using a smurf assay, which
576 has been found to be more common in flies on unrestricted diets (Regan et al., 2016; Rera et
577 al., 2012). Unexpectedly, we saw higher numbers of smurfs appearing at lower protein diets in
578 the control and injury treatments, whilst in the infected treatment the number of smurfs was
579 highest at intermediate protein levels. This is surprising in the infected flies as *Pseudomonas*
580 *entomophila* infection is known to disrupt the gut (Chakrabarti et al., 2012; Dieppois et al.,

581 2015). One explanation for the patterns we observe in the control and injury treatment is that
582 the lowest protein diets used in this study are particularly low and therefore may represent
583 malnourished conditions, leading to an increase in the number of smurfs. Nonetheless, we
584 would still expect to see a reduction in the number of smurfs at intermediate protein levels. In
585 addition, for infected flies, the high mortality at high and low protein levels may result in flies
586 dying before reaching the age where smurfs start appearing. The major problem with
587 interpreting these patterns in our experiment is the very low number of smurfs that appeared,
588 meaning these patterns may not be robust. Additionally, we analysed the smurf trait as a binary
589 variable, however it has been found to be a continuous trait, where at some point all individuals
590 develop the trait (Martins et al., 2018). Therefore, by measuring the phenotype as a binary trait
591 with only clear smurfs counted, we may have been missed some more subtle patterns. More
592 work is required to understand how the relationship between protein restriction and the
593 appearance of smurfs varies with exposure to injury and infection.

594 Overall, the addition of injury and infection did not remove the lifespan benefit of
595 protein restriction or the delay in reproductive ageing. Our study therefore provides no
596 evidence to support the nutrient recycling hypothesis of the lifespan response to dietary
597 restriction. Even though there were minor differences between the stress treatments in the
598 relationship between protein content of the diet and survival, the major pattern of survival being
599 maximised at intermediate protein levels was maintained across stress treatments. With
600 infection, survival was particularly poor on the lowest protein diets, whilst in the other
601 treatment groups this difference was not as dramatic. The explanation for this pattern requires
602 further investigation. Our results and those of other studies suggest that the resource
603 reallocation hypothesis remains the best-supported evolutionary explanation for the lifespan
604 benefit of dietary restriction.

605 **ACKNOWLEDGEMENTS:**

606 This work was supported by the Biotechnology and Biological Sciences Research Council
607 (BBSRC) grant number BB/M010996/1. We thank Joshua Moatt for helpful advice and
608 comments on the data analysis and write-up, Jonathon Siva-Jothy for help with the bacterial
609 work, Katy Monteith for laboratory training and practical advice, and Megan Wallace for
610 testing the DGRP outcross for the presence of common fly viruses.

611

612 **CONFLICTS OF INTEREST:**

613 The authors declare no conflicts of interest.

614

615 **AUTHOR CONTRIBUTIONS:**

616 ES, PV and CW designed the experiment. ES and CM did the study, with ES completing data
617 collection for the full experiment. FMW and KM created and maintained the fly population
618 used in the study and wrote the supplementary methods part for the creation of the fly
619 population. ES analysed the data with help from CW. ES wrote the paper with help from CW,
620 PV, FMW and KM.

621 **REFERENCES:**

622 Adler, M. I., & Bonduriansky, R. (2014). Why do the well-fed appear to die young?: A new
623 evolutionary hypothesis for the effect of dietary restriction on lifespan. *BioEssays*, 36(5),
624 439–450. <https://doi.org/10.1002/bies.201300165>

625 Agaisse, H., Petersen, U. M., Boutros, M., Mathey-Prevot, B., & Perrimon, N. (2003).
626 Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic
627 injury. *Developmental Cell*, 5(3), 441–450. [https://doi.org/10.1016/S1534-5807\(03\)00244-2](https://doi.org/10.1016/S1534-5807(03)00244-2)

629 Arking, R., & Wells, R. A. (1990). Genetic alteration of normal aging processes is
630 responsible for extended longevity in Drosophila. *Developmental Genetics*, 11(2), 141–
631 148. <https://doi.org/10.1002/dvg.1020110204>

632 Bertozzi, B., Tosti, V., & Fontana, L. (2016). Beyond Calories: An Integrated Approach to
633 Promote Health, Longevity, and Well-Being. *Gerontology*, 63(1), 13–19.
634 <https://doi.org/10.1159/000446346>

635 Bhandari, P., Jones, M. A., Martin, I., & Grotewiel, M. S. (2007). Dietary restriction alters
636 demographic but not behavioral aging in Drosophila. *Aging Cell*, 6(5), 631–637.
637 <https://doi.org/10.1111/j.1474-9726.2007.00320.x>

638 Bishop, N. A., & Guarente, L. (2007). Two neurons mediate diet-restriction-induced
639 longevity in *C. elegans*. *Nature*, 447(7144), 545–549.
640 <https://doi.org/10.1038/nature05904>

641 Bruce, K. D., Hoxha, S., Carvalho, G. B., Yamada, R., Wang, H. D., Karayan, P., He, S.,
642 Brummel, T., Kapahi, P., & Ja, W. W. (2013). High carbohydrate-low protein
643 consumption maximizes Drosophila lifespan. *Experimental Gerontology*, 48(10), 1129–
644 1135. <https://doi.org/10.1016/j.exger.2013.02.003>

645 Carey, J. R., Harshman, L. G., Liedo, P., Müller, H. G., Wang, J. L., & Zhang, Z. (2008).
646 Longevity-fertility trade-offs in the tephritid fruit fly, *Anastrepha ludens*, across dietary-
647 restriction gradients. *Aging Cell*, 7(4), 470–477. <https://doi.org/10.1111/j.1474-9726.2008.00389.x>

649 Chakrabarti, S., Liehl, P., Buchon, N., & Lemaitre, B. (2012). Infection-induced host
650 translational blockage inhibits immune responses and epithelial renewal in the

651 Drosophila gut. *Cell Host & Microbe*, 12(1), 60–70.
652 <https://doi.org/10.1016/j.chom.2012.06.001>

653 Clancy, D. J., Gems, D., Hafen, E., Leevers, S. J., & Partridge, L. (2002). Dietary restriction
654 in long-lived dwarf flies. *Science*, 296(5566), 319.
655 <https://doi.org/10.1126/science.1069366>

656 Clancy, D. J., & Kennington, W. J. (2001). A simple method to achieve consistent larval
657 density in bottle cultures. *Drosophila Information Services*, 84, 168–169.

658 Cotter, S. C., Reavey, C. E., Tummala, Y., Randall, J. L., Holdbrook, R., Ponton, F.,
659 Simpson, S. J., Smith, J. A., & Wilson, K. (2019). Diet modulates the relationship
660 between immune gene expression and functional immune responses. *Insect Biochemistry
661 and Molecular Biology*, 109(April), 128–141.
662 <https://doi.org/10.1016/j.ibmb.2019.04.009>

663 Cotter, S. C., Simpson, S. J., Raubenheimer, D., & Wilson, K. (2010). Macronutrient balance
664 mediates trade-offs between immune function and life history traits. *Functional Ecology*,
665 25(1), 186–198. <https://doi.org/10.1111/j.1365-2435.2010.01766.x>

666 Dieppois, G., Opota, O., Lalucat, J., & Lemaitre, B. (2015). *Pseudomonas entomophila*: A
667 Versatile Bacterium with Entomopathogenic Properties. In J.-L. Ramos, J. B. Goldberg,
668 & A. Filloux (Eds.), *Pseudomonas: Volume 7: New Aspects of Pseudomonas Biology*
669 (1st ed., pp. 25–34). Springer Netherlands. <https://doi.org/10.1007/978-94-017-9555-5>

670 Dinh, H., Mendez, V., Tabrizi, S. T., & Ponton, F. (2019). Macronutrients and infection in
671 fruit flies. *Insect Biochemistry and Molecular Biology*, 110(May), 98–104.
672 <https://doi.org/10.1016/j.ibmb.2019.05.002>

673 Duffy, P. H., Leakey, J. E. A., Pipkin, J. L., Turturro, A., & Hart, R. W. (1997). The
674 physiologic, neurologic, and behavioral effects of caloric restriction related to aging,
675 disease, and environmental factors. *Environmental Research*, 73(1–2), 242–248.
676 <https://doi.org/10.1006/enrs.1997.3714>

677 Fanson, B. G., Fanson, K. V., & Taylor, P. W. (2012). Cost of reproduction in the
678 Queensland fruit fly: Y-model versus lethal protein hypothesis. *Proceedings of the Royal
679 Society B: Biological Sciences*, 279(1749), 4893–4900.
680 <https://doi.org/10.1098/rspb.2012.2033>

681 Fanson, B. G., Weldon, C. W., Pérez-Staples, D., Simpson, S. J., & Taylor, P. W. (2009).
682 Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies (*Bactrocera*
683 *tryoni*). *Aging Cell*, 8(5), 514–523. <https://doi.org/10.1111/j.1474-9726.2009.00497.x>

684 Flatt, T. (2011). Survival costs of reproduction in *Drosophila*. *Experimental Gerontology*,
685 46(5), 369–375. <https://doi.org/10.1016/j.exger.2010.10.008>

686 Fontana, L., & Partridge, L. (2015). Promoting health and longevity through diet: From
687 model organisms to humans. *Cell*, 161(1), 106–118.
688 <https://doi.org/10.1016/j.cell.2015.02.020>

689 Fontana, L., Partridge, L., Longo, V. D., & Longo4, V. D. (2010). Extending Healthy Life
690 Span—From Yeast to Humans. *Science*, 328(5976), 321–326.
691 <https://doi.org/10.1126/science.1172539>

692 French, S. S., Johnston, G. I. H., & Moore, M. C. (2007). Immune activity suppresses
693 reproduction in food-limited female tree lizards *Urosaurus ornatus*. *Functional Ecology*,
694 21(6), 1115–1122. <https://doi.org/10.1111/j.1365-2435.2007.01311.x>

695 Gargano, J. W., Martin, I., Bhandari, P., & Grotewiel, M. S. (2005). Rapid iterative negative
696 geotaxis (RING): A new method for assessing age-related locomotor decline in
697 *Drosophila*. *Experimental Gerontology*, 40(5), 386–395.
698 <https://doi.org/10.1016/j.exger.2005.02.005>

699 Gems, D., & Partridge, L. (2012). Genetics of Longevity in Model Organisms: Debates and
700 Paradigm Shifts. *Annual Review of Physiology*, 75(1), 621–644.
701 <https://doi.org/10.1146/annurev-physiol-030212-183712>

702 Gibbs, V. K., & Smith, D. L. (2016). Nutrition and energetics in rodent longevity research.
703 *Experimental Gerontology*, 86, 90–96. <https://doi.org/10.1016/j.exger.2016.04.004>

704 Graves, J. L., & Mueller, L. D. (1993). Population density effects on longevity. *Genetica*,
705 91(1–3), 99–109. <https://doi.org/10.1007/BF01439570>

706 Grotewiel, M. S., Martin, I., Bhandari, P., & Cook-Wiens, E. (2005). Functional senescence
707 in *Drosophila melanogaster*. *Ageing Research Reviews*, 4, 372–397.
708 <https://doi.org/10.1016/j.arr.2005.04.001>

709 Hadfield, J. D. (2010). MCMC Methods for Multi-Response Generalized Linear Mixed
710 Models: The MCMCglmm R Package. *Journal of Statistical Software*, 33(2), 1–22.

711 <http://www.jstatsoft.org/v33/i02/>

712 Hansen, M., Chandra, A., Mitic, L. L., Onken, B., Driscoll, M., & Kenyon, C. (2008). A role
713 for autophagy in the extension of lifespan by dietary restriction in *C. elegans*. *PLoS*
714 *Genetics*, 4(2). <https://doi.org/10.1371/journal.pgen.0040024>

715 Harrison, S. J., Raubenheimer, D., Simpson, S. J., Godin, J. G. J., & Bertram, S. M. (2014).
716 Towards a synthesis of frameworks in nutritional ecology: Interacting effects of protein,
717 carbohydrate and phosphorus on field cricket fitness. *Proceedings of the Royal Society*
718 *B: Biological Sciences*, 281(1792). <https://doi.org/10.1098/rspb.2014.0539>

719 Henten, A. M. V., Loeschke, V., Pedersen, J. G., Leisner, J. J., & Sarup, P. (2016). Injuries
720 can prolong lifespan in *Drosophila melanogaster* males. *Biogerontology*, 17(2), 337–
721 346. <https://doi.org/10.1007/s10522-015-9616-6>

722 Hoffmann, J. A., & Reichhart, J.-M. (2002). *Drosophila* innate immunity: an evolutionary
723 perspective. *Nature Immunology*, 3(2), 121–126. <https://doi.org/10.1038/ni0202-121>

724 Holliday, R. (1989). Food, reproduction and longevity: Is the extended lifespan of calorie-
725 restricted animals an evolutionary adaptation? *BioEssays*, 10(4), 125–127.
726 <https://doi.org/10.1002/bies.950100408>

727 Hudson, A. L., Moatt, J. P., & Vale, P. F. (2019). Terminal investment strategies following
728 infection are dependent on diet. *Journal of Evolutionary Biology*, 33(3), 309–317.
729 <https://doi.org/10.1111/jeb.13566>

730 Hunt, N. D., Li, G. D., Zhu, M., Levette, A., Chachich, M. E., Spangler, E. L., Allard, J. S.,
731 Hyun, D. H., Ingram, D. K., & De Cabo, R. (2012). Effect of calorie restriction and
732 refeeding on skin wound healing in the rat. *Age*, 34(6), 1453–1458.
733 <https://doi.org/10.1007/s11357-011-9321-6>

734 Ingram, D. K., Weindruch, R., Spangler, E. L., Freeman, J. R., & Walford, R. L. (1987).
735 Dietary restriction benefits learning and motor performance of aged mice. *Journals of*
736 *Gerontology*, 42(1), 78–81. <https://doi.org/10.1093/geronj/42.1.78>

737 James, S. J., Muskhelishvili, L., Gaylor, D. W., Turturro, A., & Hart, R. (1998). Upregulation
738 of apoptosis with dietary restriction: Implications for carcinogenesis and aging.
739 *Environmental Health Perspectives*, 106(Suppl 1), 307–312.
740 <https://doi.org/10.2307/3433932>

741 Jensen, K., McClure, C., Priest, N. K., & Hunt, J. (2015). Sex-specific effects of protein and
742 carbohydrate intake on reproduction but not lifespan in *Drosophila melanogaster*. *Aging*
743 *Cell*, 14(4), 605–615. <https://doi.org/10.1111/ace.12333>

744 Kassambara, A., & Kosinski, M. (2018). *survminer: Drawing Survival Curves using*
745 “*ggplot2*” (R package version 0.4.3). <https://cran.r-project.org/package=survminer>

746 Kenyon, C. J. (2010). The genetics of ageing. *Nature*, 464(7315), 504–512.
747 <https://doi.org/10.1038/nature09047>

748 Kim, K. E., Jang, T., & Lee, K. P. (2020). Combined effects of temperature and
749 macronutrient balance on life-history traits in *Drosophila melanogaster*: implications for
750 life-history trade-offs and fundamental niche. *Oecologia*.
751 <https://doi.org/10.1007/s00442-020-04666-0>

752 Kirkwood, T. B. L. (1977). Evolution of ageing. *Nature*, 270(5635), 301–304.
753 <https://doi.org/10.1038/270301a0>

754 Kutzer, M. A. M., & Armitage, S. A. O. (2016). The effect of diet and time after bacterial
755 infection on fecundity, resistance, and tolerance in *Drosophila melanogaster*. *Ecology*
756 and *Evolution*, 6(13), 4229–4242. <https://doi.org/10.1002/ece3.2185>

757 Kutzer, M. A. M., Kurtz, J., & Armitage, S. A. O. (2018). Genotype and diet affect
758 resistance, survival, and fecundity but not fecundity tolerance. *Journal of Evolutionary*
759 *Biology*, 31(1), 159–171. <https://doi.org/10.1111/jeb.13211>

760 Le Couteur, D. G., Solon-Biet, S., Cogger, V. C., Mitchell, S. J., Senior, A., De Cabo, R.,
761 Raubenheimer, D., & Simpson, S. J. (2016). The impact of low-protein high-
762 carbohydrate diets on aging and lifespan. *Cellular and Molecular Life Sciences*, 73(6),
763 1237–1252. <https://doi.org/10.1007/s00018-015-2120-y>

764 Le Rohellec, M., & Le Bourg, É. (2009). Contrasted effects of suppressing live yeast from
765 food on longevity, aging and resistance to several stresses in *Drosophila melanogaster*.
766 *Experimental Gerontology*, 44(11), 695–707.
767 <https://doi.org/10.1016/j.exger.2009.08.001>

768 Lee, J.-E., Rayyan, M., Liao, A., Edery, I., & Pletcher, S. D. (2017). Acute Dietary
769 Restriction Acts via TOR, PP2A, and Myc Signaling to Boost Innate Immunity in
770 *Drosophila*. *Cell Reports*, 20(2), 479–490. <https://doi.org/10.1016/j.celrep.2017.06.052>

771 Lee, K P, Cory, J. S., Wilson, K., Raubenheimer, D., & Simpson, S. J. (2006). Flexible diet
772 choice offsets protein costs of pathogen resistance in a caterpillar. *Proceedings of the
773 Royal Society B: Biological Sciences*, 273, 823–829.
774 <https://doi.org/10.1098/rspb.2005.3385>

775 Lee, Kwang Pum. (2015). Dietary protein: Carbohydrate balance is a critical modulator of
776 lifespan and reproduction in *Drosophila melanogaster*: A test using a chemically defined
777 diet. *Journal of Insect Physiology*, 75, 12–19.
778 <https://doi.org/10.1016/j.jinsphys.2015.02.007>

779 Lee, Kwang Pum, Simpson, S. J., Clissold, F. J., Brooks, R., Ballard, J. W. O., Taylor, P. W.,
780 Soran, N., & Raubenheimer, D. (2008). Lifespan and reproduction in *Drosophila*: New
781 insights from nutritional geometry. *Proceedings of the National Academy of Sciences of
782 the United States of America*, 105(7), 2498–2503.
783 <https://doi.org/10.1073/pnas.0710787105>

784 Lewis, E. B. (1960). A new standard food medium. *Drosophila Information Service*, 34, 117–
785 118.

786 Linderman, J. A., Chambers, M. C., Gupta, A. S., & Schneider, D. S. (2012). Infection-
787 Related Declines in Chill Coma Recovery and Negative Geotaxis in *Drosophila*
788 *melanogaster*. *PLoS ONE*, 7(9). <https://doi.org/10.1371/journal.pone.0041907>

789 Longo, V. D., & Fontana, L. (2010). Calorie restriction and cancer prevention: metabolic and
790 molecular mechanisms. *Trends in Pharmacological Sciences*, 31(2), 89–98.
791 <https://doi.org/10.1016/j.tips.2009.11.004>

792 Mackay, T. F. C., Richards, S., Stone, E. A., Barbadilla, A., Ayroles, J. F., Zhu, D., Casillas,
793 S., Han, Y., Magwire, M. M., Cridland, J. M., Richardson, M. F., Anholt, R. R. H.,
794 Barrón, M., Bess, C., Blankenburg, K. P., Carbone, M. A., Castellano, D., Chaboub, L.,
795 Duncan, L., Harris, Z., Javaid, M., Jayaseelan, J. C., Jhangiani, S. N., Jordan, K. W.,
796 Lara, F., Lawrence, F., Lee, S. L., Librado, P., Linheiro, R. S., Lyman, R. F., Mackey,
797 A. J., Munidasa, M., Muzny, D. M., Nazareth, L., Newsham, I., Perales, L., Pu, L.-L.,
798 Qu, C., Ràmia, M., Reid, J. G., Rollmann, S. M., Rozas, J., Saada, N., Turlapati, L.,
799 Worley, K. C., Wu, Y.-Q., Yamamoto, A., Zhu, Y., Bergman, C. M., Thornton, K. R.,
800 Mittelman, D., & Gibbs, R. A. (2012). The *Drosophila melanogaster* Genetic Reference
801 Panel. *Nature*, 482(7384), 173–178. <https://doi.org/10.1038/nature10811>

802 Magwere, T., Chapman, T., & Partridge, L. (2004). Sex differences in the effect of dietary
803 restriction on life span and mortality rates in female and male *Drosophila melanogaster*.
804 *The Journals of Gerontology Series A: Biological Sciences and Medical Sciences*, 59(1),
805 3–9. <https://doi.org/10.1093/gerona/59.1.B3>

806 Mair, W., & Dillin, A. (2008). Aging and Survival: The Genetics of Life Span Extension by
807 Dietary Restriction. *Annual Review of Biochemistry*, 77(1), 727–754.
808 <https://doi.org/10.1146/annurev.biochem.77.061206.171059>

809 Maklakov, A. A., Hall, M. D., Simpson, S. J., Dessimann, J., Clissold, F. J., Zajitschek, F.,
810 Lailvaux, S. P., Raubenheimer, D., Bonduriansky, R., & Brooks, R. C. (2009). Sex
811 differences in nutrient-dependent reproductive ageing. *Aging Cell*, 8(3), 324–330.
812 <https://doi.org/10.1111/j.1474-9726.2009.00479.x>

813 Maklakov, A. A., Simpson, S. J., Zajitschek, F., Hall, M. D., Dessimann, J., Clissold, F.,
814 Raubenheimer, D., Bonduriansky, R., & Brooks, R. C. (2008). Sex-specific fitness
815 effects of nutrient intake on reproduction and lifespan. *Current Biology*, 18(14), 1062–
816 1066. <https://doi.org/10.1016/j.cub.2008.06.059>

817 Martins, R., McCracken, A., Simons, M., Henriques, C., & Rera, M. (2018). How to Catch a
818 Smurf? – Ageing and Beyond... In vivo Assessment of Intestinal Permeability in
819 Multiple Model Organisms. *Bio-Protocol*, 8(3). <https://doi.org/10.21769/bioprotoc.2722>

820 Mattson, M. P., Duan, W., Lee, J., & Guo, Z. (2001). Suppression of brain aging and
821 neurodegenerative disorders by dietary restriction and environmental enrichment:
822 Molecular mechanisms. *Mechanisms of Ageing and Development*, 122(7), 757–778.
823 [https://doi.org/10.1016/S0047-6374\(01\)00226-3](https://doi.org/10.1016/S0047-6374(01)00226-3)

824 Mautz, B. S., Rode, N. O., Bonduriansky, R., & Rundle, H. D. (2019). Comparing ageing and
825 the effects of diet supplementation in wild vs. captive antler flies, *Protopiophila litigata*.
826 *Journal of Animal Ecology*, 0–3. <https://doi.org/10.1111/1365-2656.13079>

827 Mirth, C. K., Nogueira Alves, A., Piper, M. D. W., Alves, N., Piper, M. D. W., & Mirth, C.
828 K. (2019). Turning food into eggs: insights from nutritional biology and developmental
829 physiology of *Drosophila*. *Current Opinion in Insect Science*, 31, 49–57.
830 <https://doi.org/10.1016/j.cois.2018.08.006>

831 Moatt, J. P., Fyfe, M. A., Heap, E., Mitchell, L. J. M., Moon, F., & Walling, C. A. (2019).

832 Reconciling nutritional geometry with classical dietary restriction: Effects of nutrient
833 intake, not calories, on survival and reproduction. *Aging Cell*, 18(1).
834 <https://doi.org/10.1111/acel.12868>

835 Nakagawa, S., Lagisz, M., Hector, K. L., & Spencer, H. G. (2012). Comparative and meta-
836 analytic insights into life extension via dietary restriction. *Aging Cell*, 11(3), 401–409.
837 <https://doi.org/10.1111/j.1474-9726.2012.00798.x>

838 Pike, V. L., Lythgoe, K. A., & King, K. C. (2019). On the diverse and opposing effects of
839 nutrition on pathogen virulence. *Proceedings of the Royal Society B: Biological
840 Sciences*, 286(1906), 20191220. <https://doi.org/10.1098/rspb.2019.1220>

841 Pletcher, S. D., Libert, S., & Skorupa, D. (2005). Flies and their Golden Apples: The effect of
842 dietary restriction on Drosophila aging and age-dependent gene expression. *Ageing
843 Research Reviews*, 4(4), 451–480. <https://doi.org/10.1016/j.arr.2005.06.007>

844 Ponton, F., Morimoto, J., Robinson, K., Kumar, S. S., Cotter, S. C., Wilson, K., & Simpson,
845 S. J. (2020). Macronutrients modulate survival to infection and immunity in Drosophila.
846 *Journal of Animal Ecology*, 89(2), 460–470. <https://doi.org/10.1111/1365-2656.13126>

847 Povey, S., Cotter, S. C., Simpson, S. J., Lee, K. P., & Wilson, K. (2009). Can the protein
848 costs of bacterial resistance be offset by altered feeding behaviour? *Journal of Animal
849 Ecology*, 78(2), 437–446. <https://doi.org/10.1111/j.1365-2656.2008.01499.x>

850 Povey, S., Cotter, S. C., Simpson, S. J., & Wilson, K. (2014). Dynamics of macronutrient
851 self-medication and illness-induced anorexia in virally infected insects. *Journal of
852 Animal Ecology*, 83(1), 245–255. <https://doi.org/10.1111/1365-2656.12127>

853 R Core Team. (2014). *R: A language and environment for statistical computing*. R
854 Foundation for Statistical Computing. <http://www.r-project.org/>

855 Rapkin, J., Jensen, K., Archer, C. R., House, C. M., Sakaluk, S. K., Del Castillo, E., Hunt, J.,
856 Castillo, E. del, & Hunt, J. (2018). The Geometry of Nutrient Space-Based Life-History
857 Trade-Offs: Sex-Specific Effects of Macronutrient Intake on the Trade-Off between
858 Encapsulation Ability and Reproductive Effort in Decorated Crickets. *The American
859 Naturalist*, 191(4), 452–474. <https://doi.org/10.1086/696147>

860 Raubenheimer, D., Simpson, S. J., Le Couteur, D. G., Solon-Biet, S. M., & Coogan, S. C. P.
861 P. (2016). Nutritional ecology and the evolution of aging. *Experimental Gerontology*,

862 86, 1–12. <https://doi.org/10.1016/j.exger.2016.04.007>

863 863 Redman, L. M., & Ravussin, E. (2011). Caloric Restriction in Humans: Impact on
864 Physiological, Psychological, and Behavioral Outcomes. *Antioxidants & Redox
865 Signaling*, 14(2), 275–287. <https://doi.org/10.1089/ars.2010.3253>

866 866 Reed, M. J., Penn, P. E., Li, Y., Birnbaum, R., Vernon, R. B., Johnson, T. S., Pendergrass, W.
867 R., Sage, E. H., Abrass, I. B., & Wolf, N. S. (1996). Enhanced cell proliferation and
868 biosynthesis mediate improved wound repair in refed, caloric-restricted mice.
869 *Mechanisms of Ageing and Development*, 89(1), 21–43. [https://doi.org/10.1016/0047-6374\(96\)01737-X](https://doi.org/10.1016/0047-6374(96)01737-X)

870

871 871 Regan, J. C., Froy, H., Walling, C. A., Moatt, J. P., & Nussey, D. H. (2020). Dietary
872 restriction and insulin-like signalling pathways as adaptive plasticity: A synthesis and
873 re-evaluation. *Functional Ecology*, 34(1), 107–128. <https://doi.org/10.1111/1365-2435.13418>

874

875 875 Regan, J. C., Khericha, M., Dobson, A. J., Bolukbasi, E., & Rattanavirotkul, N. (2016). Sex
876 difference in pathology of the ageing gut mediates the greater response of female
877 lifespan to dietary restriction. *eLife*, 5(e10956), e10956.
878 <https://doi.org/10.7554/eLife.10956>

879

880 879 Reiser, K., McGee, C., Rucker, R., & McDonald, R. (1995). Effects of aging and caloric
881 restriction on extracellular matrix biosynthesis in a model of injury repair in rats.
882 *Journals of Gerontology - Series A Biological Sciences and Medical Sciences*, 50A(1),
883 B40–B47. <https://doi.org/10.1093/gerona/50A.1.B40>

884

885 883 Rera, M., Bahadorani, S., Cho, J., Koehler, C. L., Ulgherait, M., Hur, J. H., Ansari, W. S., Lo,
886 T., Jones, D. L., & Walker, D. W. (2011). Modulation of Longevity and Tissue
Homeostasis by the Drosophila PGC-1 Homolog. *Cell Metabolism*, 14(5), 623–634.
<https://doi.org/10.1016/j.cmet.2011.09.013>

887

888 887 Rera, M., Clark, R. I., & Walker, D. W. (2012). Intestinal barrier dysfunction links metabolic
889 and inflammatory markers of aging to death in Drosophila. *Proceedings of the National
Academy of Sciences of the United States of America*, 109(52), 21528–21533.
890 <https://doi.org/10.1073/pnas.1215849110/>
891 /DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1215849110

892 Salomon, R. N., & Rob Jackson, F. (2008). Tumors of testis and midgut in aging flies. *Fly*,
893 2(6), 265–268. <https://doi.org/10.4161/fly.7396>

894 Schwenke, R. A., Lazzaro, B. P., & Wolfner, M. F. (2016). Reproduction-Immunity Trade-
895 Offs in Insects. *Annual Review of Entomology*, 61(1), 239–256.
896 <https://doi.org/10.1146/annurev-ento-010715-023924>

897 Sepulveda, S., Shojaeian, P., Rauser, C. L., Jafari, M., Mueller, L. D., & Rose, M. R. (2008).
898 Interactions between injury, stress resistance, reproduction, and aging in *Drosophila*
899 *melanogaster*. *Experimental Gerontology*, 43(3), 136–145.
900 <https://doi.org/10.1016/j.exger.2007.10.006>

901 Shanley, D. P., & Kirkwood, T. B. L. (2000). Calorie restriction and aging: A life-history
902 analysis. *Evolution*, 54(3), 740–750. <https://doi.org/10.1111/j.0014-3820.2000.tb00076.x>

904 Simpson, S. J., & Raubenheimer, D. (2009). Macronutrient balance and lifespan. *Aging*,
905 1(10), 875–880. <https://doi.org/10.18632/aging.100098>

906 Skorupa, D. A., Dervisefendic, A., Zwiener, J., & Pletcher, S. D. (2008). Dietary composition
907 specifies consumption, obesity, and lifespan in *Drosophila melanogaster*. *Aging Cell*, 7,
908 478–490. <https://doi.org/10.1111/j.1474-9726.2008.00400.x>

909 Solon-Biet, S. M., McMahon, A. C., Ballard, J. W. O., Ruohonen, K., Wu, L. E., Cogger, V.
910 C., Warren, A., Huang, X., Pichaud, N., Melvin, R. G., Gokarn, R., Khalil, M., Turner,
911 N., Cooney, G. J., Sinclair, D. A., Raubenheimer, D., Le Couteur, D. G., & Simpson, S.
912 J. (2014). The ratio of macronutrients, not caloric intake, dictates cardiometabolic
913 health, aging, and longevity in ad libitum-fed mice. *Cell Metabolism*, 19, 418–430.
914 <https://doi.org/10.1016/j.cmet.2014.02.009>

915 Speakman, J. R., & Mitchell, S. E. (2011). Caloric restriction. *Molecular Aspects of
916 Medicine*, 32, 159–221. <https://doi.org/10.1016/j.mam.2011.07.001>

917 Spindler, S. R. (2005). Rapid and reversible induction of the longevity, anticancer and
918 genomic effects of caloric restriction. *Mechanisms of Ageing and Development*, 126(9
919 SPEC. ISS.), 960–966. <https://doi.org/10.1016/j.mad.2005.03.016>

920 Stahlschmidt, Z. R., Rollinson, N., Acker, M., & Adamo, S. A. (2013). Are all eggs created
921 equal? Food availability and the fitness trade-off between reproduction and immunity.

922 *Functional Ecology*, 27(3), 800–806. <https://doi.org/10.1111/1365-2435.12071>

923 Travers, L. M., Carlsson, H., Duxbury, E. M. L., & Maklakov, A. A. (2020). Evolutionary
924 causes of lifespan extension by dietary restriction: linking theory and mechanisms.
925 *BioRxiv*, 2020.01.14.904599. <https://doi.org/10.1101/2020.01.14.904599>

926 Troha, K., & Buchon, N. (2019). Methods for the study of innate immunity in *Drosophila*
927 *melanogaster*. *Wiley Interdisciplinary Reviews: Developmental Biology*, October 2018,
928 e344. <https://doi.org/10.1002/wdev.344>

929 Van de Pol, M., & Verhulst, S. (2006). Age-Dependent Traits: A New Statistical Model to
930 Separate Within- and Between-Individual Effects. *The American Naturalist*, 167(5),
931 766–773. <https://doi.org/10.1086/503331>

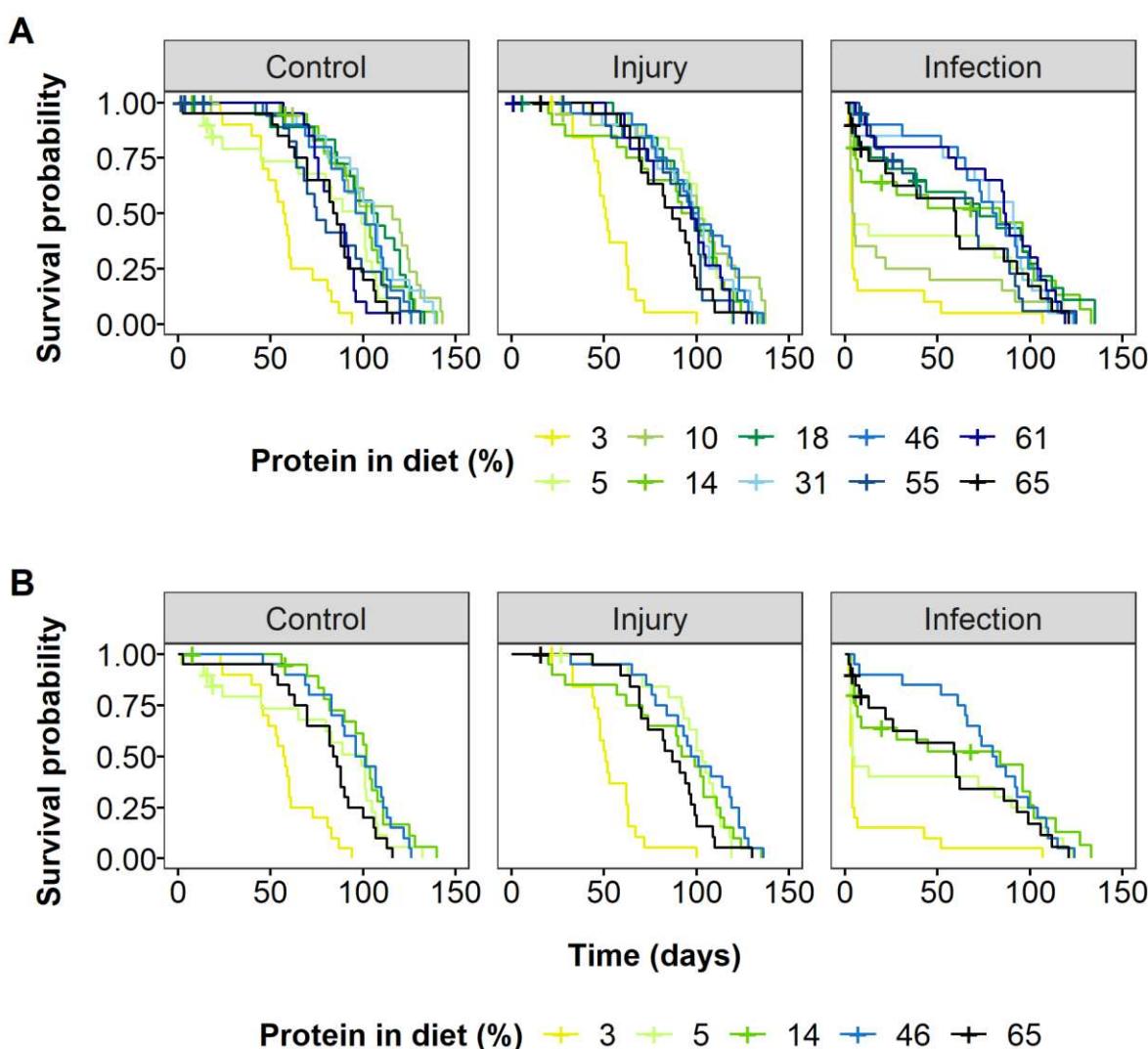
932 Vodovar, N., Vinals, M., Liehl, P., Basset, A., Degrouard, J., Spellman, P., Boccard, F., &
933 Lemaitre, B. (2005). *Drosophila* host defense after oral infection by an
934 entomopathogenic *Pseudomonas* species. *Proceedings of the National Academy of*
935 *Sciences of the United States of America*, 102(32), 11414–11419.
936 <https://doi.org/10.1073/pnas.0502240102>

937 Webster, C. L., Waldron, F. M., Robertson, S., Crowson, D., Ferrari, G., Quintana, J. F.,
938 Brouqui, J.-M., Bayne, E. H., Longdon, B., Buck, A. H., Lazzaro, B. P., Akorli, J.,
939 Haddrill, P. R., & Obbard, D. J. (2015). The Discovery, Distribution, and Evolution of
940 Viruses Associated with *Drosophila melanogaster*. *PLOS Biology*, 13(7), e1002210.
941 <https://doi.org/10.1371/journal.pbio.1002210>

942 Wheeler, D. (1996). The role of nourishment in oogenesis. *Annual Review of Entomology*.
943 Vol. 41, 407–431. <https://doi.org/10.1146/annurev.ento.41.1.407>

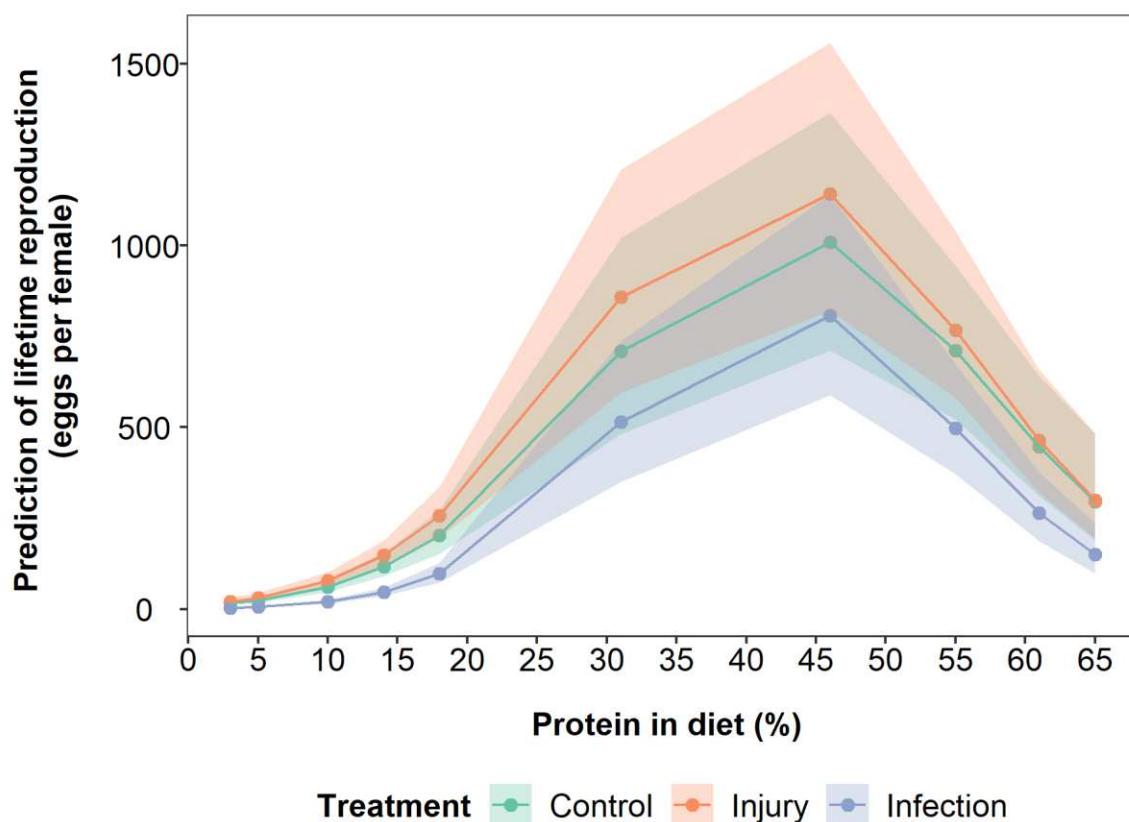
944 Wickham, H. (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New
945 York. <http://ggplot2.org>

946 Wilson, K., Holdbrook, R., Reavey, C. E., Randall, J. L., Tummala, Y., Ponton, F., Simpson,
947 S. J., Smith, J. A., & Cotter, S. C. (2020). Osmolality as a Novel Mechanism Explaining
948 Diet Effects on the Outcome of Infection with a Blood Parasite. *Current Biology*, 1–9.
949 <https://doi.org/10.1016/j.cub.2020.04.058>

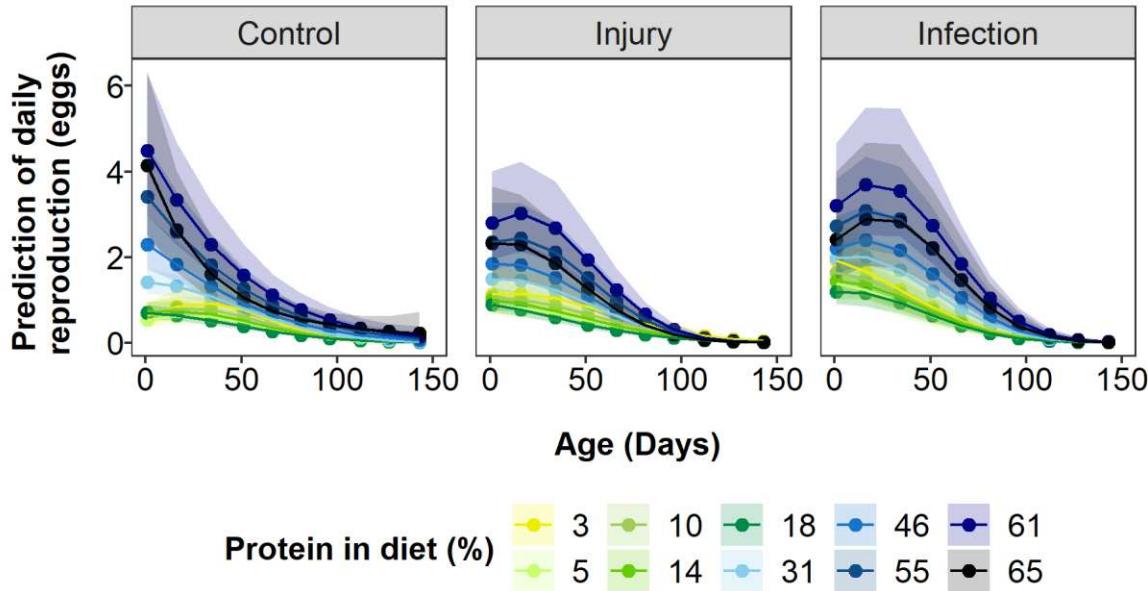

950 Zajitschek, F., Zajitschek, S. R. K., Canton, C., Georgolopoulos, G., Friberg, U., &
951 Maklakov, A. A. (2016). Evolution under dietary restriction increases male reproductive

952 performance without survival cost. *Proceedings of the Royal Society B: Biological*
953 *Sciences*, 283(1825), 20152726. <https://doi.org/10.1098/rspb.2015.2726>

954 Zhang, Y., & Herman, B. (2002). Ageing and apoptosis. *Mechanisms of Ageing and*
955 *Development*, 123(4), 245–260. [https://doi.org/10.1016/S0047-6374\(01\)00349-9](https://doi.org/10.1016/S0047-6374(01)00349-9)


956

957 **FIGURES:**


958

959 **Figure 1:** Effects of protein restriction on survival of flies infected with a bacterial pathogen
960 (“Infection”), injured by a pinprick (“Injury”) or with no treatment (“Control”). Survival is
961 shown as Kaplan-Meier curves for each stress treatment and protein restriction diets (A). For
962 ease of interpretation, a subset of protein restriction diets is shown in (B) to illustrate the effects
963 of protein restriction with low (yellow and green lines), intermediate (light blue lines) and high
964 protein content (dark blue and black lines). Survival was maximized on intermediate protein
965 across all stress treatments, as survival was poor on low (yellow line) and high protein diets
966 (black line). Plus signs (+) indicate censored data points.

967

968 **Figure 2:** Model predictions of the effect of protein restriction on the lifetime egg production
969 of flies infected with a bacterial pathogen (blue data points and lines), injured by a pinprick
970 (orange data points and lines) or with no treatment (green data points and lines). Shaded areas
971 are 95% credible intervals. Protein and protein² are mean centered to standard deviation of 1.

972

973 **Figure 3:** Model predictions of the effect of protein restriction and age on daily egg production
974 of flies infected with a bacterial pathogen (“Infection”), injured by pinprick (“Injury”) or with
975 no treatment (“Control”). Shaded areas are 95% credible intervals. Protein, protein² and
976 lifespan are mean centered to standard deviation of 1.