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Abstract: Tube anemones, or cerianthids, are a phylogenetically informative group of cnidarians
with complex life histories, including a pelagic larval stage and tube-dwelling adult stage, both
known to utilize venom in stinging-cell rich tentacles. Cnidarians are an entirely venomous group
that utilize their proteinaceous-dominated toxins to capture prey and defend against predators, in
addition to several other ecological functions, including intraspecific interactions. At present there
are no studies describing the venom for any species within cerianthids. Given their unique
development, ecology, and distinct phylogenetic-placement within Cnidaria, our objective is to
evaluate the venom-like gene diversity of four species of cerianthids from newly collected
transcriptomic data. We identified 525 venom-like genes between all four species. The venom-gene
profile for each species was dominated by enzymatic protein and peptide families, which is
consistent with previous findings in other cnidarian venoms. However, we found few toxins that
are typical of sea anemones and corals, and furthermore, three of the four species express toxin-like
genes closely related to potent pore-forming toxins in box jellyfish. Our study is the first to provide
a survey of the putative venom composition of cerianthids, and contributes to our general
understanding of the diversity of cnidarian toxins.
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1. Introduction

The phylum Cnidaria (sea anemones, corals, jellyfish, box jellies, hydroids/hydromedusae,
etc.) is the earliest diverging venomous lineage (~ 600 million years) [1,2]. Cnidaria deliver their
proteinaceous-dominant venom through organelles called nematocysts (a type of cnidae), housed in
cells called nematocytes [3,4]. Venom from discharged nematocysts is used in prey capture and
defense against predation, but cnidarians also use venom for a variety of other behaviors, such as
intraspecific competition [5-7] and maternal care [8] (see review by [9]). This ecological diversity is
complemented by the functional diversity of cnidarian venoms, which can include neurotoxic,
cytotoxic, and enzymatic (e.g. phospholipase and metalloprotease) proteins and peptides, in
addition to non-peptidic components [10,11]. For humans, stings from certain species can cause
intense localized pain, scarring, induced anaphylaxis, and in the worst cases, cardiac and
respiratory failure leading to death [12-15]. The venom of medically relevant species, such as the
Portuguese Man-o-War (Physalia physalis) [16-18] and several species of box jellyfish ([19-22],
reviewed in [23]), or easy to collect species, such as sea anemones [24,25], have been explored more
extensively at a biochemical and pharmacological level [26]. However, these species represent a
small fraction of the species diversity within the group, and only recently has the exploration the
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venom composition for a wider number of cnidarians increased in an effort to characterize the
evolution and ecological function of toxins within the group [27].

There is also a growing interest in cnidarian venoms as a potential resource for drug
discovery, particularly the neurotoxin-rich venoms of sea anemones [28-30]. One of the best studied
therapeutic proteins derived from a cnidarian toxin is an analogue of a potassium Kv1.3 channel
blocker isolated from the sun sea anemone (Stichodactyla helianthus) called ShK [31], which
completed Phase 1b trials for autoimmune diseases [32,33]. Because ShK-scaffolds are abundant in
sea anemone venom peptides, characterizing the venoms from sea anemones (and cnidarians in
general) could yield additional candidates for novel therapeutic compounds [30,34,35]. Kunitz-
domain containing serine inhibitors, also found in sea anemone venoms, can also be used as
potential therapeutic resources [25,36]. These cnidarian-derived neuropeptide inhibitors have
potential applications as analgesics, antiepileptics, and other neuroprotective drugs [37].

While there has been a recent increase in transcriptomic and proteotranscriptomic analyses
of cnidarian venoms (e.g. [7,8,22,38-54]), the phylum as a whole, which contains over 13,000 species,
remains highly understudied. Cnidaria is split into three taxonomic groups: Anthozoa (sea
anemones, corals, zoanthids, etc.), Medusozoa (jellyfish, box jellies, hydroids, siphonophores), and
Endocnidozoa (Polypodium + myxozoans) [55,56]. Of the 7,142 animal toxins and venoms listed in
Tox-Prot, a curated animal venom annotation database, only 273 are derived from cnidarians (as of
May 2020, [57]), with that vast majority (>96%) are from anthozoans. Within that limited number
there is even greater taxonomic bias; almost 90% of anthozoan toxins are from the Actinioidea
superfamily of sea anemones [27,30], meaning less than 50 out of 1,100 known sea anemone species
contribute to the database of annotated cnidarian toxins [54]. This taxon bias limits researcher’s
ability to discover novel therapeutic peptides and scaffolds from sea anemones, as well as limits to
search for potential drug candidates in other anthozoan groups such as corals [58] and zoanthids
[47-49].

One major hurdle to identifying the composition and comparative diversity of cnidarian
toxins is their lack of a centralized venom system that can be easily isolated for study. This
packaging of toxins into individual nematocysts scattered throughout the animal, impedes the
ability to isolate crude venoms for downstream analysis, which is further exacerbated in smaller or
rare species of cnidarians. There are several protocols for isolating venom from nematocysts (e.g.
[59-62]), but these methods, as noted above, are typically restricted to larger or easy to obtain
animals (e.g. corals and sea anemones, true jellies such as Chrysaora and Cyanea), species of medical
relevance (e.g. Physalia, box jellies), or those that can be easily maintained in a lab (e.g. Hydra [63],
Nematostella [64]). Next generation sequencing technologies provide a solution to this problem, and
have greatly increased the ability of researchers to screen the diversity of putative venom-like genes
for neglected or poorly studied venomous species, including cnidarians [65].
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Figure 1. Ceriantharia species used in the current study. A) Pachycerianthus cf. maua; B) Isarachnanthus
nocturnus; C) Ceriantheomorphe brasiliensis and D) Pachycerianthus borealis. Photos by Fisheries and
Oceans Canada (Claude Nozeres)).

One group of anthozoans whose venoms have yet to be explored are members of the
subclass Ceriantharia, known as cerianthids (Phylum Cnidaria: Class Anthozoa) (Figure 1).
Cerianthids are tube-dwelling anemones, so named because of their ability to create complex tubing
from a specialized group of cnidae called ptychocysts [66]. Their phylogenetic placement within
Cnidaria remains contentious, due to a combination of a lack of available sequence data and low
species sampling [5,67,68]. Various studies place them as sister group to Hexacorallia, sister group
to Octocorallia [69], or sister group to Hexacorallia + Octocorallia [70,71]. Although cerianthids are
clearly members of Anthozoa, they have several features that are more similar to Medusozoa. For
instance, cerianthids possess linear mitochondrial genomes, as in medusozoans, while all other
anthozoans have circular mitochondrial genomes [71-73]. Also, unlike other anthozoans,
cerianthids display a long-lived pelagic larval stage that superficially resembles a medusa [74]. It is
unclear how this unique life history or their early diverging phylogenetic relationship to either, or
both, of the major groups of anthozoans may be reflected in the venom composition of this group
relative to other anthozoan venoms (or cnidarians more generally).

The aim of this project is to explore newly sequenced transcriptomes for four adult
cerianthid species (Ceriantheomorphe brasiliensis, Isarachnanthus nocturnus, Pachycerianthus borealis,
and Pachycerianthus cf. maua) and determine putative venom-like gene candidates across each using
a customized annotation pipeline. This study is the first formal analysis of venom composition
within this subclass Ceriantharia, and a targeted comparison of the venom gene profiles between
cerianthids and other cnidarian species.

2. Results
2.1. Results for sequencing and de-novo transcriptome assembly of four cerianthids species

The number of paired end reads generated by Illumina HiSeq runranged from 27,865,720 to
36,520,791 across all taxa. The Trinity [75] assembly ranged from 92,757 to 158,663 unique

3


https://doi.org/10.1101/2020.06.18.159541
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.18.159541; this version posted June 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

111
112

113

114

115
116
117
118
119
120
121
122
123

124

125
126
127
128
129
130
131
132
133
134

135
136
137
138
139
140
141
142

made available under aCC-BY-NC-ND 4.0 International license.

assembled transcripts with an N50 range from 1101 - 1282. Overall completeness evaluated in
BUSCO ranged from 88.1% to 97.9% complete (Table 1).

Table 1. Sequencing and assembly parameters for various cerianthid transcriptomes.

Species Reads (PE) Transcripts Genes N50 BUSCO %
C. brasiliensis 34,877,883 131,550 110,524 1,276 95.4%
I. nocturnus 31,028,274 92,757 78,821 1170 89.2%
P. borealis 36,520,791 158,633 120,542 1,282 97.9%
P. maua. 27,865,720 179,576 145,788 1101 88.1%

2.2. Diversity and phylogenetic analysis of putative venom-like gene profiles for cerianthids species

Using the de-novo assemblies, we identified a diverse set of venom-like putative protein
coding transcripts and peptides across the four cerianthids: 169, 69, 182, and 105 for C. brasiliensis, L.
nocturnus, P. borealis, and P. maua, respectively. All toxins were categorized into families/scaffolds
based on their highest Tox-Prot (i.e. UniProtKB/Swiss-Prot) BLAST hit [57], and categorized by
biological function: neurotoxin, hemostatic and hemorrhagic toxins, membrane-active toxins, mixed
function enzymes, protease inhibitors, allergen and innate immunity, and venom auxiliary proteins
(modified from [49]). A summary of annotated contigs for each species is shown in Figure 2, Table
2. Below we provide short descriptions of select toxin groups and families represented by the
identified toxins.

2.1.1. Neurotoxins

ShK-domain containing proteins and peptides are some of the most diverse toxins within
the transcriptomes of the four species, which includes 15 cysteine-rich venom proteins, 27 ShK-
domain containing toxins as identified from Pfam [76,77] (Supplemental Figures S1, S2), and a
single sea anemone type 1 potassium channel toxin in P. maua. Interestingly, a single transcript in P.
borealis that contains an ShK-domain had the closest match to propeptide 332-1 toxin from Malo
kingi, a box jellyfish with a potent sting known to cause Irukandji syndrome [78]. Though the
functions are highly variable and depend on the combination of present domains [30,79], ShK-
domain toxins can cause paralysis due to potassium channel inhibition as well as induce hemolytic
effects [80,81]. As noted above, these ShK toxins may also confer structural and/or functional
properties of interest for pharmacological research.

Turripeptides are ion channel blockers described from turrid gastropods, relatives of cone
snails, but they have also been predicted or isolated from three species of zoanthid [47-49], a box
jellyfish [22], a true jellyfish [82], and a stalked jellyfish [83], as well as bloodworms and marine
annelids [81]. These toxin peptides contain a kazal domain with a conserved cysteine framework
(C-C-C-C-C-C), and modulate ion channels, resulting in paralysis [84,85]. Four transcripts from
cerianthids were shown to have similar cysteine patterns architecture, but have longer predicted
protein sequences than the typical turripeptide sequences of <100 amino acids and four additional
conserved cysteines upstream from the kazal domain (Figure 3).
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161 Figure 3. Multiple sequence alignment of candidate turripeptide-like sequences for cerianthid toxins
162 and representatives from cone snails created using L-INS-I algorithm via MAFFT [153], viewed using
163 Jalview [155] with Clustal color scheme. Kazal domain (in black box) and conserved cysteine
164 patterning shown (bridging) are highlighted. The yellow box indicates the predicted signal peptide
165 sequences as indicated by Signalp [147]. The stars and corresponding smaller black boxes indicate the
166 four cysteine residues that are present in the cerianthid sequences preceding the kazal domain.

167 Three sequences, one each from C. brasiliensis, 1. nocturnus, and P. maua, closely matched to three-
168  finger toxins (TFTs), snake-derived toxins that display a wide diversity of functions such as

169  neurotoxicity, acetylcholinesterase inhibitors, cytotoxins (cardiotoxins), platelet aggregation

170  inhibitors, coagulation factor inhibitors, heparin binders, and K+ channel, and integral-receptor
171  ligands [86]. A recent proteomic study found that the orange cup coral Tubastrea coccinea contains a
172 putative TFT toxin [83], in addition to a predicted TFT in P. varibilis [47]. The TFT toxins in

173 cerianthids and P. varibilis cluster as sister to bucandin, a TFT isolated from Malayan krait

174 (Bungarus candidus) [87]. However, the bootstrap support throughout the phylogeny is generally
175  low (<70%) (Supplemental Figures S4).

176  2.2.2. Hemostatic and hemorrhagic toxins

177 Hemostatic and hemorrhagic toxins are the most diverse type of toxins in all four

178  cerianthid species (Figure 2). They generally interfere with hemostasis through various pathways,
179  either individually or synergistically with other toxins. This group includes a variety of C-type

180  lectin-containing toxins (C-type lectin lectoxin, galactose specific lectin, and snake c-type lectin

181 (snaclec)), and are associated with blood coagulation, inflammation, myotoxicity, and homeostasis
182  interference [87,88]. They have been reported in a variety of animal venoms, including, crustaceans,
183 blood feeding insects, caterpillars, leeches, bloodworms, snakes, and stonefish [88], as well as

184 cnidarian species [38,43,44,47,49]. We found 34 total toxins between the four species that match to a
185  C-type lectin domain.

186 One of the most numerous groups of venom-like genes within this class are putative

187  veficolin-like toxins (total 30), which are, comparatively, highly abundant in P. borealis (9 sequences)
188 and C. brasiliensis (14 sequences). This toxin was described from the Komodo dragon (Varanus

189  komodoensis), and is suggested to interfere with blood coagulation and/or platelet aggregation based
190  on the similarity to ryncolin toxins [90]. Ryncolin toxins are represented in all cerianthid assemblies
191  inrelatively high abundance with 25 total sequences, originally described from the dog-faced water
192 snake (Cerberus rynchops). Six sequences from the transcriptome of the zoanthid Palythoa caribaeorum
193 (categorized in our study under allergen and innate immunity) [48] and three peptides from the
194 proteome of the scyphozoan Nemopilema nomurai (as Stomolophus meleagris) [38] also belong in this
195  group, suggesting ryncolin-like toxins may play be present across cnidarians.

196 We also found numerous venom prothrombin activators in two different groups: Factor 5/8
197  C-domain and trypsin domain. These types of toxins are well known from snake venoms, and cause
198  hemostatic impairment by proteolytic cleavage of prothrombin to thrombin [91]. Putative

6
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199  transcripts have been found in relatively high abundance in the mat anemone Zoanthus natalensis
200 [49] as well as in the transcriptomes of P. caribacorum [48] and sea anemone Anthopleura dowii [53].
201  They have also been found in a transcriptomic analysis of the sea anemone Stichodactyla haddoni
202  venom, but no peptides were detected using mass spectrometry [46], suggesting that additional
203  proteomic experiments will be needed to confirm the presence of these prothrombin activators (and
204  other toxin groups) in cerianthid venoms.
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100
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100 Chironex fleckeri [Toxin A] (rT1PRE3)
%6 ;oo Chironex fleceri [TX-like] (I'WOK4S7)
I Chironex fleceri [Toxin B] (trT1PQV6)
i ——— Aurelia aurita [Toxin TX1] (trI3VAS1)

100 Aurelia aurita [Toxin TX2] (trl3VAS2)
_E Chrysaora fuscescens [Clus-TX1] (trADA165TKZ8))
Bacillus thuringiensis subsp. kurstaki [Cry2Aa) (spPOA377)
_|53— Bacillus thuringiensis subsp. kurstaki [Cry1Aa] (spP0A366)

100

Bacillus thuringiensis subsp. israelensis [Cry4Aa] (spP16480)

205 as

206 Figure 4. Phylogenetic tree of jellyfish toxin (or CaTX/CrTX) sequences. Phylogeny was constructed
207 using RAXML with the PROTGAMMAWAG option [154]. Bootstrap support based on 500 rapid
208 bootstrap replicates, and all support values are shown. Putative genes outlined in purple are from
209 cerianthids sequences. Sequences in gray are bacterial pore-forming toxins that have closest structural
210 homology to this toxin family [14], used to root the tree.

211 2.2.3. Membrane-active toxins, protease inhibitors

212 Jellyfish toxins (or CaTX/CrTX) are one of the most potent toxin families from cnidarians,
213 initially isolated from several species of box jellyfish possessing stings that are dangerous to

214 humans [20]. Two members within this family, CfTX-1 and CfTX-2 from the Australian box jellyfish
215 (Chironex fleckeri), are highly cardiotoxic, and their stings are associated with cardiac failure [41].
216 Four sequence from cerianthids, two from P. borealis and one each from C. brasiliensis and P. maua,
217  appear to belong in this family based on strong phylogenetic evidence, although the transcript from
218  P.maua clustered with toxins from the hydroid Hydra vulgaris [92], which have yet to be

219  functionally analyzed (Figure 4).

220 Originally derived from sea anemones, actinoporins are conserved 20kDa pore-forming
221  toxins that exhibit cytolytic and hemolytic effects [93]. Actinoporin-like sequences have also been
222 isolated from both molluscs [94] and chordates [95], and shown to be toxic to a wide variety of

223  vertebrate and invertebrate species [96,97]. Two actinoporin sequences similar to DELTA-

224  thalatoxin-Avl2a were found in P. borealis and P. maua, though both were phylogenetically closer to
225  actinoporin-like sequences found in venomous gastropods and a putative actinoporin from P.

226  wvaribilis [47) (Figure 5).
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77

43

86

70

227 -

228 Figure 5. Phylogenetic tree of actinoporin and actinoporin-like sequences. Phylogeny was
229 constructed using RAXML with the PROTGAMMAWAG option [154]. Bootstrap support based on
230 500 rapid bootstrap replicates, and all support values are shown. Putative genes outlined in purple
231 are from cerianthids sequences. Sequences in gray are non-venomous representatives, and other
232 colors outlined in the key are venom-like genes from other animal classes. Phylogeny modified from
233 von [81]. Tree is rooted with actinoporin-like sequence from a moss (Physcomitrella patens subsp.
234 patens).

235 SNTX-like transcripts include stonutoxin and neoverrucotoxin, non-enzymatic proteins

236  found in a diversity of scorpaeniform fish and monotremes mammals [98,99]. In fish, these toxins
237 cause lethal hemolysis and disrupt circulatory and neuromuscular systems [100,101]. P. borealis, C.
238  brasiliensis, and P. maua express 9 SNTX-like transcripts, all of which phylogenetically cluster

239  together in a group with two SNTX-like genes from non-venomous fish that is sister to a clade of
240  SNTX genes from highly toxic stonefish (Figure 6).
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Figure 6. Phylogenetic tree of SNTX-like family sequences. Phylogeny was constructed using RAxML
with the PROTGAMMAWAG option [154]. Bootstrap support based on 500 rapid bootstrap
replicates, and all support values are shown. Putative genes outlined in purple are from cerianthids
sequences. Sequences in gray and starred are non-venomous representatives, and other colors are
from other animal classes. Phylogeny modified from [81]. Tree is rooted with sequences from green
sea turtle (Chelonia mydas).

Waprins are membrane-active toxins derived from snakes that act as antimicrobial proteins,
which are used by venomous animals as a defense against microbial infections of their venom
glands [102,103]. One sequence of a waprin-like toxin from P. borealis and two from P. maua were
identified in the cerianthids.

2.2.4. Mixed function enzymes

Phospholipases hydrolyze phospholipids to fatty acids and lysophospholipids, which in
venoms induced hemolysis [104,105], as well as tissue necrosis, inflammation, blood coagulation
inhibition, and neuromuscular transmission blockage [88,105]. These lipases are found in many
animal venoms, including cephalopods, insects, spiders, scorpions, and reptiles [88]. Phospholipase
A2 (PLA2) is a common and often abundant enzyme in cnidarians venom that aids in prey capture
and digestion, and appears to have antimicrobial activity [106]. PLA2 are the most diverse of the
enzymatic toxins detected in cerianthids, with 18 total sequences. Of these, 16 phylogenetically
form a cluster that includes a putative PLA2 from P. variabilis [47] and conodipine-M alpha chain
toxin, which was derived from the Magician’s cone snail (Conus magus) and inhibits the binding of
isradipine to L-type calcium channels [107] (Figure 7). The other two genes from C. brasiliensis and I.
nocturnus cluster with a PLA2 from the broadclub cuttlefish (Sepia latimanus). We additionally
found three phospholipase-B toxins within P. borealis, C. brasiliensis, and I. nocturnus and five
phospholipase-D toxins, four in C. brasiliensis and a single transcript in P. borealis. Phospholipase-D
in particular is thought to contribute to the dermonecrotic effects of brown spider venoms [108].
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268 Figure 7. Phylogenetic tree of phospholipase A2 family sequences. Phylogeny was constructed using
269 RAXML with the PROTGAMMAWAG option [154]. Bootstrap support based on 500 rapid bootstrap
270 replicates, and all support values are shown. Putative genes outlined in purple are from cerianthids
271 sequences. Sequences in gray and starred are non-venomous representatives, and other colors are
272 from other animal classes. Phylogeny modified from [81].

273  2.2.5. Protease inhibitors

274 Kunitz-domain peptides both block ion channels and inhibit proteases, which can cause
275  blood coagulation, fibrinolysis, and inflammation [109]. In sea anemones, kunitz-containing

276  peptides are typically classified as type II potassium channel toxins, which cause paralysis by

277  blocking potassium channels [25]. All four species have at least one kunitz-type serine protease
278  inhibitor (total 11 across all four species), and P. maua specifically has a transcript that matches the
279  sea anemone specific kunitz-containing toxin U-actitoxin-Avd3m, which, based on sequence

280  similarity to other known toxins, may display hemolytic activity as well as potassium channel
281  inhibition.

282 Three cerianthids, P. borealis, C. brasiliensis, and P. maua each contain a single transcript that
283  corresponds to a ctenitoxin. Ctenotoxins are thyroglobulin type-1 protease inhibitors originally

284  derived from the Brazilian spider (Phoneutria nigriventer), which inhibits cysteine proteases, aspartic
285  proteases and metalloproteases [110].

286  2.2.6. Allergen and innate immunity

287 Several components from cnidarian stings have been known to cause immunological
288  responses [14,111]. One common domain of these toxins is the CAP domain, which includes
289  cysteine-rich secretory proteins (CRISPs), antigen 5 (Ag5), and pathogenesis-related 1 (Pr-1)

10
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proteins [112]. These are found in many venomous taxa such as cephalopods, bloodworms,
fireworms, scorpions, spiders, and reptiles [81,88,113], and are commonly found in cnidarians
[22,43]. Function appears to vary by taxonomic group; in snakes, CAP proteins act as ion channel
blockers and inhibit smooth muscle contraction [114], in cone snails as proteolytic compounds [115],
and in hymenopterans as allergens [116]. The majority of CAP-domain cerianthid transcripts belong
to a group called venom allergen proteins (total 31), though this is mainly driven by the number of
genes present in P. borealis (12 sequences) and C. brasiliensis (14 sequences). Both species also have
an additional CAP-domain (CRISP/Allergen/Pr-1) toxin. Multiple venom allergen proteins were
also reported in the venom of the Pacific sea nettle (Chrysaora fuscescens) [43].

2.2.7. Venom auxiliary proteins

Venom auxiliary proteins are secreted in the venom gland to facilitate proper processing
and stabilization. They can also work synergistically with other venom components to facilitate the
spread of toxins after envenomation. One example is venom protein 302, originally derived from
the scorpion Lychas mucronatus [117]. Each cerianthid has a putative single venom protein 302
match, two in the case of C. brasiliensis, but (weak) phylogenetic signals suggests that the
cerianthids proteins are more closely related to an insulin-like growth factor-binding (IGLFP)
protein from hexacorallian S. pistillata [118] (Supplementary Figure S9). Two venom protein 302
proteins were also identified in P. variabilis [47], and these zoanthid toxins formed a clade that is a
sister group to non-venomous IGLFP-domain containing proteins in our study (Supplementary
Figure S9). Venom 302-like peptides have been identified in Z. natalensis [49] and the proteomes of
N. nomurai [38] and the cubozoan C. fleckeri [22]

Auxiliary proteins can also include various proteases that may facilitate diffusion of
neurotoxins by breaking down the extracellular matrix in prey, and display cytolytic, gelatinolytic,
caseinolytic, and fibrinolytic functions in cnidarians [119]. The most diverse auxiliary proteins in
the four cerianthid transcriptomes match to astacin-like metalloproteases (M12A) with a total of 52
sequences between the four cerianthids. This includes transcripts with a close match to nematocyst
expressed protein 6 (NEP-6), an astacin family metalloprotease previously reported from the starlet
sea anemone Nematostella vectensis [120].

Additional metalloproteases, including neprilysin-like toxins (peptidase_M13_N domain),
also found in the venom of Cyanea capillata [41], and glutaminyl-peptide cyclotransferases
(peptidase_M28 domain) were also expressed within each species. Metalloprotease M12B
containing domain proteases (zinc metalloproteinase-disintegrin and coagulation factor X-
activating enzyme heavy chain) are also found in all four cerianthid species (13 total), but are
categorized as hemostatic and hemorrhagic toxins (Section 2.2.2.), since, in snake venomes, these
toxins disrupt capillary activity [120]. M12B metalloproteases have also been found in the venoms
of N. nomurai [38] and the hydrozoan Olindias sambaquiensis [122].

11
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Table 2. Toxin families identified for each cerianthid species.

Toxin Family ID Pfam Domain Cebr Isn Pasb Pasm
Neurotoxin (%) 7.1 174 110 133
332-1 propeptide toxin ShK 0 0 1 0
Cysteine-rich venom protein CAP 2 1 10 2
ShK-domain ShK 6 10 3 8
Three-finger toxin / 1 1 0 1
Turripeptide Kazal 1 3 0 5 2
U-actitoxin-Avd9a ShK 0 0 0 1
U33-theraphotoxin-Cglb / 0 0 1 0
Hemostatic and hemorrhagic toxin (%) 373 304 412 333
Beta-fibrinogenase mucrofibrase-3 Trysin 0 0 0 1
Blarina Toxin Trysin 3 0 1 0
C-type lectin lectoxin Lectin_C 6 2 3 1
Coagualtion factor X Trypin 1 2 2 0
Coagulation factor V F5_F8_type_C 2 1 6 3
Coagulation factor X-activating enzyme Pep_MI12B_propep/Reprolysin 1 0 1 0
heavy chain
Galactose-specific lectin Lectin_C 4 0 9 3
Ryncolin Fibrinogen_C 8 3 8 6
Snaclec Lectin_C 2 1 3 0
Snake venom 5'-nucleotidase 5 nucleotid_C 1 0 1 0
Snake venom serine proteinase Trypsin 0 0 0 1
Snake venom VEGF PDGF 0 1 1 0
Thrombin-like enzyme Trypsin 1 0 3 0
Thyrostimulin DAN 1 0 0 0
Veficolin-1 Collagen 14 2 9 5
Venom peptide isomerase heavy chain Trypsin 2 0 1 0
Venom prothrombin activator (F5/F8 type C) F5_F8_type_C 6 3 15 4
Venom prothrombin activator (Trypsin) Trypsin 9 5 8 7
Zinc metalloproteinase-disintegrin Pep_M12B_propep/Reprolysin 2 1 4 4
Membrane-active (%) 3.6 0 4.4 5.7
DELTA-thalatoxin-Avl2a MAPF 0 0 1 1
Jellyfish Toxin / 1 0 2 1
Millepora cytotoxin DERM 0 0 2 0
Stonutoxin/Neoverrucotoxin / 5 0 2 2
Waprin WAP 0 0 1 2
Mixed function enzyme (%) 207 217 126 162
Acetylcholinesterase COesterase 5 2 3 3
Gilatoxin Trypsin 0 1 0 0
L-amino-acid oxidase Amino_oxidase 6 1 4 3
Peroxiredoxin AhpC-TSA 0 0 1 1
Phospholipase-A2/Conodpine Phospholip_A2 5 6 2 5
Phospholipase-B Phospholip_B 1 1 1 0
Phospholipase-D / 4 0 1 0
Putative endothelial lipase Lipase 5 1 3 2
Putative lysosomal acid lipase/cholesteryl Abhydro_lipase/Abhydrolase_1 4 3 3 3
ester hydrolase
Trehalase Trehalase 0 0 1 0
Venom phosphodiesterase Phosphodiest 5 0 4 0
Protease inhibitor (%) 2.4 4.3 2.7 2.9
Kunitz-type serine protease inhibitor Knuitz_BPTI 3 3 4 1
U-actitoxin-Avd3m Knuitz_BPTI 0 0 0 1
U24-ctenitoxin-Pnla Thyroglobin_1 1 0 1 1
Allergen and innate immunity (%) 12.7 2.2 13.2 5.4
CRISP/Allergen/PR-1 CAP 1 0 1 0
Venom allergen CAP 14 2 12 3
Venom phosphatase His Phos 2 1 1 1 0
Venom protease Trysin 1 0 3 3
Venom serine carboxypeptidase Peptidase_S10 0 0 1 0
Venom serine protease Trysin 6 1 6 3
Techylectin-like Fibrinogen_C 1 0 0 1
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Auxiliary protein (%) 148 202 148 19.0
Astacin-like metalloprotease toxin Astacin 6 5 8 9
Cystatin Cystatin 0 0 0 1
Glutaminyl-peptide cyclotransferase Peptidase_M28 1 1 1 1
Hyaluronidase Glyco_hydro_56 4 0 0 0
Nematocyst expressed protein Astacin 6 3 11 6
Neprilysin Peptidase_M13_N 1 1 3 0
Reticulocalbin EF-hand_7 5 3 3 2
Venom protein 302 IGFBP 2 1 1 1
TOTAL 169 69 182 105
Unknown 25 5 24 11

3. Discussion

In this study we assembled de-novo transcriptomes of four members of Ceriantharia: C.
brasiliensis, I. nocturnus, P. borealis, and P. maua, with BUSCO scores between 88.1-97.9%
completeness (Table 1). From these transcriptomes, we identified a total of 525 venom-like genes
between all four species using our customized bioinformatic pipeline, which are sorted into 135
clusters (124 orthologous clusters and 12 single-copy gene clusters) (Supplementary Figure S11).
The venom-like gene profiles of the four cerianthids are similar in composition and generalized
biological function, though the annotated number of toxin-like genes within each species is highly
variable (69-182). Our four cerianthid toxin profiles are similar to previous transcriptome-based
venom profiles for cnidarians, including the prevalence of ShK-domain containing toxins (e.g.
[22,38,46,54]). While each species has a diversity of toxins within each of the seven functional
categories, all toxin profiles were dominated by hemostatic and hemorrhagic toxins (30.4%-40.3%),
mixed function enzymes (12.4-21.7%) and auxiliary venom proteins/peptides (14.5%-20.3%)
followed by neurotoxins (7.2-17.4%), allergen and innate immunity toxins (2.2-12.9%), protease
inhibitors (2.4-4.3%), and membrane-active toxins (0-5.7%). It should be noted that many of these
toxins may have alternative or additional molecular functions, and the presented categorization
only represents broad patterns based on previous studies on animal venoms. There was also a
significant proportion of “unknown” toxins from each species within each transcriptome assembly
(Table 2, Figure 2). Given that this is the first survey of putative toxins in this subclass within an
already understudied group, it is unclear if these unknowns are potential novel venom-like
transcripts or potential artifacts of assembly and annotation.

Some of the most common families we identified are common in anthozoan venoms,
including PLA2, metalloproteases, serine proteases, and kunitz-domain protease inhibitors
[11,43,51]. Several of the less common venom-gene families identified in cerianthids have also been
identified in the transcriptomes of colonial zoanthids [47-49], another understudied group of
anthozoans, including turripeptides, three-finger toxins, and venom protein 302 toxins (Figure 4;
Supplementary Figure 54,59), as well as snake venom VEGF toxins. However, the phylogenetic
evidence for the majority of these candidate toxins is weak due to clustering with non-venomous
taxa and/or low bootstrap scores. As mentioned above, several of these toxin groups have been
identified in other cnidarian groups, including turripeptides [22,82,83] and venom protein 302
[22,38]. It is unclear if the similarities of these less common toxin families between zoanthid and
cerianthid toxins are due to shared biology/evolutionary history or an artifact of the relatively
limited dataset for cnidarians.

While membrane-active or pore-forming toxins are common in most cnidarian venoms
[123], we had not expected to capture putative toxins in the jellyfish toxin family (also called
CaTX/CrTX toxin family) in three of the four cerianthids species, given that these toxins are
primarily found in medically relevant cubozoan venoms (Figure 6). In an ecological context, these
highly potent toxins likely allow box jellyfish to capture fish [124,125]; while the diet of cerianthids
remains fairly ambiguous, it is unlikely they capture fish as prey. Toxins from this family have
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previously been identified in other anthozoan species through genomic and transcriptomic studies
[40,51,126], but to the best of our knowledge, these toxins have never been detected through
proteomic methods in anthozoans [40]. Given that these toxins are present in multiple cerianthids
(including two paralogs within P. borealis), these toxins are good candidates for proteomic analysis
and potentially functional characterization.

Because cerianthids group within the class Anthozoa, it is interesting that several toxins
groups commonly reported in anthozoans were absent from all four cerianthid species. For
example, we expected to find a diverse set of low molecular weight neurotoxins, such as sea
anemone sodium (Na+) channel toxins, potassium (K+) channel toxins, small cysteine-rich peptides
(SCRiPs), sodium-selection acid-sensing ion channel (ASICs) inhibitors, and nonselective cation
channel (TRPV1) inhibitors [11,25,30,127]. However, the four cerianthids transcriptomes contained
relatively low numbers of neurotoxins in general, and only a single transcript from P. maua closely
matched a sea anemone type I K+ channel toxin (Table 1). Additionally, actinoporin-like sequences
are often found in sea anemones and other organisms [93,123], but only two actinoporin-like
sequences were found in P. borealis and P. maua, despite often being found in sea anemones. We
also found no evidence of small cysteine-rich peptides (SCRiPS), neurotoxins with eight conserved
cysteine residues that cause paralysis in zebrafish (Danio rerio) [128], which were initially reported
in the corals Orbicella faveolata (as Montastraea faveolata), Montipora capitata, and Acropora millepora
[129]. The vast majority of candidate toxins containing ShK domains did not have a close match to
any toxin in the Tox-Prot database, but in 22 sequences we could confidently determine the six
cysteine residue patterns characteristic of ShK domains (Supplementary Figure S3). The exponential
increase in ShK domain peptides found in anthozoans prompted a recent sequence-function study
of the superfamily [130], and cerianthid ShK-domain toxins may represent additional structural
scaffolds with novel function for further study.

In general, our findings contrast with the previously observed pattern that anthozoan
venoms are typically neurotoxin-rich while medusozoan venoms are dominantly enzymatic. The
venoms of anthozoans and medusozoans have been broadly reported to be distinct, with
hydrozoans, scyphozoan, and cubozoan venoms being dominated by larger cytolytic proteins and
anthozoans by low molecular weight neuropeptides [26,40,83]. However, this pattern is based on
highly biased taxonomic data, as mentioned above [27]. Even though a greater diversity of
enzymatic-like genes is present within the four cerianthid transcriptomes, it is possible the level of
protein expression could shift towards a smaller subset of toxins dominating the venom
composition, and therefore overall venom function. For example, it has been shown in S. haddoni
that even when more enzymatic toxin-like sequences are present in the transcriptome, the
expression of neurotoxins is greater overall in milked venom (i.e. the proteomic level) [46]. Thus,
future quantitative gene expression and proteomic studies are needed to provide a more holistic
understanding of both single toxin and whole venom function in these species.

Because the phylogenetic placement of Subclass Ceriantharia remains unclear, it is difficult
to interpret the evolutionary context of their venom profile within Anthozoa. For instance, if
Ceriantharia is sister to the Hexacorallia, that suggests that the expansion of neuropeptide toxins
occurred after the divergence of Ceriantharia, possibly through extensive gene duplications
[52,126,131]. Neurotoxins in sea anemones are important because they are sessile animals, and may
be critical to deterring predators [132]. Because cerianthids can fully contract into their tubes, they
have a distinct means of protecting themselves from predators in contrast to sea anemones which
cannot fully retract their bodies, which may ease the selective pressure to diversify or maintain
defensive toxins. If Ceriantharia is instead sister to Hexacorallia + Octcorallia, families such as the
jellyfish toxins may have been present in the last common ancestor and subsequently lost in the
other anthozoan lineages. Additionally, as noted above, cerianthids often have a long-lasting
pelagic larval stage. There is a general consensus that the composition and function of toxins
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reflects the ecological utility of that venom [133], thus, the increased time in the pelagic
environment in the larval stage likely exposes cerianthids to different sets of potential predators
and prey, resulting in different selection pressures driving venom composition and function. We
can only speculate on the role of these various venom components and overall venom function in
the ecological interactions of these animals until additional molecular studies are completed
[27,134].

One interesting outcome is the difference in the number of venom-like putative protein
coding transcripts found in I. nocturnus compared to the other three species (69 compared to 169,
182, 105). As this species is the only representative of the family Arachnactidae, this may be
evidence of evolutionary difference compared to the family Cerianthidae, which is corroborated by
morphology and traditionally accepted [73]. At the ecological level, the species I. nocturnus, as its
name indicates, is nocturnal and thus increases its activity at night. This may indicate different
needs in relation to predation and prey capture compared to species active during the day. For
instance, species of the family Arachnactidae show considerable concentrations of green fluorescent
protein [135], which can be an important mechanism of prey capture at night [136]. This may relax
the selective pressures, or potentially the available metabolic energy, to sustain a large, complex
toxin arsenal, and therefore result in the lower number of venom-like genes identified in our study.

While our findings suggest several interesting patterns about presence and absence of
certain cerianthid venom components, there are some limitations to exploring the venom profiles of
understudied species. Previous studies have shown that cnidarian transcriptomes often yield a
larger diversity of putative toxin sequences than a combined transcriptome-proteome approach
(e.g. [46,53,54,126]). This difference may be reflective of the state of the animal when collected;
animals that have recently fired their stinging cells will likely express more venom-like genes as
venom is being synthesized for developing nematocysts [46]. Consequently, animals that have not
discharged their stinging cells recently may have a lower than expected expression of toxin-like
sequences. There are also often issues using de-novo assemblies for venom gene discovery,
including high false discovery rate or inability to annotate novel venom genes [137,138]. For
instance, even though no membrane-active toxins were detected in I. nocturnus, it is unlikely that
there are truly no toxins with this function, especially given their ubiquity in cnidarians [139]. Our
study also focused on candidate transcripts that contained full ORFs (stop and start codon), which
likely decreased the diversity of toxin-like gene candidates. The set of venom-like genes we present
here are viewed as an initial step into exploring the diversity of the toxin peptides and proteins
within a poorly studied cnidarian group.

We present the first sequence-based analysis of venom-like genes within the Subclass
Ceriantharia. The four species of cerianthids expressed over 500 novel toxin-like genes that are
functionally and structurally diverse. While the overall functional profiles are similar to other
transcriptomic studies of cnidarians, many common anthozoan toxin families are not present in our
study. This could have notable implications both for the evolution of venom genes with Anthozoan
as well as ecological utility of candidate toxins within this specific anthozoan lineage. Furthermore,
the addition set of ShK-domain, as well as kunitz-domain containing toxins, shows that cerinathid
toxins provide potential candidates for therapeutic study. We hope that these new data will be
utilized to further explore the diversity and function of these venom proteins and peptides.

4. Materials and Methods

4.1. Tissue collection, RNA extraction, next-gen sequencing, and transcriptome assembly
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Four species were used in the current study. The species C. brasiliensis and I. nocturnus were
obtained in Sao Sebastido, Sao Paulo, Brazil while SCUBA Diving. The P. borealis specimen was
purchased through Gulf Of Maine inc. (Pembroke, ME). The P. cf. maua specimen was purchased
from an aquarium supplier and currently on exhibit at Discovery Place Science (Charlotte, NC). For
each species, several (10+) tentacles were collected from each organism after acclimating them to
aquariums for 48 hours or longer. Tissues were flash frozen in liquid nitrogen or stored in RNA
later in -80°C. Total RNA was extracted using the RN Aqueous Total RNA Isolation Kit from
Thermo Fisher Scientific (Massachusetts, USA). RNA was assessed using a NanoDrop 2000
spectrophotometer (Thermo Fisher). High throughput Sequencing was done on an Illumina HiSeq
at the DHMRI (Kannapolis, NC). Total RNA was quantitated using the Quant-iT RiboGreen RNA
Assay Kit (Thermo Fisher) and RNA integrity assessed using the Agilent Bioanalyzer. RNA
sequencing libraries were generated using the Illumina TruSeq RNA Library Prep RNA Kit
following the manufacturer’s protocol and quantitated using qPCR and fragments visualized using
an Agilent Bioanalyzer. Libraries were combined in equimolar amounts onto one flow cell for a 125
bp paired end sequencing run on the Illumina HiSeq2500. Overall quality of the sequencing run
evaluated using FastQC [140]. Transcriptome assembly was done using the de novo assembly
program Trinity v2.2 [74]. Transcriptome completeness was determined using the program BUSCO
v3 [141].

4.2. Bioinformatic analysis and venom annotation

For the custom annotation pipeline, protein-coding regions were predicted from assembled
transcriptomes using TransDecoder v5.5.0, minimum set to 50 (https://transdecoder.github.io) [142].
Using blastp from NCBI BLAST+ v.2.8.1 [143,144] with an e-value cutoff of 0.001, all transcripts
were searched against 1) proteins and toxins from the Tox-prot animal venom annotation database

([57], downloaded March 2019), and 2) all cnidarian toxins and proteins from the Protein database
on NCBI (“Cnidaria AND ((Toxin) OR (Venom)),” downloaded March 2019). Additionally,
predicated protein-coding regions were searched using hmmsearch with an e-value cutoff of 0.001
from HMMER 3.1b2 [145,146] against hidden markov model (HMM) profiles from alignments of 20
venom protein classes. HMM were modified from those used in a transcriptomic study on the
venom of bloodworms [81] by supplementing several cnidarian specific toxins within respective
venom protein families. Additionally, four cnidarian-specific pore-forming venom families were
added based on annotations from VenomZone (venomzone.expasy.org, accessed March 2018):
Actinoporin sea anemone subfamily, jellyfish toxin family, cnidaria small cysteine-rich protein
(SCRiP) family and MACPF-domain toxins. The results from all three searches were combined and
all complete coding sequences used for downstream analysis. Venoms are secreted proteins and
peptides, thus signal peptides were predicted using the SignalP v5.0 server
(https://services.healthtech.dtu.dk/service.php?SignalP-5.0) [147]. Redundant sequences were
clustered using CD-HIT v.4.6.8 with a cutoff of 0.95 [148,149]. A reciprocal search using blastp was
used with an e-value cutoff of 1e-5 against Tox-Prot animal venom database and the NCBI non-
redundant protein sequences (nr) database (downloaded March 2019), as well as a hmmsearch
search with an evalue cutoff of le-5 against Pfam (downloaded March 2019) [77].

The results were manually curated to confirm that BLASTp annotations from ToxProt matched the
detected venom domain from Pfam [76,77]. In addition, several toxins were not identified from
ToxProt that were from NCBI database (e.g. three-finger toxin W-IV-like (NCBI Reference
Sequence: XP_015758456.1), 332-1 secreted propeptoide (GenBank: AKU77030.1). Candidates were
considered “unknown” and not used for further analysis if there was no match to a protein from
Tox-Prot, the best match from NCBI was an uncharacterized or predicated protein, and no toxin
domain was detected. The final list of candidate toxins was classified into protein families,
molecular function (based on annotation from UniProtKB/Swiss-Prot) [150], and putative biological
function. The results were visualized using the PieDonut via the webr package v.0.1.2
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509 (https://cardiomoon.github.io/webr/) in R v3.6.2 [151] within Rstudio v1.0.153 [152] and final figures
510  constructed in Inkscape v1.0beta2 (inkscape.org).

511 4.3. Phylogenetic analysis of select gene families

512 For select toxin families, gene trees were constructed using a representative set of venomous and
513  non-venomous proteins for each protein family, modified from phylogenetic analyses in von [80]
514 and [47]. Candidate cerianthids toxins and were aligned using the L-INS-I algorithm in MAFFT
515  v7.312[153]. Maximum likelihood phylogenies were constructed using RAXML v8.2.12 [154] under
516  the PROTGAMMA + WAG model and branch support calculated using 500 rapid bootstrap

517  replicates (-x). Trees were visualized using FigTree v1.4.4 (https://github.com/rambaut/figtree) and
518 final figures constructed in Inkscape v1.0beta2 (inkscape.org).

519  4.4. Availability of supporting data

520  Raw reads used to construct the transcriptomes used in this analysis have been deposited under the
521  SRA bioproject PRINA633022, specifically SRR11802642 (C. brasiliensis), SRR11802641 (I. nocturnus),
522 SRR11802643 (P. borealis), and SRR11802640 (P. maua) accessions.

523 Supplementary Materials: Figure S1: Bioinformatic pipeline for the annotation of venom-like genes for four
524 cerianthid transcriptomes, Figure 52-S10: Phylogenetic relationships between several toxin gene families and
525 putative cerianthid sequences, Figure S11: Orthologous gene clusters of the putative venom-like genes for all
526 four cerianthids, Table S1: Annotation table for putative venom-like genes for four cerianthid species (Excel).
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