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Abstract

Metabarcoding of Metazoa using mitochondrial genes may be confounded by both the accumulation
of PCR and sequencing artefacts and the co-amplification of nuclear mitochondrial pseudogenes
(NUMTSs). The application of read abundance thresholds and denoising methods is efficient in
reducing noise accompanying authentic mitochondrial amplicon sequence variants (ASVS).
However, these procedures do not fully account for the complex nature of concomitant sequences
and the highly variable DNA contribution of individuals in a metabarcoding sample. We propose, as
a complement to denoising, the metabarcoding Multidimensional Abundance Threshold Evaluation
(metaMATE) framework, a novel approach that allows comprehensive examination of multiple
dimensions of abundance filtering and the evaluation of the prevalence of unwanted concomitant
sequences in denoised metabarcoding datasets. metaMATE requires a denoised set of ASVs as input,
and designates a subset of ASVs as being either authentic (MtDNA haplotypes) or non-authentic
ASVs (NUMTSs and erroneous sequences) by comparison to external reference data and by analysing
nucleotide substitution patterns. metaMATE (i) facilitates the application of read abundance filtering
strategies, which are structured with regard to sequence library and phylogeny and applied for a
range of increasing abundance threshold values, and (ii) evaluates their performance by quantifying
the prevalence of non-authentic ASV's and the collateral effects on the removal of authentic ASVs.
The output from metaMATE facilitates decision-making about required filtering stringency and can
be used to improve the reliability of intraspecific genetic information derived from metabarcode data.
The framework is implemented in the metaMATE  software, available at

https://github.com/tjcreedy/metamate).
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1|INTRODUCTION

Bulk DNA amplification and high-throughput sequencing (HTS) of biological samples, known as
metabarcoding (Taberlet, Coissac, Pompanon, Brochmann, & Willerslev, 2012), is becoming an
established tool for the study of biodiversity (e.g., Hamady, Walker, Harris, Gold, & Knight, 2008;
Yu et a., 2012). In metabarcoding, authentic amplicon sequence variants (ASVs; Callahan,
McMurdie & Holmes 2017) amplified from target genes are inherently accompanied by non-
authentic variants. The latter arise from errors accumulated through the amplification and sequencing
steps and, in the case of metabarcoding using mitochondrial markers, from the co-amplification of
mitochondrial-like templates in the nuclear genome, the so-called nuclear mitochondrial sequences
(NUMTS, Lopez et al. 1994). Sequence variants derived from heteroplasmy may also be coamplified
and sequenced, adding to the complexity of the metabarcoding output. The analysis of community
data derived from mitochondrial metabarcoding requires sequences that are free of experimental
errors and free of paralogous copies, but how to obtain such ‘clean’ data is a central topic in
metabarcoding research. Sequencing reads have frequently been grouped into Operational
Taxonomic Units (OTUs) to broadly represent species, but while this process reduces the impact of
sequencing noise (R. C. Edgar, 2013; Schloss & Westcott, 2011), it has the undesirable effect of
collapsing fine-scale true variants largely precluding the study of intraspecific variation. One option
is the application of denoising protocols that have proven efficient in reducing noise accompanying
authentic ASVs, such as UNOISE (R. Edgar, 2016), DADA2 (Callahan et al., 2016), or Deblur
(Amir et a., 2017), among others. These methods provide the opportunity for direct analysis of
sequence variants, without the need for OTU clustering, resulting in improved resolution and

reproducibility of metabarcoding data (Callahan et al., 2017).

The efficiency of denoising procedures may be complicated both by variable DNA
contributions among individuals in a metabarcoding sample, and the different potential origins of

non-authentic ASV's. Patterns of read abundance, similarity to target gene copies, and read-quality
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scores are generally expected to be more predictable for ASVs derived from PCR and sequencing
error, compared to co-amplified NUMTSs or heteroplasmic variants. ASVs derived from PCR and
sequencing errors typicaly show low read abundance and only limited divergence from higher
frequency authentic ASV's (with the exception of chimeras, for which specific filtering methods have
been designed, e.g., Edgar et al. 2011; Callahan et al. 2016). Additionally, errors generated in the
sequencing step are expected to show low base quality scores (Callahan et al., 2016). In most cases,
heteroplasmic variants affecting coding regions represent single point mutations, and are present in
relatively low abundance compared to the predominant haplotype (Huang et a., 2019; Rensch,
Villar, Horvath, Odom, & Ficek, 2016), which can be considered the authentic ASV. NUMTSs are
also expected to be amplified with lower relative read-abundance compared to authentic ASVs, as
the nuclear genome copy number is lower than that of the mitochondrial genome by a factor of 100
to 10000, depending on the taxon, cell type, and tissue (Bogenhagen, 2012; Quiros, Goyal, Jha, &
Auwerx, 2017). However, NUMTS, like heteroplasmic variants, are derived from a true genomic
template and thus are not expected to show lower quality scores compared to mitochondrial copies.
Additionally, the origin and evolutionary dynamics of NUMTSs (e.g., Bensasson et al. 2001; Hazkani-
Covo, Sorek & Graur 2003; Pons & Vogler 2005), means that they can be very divergent from the
current mitochondrial genome of an individual. Such divergenceis a function of (i) the mutation rate
within the nuclear region where NUMT insertion has occurred, (ii) the mutation rate of the
mitochondrial genome, and (iii) the time since the nuclear insertion (Bensasson, Zhang, Hartl, &
Hewitt, 2001), with some insertions estimated to have occurred as much as 58 million years ago
(Bensasson, Feldman, & Petrov, 2003). A subset of NUMTs are easily recognised based on
frameshift mutations, in-frame stop codons, or mutational patterns inconsistent with functional
genes. Such mutations can quickly accumulate due to the absence of selective forces in the inserted
nuclear regions. However, other NUMTs have no obvious features to distinguish them from a

mitochondrial copy, as has been documented in DNA barcoding studies (Creedy et al., 2019;
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Shokralla et a., 2014; Song, Buhay, Whiting, & Crandall, 2008). Among the latter, there may be
minor variants of authentic ASV's, representing recent nuclear insertions. However, other NUMTs
will retain their functional structure as ancestrally “frozen” pseudogenes (Bensasson et al., 2001),
resembling the ancient mitochondrial copy from which they were derived, but with a higher

divergence from the current mitochondrial haplotype, by accumulation of changesin the latter.

Given these characteristics of NUMTSs, and their well-documented prevalence in most
eukaryote taxa (Bensasson et a., 2001; Richly & Leister, 2004), co-amplification of NUMTs may be
an important contribution to the high proportion of unexpected sequences found in metabarcoding of
mock communities with known haplotype composition (Elbrecht, Vamos, Steinke, & Leese, 2018),
in barcoding of single specimens using HTS (e.g., Wang et al. 2018; Creedy et al. 2019), and also
the higher than expected number of OTUs (‘OTU inflation’) found in some metazoan metabarcoding
approaches (e.g., Flynn et al. 2015; Clare et al. 2016; AndUjar et al. 2018b). In contrast,
heteroplasmy is expected to have a limited effect on biodiversity estimates derived from
metabarcode data. Heteroplasmic copies typically have low read abundance and high similarity to the
predominant haplotype (typically differing by only a single point mutation for coding genes), which
together facilitate the filtering, together with sequence noise, by the application of denoising
methods. Here we first use several metabarcoding data sets from arthropods to illustrate the problem
of NUMT co-amplification. These illustrative examples describe patterns of co-occurrence, relative
abundance, and phylogenetic relatedness of ASVs that congtitute a mixture of authentic
mitochondrial haplotypes, NUMTSs, and PCR and sequencing errors, highlighting the difficultiy of
denoising such datasets. The application of denoising procedures and read abundance thresholds
alow different levels of stringency to be used, which can be adjusted to minimise the survival of
non-authentic ASV's. However, in complex metabarcoding mixtures, setting highly stringent filtering
thresholds carry the risk that rare but authentic mitochondrial haplotypes may also be removed.

Conversely, overly conservative thresholds may result in many non-authentic ASVs not being
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removed. Critically, there is no method available to evaluate the performance of read filtering and
denoising procedures in natural communities of unknown composition with regard to the survival of
spurious sequences and/or the removal or authentic target sequences. Thus, filtering stringency is

decided blindly.

Here we propose the metabarcoding Multidimensional Abundance Threshold Evaluation
(metaMATE) framework, a comprehensive examination of multiple dimensions of abundance
filtering and the evaluation of the prevalence of unwanted concomitant sequences in denoised
metabarcode datasets (Fig. 1 and Supp. Fig. S2). The framework is implemented in the metaMATE

software, available at https.//github.com/tjcreedy/metamate. metaMATE requires a denoised set of

ASVs as input, and before filtering steps, it designates a subset of ASV's as being ether authentic
(mtDNA haplotypes) or non-authentic ASVs (NUMTs and sequencing artefacts) by comparison to
external reference data and by analysing nucleotide substitution patterns. The software incorporates
the application of read abundance filtering strategies, including choices for absolute or relative
thresholds, which are applied either to whole datasets, individua libraries, within lineages, within
taxa, or combined over multiple of these dimensions. For each filtering strategy, metaMATE
facilitates the batch application of filtering for a range of abundance threshold values. metaMATE
evaluates the performance of each filtering exercise by quantifying the prevalence of non-authentic
ASVs and the collateral effects on the removal of authentic ASVs. Modifications to filtering criteria
may alter these proportions, facilitating the identification of optimal parameters which may vary
among data sets due to the characteristics of target taxa and target genes. The output from
metaMATE also allows different research objectives, for which removing non-authentic and retaining
authentic ASVs may have different importance, to guide decision-making about optimal filtering
strategy. We demonstrate the utility of the method using metabarcode data from mock and natural
communities of various complexity. The results indicate that metaMATE should be of general utility

for metazoan metabarcoding.
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2|MATERIALSAND METHODS

2.1| ThemetaMATE abundance-based ASV filtering and evaluation framework

The metaMATE rationale is that read filtering strategies can be evaluated and compared with regard
to the prevalence of unwanted concomitant sequences, hereafter referred to as NUMTSs (nuclear
copies of mitochondrial genes) and noise (variants of target sequences derived from PCR and
sequencing error, or heteroplasmic variants with a similar profile, remaining after denoising), versus
authentic haplotypes. NUMTs and noise will ideally be removed while retaining the authentic
haplotypes. Filtering strategies can be designed to consider read-abundance by dataset, library, or
lineage (as aproxy for phylogenetic relatedness), which we implemented in the metaMATE program.
The same rationale can be used to evaluate other filtering strategies and available denoising methods
under a range of stringency parameters. This allows users to decide upon the most appropriate
metabarcoding filtering parameters according to their data and research objectives, while providing a
measure of the expected number of concomitant sequences in the fina dataset. The method

comprises two main steps (Fig. 1B):

1. Classification of ASVs. Our starting point is a dataset of ASV's, each of which exclusively
belongs to one of two categories. (i) authentic ASVs (aASVs) that correspond to actual
mitochondrial copies, and (ii) non-authentic ASVs (na-ASV's) that are either noise or NUMTS (see
Box 1 for alist of used acronyms). Evaluation of filtering performance relies on the ascertainment of
a subset of ASVs that can be confidently considered as authentic sequences (designated as verified-
authentic-ASVs, va-ASVs) or non-authentic (designated as verified-non-authentic-ASVs; vna-
ASVs). Given the input ASV dataset, vaeASVs can be identified by comparison to reference
databases, under the assumption that references are authentic mitochondrial (usually COI barcode)

sequences. Any ASV that includes indels and/or stop codons in the translation rendering it non-
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functional is designated as a vna-ASV. We consider all other ASVs to be unclassified-ASV's (u-
ASVs). Pre-processing of the input ASV dataset may vary according to the filtering thresholds to be
evaluated, see section 2.2. Improvements in the confident classification of ASVsasva-ASVsor vna

ASVs, such as the availability of local reference databases, will benefit the accuracy of metaMATE.

2. Datafiltering and evaluation of filtering performance. ASV datasets are subject to filtering
procedures with the aim of removing na-ASVs while retaining aASVs. Filtering procedures are
based on specification of filtering strategies. one or more dimensions by which to evaluate ASV
abundance. Each strategy is based on absolute or relative ASV counts either over the entire dataset or
by library, optionally further partitioned based on clade and/or taxon membership of ASVs. For each
strategy, a range of thresholds can be supplied, and filtering is performed repeatedly for each
threshold within each term. For example, the basic strategy employed by most metabarcoding
piplines is “minimum absolute total ASV number across the dataset”, usually implemented with a
single threshold. The metaMATE program can implement this, but can expand to explore the effects
of filtering over multiple such thresholds. An alternative strategy would be to filter based on the
“minimum absolute number of ASV's per library”, where metaMATE would examine the number of
reads of an ASV in each library in which it occurred, and reject it if these counts failed to meet the
threshold in all libraries in which it occurred. Either of these strategies could alternatively be

implemented relative to the total number of readsin the dataset or in each library respectively.

These two basic dimensions of ASV abundance can also be partitioned and implemented in
more detailed strategies. The metaMATE program can incorporate clade or taxon membership
information to filter by, for example, relative ASV abundance by clade within library, whereby the
total number of reads for each clade within each library is computed, and then for a given threshold,
ASVs arergected if they fail to meet this threshold for any clade/library combination in which they
occur. In total, 16 such combinations of total or library counts, clade and/or taxon membership and

absolute or relative counting can be implemented, either individually, successively or synergistically
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(see below). For each such strategy, a range of thresholds can be specified, and metaMATE runs a

separate filtering iteration for every threshold for every strategy.

Filtering automatically generates data on the survival of ASV's classified as vac.ASV and vna-
ASV. The application of a given filtering criterion (e.g. minimum number of reads by library
required to retain an ASV) for arange of values for filtering parameters allows trends for the survival

of vacASV and vna-ASV to be analysed.

In addition to obtaining values for the survival of vaeASV and vna-ASV, for each filtering
threshold the number of (i) aASVs in the initial ASV dataset; (ii) surviving aASVs in the filtered
dataset; (iii) nacASVsin the initial dataset, and; (iv) surviving na-ASVs in the filtered dataset can be
estimated. These estimations are made from the known values of (i) the number of ASVs in the
initial dataset and the number of ASV's retained after filtering and (ii) the proportion of retained va-
ASVs and vna-ASVs, under the assumption that va-ASVs and vna-ASV's are a representative subset
of al a-ASVs and na-ASV's respectively in the initial dataset. This assumption implies that (i) the
ratio between the number of va-ASVs before and after filtering will be smilar and can be
extrapolated to the ratio between a-ASV's before and after filtering, and (ii) the ratio between the
number of vna-ASV's before and after filtering will be similar and can be extrapolated to the ratio

between all na-ASV s before and after filtering.

Then, we can estimate the total number of surviving aASVs a using the formula:

N,

T—#f

a~ ——-
Ay Ny

ay IGH

Where A, and a, are the numbers of initial and surviving vaeASVs, N, and n, are the numbers
of initial and surviving vna-ASVs and T and t are the total number of initial and surviving ASVs.

From this, we can also calculate the estimated total number of surviving nacASVs n and the total
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number of initial aASVs and na-ASVs (A and N) (Fig. 1C; formula derivation in Supplementary

Materials).

The metaMATE program is written in python3, with some aspects in R. The python3 code
utilises the on biopython (Cock et al., 2009) library for sequence data handling, and also depends on
numpy (Oliphant, 2006). The R code makes use of libraries ape (Paradis, Claude, & Strimmer,
2004), phangorn (Schliep, 2011) and getopt. The software allows the user to (i) classify ASVs as va-
ASVsand vna-ASVs, (ii) apply any number of filtering criteria constructed from the four dimensions
described above aone or in combination, with unlimited customised threshold ranges, facilitating the
analysis of trends in survival of va-ASVs and vna-ASV's, and (iii) estimate the number of surviving
aASV and na-ASVs for each filtering criterion and parameter range explored, using the formula and
assumptions described above. Further details on the installation and application of the software are

provided in the Supplementary Materials and at https://github.com/tjcreedy/metamate.

2.2 | Empirical application of metaMATE

2.2.1 | Datasets

Three existing COlI metabarcoding datasets were used, originating from: (i) 780 individualy
metabarcoded bees (BEE dataset; Creedy et al. 2019) which were used for current purposes to
generate 50 in silico mock communities of 100 individuals drawn from a subset of 462 confidently
identified specimens; (ii) 94 Coleoptera communities from soil samples from the island of Tenerife
(COL dataset) (Andujar et al. in prep), and (iii) 48 communities of Coleoptera, Acari and Collembola
from soil samples from Grazalema, southern Spain (CAC dataset) (Arribas et al. in prep) (Suppl. Fig.
S1). The three datasets were generated using a nested PCR approach with Nextera XT indexes. In all
cases, initial amplification was performed using degenerate primers for 418 bp of the 3’ end of the

COl barcode region (Andijar, Arribas, et al., 2018).
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To ensure uniform treatment of datasets, raw sequence reads were re-processed following a
uniform protocol including primer removal, paired end merging, quality filtering, length filtering for
reads ranging between 416-420 bp (the expected 418 bp amplicon + 2 bp), followed by denoising
library by library using UNOISE 3 in USEARCH v11 (Edgar, 2016). The last step included chimera
filtering, dereplication, and removal of all singleton reads which were not considered further. The
sequences surviving the cleaning and denoising steps (hereafter ASV's) were classified to order or
superfamily level, and only ASVs classified as the target taxon or taxa were retained: Apoidea (BEE
dataset), Coleoptera (COL) and Coleoptera, Acari and Collembola (CAC). To perform this
classification, we generated a reference database comprised of the NCBI nt database (downloaded 17
June, 2018) combined with either (i) 1,011 additional reference COI sequences from Coleoptera,
Acari and Collembola specimens collected in the Canary Islands and Sierra de Grazalema (COL and
CAC datasets) or (ii) the BEEEE reference database described in Creedy et al 2019. For each of the
three datasets, searches against the reference database were performed using the BLASTn algorithm
(Altschul, Gish, Miller, Myers, & Lipman, 1990), with the following settings: -evalue 0.001, -
max_target_seqs 100. Blast results were then processed with MEGANG (Huson et al., 2016), using

the weighted lowest common ancestor algorithm with default settings to assign taxonomy to ASVs.

2.2.2 | Phylogenetic structure, read-abundance, and library co-amplification of

ASVs

To illustrate the patterns of library co-amplification, read-abundance, and phylogenetic similarity
among noise and NUMTs (na-ASVs) and authentic haplotypes (a-ASVs) generated in COI
metabarcoding, we conducted maximum-likelihood (ML) phylogenetic analysis to establish
relationships of the ASVs within four lineages, and mapped ASV distributions and read abundances

against each library using Cytoscape (Shannon et al., 2003). We used two species within the genus
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Halictus and one in the genus Lasioglossum (Hymenoptera; Apoidea) from the BEE dataset, and the
genus Cryptocephalus (Coleoptera: Chrysomelidae) from the COL dataset. A ML tree was first
estimated from an alignment (using MAFFT and the FFT-NS-1 algorithm; Katoh & Standley, 2013)
of al ASVs from across all libraries for each dataset, with the aim of identifying the clade of ASVs
corresponding to the target taxa. All relevant ASV's were extracted, but for logistical purposes related
to dataset size and graphical representation, ASV's with a read-count of less than five were excluded
from each library and, in the case of Cryptocephalus, only the largest 10 libraries (>1000 reads
within the Cryptocephalus lineage) were selected. ML inferences were conducted in RAXML
(Stamatakis, 2006) with 100 searches for the best tree (GTR+G+l model) and 1000 bootstrap
pseudoreplicates. In addition, for each dataset a species delimitation analysis was conducted on the
ML tree using bPTP (Zhang, Kapli, Pavlidis, & Stamatakis, 2013) on the bPTP web server

(https://species.h-its.org/) with 100,000 generations and a burn-in of 10%.

2.2.3 | Application of metaMATE

We applied metaMATE to each dataset to identify va-ASV's and vna-ASV's and evaluate the effects
on the survival of a-ASV's and na-ASVs under a range of threshold values for different filtering
strategies based on read-abundance of ASVs, structured with regard to sequence library and
phylogeny. For the COL and CAC datasets, identification of va-ASV's was performed by comparison
against the reference set of 1,011 sequences described above combined with the NCBI nt database,
using BLASTnN (-perc_identity 100, only hits with match length >400 bases were considered). For
the BEE dataset, identification of va-ASVs was performed by comparison against the set of
sequences for the known authentic haplotype of each of the 462 individuals sequenced. All ASVs
that included indels and/or stop codons in the translation were designated as vna-ASVs. All others

were considered unclassified u-ASvVs.
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In al cases agiven ASV was only excluded if it did not pass the read-abundance threshold in
all libraries where it was present. The five filtering strategies here tested were: (i) Absolute ASV
abundance by library, with analysed threshold between 3 and 100 reads. (ii) Relative ASV abundance
by library, with analysed threshold values between 0.025% to 1%. (iii) Relative ASV abundance by
library and 20% similarity clade. (iv) Relative ASV abundance by library and 15% clade. (v)
Relative ASV abundance by library and 26% clade. For strategies (iii) to (v), read abundance
thresholds from 0.1% to 90% were analysed. Clades were delimited based on specified divergence
thresholds from an UPGMA tree of all ASVs constructed using F84 model-corrected distances
(Felsenstein & Churchill, 1996) based on a MAFFT FFT-NS-2 alignment (Katoh et al. 2002) of the

ASV sequences.

Potential synergy among criteriafor removal of na-ASV's while maximizing the survival of a
ASVs was evaluated for the COL dataset, by applying a combination of two of the following
strategies: (i) absolute ASV abundance by library, (ii) relative ASV abundance by library, and (iii)
relative ASV abundance by library and 20% clade. Only ASV's surviving the application of both

criteriawere retained.

Finally, using the COL dataset we explored how ASV survival and remova affect: (i) the
number of OTUs recovered under similarity thresholds for OTU clustering of 3% and 6%, (ii) the
number of surviving OTUs that include one or more va-ASV and consequently can be considered as
verified authentic OTUs, and (iii) the number of surviving OTUs that exclusively comprise vna-
ASV's and consequently can be considered as verified non-authentic OTUs. The latter contribute to
OTU inflation. Similarity clusters were obtained using distances estimated with the F84 model and a

UPGMA tree as before.

3|RESULTS
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Raw sequence reads were subjected to uniform procedures of merging, cleaning, and denoising to
establish the total ASVs for each dataset (Fig. 1A), of which a subset could be confidently classified
as authentic mitochondrial (va-rASVs) against the respective reference databases (see Material and
Methods) or spurious (vna-ASV), leaving al others as unclassified (u-ASVs). The BEE dataset
contained 2251 total ASV's identified as Apoidea, including 160 va-ASV's and 117 vnaASVs. The
COL dataset yielded 1845 ASVs classified as Coleoptera, with 74 classified as va-ASV's and 228 as
vna-ASVs. The CAC dataset yielded 4804 ASV's, with 712 assigned to Coleoptera (55 va-ASV's and
40 vna-ASV's), 2731 to Acari (99 varASVs and 92 vna-ASV's), and 1361 to Collembola (67 va-ASV's

and 105 vna-ASVs). Thus, in al cases alarge number of AV Ss remained “unclassified”.

3.1 | Phylogenetic structure, read-abundance, and library co-amplification of

ASVs

A subset of ASV'swas assessed using phylogenetic analysis, to establish the relationships of verified
authentic mitochondrial (vaASVs) and verified non-authentic (vna-ASVs) copies. Phylogenetic
relationships and their distributions across libraries were displayed relative to their abundance in a
bipartite graph (Fig. 2). The three species of BEE, Halictus rubicundus (5 individuals, each
sequenced in a separate library), H. tumulorum (5 individuals), and Lasioglossum malachurum (33
individuals) produced atotal of 18, 43, and 45 ASV's, respectively, and included 2, 1 and 2 vacASVs.
In every individual, the most abundant ASV corresponded to ava-ASV (Table 1). A total of and 3, 8
and 8 vna-ASVs were identified for each species respectively, with relatively low read-counts
summed across libraries (maximum read count for a vna-ASV = 344; mean for the 19 vna-ASVs =
62) (Table 1). Fifteen of the 19 were shared across 2 or more individuas, including one vna-ASV
that was shared across 24 individuals. The 82 unclassified ASVs (u-ASVs) showed relatively low

accumulated read-counts summed across libraries (range 10-1795; mean = 87) and 58 of 82 were
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shared across 2 or more individuals (Fig. 2). Species delimitation analysis on the phylogenetic tree
from all ASVs with the bPTP procedure produced two candidate species for both H. tumulorum and
L. malachurum, and in both cases one was exclusively composed of low abundance u-ASVs. It is
worth noting that in the case of the BEE dataset all a=ASV's were known, thus all other ASV's had to

be either sequencing artefacts or NUMT sequences.

For the genus Cryptocephalus, 6 of 118 ASVs were identified as va-ASV's, each with a high
read-count summed across libraries (Fig. 2D, Table 1). Several u-ASVs, closely related to the va-
ASVsin the ML tree, showed similarly high read abundances, suggesting their mitochondrial origin
(only a subset of the COL authentic haplotypes is known). Several libraries showed more than one
high-abundance va-ASV, as expected if more than one Cryptocephalus species was present in a
sample (libraries correspond to soil samples that sometimes contained tens of Cryptocephalus
larvae). Thirty ASVs classified as vna-ASVs were found, al of them with low abundances (read-
counts summed across libraries from 5 to 43; mean = 13). These vna-ASV's clustered together with
additional low abundance u-ASVs into several clades (named C1-C8 in Figure 2D) and grades
(named G1 and G2 in Figure 2D). Several of these clades were classified by bPTP as candidate
species, producing 39 speciesin total where only 4 were expected. Despite the notable divergence of
sequences inside these clades or grades from the closest vaaASV (e.g, clade C1 has a mean non-
corrected p distance of 14.5% against the closest vaeASV), in many cases, vha-ASVs or closely
related low abundance u-ASV's were co-amplified in two or more libraries that in addition shared the
same Cryptocephalus species or closely related species, suggesting a NUMT origin that predates
speciation. As an example, libraries S20 and S92 (Fig. 2D) that shared the presence of authentic
mitochondrial haplotypes from Cryptocephalus sp. 4, also shared one vna-ASV and 3 closely related
low abundance u-ASVs within the grade G2 and clade C8. Also, all six libraries including va-ASV's
from Cryptocephalus sp. 3 and sp. 4 shared co-amplified distantly related ASV's (p-distances >15%)

from clade C1 (composed of a set of low abundance u-ASVs and vna-ASVs) (Fig. 2D). In a
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consistent manner, libraries S29, S30, S56 and S74, that only included va-ASVs from

Cryptocephalus sp. 1 and sp. 2 did not include any ASVs from clade C1 (Fig. 2D).

3.2 | Evaluation of filtering efficiency

For all datasets, across all read abundance filtering strategies, increasing thresholds for minimum
read abundance resulted in contrasting trends for the removal of va-ASVs and vna-ASVs. In general,
the proportion of surviving vna-ASV's dropped quickly below 10% as thresholds were increased, at

which point the percentage of surviving va-ASV's exceeded 90% (Fig. 3A, Supp. Fig. S3).

The observed values of va-ASV's and vna-ASVs, and estimated values of initial and final a-
ASVs and naASVs (using the rationale and formula described in methods) are summarized in
Figure 3, Supplementary Figures S3 and $4, and Supplementary Tables S1-S15. For the BEE dataset,
it was possible to eliminate 99% of vna-ASV's while keeping more than 95% of the va-ASVs using
filters for either an absolute or arelative ASV abundance by library. Filtering by the three variants
for minimum proportion of reads by similarity cluster and library produced some recalcitrant vna-
ASVs that were not removed. For COL and CAC, the filtering criteria generally allowed elimination
of 90-95% of vna-ASV's while retaining 80-90% of the va-ASVs. The observed value of vnaASV's
and estimated value of final (surviving) na-ASVs aways showed a strong decay reaching O (in the
case of filtering by minimum absolute or relative ASV abundance by library) or a certain number
(filtering based on relative ASV abundance by library and similarity cluster) corresponding to a fixed
number of recalcitrant na-ASV's not removable with such criteria The observed value of va-ASVs
and the estimated value of fina (surviving) aASVs showed a shallower decay with increasing

threshold values.

For the BEE and COL datasets, estimates of initial aASVs and naASV's were approximately

constant through increasing threshold values with the strategies of a minimum absolute or relative
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ASV abundance by library. In the case of BEE, estimated values for A and N (estimated number of a-
ASVs and na-ASV's before filtering) approached the known true values (from Creedy et al. 2019) of
A =160 and N = 2091. Filtering by minimum absolute ASV abundance by library, we obtained A
mean = 167 (SD = 10) and N mean = 2083 (SD = 10) across different thresholds while minimum
relative ASV abundance by library, resulted in A mean = 165 (SD = 10) and N mean = 2086 (SD =
10). For COL, for the same two criteria, estimated values were always close to A = 600 (mean = 581,
SD = 20; and mean = 605, SD = 27, respectively) and N = 1250 (mean = 1263, SD = 20; and mean =
1238, SD = 27). Estimation of initial aASV's and naASVs for the CAC dataset showed a different
pattern, with a decrease in the estimated value of initial aASVs with increasing threshold values,
from around 2,200 aASVsto 1,000 aASV's (mean = 1451, SD = 360; and mean = 1398, SD = 263,
respectively for the two criteria), and an increase of initial na-ASVs from 2600 to 3800 (mean =
3245, SD = 360; and mean = 3352, SD = 263). Based on the minimum percentage of reads by
similarity clusters, the estimation of final and initial aASV's and naASVsiis less predictable (Supp.
Fig. $4), resulting in incorrect values in the case of the mock community (BEE dataset) and stronger
trends toward the increasing number of na=ASV's and decreasing number of a-ASV's with increasing

threshold valuesin all datasets.

The simultaneous application of two filtering strategies to the COL dataset improved filtering
performance (Table 2). Severa of the better filtering combinations resulted in a proportion of
surviving vna-ASV's between 2% and 2.6%, estimated to represent 5-6% of all ASVs surviving
filtering. The same parameters retained between 82% and 88% of the va-ASV's, estimated as 94-95%
of al ASVs surviving filtering. With more stringent combinations of parameters, estimated
proportions of na-ASVs in the final dataset can be reduced to 0, 1%, and 2% while still retaining

77%, 80%, and 81% of a-ASV's. (Table 2).

Lastly, we examined the effect of increasing filtering stringency on the number of recovered

OTUs. Increasing thresholds for minimum read abundance resulted in a similar trend to that found
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for ASVs, with contrasting results for the removal of those OTUs verified as authentic and non-
authentic (Supp. Table S16). The number of surviving OTUs verified as non-authentic (exclusively
formed by vna-ASVs) reduces more quickly than the number of OTUs verified as authentic. The
proportion of surviving OTUs verified as authentic for both 3% and 6% clustering was very similar
to the proportion of surviving va-ASVs for the three filtering criteria and all thresholds values. The
proportion of surviving OTUs verified as non-authentic showed a higher rate of survival than that
observed for vna-ASVs. As an example, filtering with a minimum relative ASV abundance by
library of 0.009 resulted in the survival of 87.8% of va-ASVs, 86.5% of verified authentic OTUS,
4.8% of vna-ASV's, and 21.9% of verified non-authentic OTUs (OTU clustering at 3%) (Supp. Table
S16). Thus, “taxonomic inflation” generated by spurious variants can be a more recalcitrant problem
than removal of individual NUMTS, requiring higher threshold values for filtering, with an

associated cost in the removal of rare species from the dataset.

4| DISCUSSION

NUMTs have long been recognised to confound barcoding with Sanger and high throughput
sequencing (e.g., Song et al. 2008; Shokralla et al. 2014; Creedy et al. 2019), and the potential
impact of NUMTs on metabarcoding has been discussed widely (e.g., Ramirez-Gonzalez et al. 2013;
AndUjar et al. 2018b; Elbrecht et al. 2018; Liu et al. 2019; Delsuc & Ranwez 2020). NUMTSs are
likely to be consequential in metabarcoding because of: (i) the widespread use of degenerate primers
for metabarcoding (e.g. AndUjar et al. 2018a; Elbrecht et al. 2019); (ii) the complexity of specimen
mixtures that produce metabarcoding data, and; (iii) the sensitivity of single-molecule sequencing
with HTS platforms. NUMT insertions have been documented to occur multiple times within
lineages (Bensasson et al., 2003; Hazkani-Covo et al., 2003; Pons & Vogler, 2005; Shi, Dong, Irwin,

Zhang, & Mao, 2016), with NUMTs accumulating within genomes over time. In addition, once
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inserted, duplication events within the nuclear genome may contribute to the formation of NUMT
families (Baldo, De Queiroz, Hedin, Hayashi, & Gatesy, 2011; Bensasson et a., 2003; Pamilo,
Viljakainen, & Vihavainen, 2007), potentially resulting in hundreds of NUMTSs (e.g., Ramos et al.,
2011). Critically, NUMTSs can retain a fully functiona mitochondrial sequence long after their
nuclear insertion, if inserted within invariant regions of the nuclear genome (Bensasson et al., 2001).
The illustrative examples selected within our metabarcoding datasets highlight the potential
magnitude of NUMT diversity in mitochondrial metabarcoding. Despite the difficulty for in fully
differentiating NUMTs from noise, ASVs identified as non-authentic (vna-ASVs) exhibiting stop
codons and/or frame-shift mutations generally fit patterns of phylogenetic relatedness, read-
abundance, co-occurrence, and haplotype sharing across independent libraries that are expected from
NUMTs (Fig. 2). The pattern of low-read abundance and library co-amplification of additional
ASV's, which are phylogenetically related to vna-ASV's but do not include stop codons and/or frame-
shift mutations, point to their probable NUMT origin, illustrating the difficulty to identify all

NUMTs exclusively based on their nucleotide sequence.

The accumulation of sequence variants derived from PCR and segquencing error, and the co-
amplification of NUMTS, result in a complex mixture of concomitant sequences accompanying
target haplotypes in metabarcoding of mitochondrial genes. Read abundance is an obvious filtering
parameter. However, read-abundance relationships may be imperfect due to (i) authentic rare
haplotypes with relatively low read abundances overlapping with the abundance ranges of
concomitant sequences generated from species contributing with more DNA to the DNA pool, and
(i) potential amplification biases increasing the read abundance of some particular NUMT copies.
This implies that it is very unlikely that a single abundance threshold can be devised for the removal
of al NUMTSs and noise sequences from a set of ASV's, while not excluding authentic haplotypes. It
also suggests that, because of idiosyncratic heterogeneity and amplification biases, different datasets

may vary with regard to optimal criteria and thresholds-parameters to minimise false positives
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(unwanted sequences retained) and/or false negatives (authentic haplotypes excluded). In this
context, denoising procedures are designed to consider not only read abundance, but also similarity
among sequences, and even error profiles expected from sequencing technology into their models
(e.g. UNOISE, Edgar, 2016; DADA2, Cdlahan et a., 2016; and Deblur, Amir et a., 2017).
However, filtering is typically applied without the possibility of checking performance and deciding
upon optimal stringency parameters. Our results show that while denoising likely removes the
majority of sequencing errors contributing to ‘noise’, it may be not sufficient to remove al noise and
particularly fails to remove sequences that are likely NUMTSs. Further filtering is required if the am

is to generate a dataset suitable for haplotype-level analysis, or to reliably eliminate spurious OTUS.

Here we propose a framework to evaluate and select filtering strategies according to user
requirements and filtering performance, using a subset of ASVs known to be either authentic
mitochondrial haplotypes or undesired NUMTs or noise. We have implemented the evaluation
framework within a program that allows for batch application of severa filtering strategies under a
range of threshold values. We have demonstrated the difficulties for the removal of spurious
sequences, and the benefit of evaluating the efficiency of different filtering strategies. metaMATE
implements several filtering strategies based on absolute read numbers and relative read-abundances
of ASV's against the total number of reads in libraries or lineages. For all strategies, opposing trends
are observed with increasing threshold value for the removal of verified authentic (vacASVs) and
verified non-authentic (vna-ASV's) sequences. The relative rapid decay of non-authentic sequences
alows the elimination of 90-95% of vna-ASV's, while retaining 80-90% of va-ASVs. In addition,
metaMATE can easily incorporate more complex, custom made filtering strategies. Using paired
combinations of filtering criteria, results were improved by removing 98% of vna-ASVs, while
retaining 81% of the va-ASV's, and more complex filtering strategies may further improve these

results.
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After obtaining the survival ratios of both va-ASVs and vna-ASV's, metaMATE estimates the
number and proportion of surviving aASVs and na-ASV's for each abundance threshold (Fig. 1), on
the assumption that the subset of va-ASVs and vna-ASV's are representative of the initial number of
aASVs and naASVs, respectively. This allows for the selection of thresholds based on individual
acceptance criteria for the maximum number (or proportion) of naASVs in a given final dataset.
Results from the mock community and real datasets analysed here illustrate the potential utility and
issues associated with estimations of aASVs and naASVs in the initial and final (filtered) datasets.
Increasing thresholds based on absolute and relative ASV abundance by library for both the BEE and
the COL datasets resulted in estimates of the initial number of aASV's (A) and naASVs (N) that are
approximately constant, with estimates for BEE approaching the known true values. This supports
the reliability of estimates. However, the CAC dataset revealed a different pattern, with a decrease in
the estimated number of initial aASVsand an increase for initial nacASV's with increasing threshold
values (Supp. Fig. $4). This variation in the estimated values is likely due to the violation of the

a

assumption that va-ASVs are a representative subset of all aASVs (Z—: = Z)’ and thus presents a
potential means to evaluate the assumption itself. To explore this further, we manipulated the subset
of varASV's used within the COL dataset to simulate both (i) bias from a lack of low abundance va-
ASVs (represented in Fig. 3C), and (ii) bias from alack of high abundance va-ASV's (Supp. Fig. S5).
For both types of bias we explored three intensities: strong, moderate and low. Results reveal that
bias generated by a lack of low abundance va-ASVs reproduces the pattern found for the CAC
dataset, whereas bias for a lack of high abundance va-ASVs generates the opposite trend. These
analyses show that the effect of bias on the estimated initial number of a-ASVs and naASVs
increases with increasing threshold values. However, they also reveal a limited effect on the
estimated number of aASV's and na-ASVs in the final dataset, a consequence of the low number of

surviving na-ASVs with increasing thresholds. It is aso worth noting that filtering strategies based

on relative ASV abundance estimated within similarity clusters result in biased estimations, likely
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due to the prevalence of recalcitrant na-ASV's associated to clusters exclusively formed by a single or
several na-ASVs. Taken together, these analyses of bias suggest that: (i) if the assumption of the

ratios (% = %) is met, the correct estimation of both initial and final (surviving) numbers of aASV's

and naASVs s straightforward; (ii) violation of the assumption results in predictable changes in the
initial number of a-ASVs and na-ASVs, with only limited effect on the estimation of the number of
aASVsand naASVsin the final dataset, and; (iii) estimates obtained from criteria where abundance

is calculated within similarity clusters alone are less reliable and should not be used.

Our results aso reveal that OTU clustering alone may not be sufficient to remove the effect
of naASVs. OTUs that are identified as non-authentic can pass filtering based on read-abundance
even in higher proportions than individual vna-ASVs. This highlights the problem of “OTU
inflation” (Flynn et a. 2015), which we show can be reduced by increasing read-abundance
thresholds, but with the expected trade-off for the removal OTUSs representing rare species (Supp.
Table S16). Thus, the broader metaMATE framework can be also used at the OTU level to evaluate
filtering performance and the expected taxonomic inflation in datasets before and after filtering,

optimising between taxonomic inflation and the removal of rare species.

In conclusion, our results illustrate the presence of NUMT sequences in COl metabarcode
data and highlight the need to evauate thresholds for each dataset according to user-defined
acceptable levels of false positives and fal se negatives. Studies seeking data with minimal error, such
as for phylogeographic (e.g., Turon et al., 2019) or population genetic analyses (e.g., Elbrecht et al.,
2018), should opt for stringent thresholds, to minimise the confounding effect of NUMTs and other
Spurious sequences, even at the expense of removing some authentic haplotype data and rare species.
For other applications, such as those based on measures of beta diversity to explore broad ecological
patterns, less strict thresholds may be admissible. In addition, studies aiming to estimate richness
values at haplotype or even OTU levels may consider expected biases generated by surviving

concomitant sequences to correct data and generate estimates of a-ASV's and authentic OTUs in the
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initial and final (filtered) datasets. Ultimately these are decisions that can now be made and reported
with the incorporation of the proposed evaluation framework in analysis pipelines, by the application
of metaMATE to ASV datasets generated after denoising. Thus, metaMATE builds upon existing
denoising strategies to evaluate the reliability of intraspecific genetic information derived from
metabarcode data, opening the door for community-level genetic analyses requiring haplotype-level

resolution.
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Box 1.

Box 1. List of acronyms.

ASV. Amplicon Sequence Variant, sensu Callahan et a. (2016). Each unique DNA
sequence within a denoised metabarcoding dataset isan ASV.

NUMT. NUclear MiTocondrial, sensu Lopez et al. 1994. Pseudogenes originating
from the insertion of mitochondrial DNA fragments in the nuclear genome.

a-ASV. Authentic Amplicon Sequence Variant. ASV that represents a true sequence
amplified from the target gene.

na-ASV. Non-authentic Amplicon Sequence Variant. ASV with error derived from
the PCR and sequencing steps, or by the co-amplification of pseudogenes.

va-ASV. Verified authentic Amplicon Sequence Variant. ASV that has been verified
as authentic by comparison with validated reference sequences.

vha-ASV. Verified non-authentic Amplicon Sequence Variant. ASV that has been
verified as non-authentic by the presence of mutationsincompatible with a
functional protein (STOP codons and frame-shift mutations).

metaM AT E. metabarcoding Multidimensional Abundance Threshold Evaluation.
Approach to evaluate filtering performance, based on the survival of va-ASVsand
vha-ASVs, for arange of filtering criteria and thresholds applied to a set of denoised
ASVs
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Table 1. Summary of the number of libraries, ASVs, va-ASVs, and vha-ASV S obtained for thethree Halictus
speciesand the Crytocephalys lineage. Read counts refers to the sum of the ASV read-abundance across all libraries
where agiven ASV is present.

va-ASVs vna-ASVs
Libraries ASVs n read-counts* n read counts*
H. rubicundus 5 18 2 6915 (6799-7031) 3 15 (10-19)
H. tumulorum 5 43 1 8713 (8713-8713) 8 78 (11-344)
L. malachurum 33 45 2 482825 (4253-92312) 8 64 (11-298)
Crytocephalus 10 118 6 2223 (763-3986) 30 13 (5-43)

*mean value (minimum - maximum values)
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Table 2. Filtering per formance for a selection of pairwise combinations of filtering criteriaand minimum
thresholdsvaluesfor read abundance for the COL dataset. Combinations are shown that minimise the number of
surviving verified non-authentic ASV's (vna-ASVs) when the number of excluded verified authentic ASVs (va-ASVS) is

between 0 and 17.
Relative
Exd. Absolute  Rdative ASV Surviving Surviving  Surviving  Initial Surviving  Initial Surviving nit
va- ASV ASV abundance *kkk
: ASVs va-ASVs vna-ASVs aASVs a-ASv na-ASVs na-ASV
ASVs abundance abundance by library (O** (@) (n)** (A)** (@ (N (n)**+
by library by library and 20% v
clade
Prefiltering initial values T =1845 A, =74 N, =228
0 5 0.002 - 866 (46.9%) 74 (1000%) 56 (24.6%) 547 547 1298 319 0.368
2 5 0.003 - 752 (40.8%) 72(97.3%) 36 (15.8%) 565 550 1280 202 0.269
3 5 0.015 722 (39.1%) 71(95.9%) 28(12.3%) 592 568 1253 154 0.213
4 5 0.02 685 (37.1%) 70(94.6%) 24 (10.5%) 584 552 1261 133 0.194
5 5 0.035 617 (33.4%) 69 (93.2%) 15 (6.6%) 572 533 1273 84 0.136
6 - 0.0035 0.035 585 (31.7%) 68(91.9%) 14 (6.1%) 550 505 1295 80 0.137
7 - 0.0035 0.04 572(31%) 67 (90.5%) 14 (6.1%) 543 492 1302 80 0.140
8 5 - 0.045 535(29%) 66 (89.2%) 11 (4.8%) 599 502 1246 33 0.062
9 8 - 0.035 556 (30.1%) 65 (87.8%) 6 (2.6%) 596 523 1249 33 0.059
10 10 - 0.035 534 (28.9%) 64 (86.5%) 5 (2.2%) 586 506 1259 28 0.052
11 8 0.008 - 516 (28%) 63(85.1%) 5(2.2%) 573 488 1272 28 0.054
12 10 0.008 - 512 (27.8%) 62(83.8%) 5(2.2%) 578 484 1267 28 0.055
13 10 - 0.045 513 (27.8%) 61(82.4%) 5(2.2%) 589 485 1256 28 0.055
14 20 - 0.03 469 (25.4%) 60(81.1%) 2(0.9%) 565 458 1280 11 0.023
15 20 0.008 - 461 (25%) 59 (79.7%)  1(0.4%) 571 455 1274 6 0.013
17 20 0.009 - 451 (24.4%) 57 (77.0%)  0(0%) 586 451 1259 0 0.000

* Excluded va-ASVs: values lacking (i.e., 1 and 16) represent solutions that were not found with any pairwise
combinations of criteriaand threshold values; ** Observed values, *** Estimated values; **** The ratio n/t represents
the estimated proportion of na-ASVs in the filtered dataset.
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Figure captions

Figure 1. Schematic summaries of generic metabarcode filtering and metaMATE. (A) Simplified
generic metabarcoding pipeline from raw reads to amplified sequence variants (ASVs). (B) Key
steps and processes within metaMATE. Ellipses represent sequence data, rectangles other data, and
arrow-shapes processes. Processes conducted externally to metaMATE are marked with dashed
outline. Stacked ellipses represent multiple parallel data, for example multiple fasta files containing
sequences from different libraries. Green indicates input sequences, while purple indicates output
from metaMATE. Summary statistics describe the performance of different binning strategies and
thresholds to simultaneously filter out NUMTs and other erroneous sequences (non-authentic ASV's)
while retaining true mitochondrial sequences (authentic ASVs). (C). Schematic of the expected
effect of filtering on the survival of ASVs, where na-ASVs (in red) are removed more effectively
than aASVs (in gren). A and a are the numbers of initial and surviving authentic ASVs (a-ASVs); N
and n are the numbers of initial and surviving non-authentic ASV's (na-ASVs); T and t are the total
number of initial and surviving ASVs; the subindex “v” indicates the respective subsets of verified

authentic and verified non-authentic ASVs.

Figure 2. Patterns of phylogenetic relatedness and library co-amplification of ASV's within selected
lineages. (A) Halictus rubicundus, (B) Halictus tumulorum (C), Lasioglossum malachurum, and (D)
Cryptocephalus. Graphs show ML phylogenetic trees with mapped distributions of read abundances
across libraries (blue circles, with size being proportional to read number) onto each ASV (grey
circles, with size being proportional to total abundance across all libraries). Edges of the network
represent the presence and abundance (line width) of each ASV within each library. For (A), (B) and
(C) each library is a single specimen, whereas in (D) each library includes a complex natural

community of beetles where Cryptocephalus specimens were present. Clades in red are the best-
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supported species clusters from bPTP analyses, blue dashed lines highlight ASVs that are identical to
a reference sequence (va-ASVs), red dashed lines highlight ASVs with STOP codons or INDELS
(vna-ASVs), and grey dashed lines highlight ASV's of unknown origin (u-ASVs). Nodes in (D) are
labelled to show clades (C1-C8) and grades (G1-G2) that are exclusively formed by vna-ASV's and

U-ASvVs.

Figure 3. Theinfluence of minimum absolute ASV abundance threshold by library on different
measures of filtering success and when sampling is biased against low abundance va-ASVs. (A)
Proportions of va-ASVs removed (false negatives; black squares and lines) and vna-ASV's retained
(false positives; red circles and lines) for three example datasets, bees (BEE), Coleoptera (COL) and
Coleptera, Acari and Collembola (CAC). (B) Estimated numbers of a-ASVs and na-ASV's
comprising initial and filtered ASV datasets for the same three data setsin (A). Grey shading
represents the estimated number of initial aASV's, red shading represents the estimated number of
initial nacASV's, black squares and lines correspond to estimated number of retained a-ASV's, and red
circles and lines correspond to estimated number of retained na-ASVs. (C) Estimated number of a
ASVsand naASVsininitial and filtered data under low, moderate and strong manipulation to
exclude low abundance va-ASVs. Grey and red shading represent the estimated number of initial a
ASVsandinitia na-ASV's, respectively. Black squares and red circles represent estimated numbers
of retained aASVs and retained na-ASV's, respectively. For comparative purposes, red solid, black
solid, red dotted, and black dotted lines respectively represent estimations of initial nacASVs, initial

aASVs, retained na-ASV's, and retained a-ASV's using the full set of va-ASVs.
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