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Abstract 

Metabarcoding of Metazoa using mitochondrial genes may be confounded by both the accumulation 

of PCR and sequencing artefacts and the co-amplification of nuclear mitochondrial pseudogenes 

(NUMTs). The application of read abundance thresholds and denoising methods is efficient in 

reducing noise accompanying authentic mitochondrial amplicon sequence variants (ASVs). 

However, these procedures do not fully account for the complex nature of concomitant sequences 

and the highly variable DNA contribution of individuals in a metabarcoding sample. We propose, as 

a complement to denoising, the metabarcoding Multidimensional Abundance Threshold Evaluation 

(metaMATE) framework, a novel approach that allows comprehensive examination of multiple 

dimensions of abundance filtering and the evaluation of the prevalence of unwanted concomitant 

sequences in denoised metabarcoding datasets. metaMATE requires a denoised set of ASVs as input, 

and designates a subset of ASVs as being either authentic (mtDNA haplotypes) or non-authentic 

ASVs (NUMTs and erroneous sequences) by comparison to external reference data and by analysing 

nucleotide substitution patterns. metaMATE (i) facilitates the application of read abundance filtering 

strategies, which are structured with regard to sequence library and phylogeny and applied for a 

range of increasing abundance threshold values, and (ii) evaluates their performance by quantifying 

the prevalence of non-authentic ASVs and the collateral effects on the removal of authentic ASVs. 

The output from metaMATE facilitates decision-making about required filtering stringency and can 

be used to improve the reliability of intraspecific genetic information derived from metabarcode data. 

The framework is implemented in the metaMATE software, available at 

https://github.com/tjcreedy/metamate).  
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1 | INTRODUCTION 

Bulk DNA amplification and high-throughput sequencing (HTS) of biological samples, known as 

metabarcoding (Taberlet, Coissac, Pompanon, Brochmann, & Willerslev, 2012), is becoming an 

established tool for the study of biodiversity (e.g., Hamady, Walker, Harris, Gold, & Knight, 2008; 

Yu et al., 2012). In metabarcoding, authentic amplicon sequence variants (ASVs; Callahan, 

McMurdie & Holmes 2017) amplified from target genes are inherently accompanied by non-

authentic variants. The latter arise from errors accumulated through the amplification and sequencing 

steps and, in the case of metabarcoding using mitochondrial markers, from the co-amplification of 

mitochondrial-like templates in the nuclear genome, the so-called nuclear mitochondrial sequences 

(NUMTS, Lopez et al. 1994). Sequence variants derived from heteroplasmy may also be coamplified 

and sequenced, adding to the complexity of the metabarcoding output. The analysis of community 

data derived from mitochondrial metabarcoding requires sequences that are free of experimental 

errors and free of paralogous copies, but how to obtain such ‘clean’ data is a central topic in 

metabarcoding research. Sequencing reads have frequently been grouped into Operational 

Taxonomic Units (OTUs) to broadly represent species, but while this process reduces the impact of 

sequencing noise (R. C. Edgar, 2013; Schloss & Westcott, 2011), it has the undesirable effect of 

collapsing fine-scale true variants largely precluding the study of intraspecific variation. One option 

is the application of denoising protocols that have proven efficient in reducing noise accompanying 

authentic ASVs, such as UNOISE (R. Edgar, 2016), DADA2 (Callahan et al., 2016), or Deblur 

(Amir et al., 2017), among others. These methods provide the opportunity for direct analysis of 

sequence variants, without the need for OTU clustering, resulting in improved resolution and 

reproducibility of metabarcoding data (Callahan et al., 2017).  

 The efficiency of denoising procedures may be complicated both by variable DNA 

contributions among individuals in a metabarcoding sample, and the different potential origins of 

non-authentic ASVs. Patterns of read abundance, similarity to target gene copies, and read-quality 
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scores are generally expected to be more predictable for ASVs derived from PCR and sequencing 

error, compared to co-amplified NUMTs or heteroplasmic variants. ASVs derived from PCR and 

sequencing errors typically show low read abundance and only limited divergence from higher 

frequency authentic ASVs (with the exception of chimeras, for which specific filtering methods have 

been designed, e.g., Edgar et al. 2011; Callahan et al. 2016). Additionally, errors generated in the 

sequencing step are expected to show low base quality scores (Callahan et al., 2016). In most cases, 

heteroplasmic variants affecting coding regions represent single point mutations, and are present in 

relatively low abundance compared to the predominant haplotype (Huang et al., 2019; Rensch, 

Villar, Horvath, Odom, & Flicek, 2016), which can be considered the authentic ASV. NUMTs are 

also expected to be amplified with lower relative read-abundance compared to authentic ASVs, as 

the nuclear genome copy number is lower than that of the mitochondrial genome by a factor of 100 

to 10000, depending on the taxon, cell type, and tissue (Bogenhagen, 2012; Quiros, Goyal, Jha, & 

Auwerx, 2017). However, NUMTs, like heteroplasmic variants, are derived from a true genomic 

template and thus are not expected to show lower quality scores compared to mitochondrial copies. 

Additionally, the origin and evolutionary dynamics of NUMTs (e.g., Bensasson et al. 2001; Hazkani-

Covo, Sorek & Graur 2003; Pons & Vogler 2005), means that they can be very divergent from the 

current mitochondrial genome of an individual. Such divergence is a function of (i) the mutation rate 

within the nuclear region where NUMT insertion has occurred, (ii) the mutation rate of the 

mitochondrial genome, and (iii) the time since the nuclear insertion (Bensasson, Zhang, Hartl, & 

Hewitt, 2001), with some insertions estimated to have occurred as much as 58 million years ago 

(Bensasson, Feldman, & Petrov, 2003). A subset of NUMTs are easily recognised based on 

frameshift mutations, in-frame stop codons, or mutational patterns inconsistent with functional 

genes. Such mutations can quickly accumulate due to the absence of selective forces in the inserted 

nuclear regions. However, other NUMTs have no obvious features to distinguish them from a 

mitochondrial copy, as has been documented in DNA barcoding studies (Creedy et al., 2019; 
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Shokralla et al., 2014; Song, Buhay, Whiting, & Crandall, 2008). Among the latter, there may be 

minor variants of authentic ASVs, representing recent nuclear insertions. However, other NUMTs 

will retain their functional structure as ancestrally “frozen” pseudogenes (Bensasson et al., 2001), 

resembling the ancient mitochondrial copy from which they were derived, but with a higher 

divergence from the current mitochondrial haplotype, by accumulation of changes in the latter.  

 Given these characteristics of NUMTs, and their well-documented prevalence in most 

eukaryote taxa (Bensasson et al., 2001; Richly & Leister, 2004), co-amplification of NUMTs may be 

an important contribution to the high proportion of unexpected sequences found in metabarcoding of 

mock communities with known haplotype composition (Elbrecht, Vamos, Steinke, & Leese, 2018), 

in barcoding of single specimens using HTS  (e.g., Wang et al. 2018; Creedy et al. 2019), and also 

the higher than expected number of OTUs (‘OTU inflation') found in some metazoan metabarcoding 

approaches (e.g., Flynn et al. 2015; Clare et al. 2016; Andújar et al. 2018b). In contrast, 

heteroplasmy is expected to have a limited effect on biodiversity estimates derived from 

metabarcode data. Heteroplasmic copies typically have low read abundance and high similarity to the 

predominant haplotype (typically differing by only a single point mutation for coding genes), which 

together facilitate the filtering, together with sequence noise, by the application of denoising 

methods. Here we first use several metabarcoding data sets from arthropods to illustrate the problem 

of NUMT co-amplification. These illustrative examples describe patterns of co-occurrence, relative 

abundance, and phylogenetic relatedness of ASVs that constitute a mixture of authentic 

mitochondrial haplotypes, NUMTs, and PCR and sequencing errors, highlighting the difficultiy  of 

denoising such datasets. The application of denoising procedures and read abundance thresholds 

allow different levels of stringency to be used, which can be adjusted to minimise the survival of 

non-authentic ASVs. However, in complex metabarcoding mixtures, setting highly stringent filtering 

thresholds carry the risk that rare but authentic mitochondrial haplotypes may also be removed. 

Conversely, overly conservative thresholds may result in many non-authentic ASVs not being 
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removed. Critically, there is no method available to evaluate the performance of read filtering and 

denoising procedures in natural communities of unknown composition with regard to the survival of 

spurious sequences and/or the removal or authentic target sequences. Thus, filtering stringency is 

decided blindly. 

Here we propose the metabarcoding Multidimensional Abundance Threshold Evaluation 

(metaMATE) framework, a comprehensive examination of multiple dimensions of abundance 

filtering and the evaluation of the prevalence of unwanted concomitant sequences in denoised 

metabarcode datasets (Fig. 1 and Supp. Fig. S2). The framework is implemented in the metaMATE 

software, available at https://github.com/tjcreedy/metamate. metaMATE requires a denoised set of 

ASVs as input, and before filtering steps, it designates a subset of ASVs as being either authentic 

(mtDNA haplotypes) or non-authentic ASVs (NUMTs and sequencing artefacts) by comparison to 

external reference data and by analysing nucleotide substitution patterns. The software incorporates 

the application of read abundance filtering strategies, including choices for absolute or relative 

thresholds, which are applied either to whole datasets, individual libraries, within lineages, within 

taxa, or combined over multiple of these dimensions. For each filtering strategy, metaMATE 

facilitates the batch application of filtering for a range of abundance threshold values. metaMATE 

evaluates the performance of each filtering exercise by quantifying the prevalence of non-authentic 

ASVs and the collateral effects on the removal of authentic ASVs. Modifications to filtering criteria 

may alter these proportions, facilitating the identification of optimal parameters which may vary 

among data sets due to the characteristics of target taxa and target genes. The output from 

metaMATE also allows different research objectives, for which removing non-authentic and retaining 

authentic ASVs may have different importance, to guide decision-making about optimal filtering 

strategy. We demonstrate the utility of the method using metabarcode data from mock and natural 

communities of various complexity. The results indicate that metaMATE should be of general utility 

for metazoan metabarcoding.  
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2 | MATERIALS AND METHODS 

2.1 | The metaMATE abundance-based ASV filtering and evaluation framework 

The metaMATE rationale is that read filtering strategies can be evaluated and compared with regard 

to the prevalence of unwanted concomitant sequences, hereafter referred to as NUMTs (nuclear 

copies of mitochondrial genes) and noise (variants of target sequences derived from PCR and 

sequencing error, or heteroplasmic variants with a similar profile, remaining after denoising), versus 

authentic haplotypes. NUMTs and noise will ideally be removed while retaining the authentic 

haplotypes. Filtering strategies can be designed to consider read-abundance by dataset, library, or 

lineage (as a proxy for phylogenetic relatedness), which we implemented in the metaMATE program. 

The same rationale can be used to evaluate other filtering strategies and available denoising methods 

under a range of stringency parameters. This allows users to decide upon the most appropriate 

metabarcoding filtering parameters according to their data and research objectives, while providing a 

measure of the expected number of concomitant sequences in the final dataset. The method 

comprises two main steps (Fig. 1B): 

1. Classification of ASVs. Our starting point is a dataset of ASVs, each of which exclusively 

belongs to one of two categories: (i) authentic ASVs (a-ASVs) that correspond to actual 

mitochondrial copies, and (ii) non-authentic ASVs (na-ASVs) that are either noise or NUMTs (see 

Box 1 for a list of used acronyms). Evaluation of filtering performance relies on the ascertainment of 

a subset of ASVs that can be confidently considered as authentic sequences (designated as verified-

authentic-ASVs; va-ASVs) or non-authentic (designated as verified-non-authentic-ASVs; vna-

ASVs). Given the input ASV dataset, va-ASVs can be identified by comparison to reference 

databases, under the assumption that references are authentic mitochondrial (usually COI barcode) 

sequences. Any ASV that includes indels and/or stop codons in the translation rendering it non-
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functional is designated as a vna-ASV. We consider all other ASVs to be unclassified-ASVs (u-

ASVs). Pre-processing of the input ASV dataset may vary according to the filtering thresholds to be 

evaluated, see section 2.2.  Improvements in the confident classification of ASVs as va-ASVs or vna-

ASVs, such as the availability of local reference databases, will benefit the accuracy of metaMATE.  

2. Data filtering and evaluation of filtering performance. ASV datasets are subject to filtering 

procedures with the aim of removing na-ASVs while retaining a-ASVs. Filtering procedures are 

based on specification of filtering strategies: one or more dimensions by which to evaluate ASV 

abundance. Each strategy is based on absolute or relative ASV counts either over the entire dataset or 

by library, optionally further partitioned based on clade and/or taxon membership of ASVs. For each 

strategy, a range of thresholds can be supplied, and filtering is performed repeatedly for each 

threshold within each term. For example, the basic strategy employed by most metabarcoding 

piplines is “minimum absolute total ASV number across the dataset”, usually implemented with a 

single threshold. The metaMATE program can implement this, but can expand to explore the effects 

of filtering over multiple such thresholds. An alternative strategy would be to filter based on the 

“minimum absolute number of ASVs per library”, where metaMATE would examine the number of 

reads of an ASV in each library in which it occurred, and reject it if these counts failed to meet the 

threshold in all libraries in which it occurred. Either of these strategies could alternatively be 

implemented relative to the total number of reads in the dataset or in each library respectively. 

These two basic dimensions of ASV abundance can also be partitioned and implemented in 

more detailed strategies. The metaMATE program can incorporate clade or taxon membership 

information to filter by, for example, relative ASV abundance by clade within library, whereby the 

total number of reads for each clade within each library is computed, and then for a given threshold, 

ASVs are rejected if they fail to meet this threshold for any clade/library combination in which they 

occur. In total, 16 such combinations of total or library counts, clade and/or taxon membership and 

absolute or relative counting can be implemented, either individually, successively or synergistically 
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(see below). For each such strategy, a range of thresholds can be specified, and metaMATE runs a 

separate filtering iteration for every threshold for every strategy. 

Filtering automatically generates data on the survival of ASVs classified as va-ASV and vna-

ASV. The application of a given filtering criterion (e.g. minimum number of reads by library 

required to retain an ASV) for a range of values for filtering parameters allows trends for the survival 

of va-ASV and vna-ASV to be analysed. 

In addition to obtaining values for the survival of va-ASV and vna-ASV, for each filtering 

threshold the number of (i) a-ASVs in the initial ASV dataset; (ii) surviving a-ASVs in the filtered 

dataset; (iii) na-ASVs in the initial dataset, and; (iv) surviving na-ASVs in the filtered dataset can be 

estimated. These estimations are made from the known values of (i) the number of ASVs in the 

initial dataset and the number of ASVs retained after filtering and (ii) the proportion of retained va-

ASVs and vna-ASVs, under the assumption that va-ASVs and vna-ASVs are a representative subset 

of all a-ASVs and na-ASVs respectively in the initial dataset. This assumption implies that (i) the 

ratio between the number of va-ASVs before and after filtering will be similar and can be 

extrapolated to the ratio between a-ASVs before and after filtering, and (ii) the ratio between the 

number of vna-ASVs before and after filtering will be similar and can be extrapolated to the ratio 

between all na-ASVs before and after filtering.  

Then, we can estimate the total number of surviving a-ASVs a using the formula:

 

 Where Av and av are the numbers of initial and surviving va-ASVs, Nv and nv are the numbers 

of initial and surviving vna-ASVs and T and t are the total number of initial and surviving ASVs. 

From this, we can also calculate the estimated total number of surviving na-ASVs n and the total 
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number of initial a-ASVs and na-ASVs (A and N) (Fig. 1C; formula derivation in Supplementary 

Materials). 

 The metaMATE program is written in python3, with some aspects in R. The python3 code 

utilises the on biopython (Cock et al., 2009) library for sequence data handling, and also depends on 

numpy (Oliphant, 2006). The R code makes use of libraries ape (Paradis, Claude, & Strimmer, 

2004), phangorn (Schliep, 2011) and getopt. The software allows the user to (i) classify ASVs as va-

ASVs and vna-ASVs, (ii) apply any number of filtering criteria constructed from the four dimensions 

described above alone or in combination, with unlimited customised threshold ranges, facilitating the 

analysis of trends in survival of va-ASVs and vna-ASVs, and (iii) estimate the number of surviving 

a-ASV and na-ASVs for each filtering criterion and parameter range explored, using the formula and 

assumptions described above. Further details on the installation and application of the software are 

provided in the Supplementary Materials and at https://github.com/tjcreedy/metamate. 

 

2.2 | Empirical application of metaMATE 

2.2.1 | Datasets 

Three existing COI metabarcoding datasets were used, originating from: (i) 780 individually 

metabarcoded bees (BEE dataset; Creedy et al. 2019) which were used for current purposes to 

generate 50 in silico mock communities of 100 individuals drawn from a subset of 462 confidently 

identified specimens; (ii) 94 Coleoptera communities from soil samples from the island of Tenerife 

(COL dataset) (Andújar et al. in prep), and (iii) 48 communities of Coleoptera, Acari and Collembola 

from soil samples from Grazalema, southern Spain (CAC dataset) (Arribas et al. in prep) (Suppl. Fig. 

S1). The three datasets were generated using a nested PCR approach with Nextera XT indexes. In all 

cases, initial amplification was performed using degenerate primers for 418 bp of the 3’ end of the 

COI barcode region (Andújar, Arribas, et al., 2018). 
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To ensure uniform treatment of datasets, raw sequence reads were re-processed following a 

uniform protocol including primer removal, paired end merging, quality filtering, length filtering for 

reads ranging between 416-420 bp (the expected 418 bp amplicon ± 2 bp), followed by denoising 

library by library using UNOISE 3 in USEARCH v11 (Edgar, 2016). The last step included chimera 

filtering, dereplication, and removal of all singleton reads which were not considered further. The 

sequences surviving the cleaning and denoising steps (hereafter ASVs) were classified to order or 

superfamily level, and only ASVs classified as the target taxon or taxa were retained: Apoidea (BEE 

dataset), Coleoptera (COL) and Coleoptera, Acari and Collembola (CAC). To perform this 

classification, we generated a reference database comprised of the NCBI nt database (downloaded 17 

June, 2018) combined with either (i) 1,011 additional reference COI sequences from Coleoptera, 

Acari and Collembola specimens collected in the Canary Islands and Sierra de Grazalema (COL and 

CAC datasets) or (ii) the BEEEE reference database described in Creedy et al 2019. For each of the 

three datasets, searches against the reference database were performed using the BLASTn algorithm 

(Altschul, Gish, Miller, Myers, & Lipman, 1990), with the following settings:  -evalue 0.001, -

max_target_seqs 100. Blast results were then processed with MEGAN6 (Huson et al., 2016), using 

the weighted lowest common ancestor algorithm with default settings to assign taxonomy to ASVs.  

 

2.2.2 | Phylogenetic structure, read-abundance, and library co-amplification of 

ASVs  

To illustrate the patterns of library co-amplification, read-abundance, and phylogenetic similarity 

among noise and NUMTs (na-ASVs) and authentic haplotypes (a-ASVs) generated in COI 

metabarcoding, we conducted maximum-likelihood (ML) phylogenetic analysis to establish 

relationships of the ASVs within four lineages, and mapped ASV distributions and read abundances 

against each library using Cytoscape (Shannon et al., 2003). We used two species within the genus 
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Halictus and one in the genus Lasioglossum (Hymenoptera; Apoidea) from the BEE dataset, and the 

genus Cryptocephalus (Coleoptera: Chrysomelidae) from the COL dataset. A ML tree was first 

estimated from an alignment (using MAFFT and the FFT-NS-1 algorithm; Katoh & Standley, 2013) 

of all ASVs from across all libraries for each dataset, with the aim of identifying the clade of ASVs 

corresponding to the target taxa. All relevant ASVs were extracted, but for logistical purposes related 

to dataset size and graphical representation, ASVs with a read-count of less than five were excluded 

from each library and, in the case of Cryptocephalus, only the largest 10 libraries (>1000 reads 

within the Cryptocephalus lineage) were selected. ML inferences were conducted in RAxML 

(Stamatakis, 2006) with 100 searches for the best tree (GTR+G+I model) and 1000 bootstrap 

pseudoreplicates. In addition, for each dataset a species delimitation analysis was conducted on the 

ML tree using bPTP (Zhang, Kapli, Pavlidis, & Stamatakis, 2013) on the bPTP web server 

(https://species.h-its.org/) with 100,000 generations and a burn-in of 10%.   

 

2.2.3 | Application of metaMATE 

We applied metaMATE to each dataset to identify va-ASVs and vna-ASVs and evaluate the effects 

on the survival of a-ASVs and na-ASVs under a range of threshold values for different filtering 

strategies based on read-abundance of ASVs, structured with regard to sequence library and 

phylogeny. For the COL and CAC datasets, identification of va-ASVs was performed by comparison 

against the reference set of 1,011 sequences described above combined with the NCBI nt database, 

using BLASTn (-perc_identity 100, only hits with match length >400 bases were considered). For 

the BEE dataset, identification of va-ASVs was performed by comparison against the set of 

sequences for the known authentic haplotype of each of the 462 individuals sequenced. All ASVs 

that included indels and/or stop codons in the translation were designated as vna-ASVs. All others 

were considered unclassified u-ASVs.  
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 In all cases a given ASV was only excluded if it did not pass the read-abundance threshold in 

all libraries where it was present. The five filtering strategies here tested were: (i) Absolute ASV 

abundance by library, with analysed threshold between 3 and 100 reads. (ii) Relative ASV abundance 

by library, with analysed threshold values between 0.025% to 1%. (iii) Relative ASV abundance by 

library and 20% similarity clade. (iv) Relative ASV abundance by library and 15% clade. (v) 

Relative ASV abundance by library and 26% clade. For strategies (iii) to (v), read abundance 

thresholds from 0.1% to 90% were analysed. Clades were delimited based on specified divergence 

thresholds from an UPGMA tree of all ASVs constructed using F84 model-corrected distances 

(Felsenstein & Churchill, 1996) based on a MAFFT FFT-NS-2 alignment (Katoh et al. 2002) of the 

ASV sequences. 

 Potential synergy among criteria for removal of na-ASVs while maximizing the survival of a-

ASVs was evaluated for the COL dataset, by applying a combination of two of the following 

strategies: (i) absolute ASV abundance by library, (ii) relative ASV abundance by library, and (iii) 

relative ASV abundance by library and 20% clade. Only ASVs surviving the application of both 

criteria were retained. 

 Finally, using the COL dataset we explored how ASV survival and removal affect: (i) the 

number of OTUs recovered under similarity thresholds for OTU clustering of 3% and 6%, (ii) the 

number of surviving OTUs that include one or more va-ASV and consequently can be considered as 

verified authentic OTUs, and (iii) the number of surviving OTUs that exclusively comprise vna-

ASVs and consequently can be considered as verified non-authentic OTUs. The latter contribute to 

OTU inflation. Similarity clusters were obtained using distances estimated with the F84 model and a 

UPGMA tree as before.  

 

3 | RESULTS 
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Raw sequence reads were subjected to uniform procedures of merging, cleaning, and denoising to 

establish the total ASVs for each dataset (Fig. 1A), of which a subset could be confidently classified 

as authentic mitochondrial (va-ASVs) against the respective reference databases (see Material and 

Methods) or spurious (vna-ASV), leaving all others as unclassified (u-ASVs). The BEE dataset 

contained 2251 total ASVs identified as Apoidea, including 160 va-ASVs and 117 vna-ASVs. The 

COL dataset yielded 1845 ASVs classified as Coleoptera, with 74 classified as va-ASVs and 228 as 

vna-ASVs. The CAC dataset yielded 4804 ASVs, with 712 assigned to Coleoptera (55 va-ASVs and 

40 vna-ASVs), 2731 to Acari (99 va-ASVs and 92 vna-ASVs), and 1361 to Collembola (67 va-ASVs 

and 105 vna-ASVs). Thus, in all cases a large number of AVSs remained “unclassified”. 

 

3.1 | Phylogenetic structure, read-abundance, and library co-amplification of 

ASVs  

A subset of ASVs was assessed using phylogenetic analysis, to establish the relationships of verified 

authentic mitochondrial (va-ASVs) and verified non-authentic (vna-ASVs) copies. Phylogenetic 

relationships and their distributions across libraries were displayed relative to their abundance in a 

bipartite graph (Fig. 2). The three species of BEE, Halictus rubicundus (5 individuals, each 

sequenced in a separate library), H. tumulorum (5 individuals), and Lasioglossum malachurum (33 

individuals) produced a total of 18, 43, and 45 ASVs, respectively, and included 2, 1 and 2 va-ASVs. 

In every individual, the most abundant ASV corresponded to a va-ASV (Table 1). A total of and 3, 8 

and 8 vna-ASVs were identified for each species respectively, with relatively low read-counts 

summed across libraries (maximum read count for a vna-ASV = 344; mean for the 19 vna-ASVs = 

62) (Table 1). Fifteen of the 19 were shared across 2 or more individuals, including one vna-ASV 

that was shared across 24 individuals. The 82 unclassified ASVs (u-ASVs) showed relatively low 

accumulated read-counts summed across libraries (range 10-1795; mean = 87) and 58 of 82 were 
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shared across 2 or more individuals (Fig. 2). Species delimitation analysis on the phylogenetic tree 

from all ASVs with the bPTP procedure produced two candidate species for both H. tumulorum and 

L. malachurum, and in both cases one was exclusively composed of low abundance u-ASVs. It is 

worth noting that in the case of the BEE dataset all a-ASVs were known, thus all other ASVs had to 

be either sequencing artefacts or NUMT sequences. 

For the genus Cryptocephalus, 6 of 118 ASVs were identified as va-ASVs, each with a high 

read-count summed across libraries (Fig. 2D, Table 1). Several u-ASVs, closely related to the va-

ASVs in the ML tree, showed similarly high read abundances, suggesting their mitochondrial origin 

(only a subset of the COL authentic haplotypes is known). Several libraries showed more than one 

high-abundance va-ASV, as expected if more than one Cryptocephalus species was present in a 

sample (libraries correspond to soil samples that sometimes contained tens of Cryptocephalus 

larvae). Thirty ASVs classified as vna-ASVs were found, all of them with low abundances (read-

counts summed across libraries from 5 to 43; mean = 13). These vna-ASVs clustered together with 

additional low abundance u-ASVs into several clades (named C1-C8 in Figure 2D) and grades 

(named G1 and G2 in Figure 2D). Several of these clades were classified by bPTP as candidate 

species, producing 39 species in total where only 4 were expected. Despite the notable divergence of 

sequences inside these clades or grades from the closest va-ASV (e.g, clade C1 has a mean non-

corrected p distance of 14.5% against the closest va-ASV), in many cases, vna-ASVs or closely 

related low abundance u-ASVs were co-amplified in two or more libraries that in addition shared the 

same Cryptocephalus species or closely related species, suggesting a NUMT origin that predates 

speciation. As an example, libraries S20 and S92 (Fig. 2D) that shared the presence of authentic 

mitochondrial haplotypes from Cryptocephalus sp. 4, also shared one vna-ASV and 3 closely related 

low abundance u-ASVs within the grade G2 and clade C8. Also, all six libraries including va-ASVs 

from Cryptocephalus sp. 3 and sp. 4 shared co-amplified distantly related ASVs (p-distances >15%) 

from clade C1 (composed of a set of low abundance u-ASVs and vna-ASVs) (Fig. 2D). In a 
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consistent manner, libraries S29, S30, S56 and S74, that only included va-ASVs from 

Cryptocephalus sp. 1 and sp. 2 did not include any ASVs from clade C1 (Fig. 2D).  

 

3.2 | Evaluation of filtering efficiency  

For all datasets, across all read abundance filtering strategies, increasing thresholds for minimum 

read abundance resulted in contrasting trends for the removal of va-ASVs and vna-ASVs. In general, 

the proportion of surviving vna-ASVs dropped quickly below 10% as thresholds were increased, at 

which point the percentage of surviving va-ASVs exceeded 90% (Fig. 3A, Supp. Fig. S3).  

The observed values of va-ASVs and vna-ASVs, and estimated values of initial and final a-

ASVs and na-ASVs (using the rationale and formula described in methods) are summarized in 

Figure 3, Supplementary Figures S3 and S4, and Supplementary Tables S1-S15. For the BEE dataset, 

it was possible to eliminate 99% of vna-ASVs while keeping more than 95% of the va-ASVs using 

filters for either an absolute or a relative ASV abundance by library. Filtering by the three variants 

for minimum proportion of reads by similarity cluster and library produced some recalcitrant vna-

ASVs that were not removed. For COL and CAC, the filtering criteria generally allowed elimination 

of 90-95% of vna-ASVs while retaining 80-90% of the va-ASVs. The observed value of vna-ASVs 

and estimated value of final (surviving) na-ASVs always showed a strong decay reaching 0 (in the 

case of filtering by minimum absolute or relative ASV abundance by library) or a certain number 

(filtering based on relative ASV abundance by library and similarity cluster) corresponding to a fixed 

number of recalcitrant na-ASVs not removable with such criteria. The observed value of va-ASVs 

and the estimated value of final (surviving) a-ASVs showed a shallower decay with increasing 

threshold values. 

For the BEE and COL datasets, estimates of initial a-ASVs and na-ASVs were approximately 

constant through increasing threshold values with the strategies of a minimum absolute or relative 
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ASV abundance by library. In the case of BEE, estimated values for A and N (estimated number of a-

ASVs and na-ASVs before filtering) approached the known true values (from Creedy et al. 2019) of 

A = 160 and N = 2091. Filtering by minimum absolute ASV abundance by library, we obtained A 

mean = 167 (SD = 10) and N mean = 2083 (SD = 10) across different thresholds while minimum 

relative ASV abundance by library, resulted in A mean = 165 (SD = 10) and N mean = 2086 (SD = 

10). For COL, for the same two criteria, estimated values were always close to A = 600 (mean = 581, 

SD = 20; and mean = 605, SD = 27, respectively) and N = 1250 (mean = 1263, SD = 20; and mean = 

1238, SD = 27). Estimation of initial a-ASVs and na-ASVs for the CAC dataset showed a different 

pattern, with a decrease in the estimated value of initial a-ASVs with increasing threshold values, 

from around 2,200 a-ASVs to 1,000 a-ASVs (mean = 1451, SD = 360; and mean = 1398, SD = 263, 

respectively for the two criteria), and an increase of initial na-ASVs from 2600 to 3800 (mean = 

3245, SD = 360; and mean = 3352, SD = 263). Based on the minimum percentage of reads by 

similarity clusters, the estimation of final and initial a-ASVs and na-ASVs is less predictable (Supp. 

Fig. S4), resulting in incorrect values in the case of the mock community (BEE dataset) and stronger 

trends toward the increasing number of na-ASVs and decreasing number of a-ASVs with increasing 

threshold values in all datasets.  

The simultaneous application of two filtering strategies to the COL dataset improved filtering 

performance (Table 2). Several of the better filtering combinations resulted in a proportion of 

surviving vna-ASVs between 2% and 2.6%, estimated to represent 5-6% of all ASVs surviving 

filtering. The same parameters retained between 82% and 88% of the va-ASVs, estimated as 94-95% 

of all ASVs surviving filtering. With more stringent combinations of parameters, estimated 

proportions of na-ASVs in the final dataset can be reduced to 0, 1%, and 2% while still retaining 

77%, 80%, and 81% of a-ASVs. (Table 2). 

Lastly, we examined the effect of increasing filtering stringency on the number of recovered 

OTUs. Increasing thresholds for minimum read abundance resulted in a similar trend to that found 
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for ASVs, with contrasting results for the removal of those OTUs verified as authentic and non-

authentic (Supp. Table S16). The number of surviving OTUs verified as non-authentic (exclusively 

formed by vna-ASVs) reduces more quickly than the number of OTUs verified as authentic. The 

proportion of surviving OTUs verified as authentic for both 3% and 6% clustering was very similar 

to the proportion of surviving va-ASVs for the three filtering criteria and all thresholds values. The 

proportion of surviving OTUs verified as non-authentic showed a higher rate of survival than that 

observed for vna-ASVs. As an example, filtering with a minimum relative ASV abundance by 

library of 0.009 resulted in the survival of 87.8% of va-ASVs, 86.5% of verified authentic OTUs, 

4.8% of vna-ASVs, and 21.9% of verified non-authentic OTUs (OTU clustering at 3%) (Supp. Table 

S16). Thus, “taxonomic inflation” generated by spurious variants can be a more recalcitrant problem 

than removal of individual NUMTs, requiring higher threshold values for filtering, with an 

associated cost in the removal of rare species from the dataset. 

 

4 | DISCUSSION 

NUMTs have long been recognised to confound barcoding with Sanger and high throughput 

sequencing (e.g., Song et al. 2008; Shokralla et al. 2014; Creedy et al. 2019), and the potential 

impact of NUMTs on metabarcoding has been discussed widely (e.g., Ramirez-Gonzalez et al. 2013; 

Andújar et al. 2018b; Elbrecht et al. 2018; Liu et al. 2019; Delsuc & Ranwez 2020). NUMTs are 

likely to be consequential in metabarcoding because of: (i) the widespread use of degenerate primers 

for metabarcoding (e.g. Andújar et al. 2018a; Elbrecht et al. 2019); (ii) the complexity of specimen 

mixtures that produce metabarcoding data, and; (iii) the sensitivity of single-molecule sequencing 

with HTS platforms. NUMT insertions have been documented to occur multiple times within 

lineages (Bensasson et al., 2003; Hazkani-Covo et al., 2003; Pons & Vogler, 2005; Shi, Dong, Irwin, 

Zhang, & Mao, 2016), with NUMTs accumulating within genomes over time. In addition, once 
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inserted, duplication events within the nuclear genome may contribute to the formation of NUMT 

families (Baldo, De Queiroz, Hedin, Hayashi, & Gatesy, 2011; Bensasson et al., 2003; Pamilo, 

Viljakainen, & Vihavainen, 2007), potentially resulting in hundreds of NUMTs (e.g., Ramos et al., 

2011). Critically, NUMTs can retain a fully functional mitochondrial sequence long after their 

nuclear insertion, if inserted within invariant regions of the nuclear genome (Bensasson et al., 2001). 

The illustrative examples selected within our metabarcoding datasets highlight the potential 

magnitude of NUMT diversity in mitochondrial metabarcoding. Despite the difficulty for in fully 

differentiating NUMTs from noise, ASVs identified as non-authentic (vna-ASVs) exhibiting stop 

codons and/or frame-shift mutations generally fit patterns of phylogenetic relatedness, read-

abundance, co-occurrence, and haplotype sharing across independent libraries that are expected from 

NUMTs (Fig. 2). The pattern of low-read abundance and library co-amplification of additional 

ASVs, which are phylogenetically related to vna-ASVs but do not include stop codons and/or frame-

shift mutations, point to their probable NUMT origin, illustrating the difficulty to identify all 

NUMTs exclusively based on their nucleotide sequence.  

 The accumulation of sequence variants derived from PCR and sequencing error, and the co-

amplification of NUMTs, result in a complex mixture of concomitant sequences accompanying 

target haplotypes in metabarcoding of mitochondrial genes. Read abundance is an obvious filtering 

parameter. However, read-abundance relationships may be imperfect due to (i) authentic rare 

haplotypes with relatively low read abundances overlapping with the abundance ranges of 

concomitant sequences generated from species contributing with more DNA to the DNA pool, and 

(ii) potential amplification biases increasing the read abundance of some particular NUMT copies. 

This implies that it is very unlikely that a single abundance threshold can be devised for the removal 

of all NUMTs and noise sequences from a set of ASVs, while not excluding authentic haplotypes. It 

also suggests that, because of idiosyncratic heterogeneity and amplification biases, different datasets 

may vary with regard to optimal criteria and thresholds-parameters to minimise false positives 
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(unwanted sequences retained) and/or false negatives (authentic haplotypes excluded). In this 

context, denoising procedures are designed to consider not only read abundance, but also similarity 

among sequences, and even error profiles expected from sequencing technology into their models 

(e.g. UNOISE, Edgar, 2016; DADA2, Callahan et al., 2016; and Deblur, Amir et al., 2017). 

However, filtering is typically applied without the possibility of checking performance and deciding 

upon optimal stringency parameters. Our results show that while denoising likely removes the 

majority of sequencing errors contributing to ‘noise’, it may be not sufficient to remove all noise and 

particularly fails to remove sequences that are likely NUMTs. Further filtering is required if the aim 

is to generate a dataset suitable for haplotype-level analysis, or to reliably eliminate spurious OTUs. 

 Here we propose a framework to evaluate and select filtering strategies according to user 

requirements and filtering performance, using a subset of ASVs known to be either authentic 

mitochondrial haplotypes or undesired NUMTs or noise. We have implemented the evaluation 

framework within a program that allows for batch application of several filtering strategies under a 

range of threshold values. We have demonstrated the difficulties for the removal of spurious 

sequences, and the benefit of evaluating the efficiency of different filtering strategies. metaMATE 

implements several filtering strategies based on absolute read numbers and relative read-abundances 

of ASVs against the total number of reads in libraries or lineages. For all strategies, opposing trends 

are observed with increasing threshold value for the removal of verified authentic (va-ASVs) and 

verified non-authentic (vna-ASVs) sequences. The relative rapid decay of non-authentic sequences 

allows the elimination of 90-95% of vna-ASVs, while retaining 80-90% of va-ASVs. In addition, 

metaMATE can easily incorporate more complex, custom made filtering strategies. Using paired 

combinations of filtering criteria, results were improved by removing 98% of vna-ASVs, while 

retaining 81% of the va-ASVs, and more complex filtering strategies may further improve these 

results. 
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After obtaining the survival ratios of both va-ASVs and vna-ASVs, metaMATE estimates the 

number and proportion of surviving a-ASVs and na-ASVs for each abundance threshold (Fig. 1), on 

the assumption that the subset of va-ASVs and vna-ASVs are representative of the initial number of 

a-ASVs and na-ASVs, respectively. This allows for the selection of thresholds based on individual 

acceptance criteria for the maximum number (or proportion) of na-ASVs in a given final dataset. 

Results from the mock community and real datasets analysed here illustrate the potential utility and 

issues associated with estimations of a-ASVs and na-ASVs in the initial and final (filtered) datasets. 

Increasing thresholds based on absolute and relative ASV abundance by library for both the BEE and 

the COL datasets resulted in estimates of the initial number of a-ASVs (A) and na-ASVs (N) that are 

approximately constant, with estimates for BEE approaching the known true values. This supports 

the reliability of estimates. However, the CAC dataset revealed a different pattern, with a decrease in 

the estimated number of initial a-ASVs and an increase for initial na-ASVs with increasing threshold 

values (Supp. Fig. S4). This variation in the estimated values is likely due to the violation of the 

assumption that va-ASVs are a representative subset of all a-ASVs (��
��

�

�

�
), and thus presents a 

potential means to evaluate the assumption itself. To explore this further, we manipulated the subset 

of va-ASVs used within the COL dataset to simulate both (i) bias from a lack of low abundance va-

ASVs (represented in Fig. 3C), and (ii) bias from a lack of high abundance va-ASVs (Supp. Fig. S5). 

For both types of bias we explored three intensities: strong, moderate and low. Results reveal that 

bias generated by a lack of low abundance va-ASVs reproduces the pattern found for the CAC 

dataset, whereas bias for a lack of high abundance va-ASVs generates the opposite trend. These 

analyses show that the effect of bias on the estimated initial number of a-ASVs and na-ASVs 

increases with increasing threshold values. However, they also reveal a limited effect on the 

estimated number of a-ASVs and na-ASVs in the final dataset, a consequence of the low number of 

surviving na-ASVs with increasing thresholds. It is also worth noting that filtering strategies based 

on relative ASV abundance estimated within similarity clusters result in biased estimations, likely 
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due to the prevalence of recalcitrant na-ASVs associated to clusters exclusively formed by a single or 

several na-ASVs. Taken together, these analyses of bias suggest that: (i) if the assumption of the 

ratios (��
��

�

�

�
) is met, the correct estimation of both initial and final (surviving) numbers of a-ASVs 

and na-ASVs is straightforward; (ii) violation of the assumption results in predictable changes in the 

initial number of a-ASVs and na-ASVs, with only limited effect on the estimation of the number of 

a-ASVs and na-ASVs in the final dataset, and; (iii) estimates obtained from criteria where abundance 

is calculated within similarity clusters alone are less reliable and should not be used.  

Our results also reveal that OTU clustering alone may not be sufficient to remove the effect 

of na-ASVs. OTUs that are identified as non-authentic can pass filtering based on read-abundance 

even in higher proportions than individual vna-ASVs. This highlights the problem of “OTU 

inflation” (Flynn et al. 2015), which we show can be reduced by increasing read-abundance 

thresholds, but with the expected trade-off for the removal OTUs representing rare species (Supp. 

Table S16). Thus, the broader metaMATE framework can be also used at the OTU level to evaluate 

filtering performance and the expected taxonomic inflation in datasets before and after filtering, 

optimising between taxonomic inflation and the removal of rare species. 

In conclusion, our results illustrate the presence of NUMT sequences in COI metabarcode 

data and highlight the need to evaluate thresholds for each dataset according to user-defined 

acceptable levels of false positives and false negatives. Studies seeking data with minimal error, such 

as for phylogeographic (e.g., Turon et al., 2019) or population genetic analyses (e.g., Elbrecht et al., 

2018), should opt for stringent thresholds, to minimise the confounding effect of NUMTs and other 

spurious sequences, even at the expense of removing some authentic haplotype data and rare species. 

For other applications, such as those based on measures of beta diversity to explore broad ecological 

patterns, less strict thresholds may be admissible. In addition, studies aiming to estimate richness 

values at haplotype or even OTU levels may consider expected biases generated by surviving 

concomitant sequences to correct data and generate estimates of a-ASVs and authentic OTUs in the 
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initial and final (filtered) datasets. Ultimately these are decisions that can now be made and reported 

with the incorporation of the proposed evaluation framework in analysis pipelines, by the application 

of metaMATE to ASV datasets generated after denoising. Thus, metaMATE builds upon existing 

denoising strategies to evaluate the reliability of intraspecific genetic information derived from 

metabarcode data, opening the door for community-level genetic analyses requiring haplotype-level 

resolution. 
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Box 1. 

 

 

 

 

 

 

 

 

 

  

Box 1. List of acronyms. 

ASV. Amplicon Sequence Variant, sensu Callahan et al. (2016). Each unique DNA 
sequence within a denoised metabarcoding dataset is an ASV. 

NUMT. NUclear MiTocondrial, sensu Lopez et al. 1994. Pseudogenes originating 
from the insertion of mitochondrial DNA fragments in the nuclear genome. 

a-ASV. Authentic Amplicon Sequence Variant. ASV that represents a true sequence 
amplified from the target gene. 

na-ASV. Non-authentic Amplicon Sequence Variant. ASV with error derived from 
the PCR and sequencing steps, or by the co-amplification of pseudogenes. 

va-ASV. Verified authentic Amplicon Sequence Variant. ASV that has been verified 
as authentic by comparison with validated reference sequences. 

vna-ASV. Verified non-authentic Amplicon Sequence Variant. ASV that has been 
verified as non-authentic by the presence of mutations incompatible with a 
functional protein (STOP codons and frame-shift mutations). 

metaMATE. metabarcoding Multidimensional Abundance Threshold Evaluation. 
Approach to evaluate filtering performance, based on the survival of va-ASVs and 
vna-ASVs, for a range of filtering criteria and thresholds applied to a set of denoised 
ASVs 
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Table 1. Summary of the number of libraries, ASVs, va-ASVs, and vna-ASVS obtained for the three Halictus 
species and the Crytocephalys lineage. Read counts refers to the sum of the ASV read-abundance across all libraries 
where a given ASV is present. 

 

   va-ASVs vna-ASVs 

 Libraries ASVs n read-counts* n read counts* 

H. rubicundus 5 18 2 6915 (6799-7031) 3 15 (10-19) 

H. tumulorum 5 43 1 8713 (8713-8713) 8 78 (11-344) 

L. malachurum 33 45 2 48282,5 (4253-92312) 8 64 (11-298) 

Crytocephalus 10 118 6 2223 (763-3986) 30 13 (5-43) 

*mean value (minimum - maximum values) 
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Table 2. Filtering performance for a selection of pairwise combinations of filtering criteria and minimum 
thresholds values for read abundance for the COL dataset. Combinations are shown that minimise the number of 
surviving verified non-authentic ASVs (vna-ASVs) when the number of excluded verified authentic ASVs (va-ASVs) is 
between 0 and 17. 

 

Excl. 
va-

ASVs 
 

Absolute 
ASV 

abundance 
by library 

Relative 
ASV 

abundance 
by library 

Relative 
ASV 

abundance 
by library 
and 20% 

clade 

Surviving 
ASVs 
(t)** 

Surviving 
va-ASVs 

(av)** 

Surviving 
vna-ASVs 

(nv)** 

Initial 
a-ASVs 
(A)*** 

Surviving 
a-ASV 
(a)*** 

Initial 
na-ASVs 
(N)*** 

Surviving 
na-ASV 
(n)*** 

n/t 
**** 

 

Pre-filtering initial values T = 1845 Av = 74 Nv = 228      
0 5 0.002 - 866 (46.9%) 74 (1000%) 56 (24.6%) 547 547 1298 319 0.368 
2 5 0.003 - 752 (40.8%) 72 (97.3%) 36 (15.8%) 565 550 1280 202 0.269 
3 5  0.015 722 (39.1%) 71 (95.9%) 28 (12.3%) 592 568 1253 154 0.213 
4 5  0.02 685 (37.1%) 70 (94.6%) 24 (10.5%) 584 552 1261 133 0.194 
5 5  0.035 617 (33.4%) 69 (93.2%) 15 (6.6%) 572 533 1273 84 0.136 
6 - 0.0035 0.035 585 (31.7%) 68 (91.9%) 14 (6.1%) 550 505 1295 80 0.137 
7 - 0.0035 0.04 572 (31%) 67 (90.5%) 14 (6.1%) 543 492 1302 80 0.140 
8 5 - 0.045 535 (29%) 66 (89.2%) 11 (4.8%) 599 502 1246 33 0.062 
9 8 - 0.035 556 (30.1%) 65 (87.8%) 6 (2.6%) 596 523 1249 33 0.059 
10 10 - 0.035 534 (28.9%) 64 (86.5%) 5 (2.2%) 586 506 1259 28 0.052 
11 8 0.008 - 516 (28%) 63 (85.1%) 5 (2.2%) 573 488 1272 28 0.054 
12 10 0.008 - 512 (27.8%) 62 (83.8%) 5 (2.2%) 578 484 1267 28 0.055 
13 10 - 0.045 513 (27.8%) 61 (82.4%) 5 (2.2%) 589 485 1256 28 0.055 
14 20 - 0.03 469 (25.4%) 60 (81.1%) 2 (0.9%) 565 458 1280 11 0.023 
15 20 0.008 - 461 (25%) 59 (79.7%) 1 (0.4%) 571 455 1274 6 0.013 
17 20 0.009 - 451 (24.4%) 57 (77.0%) 0 (0%) 586 451 1259 0 0.000 

* Excluded va-ASVs: values lacking (i.e., 1 and 16) represent solutions that were not found with any pairwise 
combinations of criteria and threshold values; ** Observed values; *** Estimated values; **** The ratio n/t represents 
the estimated proportion of na-ASVs in the filtered dataset. 
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Figure captions 

Figure 1. Schematic summaries of generic metabarcode filtering and metaMATE. (A) Simplified 

generic metabarcoding pipeline from raw reads to amplified sequence variants (ASVs). (B) Key 

steps and processes within metaMATE. Ellipses represent sequence data, rectangles other data, and 

arrow-shapes processes. Processes conducted externally to metaMATE are marked with dashed 

outline. Stacked ellipses represent multiple parallel data, for example multiple fasta files containing 

sequences from different libraries. Green indicates input sequences, while purple indicates output 

from metaMATE. Summary statistics describe the performance of different binning strategies and 

thresholds to simultaneously filter out NUMTs and other erroneous sequences (non-authentic ASVs) 

while retaining true mitochondrial sequences (authentic ASVs). (C). Schematic of the expected 

effect of filtering on the survival of ASVs, where na-ASVs (in red) are removed more effectively 

than a-ASVs (in gren). A and a are the numbers of initial and surviving authentic ASVs (a-ASVs); N 

and n are the numbers of initial and surviving non-authentic ASVs (na-ASVs); T and t are the total 

number of initial and surviving ASVs; the subindex “v” indicates the respective subsets of verified 

authentic and verified non-authentic ASVs. 

 

Figure 2. Patterns of phylogenetic relatedness and library co-amplification of ASVs within selected 

lineages. (A) Halictus rubicundus, (B) Halictus tumulorum (C), Lasioglossum malachurum, and (D) 

Cryptocephalus. Graphs show ML phylogenetic trees with mapped distributions of read abundances 

across libraries (blue circles, with size being proportional to read number) onto each ASV (grey 

circles, with size being proportional to total abundance across all libraries). Edges of the network 

represent the presence and abundance (line width) of each ASV within each library. For (A), (B) and 

(C) each library is a single specimen, whereas in (D) each library includes a complex natural 

community of beetles where Cryptocephalus specimens were present. Clades in red are the best-
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supported species clusters from bPTP analyses, blue dashed lines highlight ASVs that are identical to 

a reference sequence (va-ASVs), red dashed lines highlight ASVs with STOP codons or INDELS 

(vna-ASVs), and grey dashed lines highlight ASVs of unknown origin (u-ASVs). Nodes in (D) are 

labelled to show clades (C1-C8) and grades (G1-G2) that are exclusively formed by vna-ASVs and 

u-ASVs.  

 

Figure 3. The influence of minimum absolute ASV abundance threshold by library on different 

measures of filtering success and when sampling is biased against low abundance va-ASVs. (A) 

Proportions of va-ASVs removed (false negatives; black squares and lines) and vna-ASVs retained 

(false positives; red circles and lines) for three example datasets, bees (BEE), Coleoptera (COL) and 

Coleptera, Acari and Collembola (CAC). (B) Estimated numbers of a-ASVs and na-ASVs 

comprising initial and filtered ASV datasets for the same three data sets in (A). Grey shading 

represents the estimated number of initial a-ASVs, red shading represents the estimated number of 

initial na-ASVs, black squares and lines correspond to estimated number of retained a-ASVs, and red 

circles and lines correspond to estimated number of retained na-ASVs. (C) Estimated number of a-

ASVs and na-ASVs in initial and filtered data under low, moderate and strong manipulation to 

exclude low abundance va-ASVs. Grey and red shading represent the estimated number of initial a-

ASVs and initial na-ASVs, respectively. Black squares and red circles represent estimated numbers 

of retained a-ASVs and retained na-ASVs, respectively. For comparative purposes, red solid, black 

solid, red dotted, and black dotted lines respectively represent estimations of initial na-ASVs, initial 

a-ASVs, retained na-ASVs, and retained a-ASVs using the full set of va-ASVs.  
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