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Abstract

With the ongoing SARS-CoV-2 pandemic there is an urgent need for the
discovery of a treatment for the coronavirus disease (COVID-19). Drug repurposing is
one of the most rapid strategies for addressing this need and numerous compounds
have been selected for in vitro testing by several groups already. These have led to a
growing database of molecules with in vitro activity against the virus. Machine learning
models can assist drug discovery through prediction of the best compounds based on
previously published data. Herein we have implemented several machine learning
methods to develop predictive models from recent SARS-CoV-2 in vitro inhibition data
and used them to prioritize additional FDA approved compounds for in vitro testing
selected from our in-house compound library. From the compounds predicted with a
Bayesian machine learning model, CP11062 and CPI1155 showed antiviral activity in
HelLa-ACE2 cell-based assays and represent potential repurposing opportunities for
COVID-19. This approach can be greatly expanded to exhaustively virtually screen
available molecules with predicted activity against this virus as well as a prioritization
tool for SARS-CoV-2 antiviral drug discovery programs. The very latest model for

SARS-CoV-2 is available at www.assaycentral.org.
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Introduction

In December 2019, several cases of pneumonia with unknown etiology started to
arise in Wuhan, China. A new betacoronavirus was identified and named SARS-CoV-2
due to high similarity with previous SARS-CoV 2. This virus causes the disease which
has been called COVID-19 3Since then, SARS-CoV-2 has rapidly spread worldwide
prompting the World Health Organization to declare the outbreak a pandemic, with more
than 1.5 million cases confirmed in less than 100 days.* The high infection rate has also
caused considerable stress on global healthcare systems leading to more than 400,000
deaths from COVID-19.

The SARS-CoV-2 pandemic started a worldwide effort to discover a treatment
that could prevent further COVID-19 deaths and decrease the number and length of
hospitalization®. Drug repurposing is one of the main strategies being used to accelerate
this as most preclinical stages are removed and a promising drug could move directly
into phase Il clinical studies or beyond by using an approved, safe drug ®’. So far, most
SARS-CoV-2 inhibition studies rely on small to medium scale assays with high
throughput screens (HTS) campaigns testing specific FDA-approved drugs and
compounds that have previously shown inhibition against different betacoronaviruses or
specific antiviral targets®°.

Quantitative Structure Activity Relationship (QSAR) analyses from previous in
vitro data has been widely used to assist drug discovery in both industry and
academia’’. In the past few years the rise of machine learning has also expanded to
drug discovery, with different methods being implemented in a wide range of areas from

18,19

predicting synthetic routes to biological activity Many examples show that
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prioritizing compounds from machine learning and QSAR models can increase the
success rate and save resources’. Here we have implemented several machine
learning methods to develop predictive models from recent SARS-CoV-2 in vitro
inhibition data and used them to prioritize compounds for in vitro testing of different
compound libraries. These efforts will add to the list of >200 drugs and vaccines under

assessment elsewhere and which is continually growing °.

Materials and Methods

Data Curation
Data from recent drug repurposing campaigns for SARS-CoV-2 were used to

build a dataset from whole cell inhibition assays #°'%1%1°,

In assays with several
Multiplicity of Infection (MOI) the one closer to the whole dataset was chosen. In
machine learning model generation, duplicate compounds with finite activities are
averaged into a single entry. Due to the potential for diminished activity, when duplicate
compounds were present, only the most active one was retained in the dataset.
Additionally, compounds with ambiguous dose-response curves were discarded.
Datasets were built with Molecular Notebook (Molecular Materials Informatics, Inc). In
order to evaluate the model performance on an external testing set, a total of 30

molecules was collated from different studies*?12°,

Assay Central™
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93 The Assay Central™ software (AC) has been previously described'®?7*. AC
94 employs a series of rules for the detection of problem data for automated structure
95 standardization to generate high-quality data sets and Bayesian machine learning
96 models capable of predicting potential bioactivity for proposed compounds. AC was
97 used to prepare and merge data sets, as well as generate Bayesian models using the
98 ECFP6 descriptor and five-fold cross validation. During model generation, training
99 compounds are standardized (i.e. salts were removed, corresponding acids
100 neutralized), and thresholds for binary activity classification are applied to optimize
101 internal five-fold cross validation metrics. For predictions, AC workflows assign a
102 probability score and applicability score to prospective compounds according to a user-
103 specified model, with prediction scores greater than 0.5 considered active.

104

105 Additional Machine Learning Methods

106 Additional Machine learning algorithms including Bernoulli Naive Bayes (bnb),
107 AdaBoost Decision trees (ada), Random Forest (rf), support vector classification (svc),
108 k-Nearest Neighbors (knn) and Deep Learning (DL) were also implemented with ECFP6
109 fingerprints and five-fold cross validation. Details for the development of these models
110  was previously described in detail in our earlier articles ?®**%°, Bayesian models were
111 also generated with Discovery Studio (Biovia, San Diego CA) using ECFP6 descriptors
112  where the top and bottom scoring fingerprints were selected for qualitative comparison.
113

114 Model Performance
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115 Machine learning model performance was evaluated with different metrics:
116 accuracy, recall, precision, specificity, Fl-score, area under receiver operating
117 characteristic curve, Cohen’s kappa, and the Matthews correlation coefficient. The
118  statistics were calculated for both training data with five-fold cross validation, to evaluate
119 training performance, as well as in external testing set, to evaluate model performance
120 in predicting data outside the training set.

121

122  Principal Component Analysis

123 Principal Component Analysis (PCA) was computed for both the SARS-CoV-2
124 data set as well as SARS-CoV-2 with different compound libraries to assess its
125 chemical space. The scikit-learn® (0.22.2) PCA algorithm was used to reduce feature
126  dimensionality to three using different molecular descriptors (MW, MolLogP, NR, NArR,
127 NRB, HBA, HBD) and also with EFCP6 fingerprints. Molecular descriptors and
128 fingerprints were generated from the cheminformatics library RDKit (2020.03.1).

129

130 Applicability and Reliability Domain Assessment

131 In order to check if it is valid to apply the model for compounds being predicted
132 and how reliable the predictions are, an applicability and reliability domain assessment
133 was performed. First, the compound applicability within the model is assessed
134 comparing its similarity with the model's data using both molecular and fingerprint
135 descriptors. If the molecule satisfies both criteria it is considered within the applicability

136 domain and goes to the reliability domain assessment.
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137 The first criterion for the applicability assessment is determined based on
138 whether it fits within the range of the key molecular descriptors of the training set (MW,
139 MolLogP, NRB, TPSA, HBA, HBD). If at least four properties lie within the maximum
140 and minimum values of the model’s data, the molecule is considered similar and goes to
141 the next criterion. The second criterion relies on structural fragment-based similarity
142 measured with Tanimoto coefficient using MACCS fingerprints. The similarity of the
143 MACCS fingerprints for the query compound and all training data is computed using the
144  Tanimoto score. Only 5% of the training set compounds that are most similar to the
145 query compound is used for evaluation (i.e. if the training set has 100 molecules only 5
146  molecules with more similarity to the query compound are used for the next evaluation).
147 If the Tanimoto score exceeds 0.5 against the 5% of the training set compounds, the
148 model is considered to have enough structural fragments overlap with the query
149 compound and thus the compound goes onto the reliability assessment.

150 The reliability domain assessment implements k-means clustering methods
151 based on ECFC6 fingerprints to classify the predictions from very high to low reliability.
152 The reliability class depends on four criteria: distance from the major central point of the
153 training data, distance from the closest cluster, closest cluster density and closest
154  cluster distance within the chemical space. Each criterion has different weights and
155 scores, with the second and third having higher priority. If the compound scores 1 in
156 each criterion it is classified as very highly reliable, if that is not the case only the two
157  higher priority criteria are considered for the next classes. The compound is classified
158 as highly reliable if scores a total of 2, moderately reliable if it scores between -1 and 2

159 or low reliability if it scores less than or equal to -1 in the two higher priority criteria. The
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160 scores for each criterion as well as its definition are extensively described in the
161 Supplemental Methods.

162

163 In vitro testing

164 Compounds were tested in a 10-point serial dilution experiment to determine the 50%
165 inhibitory concentration (ICsp) and 50% cytotoxicity concentration (CCsp). 1,000 Hela-
166 ACE2 cells/well were added into 384-well plates with compounds in a volume of 25 nl.
167 The final concentrations of compound ranged from 78nM-40uM. 4 h post seeding 500
168 pfu SARS-CoV-2 (Washington strain USA-WA1/2020), BEI Resources NR-52281 were
169 added to each well at a MOI = 0.5. Twenty-four hours post infection cells were fixed with
170 4% formaldehyde solution. The cells were then treated with a Primary ab: human
171 polyclonal plasma (COVID-19 patient); Secondary ab: goat anti-human IgG coupled
172  with HRP. Images were acquired with ImageXpress MicroXL (bright field); Custom
173 Module developed in MetaXpress was used for automated count of total cells and
174  infected cells. Antiviral activity was assessed based on the infection ratio (number of
175 infected cells/total number of cells) in comparison with the average infection ration of
176  the untreated controls.

177

178 Results

179 Data Curation

180 In vitro SARS-CoV-2 data was initially collated from five drug repurposing studies
181 leading to a data set of 63 molecules with mean activity of 15.94 + 22.45 yM 89121415

182 The external testing set collated from different studies has 30 molecules and a mean
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183  activity of 34 + 42 uM *#"%* Most assays were performed with different Vero cell lines,
184 inhibition was measured with viral RNA quantification, cytopathogenic effects or
185 immunofluorescence methods with MOI and incubation time varying from 0.01-0.05 and
186 24-72 hrs respectively (Figure S1). The threshold set for activity classification by the
187 Bayesian model generated with AC was 6.65 uM, with a final ratio of 52% actives in the
188 training set and 37% in the external test set. The molecules in both training and test set
189 are available in the supplemental data.

190

191 Machine Learning Models

192 Machine learning models were developed with AC as well as several other
193 methods available to us. This five-fold cross validation comparison shows the different
194  prediction statistics for all machine learning algorithms implemented with the training
195 data only (Table 1). AC outperformed all of them at the threshold of 6.65 uM with Rf
196 coming the closest. These models were chosen for further external testing predictions.
197

198 Table 1 — Five-fold cross validation statistics for all SARS-CoV-2 machine

199 learning models implemented using ECFP6 fingerprints.

ACC AUC CK MCC Pr Recall Sp F1

AC 0.81 0.78 0.62 0.64 0.78 0.88 0.73 0.83

rf 0.75 0.74 0.49 0.5 0.73 0.82 0.67 0.77

knn 0.71 0.71 0.43 0.42 0.71 0.76 0.67 0.74

svce 0.7 0.69 0.39 0.4 0.68 0.79 0.6 0.73

bnb 0.68 0.68 0.36 0.36 0.7 0.7 0.67 0.7

10
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ada

DL

ACC: Accuracy, AUC: Area under curve, CK: Cohen’s Kappa, MCC: Matthews
correlation coefficient, Pr: Precision, Sp: Specificity, F1: F1 Score. bnb: Bernoulli Naive
Bayes, ada: AdaBoost Decision trees, rf: Random Forest, svc: support vector

classification, knn: k-Nearest Neighbors and DL: Deep Learning (DL)

External Validation

The performance of the machine learning models on the external testing data is
shown in Table 2. The external validation was used to measure model performance in
data from different studies outside the training set. svc and knn had slightly better
statistics compared to all other models, with the best balance between recall and

specificity.

Table 2 — Prediction statistics with the external data for all SARS-CoV-2

machine learning models implemented

0.67

ACC AUC CK MCC Pr Recall Sp F1
AC 0.62 0.58 0.17 0.17 0.50 0.40 0.76 0.44
rf 0.63 0.57 0.10 0.11 0.42

11
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ada 0.53 0.49 0.00 0.00 0.33 0.40 0.60 0.36

DL 0.63 0.56 0.15 0.15 0.44 0.40 0.75 0.42

Chemical Space

The PCA of the model training set alone shows that the SARS-CoV-2 chemical
space is well distributed with active and inactive molecules well mixed when analyzed
using either molecular and fingerprint descriptors. When compared with Prestwick
Chemical Library (PwCL), a library of predominantly FDA approved drugs, the SARS-
CoV-2 data lie within a big cluster with molecular descriptors and is more widely

distributed when using the fingerprint descriptors.

12
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Figure 1 — PCA of the SARS-CoV-2 set with Molecular Descriptors (A), and
ECFP6 (B). Red Spheres — Active, Grey Spheres — Inactive. PCA of SARS-CoV-2 set

and Prestwick Chemical Library (PwCL) with molecular descriptors (C), and ECFP6 (D).

Red Spheres — SARS-CoV-2, Grey Spheres — PwCL
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Applicability and Reliability Domain Assessment of External Test Set

The applicability and reliability domain assessment of the external test set was
determined for each molecule as described in the methods to see how the test set
compares with the training data. Molecules in the applicability domain are considered

suitable for the model predictions due to similarity based on structural and molecular

13
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235 properties with the training data, whereas the reliability value is a measurement of how
236 reliable the predictions are and uses different clustering metrics to determine its value.
237 From 30 molecules in the external test set, 22 were within the training data
238 applicability domain and had their reliability value calculated. Most molecules that fell
239 within the applicability domain had high or very high reliability values, with only 36%
240 showing moderate reliability, so, most molecules obey the similarity criteria and are not
241  far away from dense clusters. In comparison, with the Assay Central applicability score,
242  which accounts only for structural similarity of the query compound with the training
243 data, only 10 molecules were considered within the domain with a higher reliability,
244 suggesting it is likely more conservative. Indeed, with the external test and training set
245 PCA we can see that most molecules superimpose with few of them distant from each
246  other (Figure S1). Therefore, similarity together with clustering methods are more
247  suitable for applicability and reliability assessment compared with only structural
248  similarity, as seen by the PCA.

249

250 Prospective Prediction

251 A selection of FDA approved drugs available to us in our relatively small in-house
252 compound collection of hundreds of molecules was scored with the AC Bayesian model.
253 A selection of some of the best scoring molecules (Table 3) was used to identify and
254  prioritize compounds for in vitro testing. AC Applicability score is the similarity of the
255 compound with the training data, compounds are ranked by reliability which may
256 provide some degree of confidence in these predictions.

257

14
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Prediction AC Applicability

Name Score Score Reliability
CPI11062 0.67 0.5 High
CPI11066 0.62 0.38 High
CPI1004 0.62 0.39 High
CPI1012 0.70 0.70 Moderate
CPI1155 0.70 0.40 Moderate
CPI1175 0.65 0.41 Moderate
CPI1153 0.7 0.7 Low

258 Table 3 — Prospective prediction compounds predicted and prioritized for testing.

259

260 In vitro Inhibition Assays of Predicted Compounds

261 Antiviral activity testing in the HeLa-ACE?2 cells demonstrated that CPI1155 and
262 CPI1062 have antiviral activity with ICsy values of 8.4uM and 540nM (Figure 2),
263 respectively. The cell viability of these compounds was also tested, with both CCsg
264  higher than 40 uM. Other compounds did not inhibit viral replication in HeLa cells or had
265 appreciable cytotoxicity.

266

267 Figure 2 — Preliminary dose response curves for a) CPI11155 and b) CPI11062.

268

15
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271 Discussion
272 One of the challenges for addressing novel viral outbreaks is selection of drugs

273 to test. Testing capacity, even for in vitro antiviral activities is likely to be low at the
274  onset of an outbreak, making compound selection even more critical in this situation. In
275 the case of SARS-CoV-2, the initial focus was on molecules that had previously shown
276  activity against SARS or MERS *"%. The training set for the current model is therefore
277 not a random sampling of drug property space. When compared with the PwCL, a
278 library of mostly FDA approved drugs, all molecules superimpose in the property space
279  highlighting the model suitability for drug repurposing. Even with a relatively small
280 training dataset the machine learning models evaluated have shown acceptable five-
281 fold cross validation statistics, with almost all metrics greater than random and ROC
282  >0.75 for AC (Table 1). When compared with different machine learning methods AC
283 outperforms all of them in the SARS-CoV-2 training set, but this may be due to the
284  threshold for all models being set as optimal for AC. However, choosing different values
285 could imbalance the training set and remove important compounds from the active

286  group.

16
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287 More important than a good performance in the training set is the performance
288 on external data, since most prospective predictions will occur for molecules outside
289 training data. For external validation all models had intermediate performance, with
290 ROC of 0.6. Taking into account the small number of molecules and that some test set
291 molecules lie outside the applicability domain, the performance is acceptable. Different
292 from the training set performance, svc had the highest overall score, predicting 60% of
293 the active molecules despite its modest statistics in five-fold cross validation. The good
294  performance of svc in predicting biological activity is in accordance with several studies

28323539 Therefore, the models

295 that show good performance in different datasets
296 described here are suitable for initial prospective predictions.

297 The applicability and reliability assessment shows that 73% of the test set
298 molecules lie within the model applicability domain with high to moderate reliability, so
299 poor performance in external validation occurs because there isn't a clear boundary in
300 the model's feature space that can correctly classify external data. Increasing the
301 number of molecules might include new features in both actives and inactive molecules
302 which can increase model performance in both training and external data.

303 The training and test set described herein can be merged to increase data set
304 size and applicability domain. The AC model with merged training and test data has
305 slightly worse statistics (ACC: 0.76, AUC:0.79, CK: 0.53, MCC: 0.75, Pr: 0.76, Recall:
306 0.76, Sp: 0.77, F1: 0.76), but a higher applicability domain. The PCA confirms this wide
307 chemical property space (Figure S1), the PCA of this updated model is much more

308 balanced and broader than the previous one (Figure S2) versus Figure 1B. Without

309 some form of external validation, we cannot assess how predictions of compounds
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outside the applicability domain perform, as model statistics were comparable it is
expected that compounds outside this would obviously have unreliable predictions,
however this may be offset by a higher domain which can increase reliability of some
compounds.

The molecules of the dataset do not have a common scaffold, but there are
several common structural features that occur in active/inactive molecules that can be
highlighted, such as tertiary amines and aliphatic chains in active molecules and phenyl
rings and peptide molecule features in inactive molecules (Figure S3). These most
common active features appear in chloroquine, tripanarol and tilorone, while the inactive
features appear in darunavir, amprenavir and ritonavir (Figure 3). The lack of common
scaffolds and features that appears in more than 30% of the active or inactive
molecules shows how different and diverse the active molecules are, which turn

classification models for these molecules into a relatively difficult task.

Figure 3- Common Active/lnactive structure features of the SARS-CoV-2 dataset

Active Inactive

Chloroquine Amprenavir
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327 The performance of a predictive model is highly dependent on the curation and
328 data used. One of the main problems that comes from building models with biological
329 data from different laboratories is data reproducibility and assay standardization®. Cell
330 based assays of viral infections have many parameters that can affect the compound
331 potency, e.g., cell lines, MOI, assay readout*’. From all inhibition assays for SARS-CoV-
332 2 collated to date, most studies use MOI of 0.01-0.05 (73% of data), different Vero cell
333 lines (77% of data) and gRT-PCR (60% of data), however there is no clear definition of
334 compound addition time post infection (Figure S1).

335 Besides this, even assays with the same or similar conditions have differences in
336 ‘control’ compounds such as chloroquine or remdesivir, showing a lack of data
337 reproducibility between laboratories, which can impact model building. If we keep only
338 studies with the most in common there is not enough data to build a model, while
339 merging all studies will have problems of different assay parameters. It was shown that
340 for Ebola infections in VeroE6 cells the change in the compound potency at different
341 time post infections are lower when using MOI of 0.01-0.1 therefore, merging different
342 assays with the same cell line and low MOI is a good choice to avoid data
343 inconsistency™.

344 It should be noted that most of the in vitro data collated to date uses Vero or Vero
345 EG6 cells for inhibition assays. Although these cells lines have high ACE2 expression
346 levels, they lack a TMPRSS2 gene. Priming of viral S proteins can occur with the host
347 cell protease TMPRSS2 and Cathepsin L and is essential for SARS-CoV-2 entry***3,
348 Therefore, inhibition assays with cells that do not express TMPRSS2 should be avoided

349 as they might miss compounds that could inhibit the protein and instead find
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350 compounds that prevent virus entry by inhibiting only Cathepsin L. In order to avoid
351 these problems with the TMPRSS2 and Cathepsin L gene, cell lines like Calu-3 or
352  modified Vero cell lines should be used instead.*

353 From the 7 compounds prioritized for testing in our laboratory using the machine
354 learning model, CPI1155 and CPI1062 showed antiviral activity against SARS-CoV-2
355 infections in HeLa-ACEZ2 cells. Like Vero cells, HeLa does not express TMPRSS2,
356 therefore compounds might need to be be retested in different cell lines to see whether
357  or not the expression of TMPRSS?2 affects compound activity.*

358 As new data is continually being published the machine learning models can be
359 updated to increase performance in terms of both training and external test set
360 validation. The very latest model for SARS-CoV-2 is available at www.assaycentral.org.
361 In the meantime, we have shown these models perform well with internal cross
362 validation, external validation as well as prospective prediction, enabling us to find
363 additional active molecules. These models should be used to prioritize compounds
364 which have both a high prediction score and reliability as described herein. This will be
365 expected to return more reliable predictions that together with drug discovery expertise
366 can help prioritize compounds in future for in vitro testing.
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