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Abstract 26 
 27 

With the ongoing SARS-CoV-2 pandemic there is an urgent need for the 28 

discovery of a treatment for the coronavirus disease (COVID-19). Drug repurposing is 29 

one of the most rapid strategies for addressing this need and numerous compounds 30 

have been selected for in vitro testing by several groups already. These have led to a 31 

growing database of molecules with in vitro activity against the virus. Machine learning 32 

models can assist drug discovery through prediction of the best compounds based on 33 

previously published data. Herein we have implemented several machine learning 34 

methods to develop predictive models from recent SARS-CoV-2 in vitro inhibition data 35 

and used them to prioritize additional FDA approved compounds for in vitro testing 36 

selected from our in-house compound library. From the compounds predicted with a 37 

Bayesian machine learning model, CPI1062 and CPI1155 showed antiviral activity in 38 

HeLa-ACE2 cell-based assays and represent potential repurposing opportunities for 39 

COVID-19. This approach can be greatly expanded to exhaustively virtually screen 40 

available molecules with predicted activity against this virus as well as a prioritization 41 

tool for SARS-CoV-2 antiviral drug discovery programs. The very latest model for 42 

SARS-CoV-2 is available at www.assaycentral.org. 43 

 44 

 45 

 46 
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Introduction 48 

In December 2019, several cases of pneumonia with unknown etiology started to 49 

arise in Wuhan, China. A new betacoronavirus was identified and named SARS-CoV-2  50 

due to high similarity with previous SARS-CoV 1,2. This virus causes the disease which 51 

has been called COVID-19 3.Since then, SARS-CoV-2 has rapidly spread worldwide 52 

prompting the World Health Organization to declare the outbreak a pandemic, with more 53 

than 1.5 million cases confirmed in less than 100 days.4 The high infection rate has also 54 

caused considerable stress on global healthcare systems leading to more than 400,000 55 

deaths from COVID-19. 56 

The SARS-CoV-2 pandemic started a worldwide effort to discover a treatment 57 

that could prevent further COVID-19 deaths and decrease the number and length of 58 

hospitalization5. Drug repurposing is one of the main strategies being used to accelerate 59 

this as most preclinical stages are removed and a promising drug could move directly 60 

into phase II clinical studies or beyond by using an approved, safe drug 6,7. So far, most 61 

SARS-CoV-2 inhibition studies rely on small to medium scale assays with high 62 

throughput screens (HTS) campaigns testing specific FDA-approved drugs and 63 

compounds that have previously shown inhibition against different betacoronaviruses or 64 

specific antiviral targets8–16.  65 

Quantitative Structure Activity Relationship (QSAR) analyses from previous in 66 

vitro data has been widely used to assist drug discovery in both industry and 67 

academia17. In the past few years the rise of machine learning has also expanded to 68 

drug discovery, with different methods being implemented in a wide range of areas from 69 

predicting synthetic routes to biological activity18,19. Many examples show that 70 
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prioritizing compounds from machine learning and QSAR models can increase the 71 

success rate and save resources17. Here we have implemented several machine 72 

learning methods to develop predictive models from recent SARS-CoV-2 in vitro 73 

inhibition data and used them to prioritize compounds for in vitro testing of different 74 

compound libraries. These efforts will add to the list of >200 drugs and vaccines under 75 

assessment elsewhere and which is continually growing 20. 76 

 77 

Materials and Methods 78 

 79 

Data Curation 80 

Data from recent drug repurposing campaigns for SARS-CoV-2 were used to 81 

build a dataset from whole cell inhibition assays 8,9,12,14,15.  In assays with several 82 

Multiplicity of Infection (MOI) the one closer to the whole dataset was chosen. In 83 

machine learning model generation, duplicate compounds with finite activities are 84 

averaged into a single entry. Due to the potential for diminished activity, when duplicate 85 

compounds were present, only the most active one was retained in the dataset. 86 

Additionally, compounds with ambiguous dose-response curves were discarded. 87 

Datasets were built with Molecular Notebook (Molecular Materials Informatics, Inc). In 88 

order to evaluate the model performance on an external testing set, a total of 30 89 

molecules was collated from different studies11,21–25. 90 

 91 

Assay CentralTM 92 
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The Assay CentralTM software (AC) has been previously described19,26–34. AC 93 

employs a series of rules for the detection of problem data for automated structure 94 

standardization to generate high-quality data sets and Bayesian machine learning 95 

models capable of predicting potential bioactivity for proposed compounds. AC was 96 

used to prepare and merge data sets, as well as generate Bayesian models using the 97 

ECFP6 descriptor and five-fold cross validation. During model generation, training 98 

compounds are standardized (i.e. salts were removed, corresponding acids 99 

neutralized), and thresholds for binary activity classification are applied to optimize 100 

internal five-fold cross validation metrics. For predictions, AC workflows assign a 101 

probability score and applicability score to prospective compounds according to a user-102 

specified model, with prediction scores greater than 0.5 considered active. 103 

 104 

Additional Machine Learning Methods 105 

 Additional Machine learning algorithms including Bernoulli Naïve Bayes (bnb), 106 

AdaBoost Decision trees (ada), Random Forest (rf), support vector classification (svc), 107 

k-Nearest Neighbors (knn) and Deep Learning (DL) were also implemented with ECFP6 108 

fingerprints and five-fold cross validation. Details for the development of these models 109 

was previously described in detail in our earlier articles 28,32,35. Bayesian models were 110 

also generated with Discovery Studio (Biovia, San Diego CA) using ECFP6 descriptors 111 

where the top and bottom scoring fingerprints were selected for qualitative comparison.  112 

 113 

Model Performance 114 
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 Machine learning model performance was evaluated with different metrics: 115 

accuracy, recall, precision, specificity, F1-score, area under receiver operating 116 

characteristic curve, Cohen’s kappa, and the Matthews correlation coefficient. The 117 

statistics were calculated for both training data with five-fold cross validation, to evaluate 118 

training performance, as well as in external testing set, to evaluate model performance 119 

in predicting data outside the training set. 120 

 121 

Principal Component Analysis 122 

 Principal Component Analysis (PCA) was computed for both the SARS-CoV-2 123 

data set as well as SARS-CoV-2 with different compound libraries to assess its 124 

chemical space. The scikit-learn36 (0.22.2) PCA algorithm was used to reduce feature 125 

dimensionality to three using different molecular descriptors (MW, MolLogP, NR, NArR, 126 

NRB, HBA, HBD) and also with EFCP6 fingerprints. Molecular descriptors and 127 

fingerprints were generated from the cheminformatics library RDkit (2020.03.1). 128 

 129 

Applicability and Reliability Domain Assessment 130 

In order to check if it is valid to apply the model for compounds being predicted 131 

and how reliable the predictions are, an applicability and reliability domain assessment 132 

was performed. First, the compound applicability within the model is assessed 133 

comparing its similarity with the model’s data using both molecular and fingerprint 134 

descriptors. If the molecule satisfies both criteria it is considered within the applicability 135 

domain and goes to the reliability domain assessment.  136 
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The first criterion for the applicability assessment is determined based on 137 

whether it fits within the range of the key molecular descriptors of the training set (MW, 138 

MolLogP, NRB, TPSA, HBA, HBD). If at least four properties lie within the maximum 139 

and minimum values of the model’s data, the molecule is considered similar and goes to 140 

the next criterion. The second criterion relies on structural fragment-based similarity 141 

measured with Tanimoto coefficient using MACCS fingerprints. The similarity of the 142 

MACCS fingerprints for the query compound and all training data is computed using the 143 

Tanimoto score. Only 5% of the training set compounds that are most similar to the 144 

query compound is used for evaluation (i.e. if the training set has 100 molecules only 5 145 

molecules with more similarity to the query compound are used for the next evaluation). 146 

If the Tanimoto score exceeds 0.5 against the 5% of the training set compounds, the 147 

model is considered to have enough structural fragments overlap with the query 148 

compound and thus the compound goes onto the reliability assessment. 149 

 The reliability domain assessment implements k-means clustering methods 150 

based on ECFC6 fingerprints to classify the predictions from very high to low reliability. 151 

The reliability class depends on four criteria: distance from the major central point of the 152 

training data, distance from the closest cluster, closest cluster density and closest 153 

cluster distance within the chemical space. Each criterion has different weights and 154 

scores, with the second and third having higher priority. If the compound scores 1 in 155 

each criterion it is classified as very highly reliable, if that is not the case only the two 156 

higher priority criteria are considered for the next classes. The compound is classified 157 

as highly reliable if scores a total of 2, moderately reliable if it scores between -1 and 2 158 

or low reliability if it scores less than or equal to -1 in the two higher priority criteria. The 159 
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scores for each criterion as well as its definition are extensively described in the 160 

Supplemental Methods. 161 

 162 

In vitro testing 163 

Compounds were tested in a 10-point serial dilution experiment to determine the 50% 164 

inhibitory concentration (IC50) and 50% cytotoxicity concentration (CC50). 1,000 HeLa-165 

ACE2 cells/well were added into 384-well plates with compounds in a volume of 25 nl. 166 

The final concentrations of compound ranged from 78nM-40µM. 4 h post seeding 500 167 

pfu SARS-CoV-2 (Washington strain USA-WA1/2020), BEI Resources NR-52281 were 168 

added to each well at a MOI = 0.5. Twenty-four hours post infection cells were fixed with 169 

4% formaldehyde solution. The cells were then treated with a Primary ab: human 170 

polyclonal plasma (COVID-19 patient); Secondary ab: goat anti-human IgG coupled 171 

with HRP. Images were acquired with ImageXpress MicroXL (bright field); Custom 172 

Module developed in MetaXpress was used for automated count of total cells and 173 

infected cells. Antiviral activity was assessed based on the infection ratio (number of 174 

infected cells/total number of cells) in comparison with the average infection ration of 175 

the untreated controls. 176 

 177 

Results  178 

Data Curation 179 

 In vitro SARS-CoV-2 data was initially collated from five drug repurposing studies 180 

leading to a data set of 63 molecules with mean activity of 15.94 ± 22.45 μM 8,9,12,14,15. 181 

The external testing set collated from different studies has 30 molecules and a mean 182 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2020. ; https://doi.org/10.1101/2020.06.16.154765doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.154765
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10

activity of 34 ± 42 µM 11,21–25. Most assays were performed with different Vero cell lines, 183 

inhibition was measured with viral RNA quantification, cytopathogenic effects or 184 

immunofluorescence methods with MOI and incubation time varying from 0.01-0.05 and 185 

24-72 hrs respectively (Figure S1). The threshold set for activity classification by the 186 

Bayesian model generated with AC was 6.65 µM, with a final ratio of 52% actives in the 187 

training set and 37% in the external test set. The molecules in both training and test set 188 

are available in the supplemental data. 189 

 190 

Machine Learning Models 191 

Machine learning models were developed with AC as well as several other 192 

methods available to us. This five-fold cross validation comparison shows the different 193 

prediction statistics for all machine learning algorithms implemented with the training 194 

data only (Table 1). AC outperformed all of them at the threshold of 6.65 μM with Rf 195 

coming the closest. These models were chosen for further external testing predictions. 196 

 197 

Table 1 – Five-fold cross validation statistics for all SARS-CoV-2 machine 198 

learning models implemented using ECFP6 fingerprints. 199 

 
ACC AUC CK MCC Pr Recall Sp F1 

AC 0.81 0.78 0.62 0.64 0.78 0.88 0.73 0.83 

rf 0.75 0.74 0.49 0.5 0.73 0.82 0.67 0.77 

knn 0.71 0.71 0.43 0.42 0.71 0.76 0.67 0.74 

svc 0.7 0.69 0.39 0.4 0.68 0.79 0.6 0.73 

bnb 0.68 0.68 0.36 0.36 0.7 0.7 0.67 0.7 
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ada 0.64 0.63 0.27 0.26 0.65 0.67 0.6 0.66 

DL 0.65 0.65 0.3 0.3 0.66 0.67 0.63 0.66 

 200 

ACC: Accuracy, AUC: Area under curve, CK: Cohen’s Kappa, MCC: Matthews 201 

correlation coefficient, Pr: Precision, Sp: Specificity, F1: F1 Score. bnb: Bernoulli Naïve 202 

Bayes, ada: AdaBoost Decision trees, rf: Random Forest, svc: support vector 203 

classification, knn: k-Nearest Neighbors and DL: Deep Learning (DL) 204 

 205 

External Validation 206 

The performance of the machine learning models on the external testing data is 207 

shown in Table 2. The external validation was used to measure model performance in 208 

data from different studies outside the training set. svc and knn had slightly better 209 

statistics compared to all other models, with the best balance between recall and 210 

specificity.  211 

 212 

Table 2 – Prediction statistics with the external data for all SARS-CoV-2 213 

machine learning models implemented 214 

 
ACC AUC CK MCC Pr Recall Sp F1 

AC 0.62 0.58 0.17 0.17 0.50 0.40 0.76 0.44 

rf 0.63 0.57 0.10 0.11 0.42 0.30 0.80 0.35 

knn 0.67 0.6 0.21 0.21 0.50 0.40 0.80 0.44 

svc 0.70 0.57 0.34 0.34 0.54 0.60 0.75 0.57 

bnb 0.50 0.49 -0.09 -0.09 0.27 0.30 0.60 0.28 
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ada 0.53 0.49 0.00 0.00 0.33 0.40 0.60 0.36 

DL 0.63 0.56 0.15 0.15 0.44 0.40 0.75 0.42 

 215 

 216 

Chemical Space 217 

The PCA of the model training set alone shows that the SARS-CoV-2 chemical 218 

space is well distributed with active and inactive molecules well mixed when analyzed 219 

using either molecular and fingerprint descriptors. When compared with Prestwick 220 

Chemical Library (PwCL), a library of predominantly FDA approved drugs, the SARS-221 

CoV-2 data lie within a big cluster with molecular descriptors and is more widely 222 

distributed when using the fingerprint descriptors.  223 

 224 
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Figure 1 – PCA of the SARS-CoV-2 set with Molecular Descriptors (A), and225 

ECFP6 (B). Red Spheres – Active, Grey Spheres – Inactive. PCA of SARS-CoV-2 set226 

and Prestwick Chemical Library (PwCL) with molecular descriptors (C), and ECFP6 (D).227 

Red Spheres – SARS-CoV-2, Grey Spheres – PwCL 228 

 229 

Applicability and Reliability Domain Assessment of External Test Set 230 

The applicability and reliability domain assessment of the external test set was231 

determined for each molecule as described in the methods to see how the test set232 

compares with the training data. Molecules in the applicability domain are considered233 

suitable for the model predictions due to similarity based on structural and molecular234 
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properties with the training data, whereas the reliability value is a measurement of how 235 

reliable the predictions are and uses different clustering metrics to determine its value. 236 

 From 30 molecules in the external test set, 22 were within the training data 237 

applicability domain and had their reliability value calculated. Most molecules that fell 238 

within the applicability domain had high or very high reliability values, with only 36% 239 

showing moderate reliability, so, most molecules obey the similarity criteria and are not 240 

far away from dense clusters. In comparison, with the Assay Central applicability score, 241 

which accounts only for structural similarity of the query compound with the training 242 

data, only 10 molecules were considered within the domain with a higher reliability, 243 

suggesting it is likely more conservative. Indeed, with the external test and training set 244 

PCA we can see that most molecules superimpose with few of them distant from each 245 

other (Figure S1). Therefore, similarity together with clustering methods are more 246 

suitable for applicability and reliability assessment compared with only structural 247 

similarity, as seen by the PCA.  248 

 249 

Prospective Prediction 250 

A selection of FDA approved drugs available to us in our relatively small in-house 251 

compound collection of hundreds of molecules was scored with the AC Bayesian model. 252 

A selection of some of the best scoring molecules (Table 3) was used to identify and 253 

prioritize compounds for in vitro testing. AC Applicability score is the similarity of the 254 

compound with the training data, compounds are ranked by reliability which may 255 

provide some degree of confidence in these predictions. 256 

 257 
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Table 3 – Prospective prediction compounds predicted and prioritized for testing. 258 

 259 

In vitro Inhibition Assays of Predicted Compounds 260 

Antiviral activity testing in the HeLa-ACE2 cells demonstrated that CPI1155 and 261 

CPI1062 have antiviral activity with IC50 values of 8.4µM and 540nM (Figure 2), 262 

respectively. The cell viability of these compounds was also tested, with both CC50 263 

higher than 40 µM. Other compounds did not inhibit viral replication in HeLa cells or had 264 

appreciable cytotoxicity.  265 

 266 

Figure 2 – Preliminary dose response curves for a) CPI1155 and b) CPI1062. 267 

 268 

Name Prediction 
Score 

AC Applicability 
Score Reliability 

CPI1062 0.67 0.5 High 

CPI1066 0.62 0.38 High 

CPI1004 0.62 0.39 High 

CPI1012 0.70 0.70 Moderate 

CPI1155 0.70 0.40 Moderate 

CPI1175 0.65 0.41 Moderate 

CPI1153 0.7 0.7 Low 
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a)  b)  269 

 270 

Discussion 271 

One of the challenges for addressing novel viral outbreaks is selection of drugs 272 

to test. Testing capacity, even for in vitro antiviral activities is likely to be low at the 273 

onset of an outbreak, making compound selection even more critical in this situation. In 274 

the case of SARS-CoV-2, the initial focus was on molecules that had previously shown 275 

activity against SARS or MERS 37,38. The training set for the current model is therefore 276 

not a random sampling of drug property space. When compared with the PwCL, a 277 

library of mostly FDA approved drugs, all molecules superimpose in the property space 278 

highlighting the model suitability for drug repurposing.  Even with a relatively small 279 

training dataset the machine learning models evaluated have shown acceptable five-280 

fold cross validation statistics, with almost all metrics greater than random and ROC 281 

>0.75 for AC (Table 1). When compared with different machine learning methods AC 282 

outperforms all of them in the SARS-CoV-2 training set, but this may be due to the 283 

threshold for all models being set as optimal for AC. However, choosing different values 284 

could imbalance the training set and remove important compounds from the active 285 

group. 286 
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More important than a good performance in the training set is the performance 287 

on external data, since most prospective predictions will occur for molecules outside 288 

training data. For external validation all models had intermediate performance, with 289 

ROC of 0.6. Taking into account the small number of molecules and that some test set 290 

molecules lie outside the applicability domain, the performance is acceptable. Different 291 

from the training set performance, svc had the highest overall score, predicting 60% of 292 

the active molecules despite its modest statistics in five-fold cross validation. The good 293 

performance of svc in predicting biological activity is in accordance with several studies 294 

that show good performance in different datasets 28,32,35,39.  Therefore, the models 295 

described here are suitable for initial prospective predictions. 296 

The applicability and reliability assessment shows that 73% of the test set 297 

molecules lie within the model applicability domain with high to moderate reliability, so 298 

poor performance in external validation occurs because there isn’t a clear boundary in 299 

the model’s feature space that can correctly classify external data. Increasing the 300 

number of molecules might include new features in both actives and inactive molecules 301 

which can increase model performance in both training and external data. 302 

The training and test set described herein can be merged to increase data set 303 

size and applicability domain. The AC model with merged training and test data has 304 

slightly worse statistics (ACC: 0.76, AUC:0.79, CK: 0.53, MCC: 0.75, Pr: 0.76, Recall: 305 

0.76, Sp: 0.77, F1: 0.76), but a higher applicability domain. The PCA confirms this wide 306 

chemical property space (Figure S1), the PCA of this updated model is much more 307 

balanced and broader than the previous one (Figure S2) versus Figure 1B. Without 308 

some form of external validation, we cannot assess how predictions of compounds 309 
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outside the applicability domain perform, as model statistics were comparable it is310 

expected that compounds outside this would obviously have unreliable predictions,311 

however this may be offset by a higher domain which can increase reliability of some312 

compounds. 313 

The molecules of the dataset do not have a common scaffold, but there are314 

several common structural features that occur in active/inactive molecules that can be315 

highlighted, such as tertiary amines and aliphatic chains in active molecules and phenyl316 

rings and peptide molecule features in inactive molecules (Figure S3). These most317 

common active features appear in chloroquine, tripanarol and tilorone, while the inactive318 

features appear in darunavir, amprenavir and ritonavir (Figure 3). The lack of common319 

scaffolds and features that appears in more than 30% of the active or inactive320 

molecules shows how different and diverse the active molecules are, which turn321 

classification models for these molecules into a relatively difficult task. 322 

 323 

Figure 3- Common Active/Inactive structure features of the SARS-CoV-2 dataset 324 

 325 
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The performance of a predictive model is highly dependent on the curation and 327 

data used. One of the main problems that comes from building models with biological 328 

data from different laboratories is data reproducibility and assay standardization40. Cell 329 

based assays of viral infections have many parameters that can affect the compound 330 

potency, e.g., cell lines, MOI, assay readout41. From all inhibition assays for SARS-CoV-331 

2 collated to date, most studies use MOI of 0.01-0.05 (73% of data), different Vero cell 332 

lines (77% of data) and qRT-PCR (60% of data), however there is no clear definition of 333 

compound addition time post infection (Figure S1).  334 

Besides this, even assays with the same or similar conditions have differences in 335 

‘control’ compounds such as chloroquine or remdesivir, showing a lack of data 336 

reproducibility between laboratories, which can impact model building. If we keep only 337 

studies with the most in common there is not enough data to build a model, while 338 

merging all studies will have problems of different assay parameters. It was shown that 339 

for Ebola infections in VeroE6 cells the change in the compound potency at different 340 

time post infections are lower when using MOI of 0.01-0.1 therefore, merging different 341 

assays with the same cell line and low MOI is a good choice to avoid data 342 

inconsistency41. 343 

It should be noted that most of the in vitro data collated to date uses Vero or Vero 344 

E6 cells for inhibition assays. Although these cells lines have high ACE2 expression 345 

levels, they lack a TMPRSS2 gene. Priming of viral S proteins can occur with the host 346 

cell protease TMPRSS2 and Cathepsin L and is essential for SARS-CoV-2 entry42,43. 347 

Therefore, inhibition assays with cells that do not express TMPRSS2 should be avoided 348 

as they might miss compounds that could inhibit the protein and instead find 349 
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compounds that prevent virus entry by inhibiting only Cathepsin L. In order to avoid 350 

these problems with the TMPRSS2 and Cathepsin L gene, cell lines like Calu-3 or 351 

modified Vero cell lines should be used instead.44 352 

From the 7 compounds prioritized for testing in our laboratory using the machine 353 

learning model, CPI1155 and CPI1062 showed antiviral activity against SARS-CoV-2 354 

infections in HeLa-ACE2 cells. Like Vero cells, HeLa does not express TMPRSS2, 355 

therefore compounds might need to be be retested in different cell lines to see whether 356 

or not the expression of TMPRSS2 affects compound activity.45 357 

As new data is continually being published the machine learning models can be 358 

updated to increase performance in terms of both training and external test set 359 

validation. The very latest model for SARS-CoV-2 is available at www.assaycentral.org. 360 

In the meantime, we have shown these models perform well with internal cross 361 

validation, external validation as well as prospective prediction, enabling us to find 362 

additional active molecules. These models should be used to prioritize compounds 363 

which have both a high prediction score and reliability as described herein. This will be 364 

expected to return more reliable predictions that together with drug discovery expertise 365 

can help prioritize compounds in future for in vitro testing.  366 
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