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Abstract

Animals living at high population densities commonly experience greater exposure to

disease, leading to increased parasite burdens. However, social animals can benefit
immunologically and hygienically from cooperation, and individuals may alter their socio-
gpatial behaviour in response to infection, both of which could counteract density-related
increases in exposure. Consequently, the costs and benefits of sociality for disease are often
uncertain. Here, we use along-term study of awild European badger population (Meles

mel es) to investigate how within-population variation in host density determines infection
with multiple parasites. Four out of five parasite taxa exhibited consistent spatial hotspots of
infection, which peaked among badgers living in areas of low local population density.
Combined movement, survival, spatial, and social network analyses revealed that parasite
avoidance was the likely cause of this negative density dependence, with possible roles for
localised mortality, encounter-dilution effects, and micronutrient-enhanced immunity. These
findings demonstrate that animals can organise their societies in space to minimise parasite
infection, with important implications for badger behavioural ecology and for the control of

badger-associated diseases.
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A wild animal’ s infectious disease burden is determined by its exposure and susceptibility to
infective pathogens. Typically, higher population density results in increased contact rates
and thus greater exposure [1,2]; however, sociality carries immunological and hygienic
benefits that can counteract this exposure-exacerbating effect [3,4]. For instance, cooperative
foraging improves nutrition, alleviating infection costs [5]; mutual grooming removes
ectoparasites [6-8]; and “social immune responses’ maintain collective group health [9,10],
e.g. through extirpating sick individuals [11]. Additionally, the environmental distribution of
resources can influence spatial behaviour [12-14] and determine local population densities
[15], while altering susceptibility [16] and transmission efficiency [17]. Sociality and disease
may thus be confounded through shared causal origins rather than being mechanistically
linked [17]. Finally, individuals can minimise exposure by avoiding environmental cues
[18,19] or infected conspecifics [8,20], creating a population-level “landscape of disgust”
analogous to predatory “landscapes of fear” [21,22]. These processes could produce negative
density effects, sometimes depending on parasite transmission mode [1,17,23], but their role

in defining observed density-infection relationships is poorly understood.

Uncertainty concerning density-infection relationships largely arises because studies of social
effects are often carried out across discrete groups [1,24], between populations [25,26], or
between species (e.g. [1,2,24,27]). Continuous density measures are rarely linked to parasite
burden within one contiguous host population, and studies that do so generally use purely
social metrics rather than spatial density gradients (e.g. [28—-30]). Continuous spatial density
measures are advantageous because: density is a continuous, spatially explicit variable [31—
33]; for the many parasites that are spread through the environment, spatial density measures
better represent transmission than direct (social network) metrics [17,34-36]; and between-
population and cross-species comparisons are fraught with confounding factors such as
shared environmental causality or compensatory evolutionary changes [1,3], which within-
population studies can more easily avoid or overcome. Furthermore, accounting for spatial
effects may help anticipate or test the caveats of cooperation, environmental causality, and

behavioural avoidance outlined above.

European badgers (Meles meles) are nocturnal, ground-dwelling mustelids with a pan-
European distribution, eating a varied diet composed largely of earthworms [37]. Badgers are
of particular interest for cattle health in the United Kingdom because of their rolein
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maintaining and spreading bovine tuberculosis [37,38]. Although intended as a control
measure, intense culling perturbs badger social systems, causing stressed survivors to
disperse, thereby spreading bovine tubercul osis to neighbouring farms [39-41].
Understanding badgers' socio-spatial behaviours and their epidemiological implicationsis
therefore an important research priority (e.g. [38,42—44]). The demography, behaviour, and
parasitism of badgers in Wytham Woods, Oxfordshire have been studied continuously since
1987 [37,45]. Dens (termed “setts”) are situated dependent on soil composition and landscape
topography [46]. These badgers reside in cohesive mixed-sex social groups, with around 35%
consistent philopatry; however, these groups are also fluid: 16.4% of individuals are trapped
at adifferent social group to their previous capture history, and 19.8% away from their natal
group [47]. Furthermore, from genetic pedigree, 48% of cubs have extra-group paternity [48].
Badgers host several arthropod parasites, including badger-specific fleas (Paraceras melis)
and lice (Trichodectes melis) and generalist ticks (Ixodes sp.) [49]. They aso carry two
gastrointestinal protozoans: Eimeria melis and Isospora melis. E. melis predominantly infects
young individuals, causing substantial mortality [50,51]. Although studies have examined
socia grooming effects on ectoparasite burden [6,52] and roles of denning behaviour in
parasite transmission [49], the within-population spatial-social parasite epidemiology has yet
to be investigated.

Here, we investigate parasite burdensin the Wytham badger population and their associations
with spatial and social behaviour. We establish parasite distributions using spatial
autocorrelation models. We quantify social drivers using both spatial density gradients and
social network metrics, postulating that greater badger densities would drive higher parasite
burdens through increased exposure. Finally, we examine survival effects, investigating
whether parasite-linked mortality might alter spatial patterns of badger population density.
We consider arange of potential social/spatial covariates of parasite burden, including
density-related exposure changes, benefits of cohabitation, condition/susceptibility effects,

encounter-dilution effects, and parasite avoidance behaviours.

M ethods

Data collection

Badgers were sampled as part of along-term study in Wytham Woods, Oxfordshire, UK
(51.778°N, 1.313°W), established in 1987 and recording one of the highest local badger
densities ever reported [37,45]. Badgers were trapped overnight at their setts in steel-mesh
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cages baited with peanuts, collected the next morning, transported to a handling facility and
sedated. Individuals were identifiable by tattoo, applied on first trapping (typically as cubs).
Measures were taken of head-body length (mm) and weight (to the nearest 0.1kg). We
calculated a standardised index of body condition dividing log(weight) by log(body length).
The population was trapped seasonally (winter: Jan/Feb/March; spring: April/May/June;
summer: July/Aug/Sept; autumn: Oct/Nov/Dec) in 4 quadrants, for 3 days per quadrant. Our
dataset included 9016 captures of 1369 badgers spanning 29 years (1990-2018).

The population currently comprises 23 social groups (mean group size=11; range 2-29
individuals), each using more than one sett, with sett/social group affiliation established using
baitmarking [46,53]. Badgers were assigned to groups using established residency rules [48].
We computed socia networks based on co-trapping using a “gambit of the group” approach ,
where individuals trapped in the same sett in the same year were assumed to have interacted
[54].

Fleas were counted during a stereotyped 20-second inspection of the badger’s full body, and
ticks (Ixodes sp.) and lice (Trichodectes melis) were counted within a4x4cm square of
preferentially-parasitised skin near the groin (per Cox et al. 1999). Faecal sampling for two
protozoan endoparasites, Eimeria melis and Isospora melis, was carried out through 1993-
1997 and 2009-2017 (N=1287 counts). Endoparasite were counted using sat flotation and
microscopy [51,55]. Each count was duplicated, and data were reduced to a binary
infected/uninfected status (rather than counts) because of their highly overdispersed
distribution.

Statistical Analysis

Covariates

Statistical analysis and data manipulation used R version 3.6.0 [56]. All data and code are
available at https://github.com/gfal bery/Badgeworks. Models were constructed using the
‘inla’ package [57,58]. Response variables included counts of fleas and lice (negative

binomial distribution) and prevalence of ticks, Eimeria, and Isospora. Explanatory covariates
included: Y ear (continuous); Month (categorical); Age Category (categorical: cub, yearling,
and adult); Sex (male and female); and Body Condition (continuous). Continuous covariates
were standardised (mean=0; standard deviation=1). Individual Identity and Y ear were fitted
throughout as categorical random effects.
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1. Spatial autocorrelation models

To identify generalised spatial patterns we first fitted models accounting for continuous
gpatial autocorrelation across the population [33,57,58]. We fitted a base model using only

Y ear, Month, Age Category, and Sex, with individual and annual random effects. We then
added an SPDE random effect controlling for spatial autocorrelation in the response variable
in space, based on individuals' point locations. We then compared these models using
Deviance Information Criterion (DIC) to establish whether accounting for spatial
autocorrelation improved model fit; models within 2ADIC were judged competitive.

2. Density models

We then fitted models that replaced the SPDE effects with individual measures of local
population density. Models included arange of social/spatial density measures, calculated
using various methods. Spatial density metrics represent numbers of individualsin agiven
space, and therefore tread the line between social and spatial behavioural traits[17]. We
computed these by creating space use distribution kernels with the “adehabitathr™ packagein
R [59]. We rasterised the usage distribution, assigning each individual alocal density based
on the raster value for their map location (Figure 1A-B). Measuresincluded: 1) Lifetime
density: the density of individuals centroids across the study period. 2) Trapping density:
the density of trapping events, incorporating multiple captures of the same individual per
year. 3) Annual density: the density of individuals centroidsin the sampling year,
calculated from annual density kernels. Only one spatial density measure was alowed in a
given model, as the measures correlate (R>0.5) and co-fitting several measures produced
spurious, unexpected correlations in the opposite direction expected from data exploration.
We also used two social metrics based on co-trapping patterns. Degr ee centr ality was the
number of unique badgers with whom each individual was trapped in the same sett per year.
Group size was the total number of individuals trapped in a given socia group per year.
Following spatial autocorrelation model procedures, we conducted a model selection
procedure for behavioural metrics, using 2ADIC as the cutoff, and only including the best-
fitting metric. We conducted these models for: the overall dataset (N=9016); adults only (age
2+, fitting age in years as a fixed covariate; N=6159); and juveniles only (N=1639). For these
models, we display only the best-fitting metric, and for the overall dataset if it exhibited a

significant trend (and a subset-only model otherwise).
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3. Multi-response models

To investigate whether parasites covaried with badger density at the within- or between-
individual level, we constructed multi-response models in MCM Cglmm with an unstructured
covariance matrix [60,61]. We fitted parasites and local density as response variables,
estimating their covariance when accounting for other fixed effects and decomposing this
covariance at the within- and between-individual level. A negative within-individual
(residual) correlation would imply that higher burden/prevalence individuals (compared to
their baseline) moved to lower density areas during their lives, supporting either social
ostracism or sickness behaviours. In contrast, negative between-individual covariance would
imply that individuals inhabiting lower densities generally had inherently greater parasitism.
We only constructed these models for parasite-host age category combinations that
demonstrated density effectsin the INLA models.

4. Survival models

To investigate parasites’ mortality effects, we fitted models with survival as abinary response
(1=animal seen in any subsequent year; 0 otherwise). These models included the same
covariates as the parasite models, plus parasite prevalence/count and badger density

measures. Parasite measures were either log(x+1)-transformed integers (fleas, lice) or binary
(ticks, Eimeria, and Isospora). We conducted another model selection procedure, adding
parasite metrics successively if they improved model fit. This was carried out for adults and

juveniles separately.

Results

INLA autocorrelation models revealed considerable spatial structuring of parasite burdens.
Models for 4/5 parasites were substantially improved by incorporating spatial effects
(ADIC>8; Table 1). Only Isospora’s model was not improved by spatial autocorrelation
(Table 1).

Density models provided substantial support for negative associations between badger
density and parasite infection. Including at least one density measure as a covariate improved
the model for at least one age category for 4/5 parasites; al had significant negative slopes
for density effects (Figure 2; Figure SI1-4; Table SI1-3). Slopes were relatively shallow, but
extremely significant and robust (Figure 2). Flea counts were best described by Lifetime
Density for the overall model (ADIC=-16.31; P<0.0001; Figure 2A), while lice burdens
decreased with Trapping Density in the juveniles-only model (ADIC=-8.77; P=0.0017; Figure
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2B). Tick prevalence was lower in areas of higher Lifetime Density (ADIC=-2.47; P=0.0038;
Figure 2C), and Eimeria prevalence was lower with greater Trapping Density (ADIC=-5.83;
P=0.0053; Figure 2D). Only one positive social effect was detected: adults with greater
degree had slightly more lice (ADIC=-2.39; P=0.027; Figure SI2). All DIC changes
associated with the model addition procedure are presented in Table SI1-3.

MCM Cglmm multi-response models revealed similar trends to INLA univariate models
(Figure SI1-4), and allowed us to decompose density-parasite correlations into within- and
between-individual changes (Figure 3B). Correlations were greater and much more
significant between- than within-individualsin all cases (Figure 3B). This demonstrates that
movement between high- and low-density areas was unlikely to produce changes in parasite
burden over an individual’s lifetime, but rather that individuals' home ranges exhibited
inherently different local density-parasite relationships. Only louse infection predicted
survival probability; the effect was relatively small, minimally significant, and specific to
juveniles (P=0.038; Figure 3A).

Our models a'so revealed various other effects (Figures Sl1-4). Briefly, in the overall models,
juveniles had fewer fleas, morelice, and greater Eimeria prevalence than did yearlings and
adults, and lower Isospora prevalence than adults (Figure SI1). Males had more lice than did
females, with substantial monthly variation in all parasites (Figure SI1). Additionally, body
condition was negatively associated with fleas, lice, and Eimeria infection in all age/sex
classes (Figure SI1). The adults-only and juveniles-only models were very similar to the
overall models (Figures SI1-3); notably, in adults, lice burden increased with age in years,

whereas Eimeria and Isospora prevalence decreased (Figure S12).

Discussion

Using a combination of spatial and socia network analysis, we uncovered negative
associations between local population density and multiple parasites in this wild group-living
carnivore. We found strong but contrasting spatial structuring of fleas, lice, ticks, and
Eimeria, and, contrary to expectations, all four were most prevalent or abundant in areas of
lowest badger density. Co-trapping network and grouping metrics were not predictive of
parasitism, implying that “direct” social behaviours, such as mutual allo-grooming, were
unlikely to explain the negative density effects. Additionally, badger density effects
manifested independent of survival and body condition effects, implying that spatial
structuring of the host population did not originate from: 1) localised host mortality, 2)
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reduced susceptibility arising from co-habitation and implied cooperation benefits [3,5], or 3)
greater local resource availability influencing susceptibility [16,62,63]. Additionally, multi-
response models revealed low within-individual covariance between density and parasites,
providing little support for heavily-parasitised individuals becoming ostracised during the
course of their lives[11]. Taking spatial structuring together with setts' propensity to harbour
parasites [49,64], the most parsimonious interpretation is that badgers avoid infection
behaviourally, preferring to inhabit areas poorly disposed to parasite transmission (Table 2).
These individual-level avoidance behaviours amplify at the population level to produce
patterns of badger density inversely related to parasite distributions in the environment, as
expected under a“landscape of disgust” [19,21,22]. As well as providing rare evidence of
non-consumptive effects of parasitesin awild carnivore, these results imply that animals can

arrange their society in space according to parasite transmission.

Our study demonstrates observationally that parasites can determine a society’s structure in
the environment, and that this phenomenon may counteract the more conventional prediction
that host density exacerbates parasitism through increased exposure (e.g. [1,2,69]).
Consequently, studies aiming to quantify social covariates of disease should explicitly seek
to investigate individual movement and avoidance behaviours, socio-spatial structuring, and
feedbacks between sociality and space use [17]. Previous studies on other mammals have
revealed avoidance of infected conspecifics [8] and faeces [18,66], but it remained unclear
whether animals avoid spatia hotspots of transmission themselves, and whether these could
have population-level consegquences [21,22]. Badgers respond to social scent cues and may
use these to detect and avoid infested or infectious individuals [67]; furthermore, they move
between setts regularly to avoid accumulating parasites [64,68], abandoning highly infested
setts and chambers [49]; we posit that this behaviour has emergent population-level
conseguences. Wytham badgers preferentially establish their setts on northwest-facing slopes
in areas with sandy soils [46], and variation in internal sett temperature and humidity are
associated with reproductive success [69,70]. Our data suggest additional selection for sett
traits and sites resistant to parasite infestation and transmission, which produce an emergent
trend for fewer setts, with fewer occupants, in more highly parasitised areas. Quantifying
parasites in the environment or inside setts and correlating them with badger behaviour could
provide support for this hypothesis. Environmental (sett chamber-based) data on parasite

presence would be needed to determine whether badgers avoid infection actively (pre-
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infection), using environmental cues that predict parasitism, or reflexively (post-infection), by

moving away from areas of high parasitism due to irritation or sickness.

Four parasites exhibited negative density effects, which could impose tradeoffs on avoidance
behaviour. The parasites’ distributions were highly contrasting, likely driven by different
environmental factors: for example, sett microclimates favouring flea survival will facilitate
their transmission [49,64]; similarly, Eimeria is transmitted faecal-orally, and oocysts are
likely acquired from warm, moist sett chambers, which may explain the gradual decline
moving away from the Thames river in the Northwest toward drier parts of the woods (Figure
1F). Ultimately, in combination with other socio-ecological factors (e.g., finding suitable
mates), badgers may be incapable of completely avoiding all parasites via denning decisions,
which could mediate co-infection and promote diverse parasite communities, giving rise to
local hotspots across the population. This may lead to parasite avoidance being traded off
against foraging, reproductive success and survival [22,71]. If badgers exhibit between-
individual variation in movement and foraging specialisation [72], avoidance of multiple co-
infecting parasites could maintain between-individual immune heterogeneity [55]. Notably,
only cub density was negatively associated with lice. This observation could be linked to the
detectable mortality effects in cubs, driving local cub mortality and/or motivating
reproducing females to avoid spatial hotspots of lice.

All of the parasites we examined employ some degree of indirect transmission, likely
yielding different relationships with host density than more directly transmitted parasites
[1,17]. Ultimately, only avoiding conspecifics can help avoid direct parasite transmission
(e.0. [8]), which may not be achievable through purely spatial structuring. Future studies
could examine sexually transmitted infections or aerosol-transmitted viruses to investigate
whether individuals living in areas of lower density gain any benefit in terms of direct
parasite transmission. This may be of particular importance for bovine tuberculosis (bTB),
which has a complex, nonlinear relationship with badger sociality [73—75]. Notably,

previous bTB studies have generally used socia group size as a metric of sociality; given that
bTB has an environmental transmission component, particularly between badgers and cattle

[76], spatial density metrics, such as those employed here, could be revealing.

We note two potential sources of negative density dependence untested by our modelling
approach: the encounter-dilution effect [77,78] and micronutrient impacts on immunity [79].
For the former, where parasites exhibit a constant attack rate in space, greater host densities

actually drive alower per-individual burden of disease because the same number of parasites
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is divided among more available hosts [77,78]. Because this requires that the spatial
distributions of parasites are not tightly linked to the host distribution (e.g. through
reproducing on the host), it isunlikely to apply for any of the badger-specific parasites
studied here. However, non-host-specific ticks (Ixodes sp.) could transmit from other species
to badgersin a given area, producing an encounter-dilution effect; therefore, we are unable to
rule out this mechanism (Table 2). Regarding nutritional status, we used body condition
index as a coarse predictor of the ability to mount a healthy immune response. However,
micronutrients are essential to effective immune function [79] and would not be detected
from body condition indices; therefore, it is plausible that badgers might congregate in areas
of high micronutrient availability. If this behavioural tendency functions to combat pathogens
specifically, it amounts to a “landscape of disgust” acting through reduced susceptibility
rather than reduced exposure. This possibility could be tested in this or similar systems by
comparing the spatial distributions of high-resolution individual-level immune measures with

host density distributions.

Our findings have important implications for the socio-spatial dynamics of this system and its
resilience to pathogens and ecological change. If badger populations are organised optimally
to occupy areas of |east parasite transmission, even small disturbances (e.g. setts lost to
forestry) could disrupt its socio-spatial structure and force individuals into unfavourable,
more highly parasitised areas, exacerbating their disease burden. Therefore, disruptive
anthropogenic activities such as culling-linked perturbation could have unseen consequences
for badger disease beyond larger-scale movement impacts (e.g. [39,40]). These findings
further inform our understanding of the drivers of badger spatial behaviour, offering insights

that may be invaluable for their conservation and disease control [38,46].
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Figure 1. Spatial digtributions of badger population density and parasitesin Wytham Woods,
Oxfordshire, between 1989 and 2018. A: badger population density distributed across Wytham
Woods, calculated based on a space use kernel for individuals' annual centroids. B: Individual

badgers trapped at setts (represented by points) were assigned a local density value based on their
location on the rasterised space use kernel. Darker blue coloursin A and B correspond to greater
population density. C-F: the spatial distribution of the four spatially distributed parasites, estimated
using the INLA SPDE effect. Darker colours correspond to increased parasitism. The density values
in B werefitted as covariates in linear modelsto explain individual parasite burdens, revealing a
negative correlation between density and parasitism (see Fig. 2). All axes are in kilometres, with the
0,0 point at the bottom left of the study area. We examined a fifth parasite, sospora melis, but it was
not significantly spatially distributed (see Table 1).


https://doi.org/10.1101/2020.06.15.153726
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.15.153726; this version posted November 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

321

322
323
324
325
326
327
328
329
330
331

332

A -0.077 (-0.108, -0.047), P < 0.0001
eic. 8 - & ee do o8 g i
31 AP SE s R 107 8
T | -E s -nn' ° .riu e & & g
= (ViR IR
cMen® @ © 0w @00 S8 © o
+ O LN WSS § TENOO WO > 00 & O @
) © CWE DS © Wo0e Wo S5 S @ 8
1] 216 ceomasenee oo o e @ ecwe o
@ ] . -we 0 00 ® ®
i S5 —ace
D ¢ NN BME © WNOC WIS S0 000 000
L 1] wwnmoe smmeane nsemes
? PESWEEWE © WEIO WRO S8 60 W OO
0] ® mesmenm e o wsec mwe e 00w oo
- 0 1
Lifetime density
c —
0.101 -0.185 (-0.311, -0.059); P = 0.0038
& ooehih @ ® et @0 et e L] L ]
0.08 1
,, 0.06
=
e,
-
0.04 1
0.02 \
0001 » meswemem e o smes mwe o0 sowe son

-1 0 1
Lifetime density

B 3 -0.067 (-0.11, -0.025); P = 0.0017
s .
+ .
o
2
= -
= =
Q9 44
0 -
4 0 1 2
Trapping density
D P
-0.227 (-0.391, -0.066); P = 0.0053
1.04 SO0 CNENEE WS W W @ * o0 ®
0.81
B!
5 0.6
£
L
0.44 \
0.21
0.0 oose connme seme @ oo e e °
b 0 1 2

Trapping density

Figure 2: Negative associations between population density and parasite infection. Badgers living at
higher densities had fewer fleas (A), fewer lice (B), lower tick prevalence (C), and lower Eimeria
melis prevalence (D). B represents juveniles only. Points represent individual samples, with colours
randomised along a colour palette for plotting clarity. Opaque black lines are derived from linear
model fits, taking the mean of the posterior distribution. Transparent grey linesrepresent 100 fits
drawn randomly from the posterior estimate distributions of each model, to demonstrate error in the
slope and intercepts. Text at the top of the Figures communicates slope estimates, with lower and
upper 95% credibility intervals in brackets, and P values. NB: in panel C, they axis scale and the
location of the positive points have been atered for plotting clarity and to better visualise the slope,
due to low tick prevalence.
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Figure 3: Associations of parasitism with survival and density-parasitism covariance partitioning. A)
Louse burden was negatively associated with individual survival probability in juveniles. Opague
black line=linear model fit. Transparent grey lines=100 fits drawn randomly from the posterior
estimate distribution, to demonstrate error in the slope and intercept. Text at the top of panel A
communicates slope estimate, with lower and upper credibility interval in brackets and P value. B)
Estimates for within- and between-individual covariance between parasitism and density, taken from
MCM Cglmm multivariate models. Points=posterior mean effect size estimates; error bars=95%
credibility intervals.

Fleas Lice Ticks Eimeria |sospora

Base 153.03  36.57 49.25 8.28 0

SPDE O 0 0 0 2.25

Table 1: DIC changes associated with spatial autocorrelation termsfor the five examined parasites.
Lower numbers denote better models, best-fitting models ADIC=0. All models except | sospora were
improved by addition of spatial fields (* SPDE”).
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Potential mechanism Conclusion Reason for conclusion

Co-habitation/ N No direct socia effects or competition with body
o]

cooper ation benefits condition effects (Model Set 2; Figure SI1-3)

Spatial rather than direct social effects; grooming
Allo-grooming No not possible for endoparasites (Model Set 2; Figure
SI1-3; Table SI1-3)

Nutrition-associated N No competition with body condition effects (Model
0
immune benefits Set 2; Figure S11-3)
Social ostracism/self- N Low within-individual covariance of density and
0
isolation parasitism (Model Set 3; Figure 3B)
Possiblefor lice, in juveniles, but no other mortality
Local host die-offs ~No : _
effects were evident (Model Set 4; Figure 3A)
Possible for generalist ticks, but not for the other
Encounter-Dilution ~No . ) ]
(badger-specific, non-mobile) parasites [77,78]
All other possibilities eliminated; consistent with
Avoidance Yes

individual-level behavioural responses [64]

Table 2: Reasoning surrounding our hypothesis testing. We rej ected most hypotheses for our observed
negative density effects other than parasite avoidance.
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Supplementary figures and tables. Negative density-
dependent parasitism in a group-living car nivore
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Figure SI1: Model effect outputs for the full dataset INLA density models. Points represent modes of
the posterior digtribution of the effect estimates; error bars represent the 95% credibility intervals.
Asterisks denote significant results, whose 95% credibility intervals did not overlap with zero. Only
the behavioural traitsthat improved the model fit (ADIC<-2) and were kept in the final model are

shown.
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Figure SI2: Model effect outputs for the adults-only dataset INLA density models. Points represent
modes of the posterior distribution of the effect estimates; error bars represent the 95% credibility
intervals. Asterisks denote significant results, whose 95% credibility intervals did not overlap with
zero. Only the behavioural traits that improved the model fit (ADIC<-2) and were kept in the final

model are shown.
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Figure SI3: Model effect outputs for the juveniles-only dataset INLA density models. Points represent

modes of the posterior distribution of the effect estimates; error bars represent the 95% credibility

intervals. Asterisks denote significant results, whose 95% credibility intervals did not overlap with

zero. Only the behavioural traits that improved the model fit (ADIC<-2) and were kept in the final

model are shown.
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Figure SI4: Model effect outputs for the multivariate MCM Cglmm maodels closely represent the INLA
univariate models. Points represent modes of the posterior distribution of the effect estimates; error
bars represent the 95% credibility intervals. Asterisks denote significant results, whose 95%
credibility intervals did not overlap with zero. Only the behavioural traits that improved the model fit
(ADIC<-2) and were kept in the final model are shown.
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623

PARASITE ROUND VARIABLE DELTA KEPT

FLEAS 1 Degree 2.08 0
1 GroupSize 2.055 0
1 **LifetimeDensity** -16.001 1
1 TrappingDensity 1.115 0
1 AnnualDensity -6.889 0

LICE 1 Degree 1.796 0
1 GroupSize 13 0
1 LifetimeDensity 1.694 0
1 TrappingDensity 0.166 0
1 AnnualDensity 1.117 0

TICKS 1 Degree 0.773 0
1 GroupSize 3.644 0
1 **LifetimeDensity** -2.192 1
1 TrappingDensity 1.007 0
1 AnnualDensity -0.266 0

EIMERIA 1 Degree 1.134 0
1 GroupSize 1.79 0
1 LifetimeDensity 1.084 0
1 **TrappingDensity** -6.035 1
1 AnnualDensity 1.851 0

ISOSPORA 1 Degree 1.897 0
1 GroupSize 1.861 0
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1 LifetimeDensity 1.873 0
1 TrappingDensity 1.507 0
1 AnnualDensity 1.717 0

624

625 Table SI1: DIC Changes (ADIC) associated with density measure model addition for the full
626 models. Negative ADIC values correspnd to increased model fit. In each round, the variable
627  that increased model the most was retained, and then the process was repeated, until no

628 variablesimproved the model by decreasing ADIC by more than -2. Variables that were
629 retained in each round are highlighted by asterisks.
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PARASITE ROUND VARIABLE DELTA  KEPT

FLEAS 1 Degree 1.835 0
1 GroupSize 1.251 0
1 **LifetimeDensity** -8.444 1
1 TrappingDensity 1.509 0
1 AnnualDensity -4.549 0

LICE 1 **Degree** -2.388 1
1 GroupSize 1.747 0
1 LifetimeDensity 1.332 0
1 TrappingDensity 1.943 0
1 AnnualDensity 0.944 0

TICKS 1 Degree 1.93 0
1 GroupSize -12.573 0
1 LifetimeDensity -5.864 0
1 TrappingDensity 1.2 0
1 **AnnualDensity** -14.067 1

EIMERIA 1 Degree 14.117 0
1 GroupSize 1.964 0
1 LifetimeDensity 1.817 0
1 TrappingDensity -0.283 0
1 AnnualDensity 1.237 0

ISOSPORA 1 Degree 1.569 0

1 GroupSize 0.882 0
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1 LifetimeDensity 19 0
1 TrappingDensity 1.65 0
1 AnnualDensity 1.8 0

Table SI2: DIC Changes (ADIC) associated with density measure model addition for the
adults-only models. Negative ADIC values correspond to increased model fit. In each round,
the variable that increased model the most was retained, and then the process was repeated,
until no variables improved the model by decreasing ADIC by more than -2. Variables that
were retained in each round are highlighted by asterisks.
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639

PARASITE ROUND VARIABLE DELTA KEPT

FLEAS 1 Degree 0.985 0
1 GroupSize -2.362 0
1 **LifetimeDensity**  -15.209 1
1 TrappingDensity 1.337 0
1 AnnualDensity -10.016 0

LICE 1 Degree -2.862 0
1 GroupSize 1.747 0
1 LifetimeDensity -3.907 0
1 **TrappingDensity** -8.087 1
1 AnnualDensity -2.572 0

TICKS 1 Degree 1.602 0
1 GroupSize 0.462 0
1 LifetimeDensity -0.244 0
1 TrappingDensity 0.918 0
1 AnnualDensity -0.459 0

EIMERIA 1 Degree 1.42 0
1 GroupSize 1.067 0
1 LifetimeDensity -0.127 0
1 **TrappingDensity** -7.465 1
1 AnnualDensity -0.945 0

ISOSPORA 1 Degree 1.73 0
1 GroupSize 1.096 0
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1 LifetimeDensity 1.775 0
1 TrappingDensity 1.567 0
1 AnnualDensity 1.709 0

Table SI3: DIC Changes (ADIC) associated with density measure model addition for the
juvenile-only models. Negative ADIC values correspond to increased model fit. In each
round, the variable that increased model the most was retained, and then the process was
repeated, until no variables improved the model by decreasing ADIC by more than -2.
Variables that were retained in each round are highlighted by asterisks.
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