

1 **Mobile element warfare via CRISPR and anti-CRISPR in *Pseudomonas aeruginosa***

2 Lina M. Leon¹, Allyson E. Park¹, Adair L. Borges¹, Jenny Y. Zhang¹, Joseph Bondy-Denomy^{*1,2,3}

3 ¹Department of Microbiology and Immunology and

4 ²Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA

5 ³Innovative Genomics Institute, Berkeley, CA

6 *Correspondence: joseph.bondy-denomy@ucsf.edu

7 **SUMMARY**

8 Bacteria deploy multiple defense mechanisms to prevent the invasion of mobile genetic
9 elements (MGEs). CRISPR-Cas systems use RNA-guided nucleases to target MGEs,
10 which in turn produce anti-CRISPR (Acr) proteins that inactivate Cas protein effectors.
11 The minimal component Type I-C CRISPR-Cas subtype is highly prevalent in bacteria,
12 and yet a lack of a tractable *in vivo* model system has slowed its study, the identification
13 of cognate Acr proteins, and thus our understanding of its true role in nature. Here, we
14 describe MGE-MGE conflict between a mobile *Pseudomonas aeruginosa* Type I-C
15 CRISPR-Cas system always encoded on pKLC102-like conjugative elements, which are
16 large mobile islands, and seven new Type I-C anti-CRISPRs (AcrlF2*, AcrlC3-IC8)
17 encoded by phages, other mobile islands, and transposons. The *P. aeruginosa* Type I-C
18 system possesses a total of 300 non-redundant spacers (from 980 spacers total) across
19 the 42 genomes analyzed, predominantly targeting *P. aeruginosa* phages. Of the seven
20 new Type I-C anti-CRISPRs, all but one are highly acidic, and four have surprisingly broad
21 inhibition activity, blocking multiple distantly related *P. aeruginosa* Type I CRISPR system
22 subtypes (e.g. I-C and I-F, or I-C and I-E), including AcrlF2 (now, AcrlF2*), a previously
23 described DNA mimic. Anti-type I-C activity of AcrlF2* was far more sensitive to
24 mutagenesis of acidic residues in AcrlF2* than anti-type I-F activity, suggesting distinct
25 binding mechanisms for this highly negatively charged protein. Five of the seven Acr
26 proteins block DNA-binding, while the other two act downstream of DNA-binding, likely by
27 preventing Cas3 recruitment or activity. For one such Cas3 inhibitor (AcrlC3), we identify
28 a novel anti-CRISPR evasion strategy: a *cas3-cas8* gene fusion, which also occurs in
29 nature. Collectively, the Type I-C CRISPR spacer diversity and corresponding anti-
30 CRISPR response, all occurring on *Pseudomonas* MGEs, demonstrates an active co-
31 evolutionary battle between parasitic elements.

32 **INTRODUCTION**

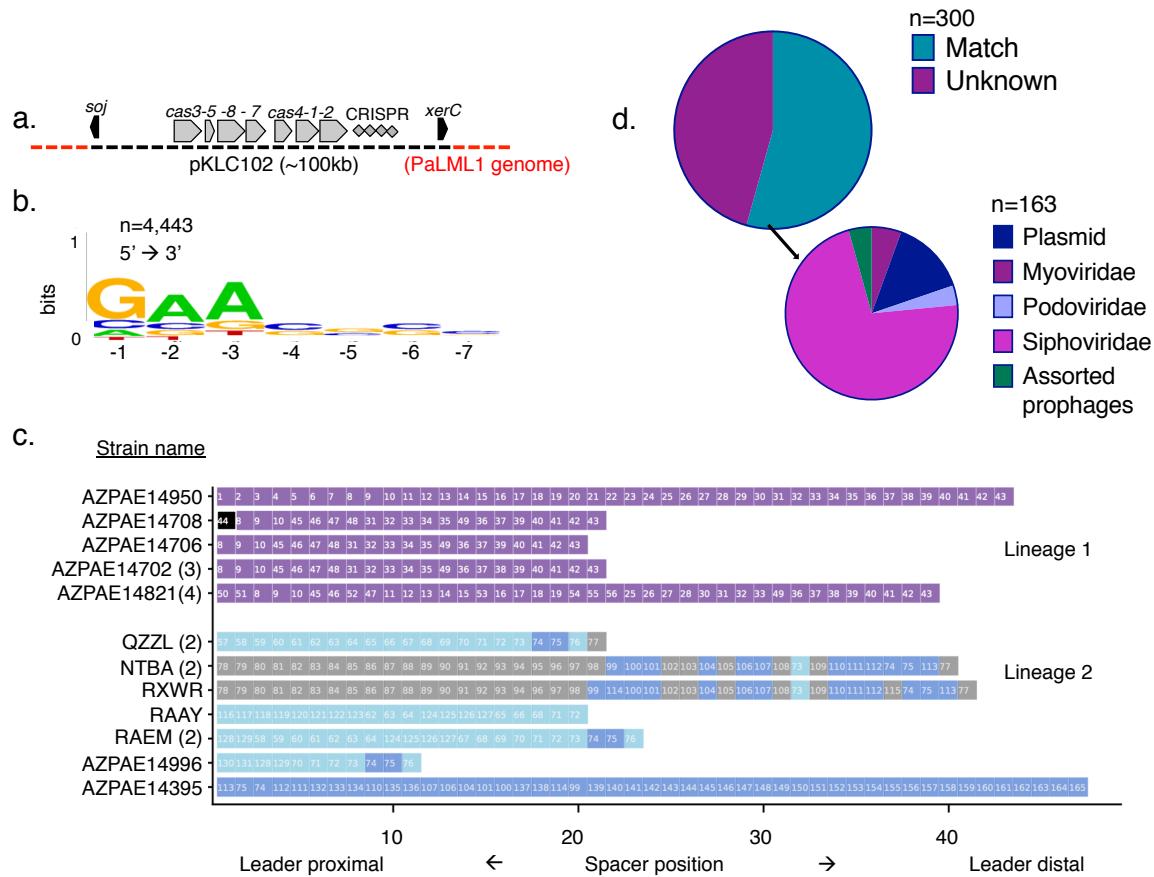
33 The plasticity and rapid evolution of bacterial genomes is driven by the continuous
34 exchange of genetic material between diverse species. This genetic mobility can be
35 blocked by bacterial immune systems, such as restriction enzymes and CRISPR-Cas
36 (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR associated
37 sequences). CRISPR-Cas systems utilize short RNA guides, encoded within a CRISPR
38 array, where they are separated by repeat sequences, to direct either a multi-protein
39 (Class 1; Type I, Type III, Type IV) or single protein (Class 2; Type II, V, or VI) effector
40 complex to a matching target on a mobile genetic element (MGE)¹. In rare instances, the
41 targeting paradigm is inverted, where a CRISPR-Cas system is encoded by a lytic
42 bacteriophage, targeting the host, as in *Vibrio cholerae*².

43 *Pseudomonas aeruginosa* is an opportunistic human pathogen and also a leading
44 model organism for studies pertaining to bacteriophage-CRISPR interactions³ and Class
45 1 CRISPR-Cas biology. Functional Type I-F^{4,5}, I-E⁶, and now IV-A⁷ systems have been
46 described, however, a fourth CRISPR-Cas system encoded by this species, the Type I-C
47 system has not been well characterized⁸. Type I-C systems are phylogenetically
48 widespread⁹, and can be found in *Streptococcus pyogenes*, *Vibrio* species, *Clostridium*
49 species, *Neisseria* species, and *Bacillus* species, but are among the least studied
50 subtypes within the adaptive branch of bacterial immunity. Details of Type I-C systems
51 found in *Eggerthella lenta*¹⁰, *Desulfovibrio vulgaris*¹¹, *Bacillus halodurans*¹², and
52 *Xanthomonas oryzae*¹³ have been explored heterologously or *in vitro*, but studies in a
53 native host are lacking. Type I-C systems employ a minimal surveillance complex of Cas5,
54 Cas7, and Cas8 with the CRISPR RNA (crRNA) and the *trans*-acting nuclease-helicase,
55 Cas3, which is recruited to cleave and processively degrade DNA. The common Cas6
56 crRNA-processing ribonuclease is missing from this system and Cas5 carries out crRNA-
57 processing instead¹⁴⁻¹⁶.

58 Anti-CRISPR proteins (Acrs) encoded by MGEs disable CRISPR-Cas systems
59 using diverse mechanisms. Strategies range from blocking DNA binding sites (e.g. AcrlF1,
60 AcrlF2, AcrlF10, AcrlIA2, AcrlIA4), to blocking DNA cleavage (e.g. AcrlE1, AcrlF3,
61 AcrlIC1) and even acting enzymatically to disable CRISPR-Cas (e.g. AcrVA1, AcrVA5)³.
62 CRISPR immunity is typically narrowed to just three stages: adaptation, biogenesis and
63 interference, but a fourth and equally important facet is understanding MGE counter-
64 evolution. Here, we describe the MGE targets of the *P. aeruginosa* type I-C CRISPR-Cas
65 system, which itself is always encoded on an MGE, present direct evidence of endogenous

66 Type I-C CRISPR-Cas activity, and report the discovery of seven *Pseudomonas* Type I-C
67 anti-CRISPRs.

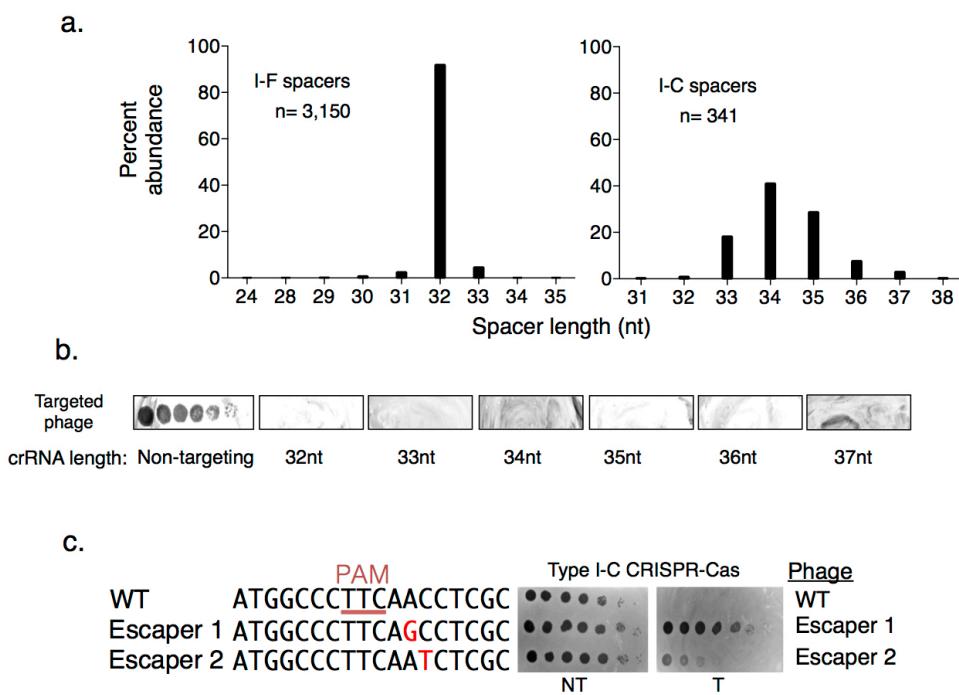
68


69 **RESULTS**

70 **MGE-encoded Type I-C CRISPR-Cas provides immunity in *Pseudomonas aeruginosa***

71 Type I-C CRISPR-Cas systems previously described in 20 *P. aeruginosa* genomes⁸, an
72 environmental isolate in our lab (PaLML1), and 23 additional genomes found using
73 BLAST, are encoded by pKLC102-like elements (Figure 1A). This conjugative element
74 family can be found as either an integrated island or episome in many gram negative
75 bacteria, and is also known as *P. aeruginosa* pathogenicity island (PAPI-1) in some *P.*
76 *aeruginosa* strains^{17,18}. It is typically ~100 kb, does not always encode a Type I-C system,
77 and we did not observe carriage of other CRISPR-Cas subtypes. To determine if Type I-
78 C CRISPR-Cas is active in *P. aeruginosa*, we first took a bioinformatics approach. While
79 the Cas proteins are conserved (90-100% sequence identity) across strains, the CRISPR
80 spacers are diverse. Alignments of 4,443 protospacers with upstream and downstream
81 regions revealed the consensus PAM to be 3' –AAG– 5', consistent with previous
82 reports^{10,19} (Figure 1B). Among the 42 strains with CRISPR arrays published previously (2
83 published strains have *cas* genes without corresponding arrays), we observed spacer
84 diversity suggestive of active acquisition (Figure 1C and Supplemental Figure 1).

85 The CRISPR arrays could be clustered into four broad lineages, with strains
86 grouped if they share *at least* one spacer with another array. Strains that cluster together
87 tend to share most of the spacers towards the leader-distal end of the CRISPR array,
88 suggesting that after diverging, each host continues to expand its CRISPR array
89 independently. For example, strains in lineage 1 share most of their ~10-15 leader-distal
90 spacers, and then undergo obvious divergence with a series of unique spacers proximal
91 to the leader (Figure 1C). In lineage 2, the diversity is even more striking, as the strains
92 are grouped together by just two “core” spacers (#74 and #75), but have highly distinct
93 arrays, most notably strain AZPAE14395, with ~40 unique spacers (Figure 1C). Strains in
94 lineage 3 (PaLML1, AZPAE14876, and AZPAE12421), and lineage 4 (WH-SGI-V-07071,
95 and WH-SGI-V-07073) have completely dissimilar spacers (Supplemental Figure 1),
96 despite having the same frame shift mutation that results in an early Cas1 stop codon,
97 suggesting continued CRISPR dynamics through an unknown mechanism. In total, there
98 are 300 non-redundant spacers in this collection, and 162 (54 %) match sequenced


99 elements with many spacers targeting phages and prophages (139) and some matching
 100 plasmids (23) (Figure 1D). Although pKLC102 can be considered parasitic, dissection of
 101 the Type I-C encoded spacers reveals the immunity module to be “domesticated”,
 102 targeting canonical bacterial parasites.

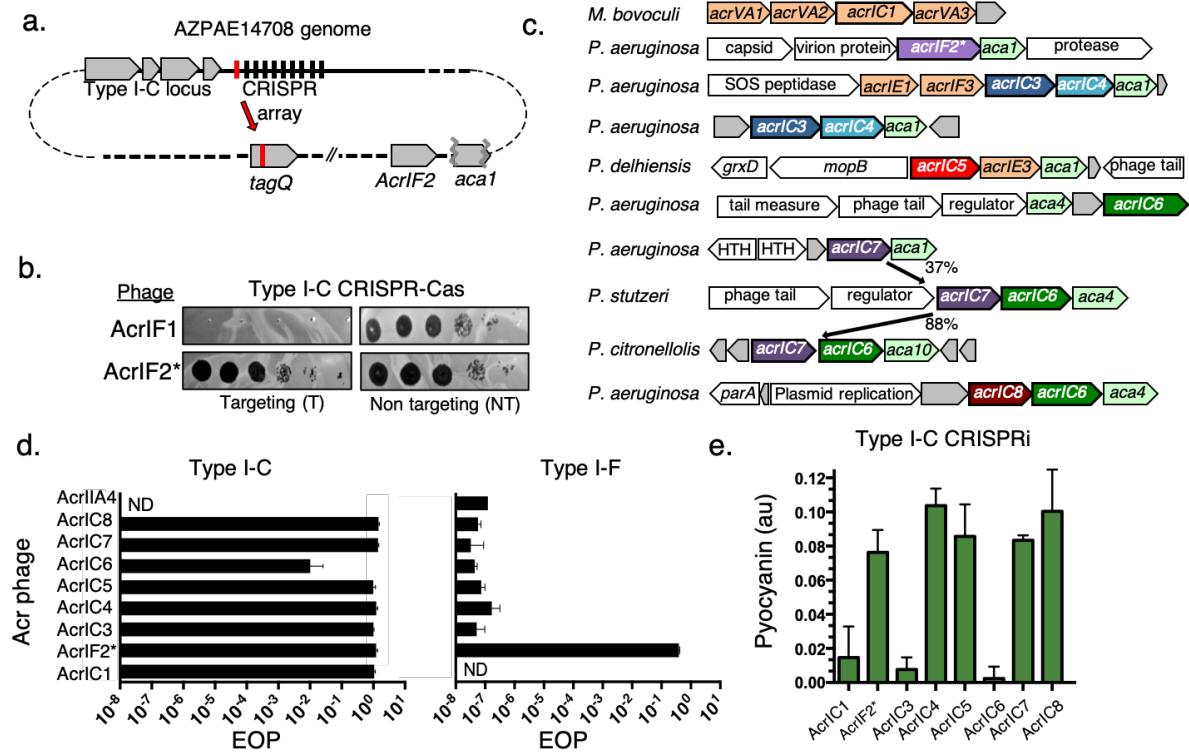
103

Figure 1. **a.** *Pseudomonas aeruginosa* Type I-C systems are found on pKLC102 elements, shown here integrated into the *P. aeruginosa* genome. Black arrows represent pKLC102 marker genes. *soj* is a chromosome partitioning protein, and *xerC* is a site-specific recombinase. **b.** WebLogo showing the consensus PAM sequence upstream of the protospacer. PAM is written 5' to 3'. **c.** Clustering of CRISPR arrays from 20 genomes into lineages based on spacer identity. Spacer position is marked on the x-axis. Spacers that are the same within a lineage are given the same number. Numbers in parentheses following the strain names indicate the number of genomes with the same CRISPR array. The spacer highlighted in black, #44, is self-targeting. The colors highlighting the remaining spacers (blue and grey) in lineages 1 and 2 are meant to facilitate comparisons between related arrays. **d.** Of the 300 non-redundant spacers, 163 target sequenced genetic elements. Spacers labeled as unknown (dark purple) did not have any matches in sequence databases used by CRISPR Target. Spacers with matches to independent phage genomes (both lytic and temperate) were categorized into three families (siphoviridae, myoviridae, and podoviridae). Spacers that mapped back to phage-like regions in bacterial genomes were categorized as assorted prophages.

104 A *P. aeruginosa* environmental isolate (PaLML1) from our collection, which has
 105 both Type I-C and I-F CRISPR-Cas systems, was next used as a laboratory model. Using
 106 WGS data, we determined that PaLML1's Type I-C system is also within pKLC102 (Figure
 107 1A) and that it clusters with lineage 3, sharing all but one spacer with two of the published
 108 CRISPR arrays. To verify CRISPR-Cas function, we transformed PaLML1 with a Type I-
 109 C crRNA targeting phage DMS3m, since PaLML1 does not encode spacers against this
 110 phage. Because Type I-C spacer length ranges from 32-37 nt, contrary to consistent Type
 111 I-F spacers measuring 32 nt (Figure 2A), we tested spacers of each length (i.e. 32 nt, 33
 112 nt, etc.) in PaLML1 to ascertain if all were active. CRISPR-Cas targeting occurred in the
 113 presence of the phage-specific crRNAs for both the I-C and I-F systems, and all of the
 114 Type I-C spacer lengths tested demonstrated robust phage targeting (Figure 2B). We also

Figure 2: a. Comparison of spacer lengths found in either Type I-F or Type I-C *P. aeruginosa* CRISPR arrays. b. Spot titration plaque assay of CRISPR-Cas sensitive phage on a lawn of PaLML1, expressing crRNAs of lengths between 32-37 nt. The targeted phage is DMS3m, which does not have an *acr/C* gene. c. Protospacer sequence for two Type I-C escaper phages isolated on PaLML1, with mutations highlighted in red text. PAM is underlined. Spot titration plaque assay shows a WT (i.e. non escaper) phage and escapers 1 and 2 challenged with the Type I-C system in PAO1^{I-C}.

115 isolated escaper phages that had point mutations in positions +2 and +3 of the protospacer
116 (counting from the PAM), suggesting the presence of a “seed” sequence (Figure 2C). In
117 conclusion, active Type I-C systems in *P. aeruginosa* are on a widespread mobile element,
118 have variable CRISPR spacers suggesting activity *in situ*, and can provide protection
119 against phage with an engineered spacer.


120 **Discovery of seven anti-CRISPRs on MGEs that inhibit Type I-C and beyond**

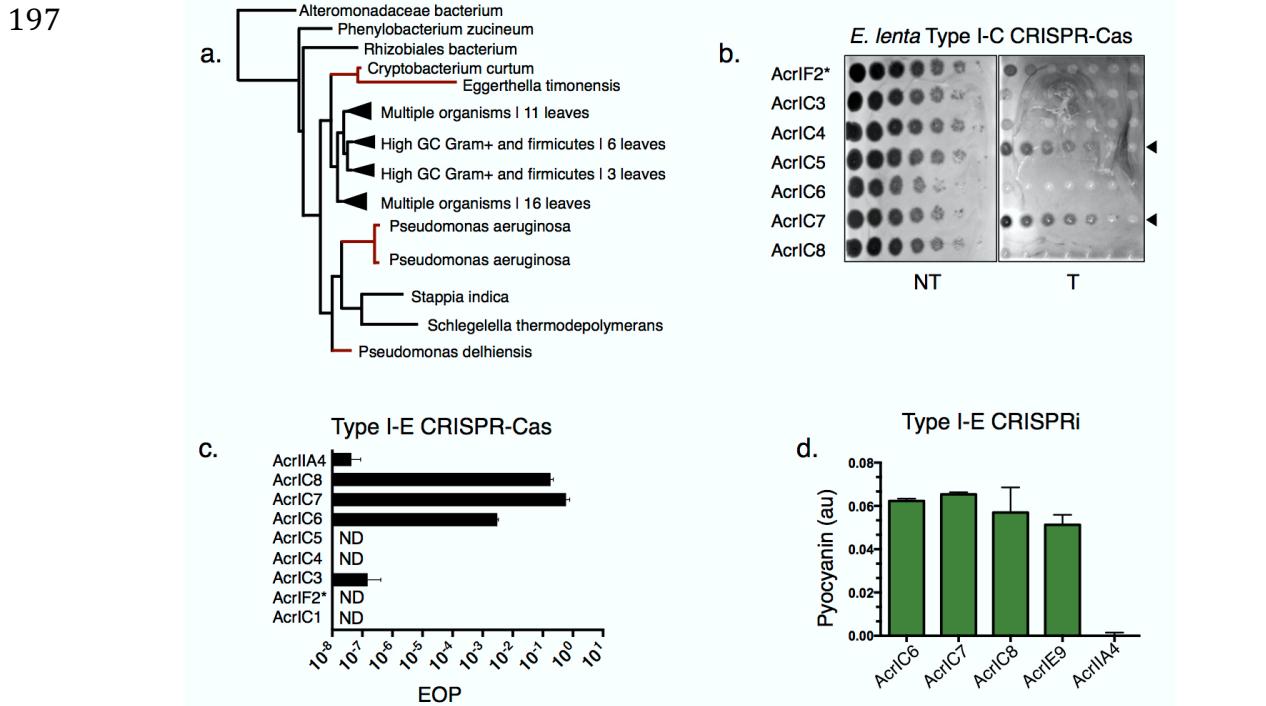
121 Given the diversity of *P. aeruginosa* Type I-C spacers that target assorted MGEs and the
122 robust phage targeting observed with engineered spacers, we determined that this
123 CRISPR-Cas system indeed poses a threat to MGEs, and therefore counter-immunity
124 mechanisms are expected. To identify candidate anti-CRISPR genes that inhibit this
125 system, we used previously established self-targeting (ST) and guilt-by-association
126 approaches to identify candidates^{20,21}. Because cleavage of a bacterial genome is a
127 deadly event²², a sequenced strain with a CRISPR-Cas system that has a spacer targeting
128 its own chromosome is indicative of some CRISPR inactivation mechanism allowing that
129 cell to live. Additionally, *acr* genes are often coupled with negative transcriptional
130 regulators known as anti-CRISPR associated (*aca*) genes, which can be used to locate
131 candidate *acr* genes^{6,23}. To test candidate Acrs, we used a strain of PAO1 heterologously
132 expressing Cas3-5-8-7 and a DMS3m crRNA from its chromosome (PAO1^{IC})²¹, due to
133 PaLML1’s low transformation efficiency.

134 Strain AZPAE14708 encodes a spacer targeting its type VI secretion gene, *tagQ*,
135 with a perfect protospacer and PAM match (Figure 3A and Supplemental Figure 2A). This
136 spacer is absent in other strains within lineage 6 that share spacer content with
137 AZPAE14708 (Figure 1B). To identify candidate *acr* genes, we used *acr*-associated gene
138 1 (*aca1*) as an anchor⁶, and found a locus with *acrIF2*, an inhibitor of Type I-F systems²⁴
139 adjacent to *aca1* (Figure 3A). Surprisingly, expression of *AcrlF2* from a phage during
140 infection completely inhibited the Type I-C system (Figure 3B). The dual inhibitory activity

141 was unexpected, given the evolutionary distance between the I-F and I-C systems¹ (no
142 significant pairwise identity, Supplemental Figure 2B). Two additional AcrlF2 homologues
143 (hereafter, AcrlF2* to indicate dual specificity) were tested (~50% identity), from
144 *Pseudoxanthomonas* and *Stenotrophomonas*, both associated with *aca1*, and both
145 displayed dual I-C and I-F activity (Supplemental Figure 2C). Strains from these genera
146 also encode Type I-C and Type I-F systems.

147 Due to the Type I-C system's unique mobile lifestyle relative to other CRISPR-Cas
148 systems in *P. aeruginosa*, and AcrlF2*'s narrow distribution, we reasoned that more Type
149 I-C Acrs likely exist. Of 27 *aca1* and *aca4*-associated candidates tested (Table 1), we
150 identified six more genes in a series of distinct MGEs including plasmids, transposons,
151 conjugative elements, and phages that inhibited the Type I-C system (Figure 3C and Table
152 2). An additional gene was also identified that solely inhibited the *P. aeruginosa* Type I-E
153 system, AcrlE9 (discussed below). This collection consisted of genes associated with
154 *aca1* (AcrlC3, AcrlC4, AcrlC5) or *aca4* (AcrlC6, AcrlC7, and AcrlC8). AcrlC7 was first
155 identified in *P. stutzeri* (AcrlC7_{Pst}) adjacent to *aca4* and a homologue was found in *P.*
156 *citronellolis* (88% sequence identity, AcrlC7_{Pci}), adjacent to a new helix-turn-helix
157 transcriptional regulator, which we have named *aca10*. In both instances, AcrlC6 is also
158 present in the locus. An *aca1*-adjacent distant AcrlC7 homologue was also found in *P.*
159 *aeruginosa* (37% sequence identity, AcrlC7_{Pae}), although it did not confer Type I-C anti-
160 CRISPR activity.

Figure 3. **a.** Schematic of the self-targeting *P. aeruginosa* strain AZPAE14708 showing the first spacer (in red) targeting *tagQ* and the *aca1* locus encoding *acrIF2**. **b.** A strain expressing the Type I-C CRISPR system in PAO1^{IC} was challenged by phage encoding either *AcrIF1* or *AcrIF2* in a spot-titration plaque assay with ten-fold serial dilutions. **c.** Gene neighborhood maps of MGEs where new Type I-C *acrs* (colored, bolded arrows) were identified. Previously discovered *acrs* (orange), annotated MGE genes (white), and hypothetical genes (grey), are shown. **d.** Efficiency of plaquing (EOP) calculations for an isogenic panel of phages expressing *acr/C* genes tested in PAO1^{IC} or PA14 (Type I-F). Each strain was infected in triplicate and plaque counts were averaged and normalized against a strain lacking the indicated CRISPR-Cas system. ND- none detected **e.** Transcriptional repression via the Type I-C CRISPR system (CRISPRi, strain: PAO1^{IC} *Δcas3*) and the impact of the *acr/C* genes. Levels of the pigment pyocyanin are quantified at high levels when CRISPRi is inhibited and low levels when CRISPRi is functional. Each measurement is an average of biological triplicate.


161 We subsequently engineered a panel of isogenic DMS3m phages with each
 162 individual *acr* gene knocked in, including a negative control (Cas9 anti-CRISPR, *acrIIA4*),
 163 regulated by the native DMS3m *acr* promoter and *aca1*, and assessed their efficiency of
 164 plaquing in *P. aeruginosa* (Figure 3D). Each phage had an EOP≈1 when infecting cells
 165 expressing the Type I-C system, except *AcrlC6*, which appeared to be quite weak (EOP
 166 ≈ 0.01). Only *AcrIF2** had activity against the Type I-F system, with an EOP≈1, compared
 167 to EOP ≈ 10⁻⁷ for all other Acr proteins.

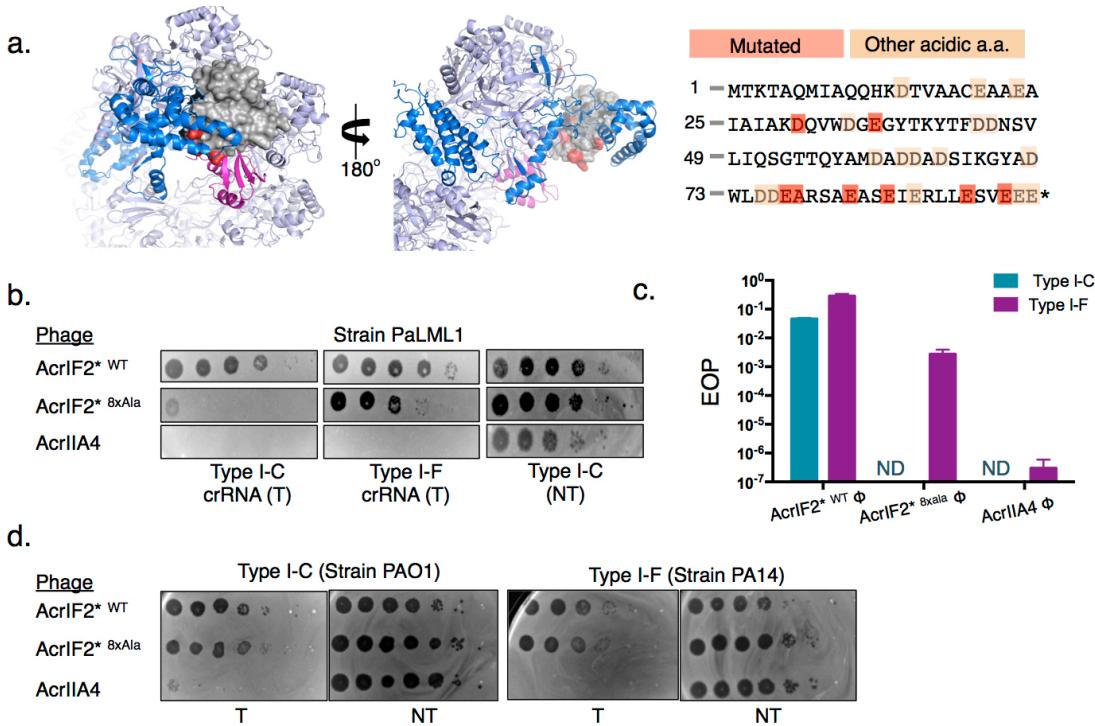
168 To determine how the new Acrs interact with the Cas machinery, we tested
169 whether they inhibit the ability of the crRNA-guided complex to bind DNA *in vivo* using
170 CRISPR transcriptional interference (CRISPRi) in a Δ cas3 background. A colorimetric
171 assay was adapted from previous work²⁴, using a Type I-C crRNA to repress transcription
172 of the *phzM* gene. If CRISPRi is functional, where the surveillance complex assembles
173 and blocks *phzM* transcription, the *P. aeruginosa* culture turns yellow. If DNA-binding is
174 inhibited (CRISPRi negative), the culture is a natural blue-green (Supplemental Figure
175 2D). Five of the proteins, AcrlF2* IC4, IC5, IC7_{Pst} and IC8, blocked CRISPRi. Expression
176 of AcrlC1 (a previously discovered protein from *Moraxella*²¹) and AcrlC3, however, did not
177 interfere with CRISPRi, suggesting that these Acr proteins bind to Cas3, or prevent Cas3
178 from cleaving the target DNA, while allowing Cascade-DNA binding (Figure 3E). AcrlC6
179 did not block CRISPRi but given its weak strength, we are hesitant to interpret this negative
180 result. These results are summarized in Table 2.

181 **Broad-spectrum inhibitory activity by the I-C anti-CRISPRs**

182 We next surveyed the phylogenetic distribution of the new *acr* genes reported here. AcrlC5
183 orthologues were found distributed across Proteobacteria, Firmicutes, and Actinobacteria
184 (Figure 4A), and AcrlC8 orthologues were found sparingly in *Pseudomonas*, Spirochetes,
185 and Rhizobiales. AcrlC6 can be found broadly in various classes (Alpha-, Beta- and
186 Gamma-proteobacteria) with notably strong hits in *Salmonella enterica*. These three Acrs
187 stand in contrast to the rest, which were limited to a single genus: AcrlC1 (*Moraxella*),
188 AcrlC2, AcrlC3, AcrlC4 and AcrlC7 (*Pseudomonas*, data in Table 2). We took note of
189 Actinobacterial AcrlC5 homologues in the human-associated microbes *Cryptobacterium*
190 *curtum* and *Eggerthella timonensis*, given that an active *Eggerthella lenta* Type I-C
191 CRISPR-Cas system was described recently¹⁰. We tested the *Pseudomonas* AcrlC5
192 homologue for inhibitory activity using the established *E. lenta* I-C system heterologously
193 expressed in *P. aeruginosa* and observed strong anti-CRISPR function (Figure 4B),

194 despite *cas* gene sequence identities between 35-55% (Supplemental Figure 3A).
 195 Surprisingly, *AcrlC7* also inhibited the *E. lenta* I-C system, despite no identified
 196 homologues outside of the *Pseudomonas* genus.

Figure 4: **a.** Phylogenetic tree of *AcrlC5* protein showing its broad distribution. **b.** Plaque assay of *acr*-encoding engineered JBD30 phages tested against the *E. lenta* Type I-C system expressed heterologously in *P. aeruginosa*. **c.** EOP calculations for an isogenic panel of phages encoding the indicated *acr* gene, infecting a strain expressing the Type I-E CRISPR-Cas system (PA4386). Each bar is the average of infections done in biological triplicate normalized to the number of plaques on PA4386 Δ cas3. **d.** Type I-E CRISPRi, conducted as in Figure 3 (host: PA4386 Δ cas3) with the Acr proteins that inhibit Type I-E function assayed. AcrlIA4 is a negative control.


198

199 The broad-spectrum activity of *AcrlF2* (I-F and I-C), *AcrlC5* (I-C_{Pae} and I-C_{Ele}), and
 200 *AcrlC7* (I-C_{Pae} and I-C_{Ele}), led us to test the new inhibitors against another system found
 201 in *P. aeruginosa*, Type I-E. Type I-C, Type I-F, and Type I-E systems are phylogenetically
 202 distinct subtypes, with I-F and I-E systems sharing a more recent common ancestor.
 203 *AcrlC7*_{Pst}*, *AcrlC7*_{Pcitro}*, *AcrlC7*_{Pae}*, and *AcrlC8**, inhibited the Type I-E system well, while
 204 *AcrlC6** was again, a weak anti-CRISPR (Figure 4C, Supplemental Figure 3B-3D). The
 205 new Type I-E Acr proteins (*AcrlC6**, *AcrlC7*_{Pst}*, *AcrlC8**, and *AcrlE9*) all inhibited Type I-

206 E CRISPRi (Figure 4D), indicating that they block DNA binding. Curiously, *AcrIC7_{Pae}* only
207 inhibited the I-E subtype, unlike its dual I-C/I-E inhibiting homologues (Supplemental
208 Figure 3C-3E). Searching through sequenced genomes revealed that *P. stutzeri* and *P.*
209 *aeruginosa* encode both I-C and I-E subtypes, while *P. citronellolis* encodes only Type I-
210 F systems.

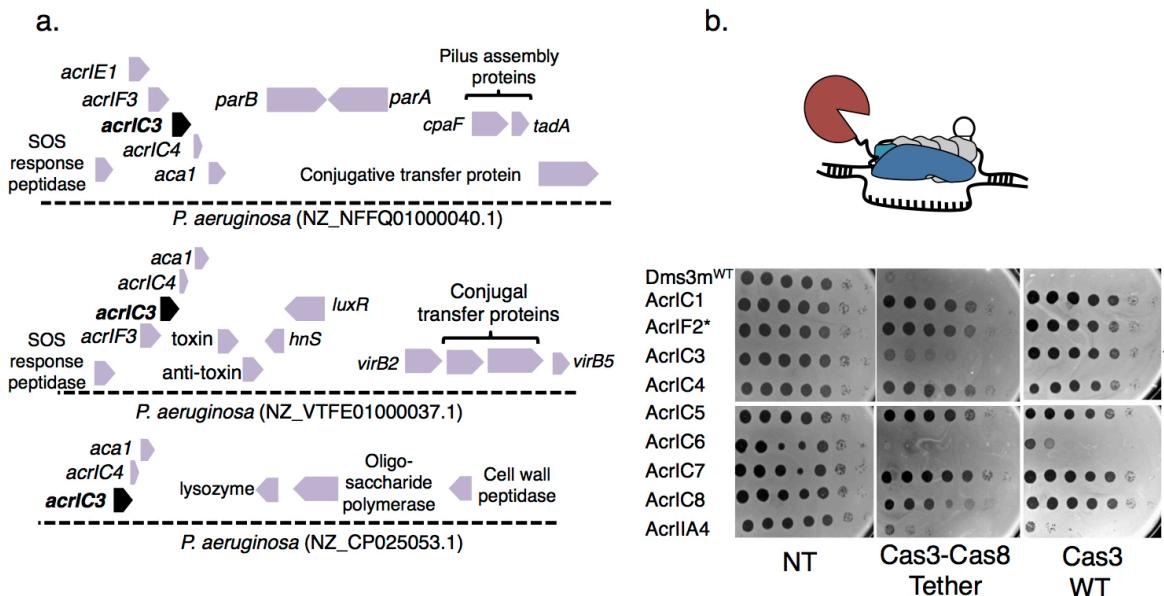
211 **Multi-system inactivation by AcrIF2***

212 AcrIF2* directly prevents the Type I-F CRISPR surveillance complex from binding to
213 DNA^{25,26}. Due to prior structural characterization of AcrIF2*, we opted to next determine
214 whether it uses the same mechanism to inhibit the Type I-C system. Of AcrIF2*'s 96
215 residues, 24% are acidic, giving it an overall negative charge (pI = 4.0), similar to many of
216 the Acr proteins identified here (Table 2). Despite the Cas proteins from Type I-C and I-F
217 having completely distinct sequences (Supplemental Figure 2B), this negative surface
218 charge could perhaps allow AcrIF2* to block both the I-C and I-F DNA recognition motifs.
219 We therefore conducted structure-guided^{25,26} mutagenesis to attempt to determine
220 whether these two functions could be uncoupled. Eight AcrIF2* residues (D30, E36, D76,
221 E77, E82, E85, E91, E94) were predicted to form key salt bridges between AcrIF2* and
222 Type I-F Cas7/Cas8 (Figure 5A). These were sequentially and incrementally mutated to
223 alanine (starting with a single mutant, then double, and so on), but all of the plasmid-based
224 mutants we tested maintained Acr activity up to an 8xAla mutant (*acrIF2*^{8xAla}*), while more
225 dramatic mutations (e.g. 8xLys and 8xGlu/Asp) lost function (Supplemental Figure 4).
226 When the 8xAla mutant was expressed from the endogenous phage *acr* locus, we
227 observed that mutagenesis unexpectedly inactivated the anti-Type I-C activity
228 preferentially when infecting PaML1 (EOP < 10⁻⁴), while activity against the I-F system
229 was only partially weakened (EOP = 0.02, Figure 5B and 5C). This differential inhibitory
230 activity demonstrates that the mutations impacted one surface-surface interaction more
231 than another, consistent with distinct AcrF2* binding interfaces.

Figure 5: a. Color-coded structure of AcrlF2* bound to the Type I-F surveillance complex (PDB: 5UZ9). The Type I-F surveillance complex is shown as a lilac ribbon with Cas8 (blue), and one Cas7 monomer (magenta), AcrlF2* (grey space-filling model), and mutated amino acids (red) shown. AcrlF2* amino acid sequence shown with 8 key acidic residues (red) and all other acidic residues shaded (orange). **b.** Plaque assays with the engineered mutant AcrlF2* phage tested in PaLML1, with either a Type I-F or I-C system crRNA targeting the phage. **c.** Quantification of the efficiency of plaquing (EOP) on PaLML1 for phages expressing the indicated *acr* gene. **d.** Plaque assay with the engineered mutant AcrlF2* phage tested in PAO1^{IC} or PA14. AcrlIA4 is included as a negative control.

235 Given the dual expression of both I-F and I-C complexes in the PaLML1 strain, we
 236 considered whether the weakened activity against the Type I-C system manifests due to
 237 weakened binding affinity for that complex coupled with the Acr protein being titrated away
 238 by the Type I-F complex. Therefore, we also infected strains that encode just Type I-C
 239 (PAO1^{IC}) or Type I-F (PA14) with phages encoding WT or mutant *acrIF2*8xAla*. This
 240 revealed that failure of the mutant to inhibit Type I-C function was completely context-
 241 dependent as it robustly inhibited the I-C system in PAO1^{IC}, which expresses the PaLML1
 242 Type I-C system (Figure 5D). We therefore conclude that while the 8xAla mutant is still

243 capable of Type I-C inhibition, it exhibits a conditional defect in the presence of two
244 competing surveillance complex binding targets in the cell when its affinity for the Type I-
245 C system is lowered. These data demonstrate that the highly negative AcrlF2* may use
246 distinct interaction interfaces to enable the inhibition of both the Type I-C and Type I-F
247 CRISPR-Cas systems during infection.


248 **Anti-CRISPRs that inhibit DNA cleavage by Cas3**

249 Acr proteins that allow for DNA binding but still block phage DNA cleavage, like AcrlC1
250 and AcrlC3 (Figure 3E), effectively turn the endogenous CRISPR-Cas machinery into a
251 catalytically dead, transcriptional repression (CRISPRi) system. Curiously, AcrlC3 can be
252 frequently found flanked by AcrlE1 and AcrlF3 in *P. aeruginosa*, the only other two Type I
253 anti-CRISPRs that enable CRISPRi^{24,27}. This reveals a remarkable “anti-Cas3 locus” for
254 all three Type I CRISPR systems in *P. aeruginosa* (Figure 6A). Conjugative transfer,
255 *parA/B* genes, and type IV secretion system genes are found flanking these *acr* genes.
256 When not found with other CRISPRi-enabling inhibitors, AcrlC3 is carried by phages,
257 along with AcrlC4, which is always paired with AcrlC3.

258 In an effort to distinguish the inhibitory mechanisms for AcrlC1 and AcrlC3, we
259 constructed a minimal Type I-C complex where the Cas3 C-terminus is tethered to the
260 Cas8 N-terminus with a 13 amino acid sequence (RSTNRAKGLEAVS), effectively
261 granting the surveillance complex nucleolytic activity (Figure 6B). This construct was
262 inspired by, and designed to mimic, naturally occurring variants of Type I-E systems in
263 *Streptomyces griseus*, which encode Cas3 and Cas8 as a single protein, with the same
264 short linker peptide in between²⁸. When the panel of Type I-C Acr-expressing phages
265 infected a strain expressing this minimal system, the fusion efficiently evaded the AcrlC3
266 protein, targeting this phage by ~1,000-fold, while all other *acr* phages, with the
267 exception of AcrlC6, replicated well (Figure 6B). AcrlC3’s binding site may be occluded
268 with the linker present, or the fusion bypasses a recruitment inhibition mechanism,

269 rendering it an ineffective Acr. Not only does this demonstrate that AcrlC1 and AcrlC3
 270 utilize distinct mechanisms, these data uncover a novel anti-anti-CRISPR strategy in
 271 systems with naturally occurring fusions of Cas3 with Cas8.

272

Figure 6: a. Gene loci showing *acrlC3*. *acrlC3* is found on various MGEs, and is often associated with *AcrlE1* and *AcrlF3*, which are Cas3 interacting proteins. **b.** Schematic of the Type I-C mutant where the C-terminus of Cas3 is tethered to the N-terminus of Cas8, with a short linker peptide. Spot titration plaque assay showing the plaquing efficiency of Acr-expressing DMS3m phages on non-targeting (NT), or Type I-C expressing strains, either with Cas3-Cas8 tethered or Cas3 WT.

273 **Discussion**

274 In the perpetual battle between CRISPR-Cas immunity and genetic parasites, anti-
 275 CRISPR proteins are encoded by myriad mobile genetic elements (MGE) to disable
 276 CRISPR-Cas activity, allowing for the preservation of the invading element³. However, the
 277 Type I-C system in *P. aeruginosa* is also mobile, found on a common genomic island
 278 (pKLC102) that can exist as either a conjugative island or as a plasmid^{8,18,29}. Since mobile
 279 elements (here, encoding CRISPR-Cas or anti-CRISPRs) can transfer antibiotic
 280 resistance genes, virulence factors, immune systems, and other fitness-altering genetic
 281 material to their host^{30,31}, this generates an interesting paradigm for CRISPR and anti-

282 CRISPR interactions³². These mobile CRISPR-Cas systems can deliver immunity
283 horizontally, granting a recipient a library of spacers against *other* MGEs and the Cas
284 protein machinery. This does not seem to be a rare occurrence, as CRISPR-Cas systems
285 have been identified on plasmids^{33,34} and phages^{2,35,36}, most notably being used by *V.*
286 *cholerae* phage ICP1 to neutralize a mobile element with anti-phage activity².

287 The Acrs described in this study were found encoded by diverse MGEs. AcrlC1,
288 AcrlC2, AcrlC5, AcrlC6*, and AcrlC7* were commonly associated with phage genes, while
289 AcrlC8* is within Tn3 family transposases (Supplemental Figure 3B and 3F). AcrlC3 and
290 AcrlC4 are commonly found together and are associated with D3- and JBD44-like
291 temperate siphophages. AcrlC3 is also common on conjugative elements, where it
292 frequently clusters with Cas3 inhibitors AcrlE1 and AcrlF3. The role of a “anti-Cas3 island”
293 in conjugative transfer from cell to cell is yet to be determined, but this phenomenon may
294 indicate that neutralizing the ssDNase Cas3 is an effective means to ensure successful
295 conjugative transfer, which proceeds through a ssDNA intermediate.

296 Of the eight Type I-C anti-CRISPR proteins, all but one (AcrlC8*) had high acidic
297 amino acid content, and are therefore negatively charged at physiological pH (Table 2).
298 This has been a common theme among Acr proteins and inhibitors of other immune
299 systems, which utilize DNA mimicry to block bacterial immunity³⁷. Previous AcrlF2*
300 structural work has shown that it partially overlaps with the DNA binding site, thus being
301 considered a DNA mimic or at least a DNA competitor^{25,26}. Proteins that mimic DNA can
302 imitate the charge and bend of DNA, which could potentially allow flexibility in inhibiting
303 distinct systems. For example, the T7 phage encoded Ocr protein is highly acidic and
304 forms a dimer with a bend similar to B-DNA^{38,39}. Ocr was initially discovered as an effective
305 inhibitor of diverse Type I restriction enzyme systems and was more recently shown to
306 inhibit another anti-phage system, BREX⁴⁰. This suggests that DNA mimicry is a potent
307 and flexible anti-immune strategy. Importantly, systematic mutation of Ocr’s acidic

308 residues revealed it to be highly recalcitrant to breakage, similar to AcrlF2*, maintaining
309 inhibitory activity against Type I R-M even with up to 33% of acidic residues mutated³⁹.
310 Similarly, Cas9 inhibitors AcrlIA2 and AcrlIA4 are highly acidic, have broad-spectrum
311 activity²⁰, and have been subjected to extensive mutagenesis, also appearing to have
312 dispensable acidic residues⁴¹. Inhibitor gene over-expression can, however, obscure the
313 interpretation, which is why we placed the *acr* genes under endogenous phage control.

314 Despite extensive mutagenesis, AcrlF2* retained activity against the Type I-F
315 system and the Type I-C system when each system was expressed separately. While
316 there may be key interactions between an acidic anti-CRISPR and its cognate Cas protein,
317 excess acidic residues could help maintain bonds even when main interactions are
318 broken, and could even hold the key to inhibiting more than one system. Given the robust
319 inhibition of Type I-F in each experiment, charged contacts are perhaps not the main
320 means by which AcrlF2* interacts with the I-F surveillance complex. Hydrogen bonds
321 between AcrlF2* residues proximal to the PAM interacting residues of Cas8 could
322 influence inhibitor activity. If true, AcrlF2* could still be considered a “DNA mimic”, but with
323 different properties than previously suggested. When assayed in a strain expressing both
324 Type I-C and I-F, generating an *in vivo* competition experiment, the 8xAla mutant
325 preferentially lost anti-I-C activity. This suggests that weakened affinity for the Type I-C
326 complex, coupled with >1 unique binding site in the cell revealed a cost to dual-specificity
327 inhibition, at least for the mutant. This result does not conclusively prove that AcrlF2* uses
328 distinct surfaces to disable the Type I-F and Type I-C systems, however, we suspect that
329 this may be the case and await structural analysis of the Type I-C complex and AcrlC
330 proteins.

331 The role of Acr proteins in the dissemination and maintenance of MGEs in bacterial
332 genomes is just beginning to be explored⁴². Acr proteins facilitate the maintenance of
333 prophages in a genome encoding a spacer against that phage^{4,20,43}, which can help

334 CRISPR-Cas be maintained by preventing self-targeting⁴⁴, and even weak Acr proteins
335 can overcome kinetic limitations by working cooperatively^{45,46}. The presence of an Acr in
336 a bacterial genome could also confer protection against a CRISPR-Cas system on a
337 mobile element, such as the one encoded by *Vibrio cholerae* phage ICP1², mobile
338 CRISPR-Cas systems on plasmids^{7,33}, or islands like pKLC102, where we find the Type I-
339 C system explored in our study. Multi-system inhibition may be a common strategy
340 exploited by MGEs, since bacteria are not limited to only one CRISPR-Cas subtype. Such
341 a tactic conserves genetic real estate, and acts as insurance against the threat of assorted
342 immune systems. Our work underscores the importance of studying CRISPR-Cas vs. Acr
343 mechanisms *in vivo*, and of exploring Acr diversity and mechanisms.

344 **References**

345 1. Makarova, K. S. *et al.* Evolutionary classification of CRISPR-Cas systems: a
346 burst of class 2 and derived variants. *Nature Reviews Microbiology* **18**, 67–
347 83 (2020).

348 2. Seed, K. D., Lazinski, D. W., Calderwood, S. B. & Camilli, A. A
349 bacteriophage encodes its own CRISPR/Cas adaptive response to evade
350 host innate immunity. *Nature* **494**, 489–491 (2013).

351 3. Davidson, A. R. *et al.* Anti-CRISPRs: Protein Inhibitors of CRISPR-Cas
352 Systems. *Annu. Rev. Biochem* **89**, 13.1-13.24 (2020).

353 4. Bondy-Denomy, J., Pawluk, A., Maxwell, K. L. & Davidson, A. R.
354 Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune
355 system. *Nature* **493**, 429–432 (2012).

356 5. Cady, K. C., Bondy-Denomy, J., Heussler, G. E., Davidson, A. R. & O'Toole,
357 G. A. The CRISPR/Cas Adaptive Immune System of *Pseudomonas*
358 *aeruginosa* Mediates Resistance to Naturally Occurring and Engineered
359 Phages. *Journal of Bacteriology* **194**, 5728–5738 (2012).

360 6. Pawluk, A., Bondy-Denomy, J., Cheung, V. H. W., Maxwell, K. L. &
361 Davidson, A. R. A New Group of Phage Anti-CRISPR Genes Inhibits the
362 Type I-E CRISPR-Cas System of *Pseudomonas aeruginosa*. *mBio* **5**,
363 e00896 (2014).

364 7. Crowley, V. M. *et al.* A Type IV-A CRISPR-Cas System in *Pseudomonas*
365 *aeruginosa* Mediates RNA-Guided Plasmid Interference In Vivo. *The*
366 *CRISPR Journal* **2**, 434–440 (2019).

367 8. van Belkum, A. *et al.* Phylogenetic Distribution of CRISPR-Cas Systems in
368 Antibiotic-Resistant *Pseudomonas aeruginosa*. *mBio* **6**, e01796–15 (2015).

369 9. Makarova, K. S. *et al.* An updated evolutionary classification of CRISPR-
370 Cas systems. *Nature Reviews Microbiology* **13**, 722–736 (2015).

371 10. Soto-Perez, P. *et al.* CRISPR-Cas System of a Prevalent Human Gut
372 Bacterium Reveals Hyper-targeting against Phages in a Human Virome
373 Catalog. *Cell Host and Microbe* **26**, 325–335.e5 (2019).

374 11. Hochstrasser, M. L., Taylor, D. W., Kornfeld, J. E., Nogales, E. & Doudna, J.
375 A. DNA Targeting by a Minimal CRISPR RNA-Guided Cascade. *Molecular*
376 *Cell* **63**, 840–851 (2016).

377 12. Lee, H., Dhingra, Y., Sashital, D. S. The Cas4-Cas1-Cas2 complex
378 mediates precise prespacer processing during CRISPR adaptation. *eLife* **8**,
379 e44248 (2019).

380 13. Semenova, E., Nagornykh, M., Pyatnitskiy, M., Artamonova, I. I. &
381 Severinov, K. Analysis of CRISPR system function in plant pathogen
382 *Xanthomonas oryzae*. *FEMS Microbiology Letters* **296**, 110–116 (2009).

383 14. Nam, K. H. *et al.* Cas5d Protein Processes Pre-crRNA and Assembles into
384 a Cascade-like Interference Complex in Subtype I-C/Dvulg CRISPR-Cas
385 System. *Structure/Folding and Design* **20**, 1574–1584 (2012).

386 15. Koo, Y., Ka, D., Kim, E.-J., Suh, N. & Bae, E. Conservation and variability in
387 the structure and function of the Cas5d endoribonuclease in the CRISPR-
388 mediated microbial immune system. *J. Mol. Biol.* **425**, 3799–3810 (2013).

389 16. Garside, E. L. *et al.* Cas5d processes pre-crRNA and is a member of a
390 larger family of CRISPR RNA endonucleases. *RNA* **18**, 2020–2028 (2012).

391 17. Carter, M. Q., Chen, J. & Lory, S. The *Pseudomonas aeruginosa*
392 Pathogenicity Island PAPI-1 Is Transferred via a Novel Type IV Pilus.
393 *Journal of Bacteriology* **192**, 3249–3258 (2010).

394 18. Klockgether, J., Wurdemann, D., Reva, O., Wiehlmann, L. & Tummler, B.
395 Diversity of the Abundant pKLC102/PAGI-2 Family of Genomic Islands in
396 *Pseudomonas aeruginosa*. *Journal of Bacteriology* **189**, 2443–2459 (2007).
397 19. Leenay, R. T. *et al.* Identifying and Visualizing Functional PAM Diversity
398 across CRISPR-Cas Systems. *Molecular Cell* **62**, 137–147 (2016).
399 20. Rauch, B. J. *et al.* Inhibition of CRISPR-Cas9 with Bacteriophage Proteins.
400 *Cell* **168**, 150–158.e10 (2017).
401 21. Marino, N. D. *et al.* Discovery of widespread type I and type V CRISPR-Cas
402 inhibitors. *Science* **362**, 240–242 (2018).
403 22. Cui, L. & Bikard, D. Consequences of Cas9 cleavage in the chromosome of
404 *Escherichia coli*. *Nucleic Acids Research* **44**, 4243–4251 (2016).
405 23. Stanley, S. Y. *et al.* Anti-CRISPR-Associated Proteins Are Crucial
406 Repressors of Anti-CRISPR Transcription. *Cell* **178**, 1452–1464.e13 (2019).
407 24. Bondy-Denomy, J. *et al.* Multiple mechanisms for CRISPR–Cas inhibition by
408 anti-CRISPR proteins. *Nature* **526**, 136–139 (2015).
409 25. Chowdhury, S. *et al.* Structure Reveals Mechanisms of Viral Suppressors
410 that Intercept a CRISPR RNA-Guided Surveillance Complex. *Cell* **169**, 47–
411 51.e11 (2017).
412 26. Guo, T. W. *et al.* Cryo-EM Structures Reveal Mechanism and Inhibition of
413 DNA Targeting by a CRISPR-Cas Surveillance Complex. *Cell* **171**, 414–
414 419.e12 (2017).
415 27. Pawluk, A. *et al.* Disabling a Type I-E CRISPR-Cas Nuclease with a
416 Bacteriophage-Encoded Anti-CRISPR Protein. *mBio* **8**, 43–12 (2017).
417 28. Westra, E. R. *et al.* CRISPR Immunity Relies on the Consecutive Binding
418 and Degradation of Negatively Supercoiled Invader DNA by Cascade and
419 Cas3. *Molecular Cell* **46**, 595–605 (2012).
420 29. Klockgether, J., Reva, O., Larbig, K. & Tummler, B. Sequence Analysis of
421 the Mobile Genome Island pKLC102 of *Pseudomonas aeruginosa* C.
422 *Journal of Bacteriology* **186**, 518–534 (2003).
423 30. Thomas, C. M. & Nielsen, K. M. Mechanisms of, and Barriers to, Horizontal
424 Gene Transfer between Bacteria. *Nature Reviews Microbiology* **3**, 711–721
425 (2005).
426 31. Oliveira, P. H., Touchon, M., Cury, J. & Rocha, E. P. C. The chromosomal
427 organization of horizontal gene transfer in bacteria. *Nature Communications*
428 **8**, 841 (2017).
429 32. Faure, G. *et al.* CRISPR–Cas in mobile genetic elements: counter-defence
430 and beyond. *Nature Reviews Microbiology* **17**, 513–525 (2019).
431 33. Pinilla-Redondo, R. *et al.* Type IV CRISPR–Cas systems are highly diverse
432 and involved in competition between plasmids. *Nucleic Acids Research* **48**,
433 2000–2012 (2019).
434 34. Crowley, V. M. *et al.* A Type IV-A CRISPR-Cas System in *Pseudomonas*
435 *aeruginosa* mediates RNA-Guided Plasmid Interference In Vivo. *The*
436 *CRISPR Journal* **2**, 434–440 (2019).
437 35. Al-Shayeb, B. *et al.* Clades of huge phages from across Earth's
438 ecosystems. *Nature* **578**, 425–431 (2020).
439 36. Medvedeva, S. *et al.* Virus-borne mini-CRISPR arrays are involved in
440 interviral conflicts. *Nature Communications* **10**, 5204 (2019).
441 37. Wang, H. C., Chou, C. C., Hsu, K. C., Lee, C. H. & Wang, A. H. J. New
442 paradigm of functional regulation by DNA mimic proteins: Recent updates.
443 *IUBMB Life* **71**, 539–548 (2018).
444 38. Walkinshaw, M. D. *et al.* Structure of Ocr from Bacteriophage T7, a Protein

445 that Mimics B-Form DNA. *Molecular Cell* **9**, 187–194 (2002).
446 39. Roberts, G. A. *et al.* Exploring the DNA mimicry of the Ocr protein of phage
447 T7. *Nucleic Acids Research* **40**, 8129–8143 (2012).
448 40. Isaev, A. *et al.* Phage T7 DNA mimic protein Ocr is a potent inhibitor of
449 BREX defence. *Nucleic Acids Research* **48**, 5397–5406 (2020).
450 41. Basgall, E. M. *et al.* Gene drive inhibition by the anti-CRISPR proteins
451 AcrlIA2 and AcrlIA4 in *Saccharomyces cerevisiae*. *Microbiology* **164**, 464–
452 474 (2018).
453 42. Mahendra, C. *et al.* Broad-spectrum anti-CRISPR proteins facilitate
454 horizontal gene transfer. *Nature Microbiology* **5**, 620–629 (2020).
455 43. Osuna, B. A. *et al.* Listeria Phages Induce Cas9 Degradation to Protect
456 Lysogenic Genomes. *Cell Host and Microbe* **28**, 1–10 (2020).
457 44. Rollie, C. *et al.* Targeting of temperate phages drives loss of type I CRISPR-
458 Cas systems. *Nature* **578**, 149–153 (2020).
459 45. Borges, A. L. *et al.* Bacteriophage Cooperation Suppresses CRISPR- Cas3
460 and Cas9 Immunity. *Cell* **174**, 917–925.e10 (2018).
461 46. Landsberger, M. *et al.* Anti-CRISPR Phages Cooperate to Overcome
462 CRISPR-Cas Immunity. *Cell* **174**, 908–916.e12 (2018).
463 47. Grissa, I., Vergnaud, G. & Pourcel, C. CRISPRFinder: a web tool to identify
464 clustered regularly interspaced short palindromic repeats. *Nucleic Acids
465 Research* **35**, W52–W57 (2007).
466 48. Biswas, A., Gagnon, J. N., Brouns, S. J. J., Fineran, P. C. & Brown, C. M.
467 CRISPRTarget. *RNA Biology* **10**, 817–827 (2013).
468
469
470

471
472
473

474

475 **Acknowledgements:**

476 We thank T. Wiegand and B. Wiedenheft (Montana State University) and A.
477 Davidson (University of Toronto) for their thoughtful discussion and feedback.
478 L.M.L was supported by the HHMI Gilliam Fellowship for Advanced Study (HHMI)
479 and the Discovery Fellowship (UCSF). J.B.-D. and the Bondy-Denomy lab was
480 supported by the UCSF Program for Breakthrough Biomedical Research funded
481 in part by the Sandler Foundation, the Searle Fellowship, the Vallee Foundation,
482 the Innovative Genomics Institute, an NIH Director's Early Independence Award
483 DP5-OD021344, R01GM127489.

484

485 **Author Contributions:**

486 L.M.L. conducted Acr characterization experiments and spacer and Acr
487 bioinformatics. A.E.P., J.Y.Z., and A.L.B. conducted Acr searches and candidate
488 testing and L.M.L., A.E.P., J.Y.Z., and A.L.B. generated isogenic phage strains.
489 L.M.L and A.E.P. conducted CRISPRi experiments. J.B.-D. conceptualized the
490 project and supervised all bioinformatics and experiments. The manuscript was
491 written by L.M.L. and J.B.-D. with editing and feedback from all authors.

492

493 **Conflict of interest:**

494 J.B.-D. is a scientific advisory board member of SNIPR Biome and Excision
495 Biotherapeutics and a scientific advisory board member and co-founder of Acrigen
496 Biosciences.

497

498 Table 1: List of 27 candidates tested, with positive hits highlighted.

Candidate Number	Accession	Anti-CRISPR identity	<i>aca</i> association
1	KSR23770.1	AcrlC3	<i>aca1</i>
2	KSO29066.1	N/A	<i>aca1</i>
3	KSL61975.1	N/A	<i>aca1</i>
4	SDK41378.1	AcrlC5	<i>aca1</i>
5	CDO85538.1	AcrlC4	<i>aca1</i>
6	WP_085056855.1	N/A	<i>aca1</i>
7	WP_047296680.1	N/A	<i>aca1</i>
8	WP_092238848.1	N/A	<i>aca1</i>
9	WP_044274829.1	N/A	<i>aca1</i>
10	WP_071574229.1	N/A	<i>aca1</i>
11	WP_023657539.1	N/A	<i>aca1</i>
12	ABR13386.1	N/A	<i>aca4</i>
13	ABR13387.1	N/A	<i>aca4</i>
14	SDJ61905.1	N/A	<i>aca4</i>
15	OPE29935.1	N/A	<i>aca4</i>
16	OPD90261.1	N/A	<i>aca4</i>
17	WP_060613673.1	N/A	<i>aca4</i>
18	WP_080050315.1	AcrlC6*	<i>aca4</i>
19	EWC40192.1	AcrlC7*	<i>aca4</i>
20	GCA55691.1	N/A	<i>aca4</i>
21	WP_101192668.1	AcrlE9	<i>aca4</i>
22	WP_101192667.1	N/A	<i>aca4</i>
23	WP_101192666.1	N/A	<i>aca4</i>
24	WP_045884682.1	N/A	<i>aca4</i>
25	WP_045884679.1	N/A	<i>aca4</i>
26	WP_074202337.1	AcrlC8*	<i>aca4</i>
27	WP_074202338.1	N/A	<i>aca4</i>

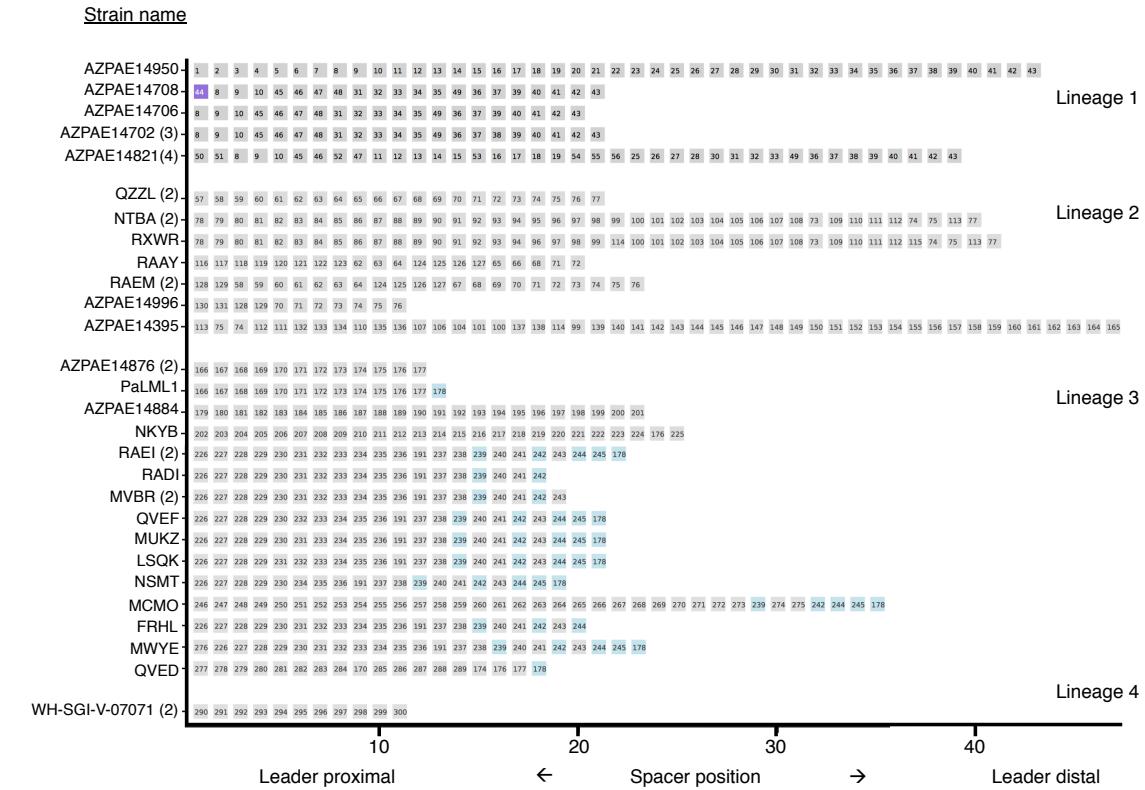
499 *Multi-subtype Acr proteins.

500

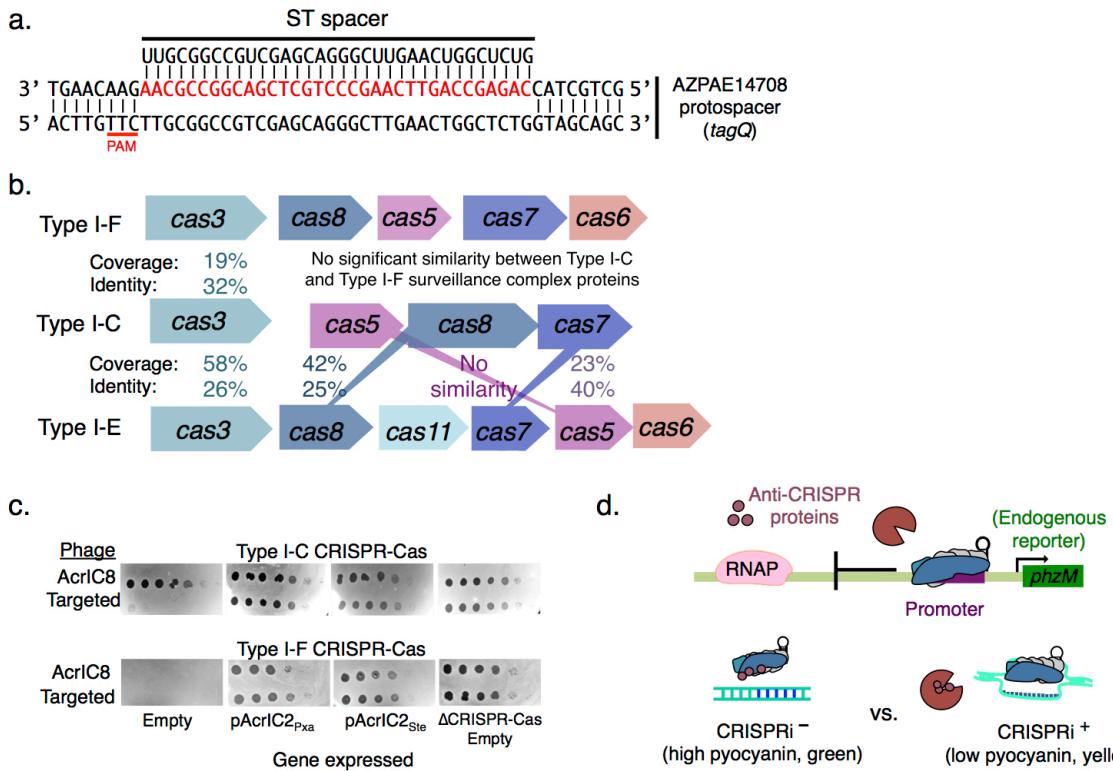
501 Table 2: Proteins identified and characterized in this study.

Acr	Size (a.a.)	pl	CRISPRi phenotype	aca association	CRISPR-Cas inhibition	Accession
AcrlC1	190	4.17	Uninhibited	<i>aca1</i>	Type I-C	WP_046701304.1
AcrlF2*(IC2)	96	4.02	Inhibited	<i>aca1</i>	Type I-C / Type I-F	WP_015972868.1
AcrlC3	100	4.71	Uninhibited	<i>aca1</i>	Type I-C	WP_058130594.1
AcrlC4	57	4.22	Inhibited	<i>aca1</i>	Type I-C	WP_153575361.1
AcrlC5	60	4.08	Inhibited	<i>aca1</i>	Type I-C	WP_089394111.1
AcrlC6*	144	4.73	Uninhibited	<i>aca4 / aca10</i>	Type I-C / Type I-E	WP_080050315.1
AcrlC7_{stu}*	94	3.85	Inhibited	<i>aca4 / aca10</i>	Type I-C / Type I-E	WP_003294373.1
AcrlC8*	80	8.01	Inhibited	<i>aca4</i>	Type I-C / Type I-E	WP_074202337.1
AcrlE9	75	8.59	Inhibited	<i>aca4</i>	Type I-E	WP_101192668.1
aca10	65	8.38	N/A	N/A	N/A	WP_074980464.1

502 AcrlF2*(IC2) - AcrlF2 is also the second Type I-C Acr identified, referred to as AcrlF2* throughout
 503 a.a. – amino acids


504 * – indicates dual subtype inhibition.

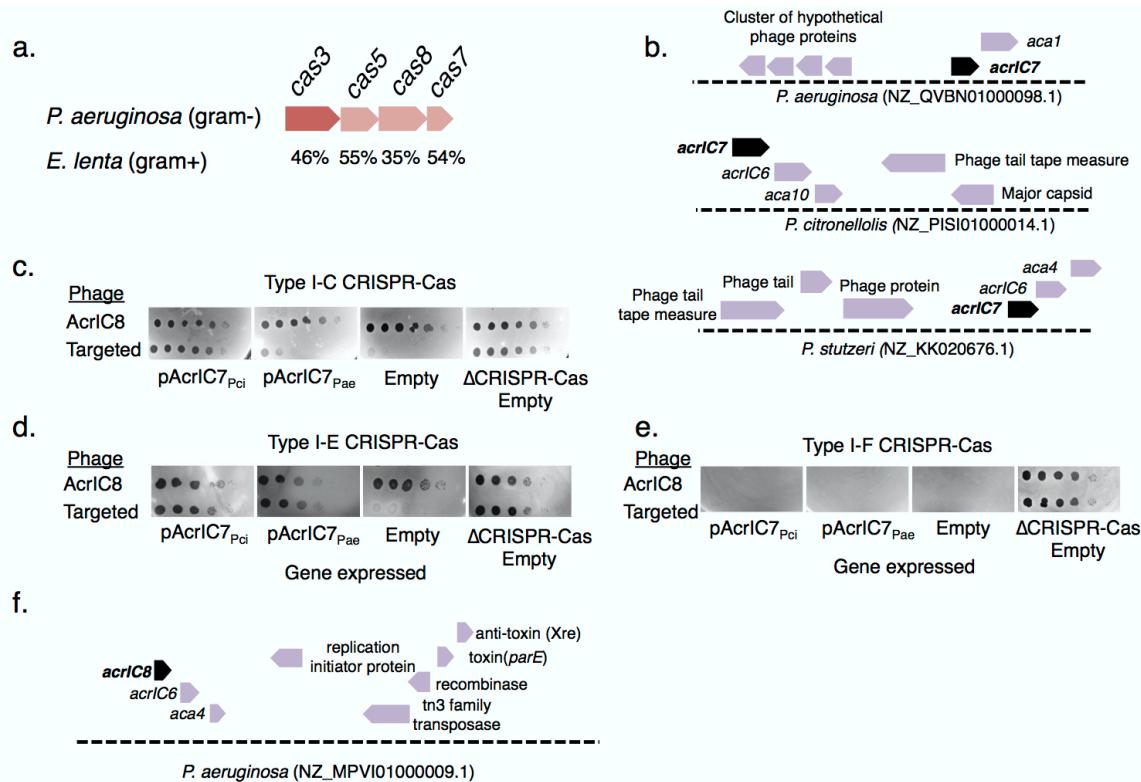
505 pl – Average isoelectric point.


506 CRISPRi – CRISPR interference transcriptional repression assay.

507 aca – anti-CRISPR associated gene

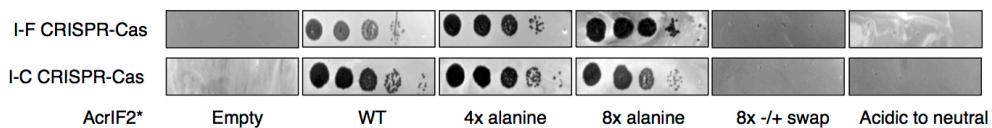
508

Supplemental Figure 1. Full CRISPR array lineage mapping of the 28 unique CRISPR arrays from 42 genomes. Each lineage contains CRISPR arrays that share at least one spacer. Spacers with the same DNA sequence are given the same number. Spacer #44 is a self-targeting spacer. Spacers in CRISPR arrays in lineage 3 that are highlighted in blue are meant to facilitate comparisons between related arrays within that lineage.


Supplemental Figure 2. **a.** Alignment of self-targeting spacer #1 from AZPAE14708 with corresponding protospacer. PAM is underlined in red. **b.** Comparison of Type I-F and Type I-E Cas protein sequences to Type I-C Cas protein sequences. **c.** Plaque assay testing the activities of two AcrIF2 homologues identified in *Pseudoxanthomonas* and *Stenotrophomonas* genomes. Homologues were expressed from a plasmid in either a strain encoding the Type I-C system (PAO1^{IC}, induced with 1mM IPTG) or the Type I-F system (PA14). A phage encoding a Type I-C Acr (AcrlC8) was used as a positive control, and a phage encoding AcrlIA4 (a Cas9 inhibitor) was used as the targeted phage. **d.** Schematic of the CRISPRi assay used to screen Acr activity. A crRNA is designed to bind upstream of *phzM*, a gene whose expression results in green pigmented *P. aeruginosa* cultures. Acrs that inhibit the surveillance complex from binding target DNA result in a CRISPRi⁻ phenotype. Acrs that bind Cas3 or do not block DNA binding result in a CRISPRi⁺ phenotype.

510

511


512

513

Supplemental Figure 3. **a.** Protein percent identity comparison of the *E. lenta* Type I-C CRISPR-Cas system to the *P. aeruginosa* Type I-C CRISPR-Cas system. **b.** Loci showing typical genetic context of *acrIc7* in three Pseudomonas species. Genome accession code in parentheses. **c, d, e.** Plaque assays of two AcrIc2 and two AcrIc7 homologues expressed from a plasmid in PAO1^{IC}, PA14, or PA4386. Acr activity was assessed by spotting a CRISPR-Cas sensitive phage (DMS3m expressing AcrIIA4) and an untargeted control (DMS3m expressing AcrIc8). **f.** Loci showing typical genetic context of *acrIc8*.

514

Supplemental Figure 4. Plaque assays testing the activity of AcrI2* mutants. A I-F strain (PA14) or I-C strain (PAO1^{IC}) were transformed with plasmids encoding the mutants indicated under each panel. A CRISPR-Cas sensitive phage (DMS3m-AcrIIA4) was used to determine the activity of the AcrI2* mutants.

515 **Materials and Methods**

516

517 **Microbes**

518 Cell culturing

519 *Pseudomonas aeruginosa* strains (PAO1, PA14 and PA4386) and *Escherichia*
520 *coli* strains (DH5a) were cultured using lysogeny broth (LB) agar or liquid media
521 at 37 °C supplemented with gentamicin, where applicable, to maintain
522 pHERD30T (50 µg/mL for *P. aeruginosa*, 30 µg/mL for *E. coli*). In all *P.*
523 *aeruginosa* experiments, expression of genes of interest in pHERD30T was
524 induced using 0.1% arabinose.

525 Type I-C CRISPR-Cas expression in PAO1

526 PAO1^{IC} activity was induced using 1mM IPTG. Construction of this strain is
527 described in (1) and may be referred to as LL77 (Targeting crRNA) or LL76 (Non
528 targeting).

529

530 Bacterial transformations

531 *P. aeruginosa* transformations were performed using standard electroporation
532 protocols (1). Briefly, overnight cultures were washed twice in an equal volume of
533 10% glycerol and the washed pellet was concentrated tenfold in 10% glycerol.
534 These electrocompetent cells were transformed with 20 – 200 ng plasmid,
535 incubated shaking in LB for 1 hr at 37 °C, plated on LB agar with appropriate
536 selection, and incubated overnight at 37 °C. Bacterial transformations for cloning
537 were performed using *E. coli* DH5α (NEB) according to the manufacturer's
538 instructions

539

540 CRISPRi

541 CRISPR interference transcriptional repression assays were conducted as in
542 previous work (5). A crRNA targeting the *phzM* promoter was introduced into a
543 Δ cas3 strain. The crRNA and *cas* genes (in the case of Type I-C) were induced in
544 overnight cultures and pyocyanin levels measured with an acid extraction
545 described previously (5).

546 **Phages**

547 Phage maintenance

548 *Pseudomonas aeruginosa* DMS3m-like phages (including JBD30 and DMS3m
549 engineered phages) were amplified on PA14 Δ CRISPR, PAO1, or PA4386 Δ cas3
550 and stored in SM buffer at 4 °C.

551 Construction of recombinant DMS3m acr phages

552 To generate the isogenic panel of DMS3m and JBD30 anti-CRISPR phages,

553 recombination cassettes were generated with up- and down-stream overhangs to
554 *aca1* and the acr promoter flanking the Acr of interest, as previously described
555 (6). These genes were ordered from TWIST or IDT and were assembled into
556 plasmids using Gibson assembly methods. Recombinant phages were generated
557 by infecting cells transformed with the donor constructs and phages were isolated
558 and assessed for resistance to CRISPR-Cas targeting. The presence of the anti-
559 CRISPR gene was confirmed by PCR. Plaque forming unit quantification
560 Phage plaque forming units (PFU) were quantified by mixing 10 μ l of phage with
561 150 μ l of an overnight bacterial culture. The infected cells were aliquoted into 3
562 mL molten 0.7 % top agar and spread on an LB agar plate supplemented with 10
563 mM MgSO₄ and appropriate inducers. After 18 hours of growth at 30 °C or 37
564 °C, individual plaques were counted. Three biological replicates were done per
565 phage per strain.

566 Phage spot assays

567 3 mL of molten 0.7 % top agar mixed with 150 μ l of bacteria were spread on an
568 LB agar plate supplemented with 10 mM MgSO₄ to grow a bacterial lawn. Ten-
569 fold serial dilutions of phage were made in SM buffer and 2 μ l of each dilution
570 was spotted on the lawn. Plates were incubated at 30 °C or 37 °C for 16 hours
571 and imaged.

572 Efficiency of plaquing (EOP)

573 EOP was calculated as the ratio of the number of plaque forming units (PFUs)
574 that formed on a targeting strain of bacteria (PAO1^{IC}, PA14 WT, PA4386 WT,
575 PaLML1 plus crRNA plasmid) divided by the number of PFUs that formed on a
576 related non-targeting strain (PAO1, PA14 Δ CRISPR, PA4386 Δ CRISPR, PaLML1
577 plus NT crRNA). Each PFU measurement was performed in biological triplicate.
578 EOP data are displayed as the mean EOP \pm standard deviation.

579 Escaper phage isolation

580 High titer phage preparations were mixed with overnight cultures and spread on
581 an agar plate with top agar. Single plaques that formed after overnight
582 propagation were picked with a sterile pipette tip and resuspended in SM buffer.
583 This process was repeated two times under maintained targeting pressure. The
584 escaper phages were ultimately tittered and the protospacer region sequenced.
585

586 **Bioinformatics**

587 Numerical data were analyzed in Excel and plotted in GraphPad Prism 6.0.

588 Discovery of acr genes using *aca1* and *aca4*

589 Anti-CRISPR searches were done as previously described (1)
590

591 **CRISPR array spacer analysis**
592 Spacers were derived from the van Belkum dataset (2) (18 genomes with 12 non
593 redundant arrays) or from Type I-C containing strains found using BLAST and
594 CRISPRfinder (3)(12 non-redundant arrays). Spacers were analyzed using
595 CRISPRTarget (4) using the Genbank-environmental, RefSeq-plasmid, IMG/VR,
596 and PHAST databases.

597 PAM analysis was done using the Berkeley Web Logo tool by submitting the
598 upstream and downstream regions flanking the protospacer sequence. These 8
599 nucleotide long flanking sequences are part of the CRISPRTarget output. Every
600 matching protospacer (low cutoff of 20, no redundant matches removed) was
601 utilized for the PAM analysis for n= 4,443.

602 To determine the types of elements targeted by the spacers in our collection, the
603 cut-off score was increased to 30 and a PAM match score of +5 was used to
604 narrow the total number of hits to matching elements. If a spacer had multiple
605 matches, the match with the highest score was selected as the representative for
606 that spacer. Only one match was considered per spacer. This reduced the
607 number of spacers to 163.

608 Matches were placed into the following categories: Myophages, Siphophages,
609 Podophages, plasmids, and assorted prophages. A hit was placed into a phage
610 family, rather than into the prophage category, if the CRISPRTarget output
611 included a link to a specific phage genome. Importantly, this means that being
612 placed into a phage family does not mean that a phage is strictly lytic. Prophages
613 were identified by considering the genes in the protospacer neighborhood.

614 Lineages were manually curated using the 18 strains found in (2).

615

616 1. N. D. Marino *et al.*, Discovery of widespread type I and type V CRISPR-Cas
617 inhibitors. *Science*. **362**, 240–242 (2018).

618 2. A. van Belkum *et al.*, Phylogenetic Distribution of CRISPR-Cas Systems in
619 Antibiotic-Resistant *Pseudomonas aeruginosa*. *mBio*. **6**, 959–13 (2015).

620 3. I. Grissa, G. Vergnaud, C. Pourcel, CRISPRFinder: a web tool to identify
621 clustered regularly interspaced short palindromic repeats. *Nucleic Acids
622 Research*. **35**, W52–W57 (2007).

623 4. A. Biswas, J. N. Gagnon, S. J. J. Brouns, P. C. Fineran, C. M. Brown,

624 CRISPRTarget. *RNA Biology*. **10**, 817–827 (2013).

625 5. Bondy-Denomy, J. *et al.* Multiple mechanisms for CRISPR–Cas inhibition by
626 anti-CRISPR proteins. *Nature* **526**, 136–139 (2015).

627 6. Borges, A. L. *et al.* Bacteriophage Cooperation Suppresses CRISPR- Cas3
628 and Cas9 Immunity. *Cell* **174**, 917–925.e10 (2018).

629

630