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7 SUMMARY

8 Bacteria deploy multiple defense mechanisms to prevent the invasion of mobile genetic

9 elements (MGEs). CRISPR-Cas systems use RNA-guided nucleases to target MGEs,
10  which in turn produce anti-CRISPR (Acr) proteins that inactivate Cas protein effectors.
11  The minimal component Type I-C CRISPR-Cas subtype is highly prevalent in bacteria,
12  and yet a lack of a tractable in vivo model system has slowed its study, the identification
13  of cognate Acr proteins, and thus our understanding of its true role in nature. Here, we
14  describe MGE-MGE conflict between a mobile Pseudomonas aeruginosa Type |-C
15 CRISPR-Cas system always encoded on pKLC102-like conjugative elements, which are
16 large mobile islands, and seven new Type |-C anti-CRISPRs (AcrlF2*, AcrlC3-IC8)
17  encoded by phages, other mobile islands, and transposons. The P. aeruginosa Type |-C
18 system possesses a total of 300 non-redundant spacers (from 980 spacers total) across
19 the 42 genomes analyzed, predominantly targeting P. aeruginosa phages. Of the seven
20 new Type I-C anti-CRISPRs, all but one are highly acidic, and four have surprisingly broad
21 inhibition activity, blocking multiple distantly related P. aeruginosa Type | CRISPR system
22 subtypes (e.g. I-C and I-F, or I-C and I-E), including AcrlF2 (now, AcrlF2*), a previously
23  described DNA mimic. Anti-type |-C activity of AcrlF2* was far more sensitive to
24  mutagenesis of acidic residues in AcrlF2* than anti-type I-F activity, suggesting distinct
25  binding mechanisms for this highly negatively charged protein. Five of the seven Acr
26  proteins block DNA-binding, while the other two act downstream of DNA-binding, likely by
27  preventing Cas3 recruitment or activity. For one such Cas3 inhibitor (AcrlC3), we identify
28 a novel anti-CRISPR evasion strategy: a cas3-cas8 gene fusion, which also occurs in
29 nature. Collectively, the Type I-C CRISPR spacer diversity and corresponding anti-
30 CRISPR response, all occurring on Pseudomonas MGEs, demonstrates an active co-
31 evolutionary battle between parasitic elements.
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32 INTRODUCTION

33 The plasticity and rapid evolution of bacterial genomes is driven by the continuous
34 exchange of genetic material between diverse species. This genetic mobility can be
35 blocked by bacterial immune systems, such as restriction enzymes and CRISPR-Cas
36  (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR associated
37 sequences). CRISPR-Cas systems utilize short RNA guides, encoded within a CRISPR
38 array, where they are separated by repeat sequences, to direct either a multi-protein
39 (Class 1; Type |, Type llll, Type IV) or single protein (Class 2; Type Il, V, or VI) effector
40 complex to a matching target on a mobile genetic element (MGE)". In rare instances, the
41 targeting paradigm is inverted, where a CRISPR-Cas system is encoded by a lytic
42  bacteriophage, targeting the host, as in Vibrio cholerae?.

43 Pseudomonas aeruginosa is an opportunistic human pathogen and also a leading
44  model organism for studies pertaining to bacteriophage-CRISPR interactions® and Class
45 1 CRISPR-Cas biology. Functional Type I-F*®, I-E®, and now IV-A” systems have been
46  described, however, a fourth CRISPR-Cas system encoded by this species, the Type I-C
47  system has not been well characterized®. Type I-C systems are phylogenetically
48  widespread®, and can be found in Streptococcus pyogenes, Vibrio species, Clostridium
49  species, Neisseria species, and Bacillus species, but are among the least studied
50 subtypes within the adaptive branch of bacterial immunity. Details of Type I-C systems
51 found in Eggerthella lenta', Desulfovibrio vulgaris', Bacillus halodurans', and
52  Xanthomonas oryzae' have been explored heterologously or in vitro, but studies in a
53  native host are lacking. Type I-C systems employ a minimal surveillance complex of Cas5,
54 Cas7, and Cas8 with the CRISPR RNA (crRNA) and the trans-acting nuclease-helicase,
55 Cas3, which is recruited to cleave and processively degrade DNA. The common Cas6
56  crRNA-processing ribonuclease is missing from this system and Cas5 carries out crRNA-
57  processing instead'"°.

58 Anti-CRISPR proteins (Acrs) encoded by MGEs disable CRISPR-Cas systems
59 using diverse mechanisms. Strategies range from blocking DNA binding sites (e.g. AcrlF1,
60  AcrlF2, AcrlF10, AcrllA2, AcrllA4), to blocking DNA cleavage (e.g. AcrlE1, AcrlF3,
61  AcrliC1) and even acting enzymatically to disable CRISPR-Cas (e.g. AcrVA1, AcrVA5)3.
62 CRISPR immunity is typically narrowed to just three stages: adaptation, biogenesis and
63 interference, but a fourth and equally important facet is understanding MGE counter-
64  evolution. Here, we describe the MGE targets of the P. aeruginosa type |I-C CRISPR-Cas

65  system, which itself is always encoded on an MGE, present direct evidence of endogenous
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66  Type I-C CRISPR-Cas activity, and report the discovery of seven Pseudomonas Type |I-C
67  anti-CRISPRs.
68

69 RESULTS
70  MGE-encoded Type I-C CRISPR-Cas provides immunity in Pseudomonas aeruginosa

71  Type I-C CRISPR-Cas systems previously described in 20 P. aeruginosa genomes?, an
72  environmental isolate in our lab (PaLML1), and 23 additional genomes found using
73  BLAST, are encoded by pKLC102-like elements (Figure 1A). This conjugative element
74  family can be found as either an integrated island or episome in many gram negative
75  bacteria, and is also known as P. aeruginosa pathogenicity island (PAPI-1) in some P.
76  aeruginosa strains''®, It is typically ~100 kb, does not always encode a Type I-C system,
77  and we did not observe carriage of other CRISPR-Cas subtypes. To determine if Type I-
78 C CRISPR-Cas is active in P. aeruginosa, we first took a bioinformatics approach. While
79  the Cas proteins are conserved (90-100% sequence identity) across strains, the CRISPR
80  spacers are diverse. Alignments of 4,443 protospacers with upstream and downstream
81 regions revealed the consensus PAM to be 3° —AAG- 5’, consistent with previous

82  reports™"?(

Figure 1B). Among the 42 strains with CRISPR arrays published previously (2
83  published strains have cas genes without corresponding arrays), we observed spacer
84  diversity suggestive of active acquisition (Figure 1C and Supplemental Figure 1).

85 The CRISPR arrays could be clustered into four broad lineages, with strains
86  grouped if they share at least one spacer with another array. Strains that cluster together
87 tend to share most of the spacers towards the leader-distal end of the CRISPR array,
88  suggesting that after diverging, each host continues to expand its CRISPR array
89 independently. For example, strains in lineage 1 share most of their ~10-15 leader-distal
90 spacers, and then undergo obvious divergence with a series of unique spacers proximal
91 to the leader (Figure 1C). In lineage 2, the diversity is even more striking, as the strains
92  are grouped together by just two “core” spacers (#74 and #75), but have highly distinct
93  arrays, most notably strain AZPAE14395, with ~40 unique spacers (Figure 1C). Strains in
94  lineage 3 (PaLML1, AZPAE14876, and AZPAE12421), and lineage 4 (WH-SGI-V-07071,
95 and WH-SGI-V-07073) have completely dissimilar spacers (Supplemental Figure 1),
96  despite having the same frame shift mutation that results in an early Cas1 stop codon,
97  suggesting continued CRISPR dynamics through an unknown mechanism. In total, there

98 are 300 non-redundant spacers in this collection, and 162 (54 %) match sequenced
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99 elements with many spacers targeting phages and prophages (139) and some matching
100  plasmids (23) (Figure 1D). Although pKLC102 can be considered parasitic, dissection of
101 the Type I-C encoded spacers reveals the immunity module to be “domesticated”,
102  targeting canonical bacterial parasites.
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Figure 1. a. Pseudomonas aeruginosa Type I-C systems are found on pKLC102 elements, shown here
integrated into the P. aeruginosa genome. Black arrows represent pKLC102 marker genes. soj is a
chromosome partitioning protein, and xerC is a site-specific recombinase. b. WebLogo showing the
consensus PAM sequence upstream of the protospacer. PAM is written 5’ to 3'. c. Clustering of CRISPR
arrays from 20 genomes into lineages based on spacer identity. Spacer position is marked on the x-
axis. Spacers that are the same within a lineage are given the same number. Numbers in parentheses
following the strain names indicate the number of genomes with the same CRISPR array. The spacer
highlighted in black, #44, is self-targeting. The colors highlighting the remaining spacers (blue and grey)
in lineages 1 and 2 are meant to facilitate comparisons between related arrays. d. Of the 300 non-
redundant spacers, 163 target sequenced genetic elements. Spacers labeled as unknown (dark purple)
did not have any matches in sequence databases used by CRISPR Target. Spacers with matches to
independent phage genomes (both lytic and temperate) were categorized into three families
(siphoviridae, myoviridae, and podoviridae). Spacers that mapped back to phage-like regions in
bacterial genomes were categorized as assorted prophages.
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A P. aeruginosa environmental isolate (PaLML1) from our collection, which has
both Type I-C and I-F CRISPR-Cas systems, was next used as a laboratory model. Using
WGS data, we determined that PaLML1’s Type |-C system is also within pKLC102 (Figure
1A) and that it clusters with lineage 3, sharing all but one spacer with two of the published
CRISPR arrays. To verify CRISPR-Cas function, we transformed PaLML1 with a Type I-
C crRNA targeting phage DMS3m, since PaLML1 does not encode spacers against this
phage. Because Type I-C spacer length ranges from 32-37 nt, contrary to consistent Type
I-F spacers measuring 32 nt (Figure 2A), we tested spacers of each length (i.e. 32 nt, 33
nt, etc.) in PaLML1 to ascertain if all were active. CRISPR-Cas targeting occurred in the
presence of the phage-specific crRNAs for both the I-C and I-F systems, and all of the

Type I-C spacer lengths tested demonstrated robust phage targeting (Figure 2B). We also
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Figure 2: a. Comparison of spacer lengths found in either Type I-F or Type I-C P. aeruginosa
CRISPR arrays. b. Spot titration plaque assay of CRISPR-Cas sensitive phage on a lawn of
PaLML1, expressing crRNAs of lengths between 32-37 nt. The targeted phage is DMS3m, which
does not have an acrIC gene. c. Protospacer sequence for two Type |-C escaper phages isolated
on PaLML1, with mutations highlighted in red text. PAM is underlined. Spot titration plaque assay
shows a WT (i.e. non escaper) phage and escapers 1 and 2 challenged with the Type I-C system
in PAO1'C,
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isolated escaper phages that had point mutations in positions +2 and +3 of the protospacer
(counting from the PAM), suggesting the presence of a “seed” sequence (Figure 2C). In
conclusion, active Type I-C systems in P. aeruginosa are on a widespread mobile element,
have variable CRISPR spacers suggesting activity in situ, and can provide protection
against phage with an engineered spacer.

Discovery of seven anti-CRISPRs on MGEs that inhibit Type I-C and beyond

Given the diversity of P. aeruginosa Type |I-C spacers that target assorted MGEs and the
robust phage targeting observed with engineered spacers, we determined that this
CRISPR-Cas system indeed poses a threat to MGEs, and therefore counter-immunity
mechanisms are expected. To identify candidate anti-CRISPR genes that inhibit this
system, we used previously established self-targeting (ST) and guilt-by-association

approaches to identify candidates?*?’

. Because cleavage of a bacterial genome is a
deadly event*?, a sequenced strain with a CRISPR-Cas system that has a spacer targeting
its own chromosome is indicative of some CRISPR inactivation mechanism allowing that
cell to live. Additionally, acr genes are often coupled with negative transcriptional
regulators known as anti-CRISPR associated (aca) genes, which can be used to locate
candidate acr genes®?®. To test candidate Acrs, we used a strain of PAO1 heterologously
expressing Cas3-5-8-7 and a DMS3m crRNA from its chromosome (PAO1'°)?', due to
PaLML1’s low transformation efficiency.

Strain AZPAE14708 encodes a spacer targeting its type VI secretion gene, tagQ,
with a perfect protospacer and PAM match (Figure 3A and Supplemental Figure 2A). This
spacer is absent in other strains within lineage 6 that share spacer content with
AZPAE14708 (Figure 1B). To identify candidate acr genes, we used acr-associated gene
1 (aca) as an anchor®, and found a locus with acr/F2, an inhibitor of Type I-F systems®*

adjacent to aca? (Figure 3A). Surprisingly, expression of AcrlF2 from a phage during

infection completely inhibited the Type I-C system (Figure 3B). The dual inhibitory activity
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was unexpected, given the evolutionary distance between the I-F and I-C systems’ (no
significant pairwise identity, Supplemental Figure 2B). Two additional AcrlF2 homologues
(hereafter, AcrlF2* to indicate dual specificity) were tested (~50% identity), from
Pseudoxanthomonas and Stenotrophonomonas, both associated with aca?, and both
displayed dual I-C and I-F activity (Supplemental Figure 2C). Strains from these genera
also encode Type I-C and Type I-F systems.

Due to the Type I-C system’s unique mobile lifestyle relative to other CRISPR-Cas
systems in P. aeruginosa, and AcrlF2*’s narrow distribution, we reasoned that more Type
I-C Acrs likely exist. Of 27 acal and aca4-assocated candidates tested (Table 1), we
identified six more genes in a series of distinct MGEs including plasmids, transposons,
conjugative elements, and phages that inhibited the Type I-C system (Figure 3C and Table
2). An additional gene was also identified that solely inhibited the P. aeruginosa Type I-E
system, AcrlE9 (discussed below). This collection consisted of genes associated with
acal (AcrlC3, AcrlC4, AcrlC5) or aca4 (AcrlC6, AcrlC7, and AcriC8). AcrlC7 was first
identified in P. stutzeri (AcrlC7pst) adjacent to aca4 and a homologue was found in P.
citronellolis (88% sequence identity, AcrlC7rs), adjacent to a new helix-turn-helix
transcriptional regulator, which we have named aca70. In both instances, AcrlC6 is also
present in the locus. An acaf-adjacent distant AcrlC7 homologue was also found in P.
aeruginosa (37% sequence identity, AcrlC7ps¢), although it did not confer Type I-C anti-

CRISPR activity.



a M. bovoculi  [acrVAD acrVA2 acriCi MacrVA3 >

AZPAE14708 genome C.
P. aeruginosa _acriF2"
I//. iype I-g ocus CRISPR \\\\ P. aeruginosa [_SOS peptidase MacrlE{D| acrlFEEUE D= aca D)
(¢
“\ \a nd ,/' P. aeruginosa [l =iz Macad> ]
------------ ~-ID--/----C-T% P. delhiensis I iaciEs)aca]) hage ]
tagQ AcrlF2 acat

P. aeruginosa [ tail measure Y phage tail ) regulator Yacad| MET[e3
P. aeruginosa <HTH[HTHYDEZIZaca?>

b. \ 7%
Phage Type I- C CRISPR-Cas P. stutzeri [ phage tall [ regulator >

o MRS g 0 0 672
E P. citronellolis K J|EZIZ® EZlEPlacaro1(]
AcrIFZ*E;! 5 o ,] (X} ! vy
' P. aeruginosa Plasmid replication  ERUCIEELeS

Targeting (T) Non targeting (NT)

d Type I-C CRISPRi
Type I-C Type I-F 0.42
AcrllA4 _
ND >
AcriC8 8 0.10
(1)) AcrlC7 £ 008
Q Acrice c
< AcrCs S o.06
. AcriC4 S .04
L AcriC3 &
AcrlF2* 0.02
AcriC1 0.00¢
Q Q Q Q P> 5 oA ®
»9 \° \° \° \° \° \° \° NN \° \° \° '@ \° \Q \° \° AN ‘?"\\ é\??‘d\ @\0‘?&0‘?‘(}&‘; (}\0‘?‘0\\0

EOP EOP

Figure 3. a. Schematic of the self-targeting P. aeruginosa strain AZPAE14708 showing the first
spacer (in red) targeting tagQ and the aca? locus encoding acr/F2*. b. A strain expressing the Type
I-C CRISPR system in PAO1'®was challenged by phage encoding either AcrlF1 or AcrIF2 in a spot-
titration plaque assay with ten-fold serial dilutions. c. Gene neighborhood maps of MGEs where
new Type I-C acrs (colored, bolded arrows) were identified. Previously discovered acrs (orange),
annotated MGE genes (white), and hypothetical genes (grey), are shown. d. Efficiency of plaquing
(EOP) calculations for an isogenic panel of phages expressing acr/C genes tested in PAO1'° or
PA14 (Type I-F). Each strain was infected in triplicate and plaque counts were averaged and
normalized against a strain lacking the indicated CRISPR-Cas system. ND- none detected e.
Transcriptional repression via the Type I-C CRISPR system (CRISPRI, strain: PAO1'C Acas3) and
the impact of the acr/C genes. Levels of the pigment pyocyanin are quantified at high levels when
CRISPRI is inhibited and low levels when CRISPRI is functional. Each measurement is an average
of biological triplicate.

161 We subsequently engineered a panel of isogenic DMS3m phages with each
162 individual acr gene knocked in, including a negative control (Cas9 anti-CRISPR, acrllA4),
163  regulated by the native DMS3m acr promoter and aca, and assessed their efficiency of
164  plaquing in P. aeruginosa (Figure 3D). Each phage had an EOP=1 when infecting cells
165  expressing the Type I-C system, except AcrlC6, which appeared to be quite weak (EOP
166  =0.01). Only AcrlF2* had activity against the Type I-F system, with an EOP=1, compared

167 to EOP =107 for all other Acr proteins.
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To determine how the new Acrs interact with the Cas machinery, we tested
whether they inhibit the ability of the crRNA-guided complex to bind DNA in vivo using
CRISPR transcriptional interference (CRISPRI) in a Acas3 background. A colorimetric
assay was adapted from previous work®*, using a Type I-C crRNA to repress transcription
of the phzM gene. If CRISPRI is functional, where the surveillance complex assembles
and blocks phzM transcription, the P. aeruginosa culture turns yellow. If DNA-binding is
inhibited (CRISPRI negative), the culture is a natural blue-green (Supplemental Figure
2D). Five of the proteins, AcrlF2* IC4, IC5, IC7ps; and IC8, blocked CRISPRI. Expression
of AcrIC1 (a previously discovered protein from Moraxella*') and AcrlC3, however, did not
interfere with CRISPRI, suggesting that these Acr proteins bind to Cas3, or prevent Cas3
from cleaving the target DNA, while allowing Cascade-DNA binding (Figure 3E). AcrlC6
did not block CRISPRIi but given its weak strength, we are hesitant to interpret this negative
result. These results are summarized in Table 2.

Broad-spectrum inhibitory activity by the I-C anti-CRISPRs

We next surveyed the phylogenetic distribution of the new acr genes reported here. AcrIC5
orthologues were found distributed across Proteobacteria, Firmicutes, and Actinobacteria
(Figure 4A), and AcrIC8 orthologues were found sparingly in Pseudomonas, Spirochetes,
and Rhizobiales. AcrlC6 can be found broadly in various classes (Alpha-, Beta- and
Gamma-proteobacteria) with notably strong hits in Salmonella enterica. These three Acrs
stand in contrast to the rest, which were limited to a single genus: AcrlC1 (Moraxella),
AcrlC2, AcrIC3, AcrlC4 and AcrlC7 (Pseudomonas, data in Table 2). We took note of
Actinobacterial AcrlIC5 homologues in the human-associated microbes Cryptobacterium
curtum and Eggerthella timonensis, given that an active Eggerthella lenta Type I-C
CRISPR-Cas system was described recently’®. We tested the Pseudomonas AcrIC5
homologue for inhibitory activity using the established E. lenta I-C system heterologously

expressed in P. aeruginosa and observed strong anti-CRISPR function (Figure 4B),
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despite cas gene sequence identities between 35-55% (Supplemental Figure 3A).
Surprisingly, AcrlC7 also inhibited the E. lenta I-C system, despite no identified

homologues outside of the Pseudomonas genus.
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Figure 4: a. Phylogenetic tree of AcrlC5 protein showing its broad distribution. b. Plaque assay
of acr-encoding engineered JBD30 phages tested against the E. lenta Type I-C system expressed
heterologously in P. aeruginosa. ¢. EOP calculations for an isogenic panel of phages encoding
the indicated acr gene, infecting a strain expressing the Type I-E CRISPR-Cas system (PA4386).
Each bar is the average of infections done in biological triplicate normalized to the number of
plaques on PA4386 Acas3. d. Type I-E CRISPRI, conducted as in Figure 3 (host: PA4386 Acas3)
with the Acr proteins that inhibit Type I-E function assayed. AcrllA4 is a negative control.

The broad-spectrum activity of AcrlF2 (I-F and I-C), AcrIC5 (I-Cpze and I-Cgs), and
AcrIC7 (I-Cpse and I-Cge), led us to test the new inhibitors against another system found
in P. aeruginosa, Type I-E. Type I-C, Type I-F, and Type I-E systems are phylogenetically
distinct subtypes, with I-F and I-E systems sharing a more recent common ancestor.
AcrlC7*pst, AcrlC7*peitro, ACTIC7*pae, and AcrlC8*, inhibited the Type I-E system well, while
AcrlC6* was again, a weak anti-CRISPR (Figure 4C, Supplemental Figure 3B-3D). The

new Type I-E Acr proteins (AcrlC6*, AcrlC7*ps;, AcriC8*, and AcrlE9) all inhibited Type I-
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E CRISPRI (Figure 4D), indicating that they block DNA binding. Curiously, AcrlC7pa only
inhibited the I-E subtype, unlike its dual I-C/I-E inhibiting homologues (Supplemental
Figure 3C-3E). Searching through sequenced genomes revealed that P. stutzeri and P.
aeruginosa encode both I-C and I-E subtypes, while P. citronellolis encodes only Type I-
F systems.

Multi-system inactivation by AcrlF2*

AcrlF2* directly prevents the Type I-F CRISPR surveillance complex from binding to
DNA?26_ Due to prior structural characterization of AcrlF2*, we opted to next determine
whether it uses the same mechanism to inhibit the Type I-C system. Of AcrlF2*'s 96
residues, 24% are acidic, giving it an overall negative charge (pl = 4.0), similar to many of
the Acr proteins identified here (Table 2). Despite the Cas proteins from Type I-C and I-F
having completely distinct sequences (Supplemental Figure 2B), this negative surface
charge could perhaps allow AcrlF2* to block both the I-C and I-F DNA recognition motifs.
We therefore conducted structure-guided®?® mutagenesis to attempt to determine
whether these two functions could be uncoupled. Eight AcrlF2* residues (D30, E36, D76,
E77, E82, E85, E91, E94) were predicted to form key salt bridges between AcrlF2* and
Type |-F Cas7/Cas8 (Figure 5A). These were sequentially and incrementally mutated to
alanine (starting with a single mutant, then double, and so on), but all of the plasmid-based
mutants we tested maintained Acr activity up to an 8xAla mutant (acrlF2*¥#?), while more
dramatic mutations (e.g. 8xLys and 8xGlu/Asp) lost function (Supplemental Figure 4).
When the 8xAla mutant was expressed from the endogenous phage acr locus, we
observed that mutagenesis unexpectedly inactivated the anti-Type |-C activity
preferentially when infecting PaLML1 (EOP < 10*), while activity against the I-F system
was only partially weakened (EOP = 0.02, Figure 5B and 5C). This differential inhibitory
activity demonstrates that the mutations impacted one surface-surface interaction more

than another, consistent with distinct AcrF2* binding interfaces.
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Figure 5: a. Color-coded structure of AcrlF2* bound to the Type I-F surveillance complex (PDB:
5UZ9). The Type I-F surveillance complex is shown as a lilac ribbon with Cas8 (blue), and one
Cas7 monomer (magenta), AcrlF2* (grey space-filling model), and mutated amino acids (red)
shown. AcrlF2* amino acid sequence shown with 8 key acidic residues (red) and all other acidic
residues shaded (orange). b. Plaque assays with the engineered mutant AcrlF2* phage tested in
PaLML1, with either a Type I-F or I-C system crRNA targeting the phage. c. Quantification of the
efficiency of plaquing (EOP) on PaLML1 for phages expressing the indicated acr gene. d. Plaque
assay with the engineered mutant AcrlF2* phage tested in PAO1'® or PA14. AcrllA4 is included as
a negative control.

Given the dual expression of both I-F and I-C complexes in the PaLML1 strain, we
considered whether the weakened activity against the Type I-C system manifests due to
weakened binding affinity for that complex coupled with the Acr protein being titrated away
by the Type I-F complex. Therefore, we also infected strains that encode just Type I-C
(PAO1'°) or Type I-F (PA14) with phages encoding WT or mutant acrlF2*¥#4_ This
revealed that failure of the mutant to inhibit Type I-C function was completely context-

dependent as it robustly inhibited the I-C system in PAO1'C, which expresses the PaLML1

Type I-C system (Figure 5D). We therefore conclude that while the 8xAla mutant is still
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capable of Type I-C inhibition, it exhibits a conditional defect in the presence of two
competing surveillance complex binding targets in the cell when it’s affinity for the Type I-
C system is lowered. These data demonstrate that the highly negative AcrlF2* may use
distinct interaction interfaces to enable the inhibition of both the Type I-C and Type I-F
CRISPR-Cas systems during infection.

Anti-CRISPRS that inhibit DNA cleavage by Cas3

Acr proteins that allow for DNA binding but still block phage DNA cleavage, like AcriC1
and AcrlC3 (Figure 3E), effectively turn the endogenous CRISPR-Cas machinery into a
catalytically dead, transcriptional repression (CRISPRi) system. Curiously, AcrlC3 can be
frequently found flanked by AcrlE1 and AcrlF3 in P. aeruginosa, the only other two Type |
anti-CRISPRs that enable CRISPRi?*?’. This reveals a remarkable “anti-Cas3 locus” for
all three Type | CRISPR systems in P. aeruginosa (Figure 6A). Conjugative transfer,
parA/B genes, and type IV secretion system genes are found flanking these acr genes.
When not found with other CRISPRi-enabling inhibitors, AcrlC3 is carried by phages,
along with AcrlC4, which is always paired with AcriC3.

In an effort to distinguish the inhibitory mechanisms for AcrlC1 and AcriC3, we
constructed a minimal Type |-C complex where the Cas3 C-terminus is tethered to the
Cas8 N-terminus with a 13 amino acid sequence (RSTNRAKGLEAVS), effectively
granting the surveillance complex nucleolytic activity (Figure 6B). This construct was
inspired by, and designed to mimic, naturally occurring variants of Type I-E systems in
Streptomyces griseus, which encode Cas3 and Cas8 as a single protein, with the same
short linker peptide in between?®. When the panel of Type I-C Acr-expressing phages
infected a strain expressing this minimal system, the fusion efficiently evaded the AcrlC3
protein, targeting this phage by ~1,000-fold, while all other acr phages, with the
exception of AcrIC6, replicated well (Figure 6B). AcrlC3’s binding site may be occluded

with the linker present, or the fusion bypasses a recruitment inhibition mechanism,
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rendering it an ineffective Acr. Not only does this demonstrate that AcrlIC1 and AcriC3
utilize distinct mechanisms, these data uncover a novel anti-anti-CRISPR strategy in

systems with naturally occurring fusions of Cas3 with Cas8.

a. b.
Pilus assembly
acrle1 proteins
acrlF3 parB parA —t—
acric3 P cpaF tadA
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pep‘t)i?iase acat Conjugative transfer protein
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Figure 6: a. Gene loci showing acr/C3. acrIC3 is found on various MGEs, and is often associated
with AcrlE1 and AcrlF3, which are Cas3 interacting proteins. b. Schematic of the Type I-C mutant
where the C-terminus of Cas3 is tethered to the N-terminus of Cas8, with a short linker peptide.
Spot titration plaque assay showing the plaquing efficiency of Acr-expressing DMS3m phages on
non-targeting (NT), or Type I-C expressing strains, either with Cas3-Cas8 tethered or Cas3 WT.

Discussion

In the perpetual battle between CRISPR-Cas immunity and genetic parasites, anti-
CRISPR proteins are encoded by myriad mobile genetic elements (MGE) to disable
CRISPR-Cas activity, allowing for the preservation of the invading element®. However, the
Type I-C system in P. aeruginosa is also mobile, found on a common genomic island
(pPKLC102) that can exist as either a conjugative island or as a plasmid®'82?°. Since mobile
elements (here, encoding CRISPR-Cas or anti-CRISPRs) can transfer antibiotic
resistance genes, virulence factors, immune systems, and other fitness-altering genetic

material to their host®®3!, this generates an interesting paradigm for CRISPR and anti-



282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

307

CRISPR interactions®. These mobile CRISPR-Cas systems can deliver immunity
horizontally, granting a recipient a library of spacers against other MGEs and the Cas
protein machinery. This does not seem to be a rare occurrence, as CRISPR-Cas systems

33 34

have been identified on plasmids®,* and phages®®>%

, most notably being used by V.
cholerae phage ICP1 to neutralize a mobile element with anti-phage activity?.

The Acrs described in this study were found encoded by diverse MGEs. AcrIC1,
AcrlC2, AcrIC5, AcrlC6*, and AcrlC7* were commonly associated with phage genes, while
AcrlC8* is within Tn3 family transposases (Supplemental Figure 3B and 3F). AcrIC3 and
AcrlC4 are commonly found together and are associated with D3- and JBD44-like
temperate siphophages. AcrlC3 is also common on conjugative elements, where it
frequently clusters with Cas3 inhibitors AcrlE1 and AcrlF3. The role of a “anti-Cas3 island”
in conjugative transfer from cell to cell is yet to be determined, but this phenomenon may
indicate that neutralizing the ssDNAse Cas3 is an effective means to ensure successful
conjugative transfer, which proceeds through a ssDNA intermediate.

Of the eight Type I-C anti-CRISPR proteins, all but one (AcrlC8*) had high acidic
amino acid content, and are therefore negatively charged at physiological pH (Table 2).
This has been a common theme among Acr proteins and inhibitors of other immune
systems, which utilize DNA mimicry to block bacterial immunity®’. Previous AcrlF2*
structural work has shown that it partially overlaps with the DNA binding site, thus being
considered a DNA mimic or at least a DNA competitor®®2®. Proteins that mimic DNA can
imitate the charge and bend of DNA, which could potentially allow flexibility in inhibiting
distinct systems. For example, the T7 phage encoded Ocr protein is highly acidic and
forms a dimer with a bend similar to B-DNA®*, Ocr was initially discovered as an effective
inhibitor of diverse Type | restriction enzyme systems and was more recently shown to
inhibit another anti-phage system, BREX*’. This suggests that DNA mimicry is a potent

and flexible anti-immune strategy. Importantly, systematic mutation of Ocr's acidic
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residues revealed it to be highly recalcitrant to breakage, similar to AcrlF2*, maintaining
inhibitory activity against Type | R-M even with up to 33% of acidic residues mutated®.
Similarly, Cas9 inhibitors AcrllA2 and AcrllA4 are highly acidic, have broad-spectrum
activity?®, and have been subjected to extensive mutagenesis, also appearing to have
dispensable acidic residues*'. Inhibitor gene over-expression can, however, obscure the
interpretation, which is why we placed the acr genes under endogenous phage control.

Despite extensive mutagenesis, AcrlF2* retained activity against the Type I-F
system and the Type I-C system when each system was expressed separately. While
there may be key interactions between an acidic anti-CRISPR and its cognate Cas protein,
excess acidic residues could help maintain bonds even when main interactions are
broken, and could even hold the key to inhibiting more than one system. Given the robust
inhibition of Type I-F in each experiment, charged contacts are perhaps not the main
means by which AcrlF2* interacts with the I-F surveillance complex. Hydrogen bonds
between AcrlF2* residues proximal to the PAM interacting residues of Cas8 could
influence inhibitor activity. If true, AcrlF2* could still be considered a “DNA mimic”, but with
different properties than previously suggested. When assayed in a strain expressing both
Type I-C and I-F, generating an in vivo competition experiment, the 8xAla mutant
preferentially lost anti-I-C activity. This suggests that weakened affinity for the Type I-C
complex, coupled with >1 unique binding site in the cell revealed a cost to dual-specificity
inhibition, at least for the mutant. This result does not conclusively prove that AcrlF2* uses
distinct surfaces to disable the Type I-F and Type I-C systems, however, we suspect that
this may be the case and await structural analysis of the Type I-C complex and AcrlC
proteins.

The role of Acr proteins in the dissemination and maintenance of MGEs in bacterial
genomes is just beginning to be explored*?. Acr proteins facilitate the maintenance of

4,20,43

prophages in a genome encoding a spacer against that phage , which can help
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CRISPR-Cas be maintained by preventing self-targeting**, and even weak Acr proteins
can overcome kinetic limitations by working cooperatively*>#¢. The presence of an Acr in
a bacterial genome could also confer protection against a CRISPR-Cas system on a
mobile element, such as the one encoded by Vibrio cholerae phage ICP1?, mobile

7,33

CRISPR-Cas systems on plasmids’~~, or islands like pKLC102, where we find the Type I-
C system explored in our study. Multi-system inhibition may be a common strategy
exploited by MGEs, since bacteria are not limited to only one CRISPR-Cas subtype. Such
a tactic conserves genetic real estate, and acts as insurance against the threat of assorted

immune systems. Our work underscores the importance of studying CRISPR-Cas vs. Acr

mechanisms in vivo, and of exploring Acr diversity and mechanisms.
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Table 1: List of 27 candidates tested, with positive hits highlighted.

Candidate

Number Accession Anti-CRISPR identity aca association
1 KSR23770.1 AcrlC3 acat
2 KS029066.1 N/A acat
3 KSL61975.1 N/A acat
4 SDK41378.1 AcrlC5 acat
5 CD085538.1 AcrlC4 acat
6 WP _085056855.1 | N/A acat
7 WP _047296680.1 | N/A acat
8 WP _092238848.1 | N/A acat
9 WP _044274829.1 | N/A acat
10 WP _071574229.1 | N/A acat
11 WP _023657539.1 | N/A acat
12 ABR13386.1 N/A aca4
13 ABR13387.1 N/A aca4
14 SDJ61905.1 N/A aca4
15 OPE29935.1 N/A aca4
16 OPD90261.1 N/A aca4
17 WP _060613673.1 | N/A aca4
18 WP _080050315.1  |AcrlC6* aca4
19 EWC40192.1 AcrlC7* aca4
20 GCA55691.1 N/A aca4
21 WP _101192668.1  |AcrlE9 aca4
22 WP _101192667.1 | N/A aca4
23 WP _101192666.1 | N/A aca4
24 WP _045884682.1 | N/A aca4
25 WP _045884679.1 | N/A aca4
26 WP _074202337.1  |AcrlC8* aca4
27 WP _074202338.1 | N/A aca4

*Multi-subtype Acr proteins.
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Table 2: Proteins identified and characterized in this study.

CRISPRI aca

Acr Size (a.a.)|pl phenotype |association |CRISPR-Cas inhibition [Accession

AcriC1 190 4.17 |Uninhibited |aca1 Type I-C WP_046701304.1
AcrlF2*(IC2) |96 4.02 [Inhibited acafl Type I-C / Type I-F WP 015972868.1
AcriC3 100 4.71 |Uninhibited |aca1 Type I-C WP 058130594.1
AcriC4 57 4.22 |Inhibited acaf Type I-C WP 153575361.1
AcrlC5 60 4.08 |Inhibited acaf Type I-C WP 089394111.1
AcrlC6* 144 4.73 |Uninhibited |aca4/aca10 |Type |I-C/ Type I-E WP 080050315.1
AcrlC7sw* 94 3.85 |Inhibited aca4/aca10 [Type|-C/ Type I-E WP 003294373.1
AcriC8* 80 8.01 |Inhibited aca4 Type |I-C / Type I-E WP 074202337.1
AcrlE9 75 8.59 [Inhibited aca4 Type I-E WP_101192668.1
aca10 65 8.38 [N/A N/A N/A WP 074980464.1

AcrlF2*(IC2) - AcrlF2 is also the second Type I-C Acr identified, referred to as AcrlF2* throughout
a.a. —amino acids
* —indicates dual subtype inhibition.
pl — Average isoelectric point.
CRISPRIi — CRISPR interference transcriptional repression assay.
aca — anti-CRISPR associated gene
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Supplemental Figure 1. Full CRISPR array lineage mapping of the 28 unique CRISPR arrays from 42
genomes. Each lineage contains CRISPR arrays that share at least one spacer. Spacers with the same
DNA sequence are given the same number. Spacer #44 is a self-targeting spacer. Spacers in CRISPR
arrays in lineage 3 that are highlighted in blue are meant to facilitate comparisons between related arrays
within that lineage.
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a. ST spacer

UUGC??%?%G?@CAGGGCUUGAACUGGCIlIJCIlIJG

3’ TGAACAAGAACGCCGGCAGCTCGTCCCGAACTTGACCGAGACCATCGTCG 5’ AZPtAE14708
rotospacer
5’ ACTTGTLCTTGCGGCCGTCGAGCAGGGCTTGAACTGGCTCTGGTAGCAGC 3’ P (tagFZJ)
PAM
b.
Coverage: 19% No significant similarity between Type I-C
Identity: 32% and Type I-F surveillance complex proteins
Type I-C cas3
Coverage: 58%
Identity: 26%
Type I-E cas3 cas6b
c d Anti- CRISPR
: s @@ proteins (Endogenous
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Phage Type I-C CRISPR-Cas é repo
AcriC8 ° < . .350 lw 00000 RNAP I
Targeted ¢oees se0es seee s Promoter
Type |-F CRISPR-Cas d
AcriCs [ 00 ¢ 0000 0eeon . ﬁ
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Emply  PACrIC2r,,  pACrICZ, ACRISPRCas CRISPRIi ~ : CRISPRi *+
Gene expressed (high pyocyanin, green) (low pyocyanin, yellow)

Supplemental Figure 2. a. Alignment of self-targeting spacer #1 from AZPAE 14708 with corresponding
protospacer. PAM is underlined in red. b. Comparison of Type I-F and Type I-E Cas protein sequences
to Type I-C Cas protein sequences. c. Plaque assay testing the activities of two AcrlF2 homologues
identified in Pseudoxanthomonas and Stenofrophomonas genomes. Homologues were expressed from
a plasmid in either a strain encoding the Type I-C system (PAO1'®, induced with 1mM IPTG) or the Type
I-F system (PA14). A phage encoding a Type I-C Acr (AcrlC8) was used as a positive control, and a
phage encoding AcrllA4 (a Cas9 inhibitor) was used as the targeted phage. d. Schematic of the
CRISPRI assay used to screen Acr activity. A crRNA is designed to bind upstream of phzM, a gene
whose expression results in green pigmented P. aeruginosa cultures. Acrs that inhibit the surveillance
complex from binding target DNA result in a CRISPRi phenotype. Acrs that bind Cas3 or do not block
DNA binding result in a CRISPRi* phenotype.
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Supplemental Figure 3. a. Protein percent identity comparison of the E. lenta Type I-C CRISPR-Cas
system to the P. aeurginosa Type I-C CRISPR-Cas system. b. Loci showing typical genetic context of
acrIC7 in three Pseudomonas species. Genome accession code in parentheses. ¢, d, e. Plaque assays
of two AcrIC2 and two AcrlC7 homologues expressed from a plasmid in PAO1', PA14, or PA4386. Acr
activity was assessed by spotting a CRISPR-Cas sensitive phage (DMS3m expressing AcrllA4) and an
untargeted control (DMS3m expressing AcrlC8). f. Loci showing typical genetic context of acr/C8.
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Supplemental Figure 4. Plaque assays testing the activity of AcrlF2* mutants. A I-F strain (PA14) or I-
C strain (PAO1'C) were transformed with plasmids encoding the mutants indicated under each panel. A
CRISPR-Cas sensitive phage (DMS3m-AcrllA4) was used to determine the activity of the AcrlF2*

mutants.
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Materials and Methods

Microbes

Cell culturing

Pseudomonas aeruginosa strains (PAO1, PA14 and PA4386) and Escherichia
coli strains (DH5a) were cultured using lysogeny broth (LB) agar or liquid media
at 37 °C supplemented with gentamicin, where applicable, to maintain
pHERD3O0T (50 pg/mL for P. aeruginosa, 30 ug/mL for E. coli). In all P.
aeruginosa experiments, expression of genes of interest in pHERD30T was
induced using 0.1% arabinose.

Type I-C CRISPR-Cas expression in PAO1

PAO1'C activity was induced using 1mM IPTG. Construction of this strain is
described in (7) and may be referred to as LL77 (Targeting crRNA) or LL76 (Non
targeting).

Bacterial transformations

P. aeruginosa transformations were performed using standard electroporation
protocols (7). Briefly, overnight cultures were washed twice in an equal volume of
10% glycerol and the washed pellet was concentrated tenfold in 10% glycerol.
These electrocompetent cells were transformed with 20 — 200 ng plasmid,
incubated shaking in LB for 1 hr at 37 °C, plated on LB agar with appropriate
selection, and incubated overnight at 37 °C. Bacterial transformations for cloning
were performed using E. coli DH5a (NEB) according to the manufacturer’'s
instructions

CRISPRI

CRISPR interference transcriptional repression assays were conducted as in
previous work (5). A crRNA targeting the phzM promoter was introduced into a
Acas3 strain. The crRNA and cas genes (in the case of Type I-C) were induced in
overnight cultures and pyocyanin levels measured with an acid extraction
described previously (5).

Phages

Phage maintenance

Pseudomonas aeruginosa DMS3m-like phages (including JBD30 and DMS3m
engineered phages) were amplified on PA14 ACRISPR, PAO1, or PA4386 Acas3
and stored in SM buffer at 4 °C.

Construction of recombinant DMS3m acr phages
To generate the isogenic panel of DMS3m and JBD30 anti-CRISPR phages,
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recombination cassettes were generated with up- and down-stream overhangs to
aca1 and the acr promoter flanking the Acr of interest, as previously described
(6). These genes were ordered from TWIST or IDT and were assembled into
plasmids using Gibson assembly methods. Recombinant phages were generated
by infecting cells transformed with the donor constructs and phages were isolated
and assessed for resistance to CRISPR-Cas targeting. The presence of the anti-
CRISPR gene was confirmed by PCR. Plaque forming unit quantification

Phage plaque forming units (PFU) were quantified by mixing 10 ul of phage with
150 pl of an overnight bacterial culture. The infected cells were aliquoted into 3
mL molten 0.7 % top agar and spread on an LB agar plate supplemented with 10
mM MgSO4 and appropriate inducers. After 18 hours of growth at 30 °C or 37

°C, individual plaques were counted. Three biological replicates were done per
phage per strain.

Phage spot assays

3 mL of molten 0.7 % top agar mixed with 150 ul of bacteria were spread on an
LB agar plate supplemented with 10 mM MgSO4 to grow a bacterial lawn. Ten-
fold serial dilutions of phage were made in SM buffer and 2 ul of each dilution
was spotted on the lawn. Plates were incubated at 30 °C or 37 °C for 16 hours
and imaged.

Efficiency of plaquing (EOP)

EOP was calculated as the ratio of the number of plaque forming units (PFUs)
that formed on a targeting strain of bacteria (PAO1'C, PA14 WT, PA4386 WT,
PaLML1 plus crRNA plasmid) divided by the number of PFUs that formed on a
related non-targeting strain (PAO1, PA14 ACRISPR, PA4386 ACRISPR, PaLMLA1
plus NT crRNA). Each PFU measurement was performed in biological triplicate.
EOP data are displayed as the mean EOP + standard deviation.

Escaper phage isolation

High titer phage preparations were mixed with overnight cultures and spread on
an agar plate with top agar. Single plaques that formed after overnight
propagation were picked with a sterile pipette tip and resuspended in SM buffer.
This process was repeated two times under maintained targeting pressure. The
escaper phages were ultimately tittered and the protospacer region sequenced.

Bioinformatics
Numerical data were analyzed in Excel and plotted in GraphPad Prism 6.0.

Discovery of acr genes using aca1 and aca4
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Anti-CRISPR searches were done as previously described (1)

CRISPR array spacer analysis

Spacers were derived from the van Belkum dataset (2) (18 genomes with 12 non
redundant arrays) or from Type I-C containing strains found using BLAST and
CRISPRfinder (3)(12 non-redundant arrays). Spacers were analyzed using
CRISPRTarget (4) using the Genbank-environmental, RefSeqg-plasmid, IMG/VR,
and PHAST databases.

PAM analysis was done using the Berkeley Web Logo tool by submitting the
upstream and downstream regions flanking the protospacer sequence. These 8
nucleotide long flanking sequences are part of the CRISPRTarget output. Every
matching protospacer (low cutoff of 20, no redundant matches removed) was
utilized for the PAM analysis for n=4,443.

To determine the types of elements targeted by the spacers in our collection, the
cut-off score was increased to 30 and a PAM match score of +5 was used to
narrow the total number of hits to matching elements. If a spacer had multiple
matches, the match with the highest score was selected as the representative for
that spacer. Only one match was considered per spacer. This reduced the
number of spacers to 163.

Matches were placed into the following categories: Myophages, Siphophages,
Podophages, plasmids, and assorted prophages. A hit was placed into a phage
family, rather than into the prophage category, if the CRISPRTarget output
included a link to a specific phage genome. Importantly, this means that being
placed into a phage family does not mean that a phage is strictly lytic. Prophages
were identified by considering the genes in the protospacer neighborhood.

Lineages were manually curated using the 18 strains found in (2).
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