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Abstract

The integration of single cell transcriptome and chromatin accessibility datasets enables a deeper
understanding of cell heterogeneity. We performed single nucleus ATAC (snATAC-seq) and RNA
(snRNA-seq) sequencing to generate paired, cell-type-specific chromatin accessibility and transcriptional
profiles of the adult human kidney. We demonstrate that sSnATAC-seq is comparable to shRNA-seq in the
assignment of cell identity and can further refine our understanding of functional heterogeneity in the
nephron. The majority of differentially accessible chromatin regions are localized to promoters and a
significant proportion are closely-associated with differentially expressed genes. Cell-type-specific
enrichment of transcription factor binding motifs implicates the activation of NFkB that promotes
VCAML1 expression and drives transition between a subpopulation of proximal tubule epithelial cells.
These datasets can be visualized at this resource: http://humphreyslab.com/SingleCell/. Our multi-omics
approach improves the ability to detect unique cell states within the kidney and redefines cellular
heterogeneity in the proximal tubule and thick ascending limb.
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Introduction

Single cell RNA sequencing (scRNA-seq) has fostered a greater understanding of the genes and pathways
that define cell identity in the kidney®. Multiple sScRNA-seq atlases of mature human?™ and mouse kidney
87 have established how transcription contributes to cell type specificity. Recent methods have expanded
this approach to single cell profiling of chromatin accessibility *°. Single cell assay for transposase-
accessible chromatin using sequencing (scATAC-seq) is an extension of bulk ATAC-seq™ that employs
hyperactive Tn5 transposase to measure chromatin accessibility in thousands of individual cells’. Joint
profiling by scRNA-seq and scATAC-seq in the adult mouse kidney has provided a framework for
understanding how chromatin accessibility regulates transcription®, however, the single-cell epigenomic
landscape of the human kidney has not been described.

Integration and analysis of multimodal single cell datasetsis an emerging field with enormous potential
for accelerating our understanding of kidney disease and devel opment™**3, Bioinformatics tools can
extract unique information from scATAC-seq datasets that is otherwise unavailable by scRNA-seq.
Prediction of cell-type-specific cis-regulatory DNA interactions™ and transcription factor activity™ are
two methods that complement the transcriptional information obtained by scRNA-seq. Long-range
chromatin-chromatin interactions play an important role in transcriptional regulation and are influenced
by transcription factor binding™®"’. Chromatin accessibility profiling will help to identify distant
regulatory regions that influence transcription vialong-range interactions.

Thekidney is composed of diverse cell types with distinct subpopulations and single cell sequencing can
dissect cellular heterogeneity at high resolution®. For example, asmall subset of cells within the proximal
tubule and Bowman's capsul e express vimentin, CD24, and CD133'%*°, These cells have a distinct
morphology and expression profile and undergo expansion after acute kidney injury™. Furthermore, they
have reported potential for tubular and podocyte regeneration *>* and have been implicated in the
development of renal cell carcinoma . However, the sparsity of these cells has hampered further
characterization. Another example of cellular heterogeneity is seen in the thick ascending limb (TAL).
Studies in mouse and human suggest that there are structural and functional differences between
medullary and cortical TAL, however, the signaling pathways that drive these differences are not well
defined ».

Chromatin accessibility is a dynamic process that drives nephron development®. Nephron progenitors
have distinct chromatin accessibility profiles that change as they differentiate'®®. The role of chromatin
accessibility in promotion or inhibition of kidney repair and regeneration has important implications for
designing therapies for acute and chronic kidney disease” and may help to improve directed
differentiation of kidney organoids®.

We have performed single nucleus ATAC (snATAC-seq) and RNA (snRNA-seq) sequencing to examine
how chromatin accessibility can refine our understanding of cell state and function in the mature human
kidney. We generated an interactive multimodal atlas encompassing both transcriptomic and epigenomic
data (http://humphreyslab.com/SingleCell/). Combined snRNA-seq and snATAC-seq analysisimproved
our ability to detect unique cell states within the proximal tubule and thick ascending limb and redefines
cellular heterogeneity that may contribute to kidney regeneration and segment-specific cation
permeability.
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Results
Single cell transcriptional and chromatin accessibility profiling in the adult human kidney

snRNA-seq and snATAC-seq was performed on 5 healthy adult kidney samples (Fig. 1a). Selected
patients ranged in age from 50 to 62 years and included men (N=3) and women (N=2). All patients had
preserved kidney function (mean sCr = 1.07 mg/dl, eGFR = 64.4 +/- 4.7 ml/min/1.73m?). Histol ogic
review showed no significant glomerulosclerosis or interstitial fibrosis and tubular atrophy
(Supplementary Table 1). We performed snRNA-seq to determine the cellular composition of our
samples, annotate cells based on their transcriptional profiles, and inform our snATAC-seq analysis (Fig.
1a). snRNA-seq identified all major cell types within the kidney cortex (Fig. 1b, Supplementary Fig. 1a)
based on expression of lineage-specific markers (Fig. 1c, Supplementary Fig. 1b) %°. We detected
proximal tubule (PT), parietal epithelial cells (PEC), loop of Henle (TAL), distal tubule (DCT1, DCT2),
connecting tubule (CNT), callecting duct (PC, ICA, ICB), endothelia cells (ENDO), glomerular cell
types (MES, PODO), fibraoblasts (FIB), and a small population of leukocytes (LEUK) (Supplementary
Table 2, Supplementary Data 1). Notably, there was a subpopulation of proximal tubule that had
increased expression of VCAML1 (PT_VCAM1). This subpopulation also expressed HAVCRL (kidney
injury molecule-1), which is a biomarker for acute kidney injury and predictor of long-term rena
outcomes™3,

Integration of single nucleusRNA and ATAC datasetsfor prediction and validation of ATAC cell
type assignments

sNATAC-seq captures the chromatin accessibility profile of individual cells’. Relatively less is known
about cell-type-specific chromatin accessibility profiles; so we leveraged our annotated SnRNA-seq
dataset to predict snATAC-seq cell types with label transfer'®. Label transfer was performed by creating a
gene activity matrix from the snATAC-seq data, which is a measure of chromatin accessibility within the
gene body and promoter of protein-coding genes. Transfer anchors were identified between the
‘reference’ snRNA-seq dataset and ‘ query’ gene activity matrix followed by assignment of predicted cell
types. The distribution of snATAC-seq prediction scores showed that the vast majority of cells had a high
prediction score and were confidently assigned to asingle cell type (Supplementary Fig. 2). The
SnATAC-seq dataset was filtered using a 97% confidence threshold for cell type assignment to remove
heterotypic doublets. Comparison between snATAC-seq cell type predictions obtained by label transfer
(Fig. 1d) and curated annotations of unsupervised clusters (Fig. 1e, f, Supplementary Fig. 1c, d and
Supplementary Table 3) indicates that all major cell types were present in both datasets and that snATAC-
seg is comparable to snRNA-seq in the detection and assignment of cell identities (Supplementary Fig. 3).
We performed downstream analyses with gene-activity-based cell type assignments, which were obtained
by unsupervised clustering of the snATAC-seq dataset. Interestingly, snATAC-seq was abl e to detect two
subpopul ations within the proximal tubule cluster, which likely represent the proximal convoluted tubule
(Fig. 1e, PCT) and the proximal straight tubule (Fig. 1e, PST). PCT showed greater chromatin
accessibility in S.C5A2, which encodes sodium glucose cotransporter 2 (SGLT2); whereas PST showed
greater accessibility in SLC5A1 (Fig. 1f, Supplementary Fig. 4). SGLT2 reabsorbs glucose in the S1 and
S2 segments of the proximal tubule and SGLT1 (SLC5A1) is located in S3*. The delineation between
S1/S2 and S3 was less clear in the sSnRNA-seq dataset (Supplementary Fig. 4), which suggests that
SnATAC-seq provides complementary information that may refine cell type assignment; particularly for
genestranscribed at low levels or genes that are not detected by snRNA-seq. The chromatin accessibility
profile of S1/S2 may be of clinical interest in determining the factors that drive glucose reabsorption,
which is the therapeutic target of SGLT2 inhibitors®. Together, our multimodal snATAC-seq and
snRNA-seq analysisimproved our ability to dissect cellular heterogeneity.
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Chromatin accessibility defines cell type

We detected 214,890 accessible chromatin regions among 27,034 cellsin the snATAC-seq library. We
compared these regions to a previously-published dataset of DNase |-hypersensitive sites (DHS) in bulk
glomeruli and tubulointerstitium®, DNase hypersensitivity is an alternative measure of chromatin
accessibility and approximately 50% of all regions identified by our pipeline were overlapping with a
DHS in the glomerulus or tubulointerstitium. The proportion of overlapping regionsincreased to ~85%
when our dataset was filtered for regions contained in at least 10% of nuclel (Supplementary Fig. 5).
These data suggest that snATAC-seq is a robust method for the detection of accessible chromatin in the
adult kidney.

We used the R package Signac™ to investigate differencesin chromatin accessibility between cell types.
Cdll types can be distinguished based on whether differentially accessible chromatin regions (DAR) are
‘open’ or ‘closed’ (Fig. 2a, Supplementary Data 2). Approximately 20% (mean proportion=0.203 +/-
0.04) of DAR were closely-associated with differentially expressed genesin their respective cell types
(Supplementary Table 4). For example, LRP2 is alineage-specific gene expressed in the proximal tubule
and a coverage plot in this region shows an increase in number and amplitude of ATAC peakswithin its
promoter and gene body (Fig. 2a). In fact, the mgjority of DAR were located in a promoter region within
3kb of the nearest transcriptional start site (Fig. 2b, Supplementary Fig. 6). The second most common
location was intronic and the distribution of DAR was relatively conserved across cell types (Fig. 2c). A
minority of cell-type-specific differentially expressed genes were closely-associated with aDAR (mean
proportion=0.358 +/- 0.07), which raises the question of assigning function to DAR that are not |ocated
near differentially expressed genes. Regulatory regions can associate vialong-range interactions and a
DAR does not necessarily regulate the closest gene®. Bioinformatics tools can infer regulatory chromatin
interactions and may be useful for assigning function to DAR™. Long-range interactions mediate the
association between enhancers and promoters via chromatin looping and are regulated in part by
transcription factors'®.

Chromatin accessibility is associated with cell-type-specific transcription factor activity and
chromatin interaction networ ks

Transcription factors are key determinants of cell fate that drive cellular differentiation in kidney ageing
and development®~’. Transcription factor ‘activity’ can be predicted for individual cell types based on
the presence of binding motifs within differentially accessible chromatin regions (DAR). We used
chromVAR®™ to infer transcription-factor-associated chromatin accessibility in our snATAC-seq dataset.
We observed that individual cell types can be defined by transcription factor ‘activity’ (Fig. 3a,
Supplementary Data 3), suggesting that cell-type-specific transcription factors likely regulate chromatin
accessibility. For example, HNF4A encodes a key transcription factor that drives proximal tubule
differentiation®. chromV AR detected an enrichment of HNF4A binding motifs within DAR in the
proximal tubule (Fig. 3b, motif activity) that was supported by increased chromatin accessibility in
HNF4A (Fig. 3b, gene activity) and increased HNF4A transcription in the snRNA-seq dataset (Fig. 3b,
gene expression). A similar pattern was seen for TFAP2B, which regulates development in the distal
nephron®. There was increased TFAP2B transcription factor ‘activity’ in the thick ascending limb and
distal convoluted tubule (Fig. 3b, motif activity), in addition to increased chromatin accessibility in
TFAP2B (Fig. 3b, gene activity) and increased TFAP2B transcription (Fig. 3b, gene expression).
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We used the R package Cicero™ to predict cis-regulatory chromatin interactions for individual cell types.
Cis-coaccessibility networks (CCAN) are families of chromatin-chromatin interactions that regulate gene
expression by approximating enhancers and promoters. Within HNF4A, we observed arobust CCAN in
the proximal convoluted tubule with multiple connections (red or blue arcs) between differentially
accessible regions (Fig. 3c, red boxes) in the promoter, gene body, and distal 3' region (Fig. 3c). We
compared these interactions with the GeneHancer database™ to determine which connections had been
previously-reported in the literature. GeneHancer is a collection of human enhancers and their inferred
target genes created using 4 methods: promoter capture Hi-C, enhancer-targeted transcription factors,
expression quantitative trait loci, and tissue co-expression correlation between genes and enhancer RNA.
The subset of GeneHancer interactions with *double elite’ status is the most stringent set of interactionsin
the database™ and the majority of predicted Cicero interactions within 50kb of a cell-type-specific
differentially accessible region (DAR) were overlapping with ‘double elite’ GeneHancer interactions (Fig.
3c, blue arcs). The proportion of Cicero connections present in the ‘double elite’ GeneHancer database
was dependent on the Cicero coaccessibility score, which isa measure of increased confidence of the
predicted interaction (Supplementary Fig. 7). The Cicero connections with alower coaccessibility score
(threshold=0.1, mean proportion in GeneHancer=0.68) were less likely (p < 0.0001, Paired t-test) to bein
the GeneHancer ‘double elite’ database compared to Cicero connections with a higher coaccessibility
score (threshold=0.5, mean proportion in GeneHancer=0.75). Within the proximal convoluted tubule, the
majority of Cicero connections were either within a promoter region or between a promoter and another
location (Fig. 3d) and this distribution was similar in other cell types (Supplementary Fig. 8). In
summary, Cicero isarobust method for predicting chromatin-chromatin interactions that may play arole
in the regulation of cell-type-specific chromatin accessibility.

M ulti-modal analysis highlights cellular heter ogeneity in thethick ascending limb

The thick ascending limb regulates extracellular fluid volume, urinary concentration, and calcium and
magnesium homeostasisin the outer medulla and cortex*!. The majority of bivalent cations are reabsorbed
in the cortical segment and are regulated by expression of claudins®. Claudins are afamily of tight
junction proteins that confer segment-specific cation permeability and regulate the reabsorption of Nat,
K+, Cl-, Mg++ and Cat++*, Claudin-10 expression is enriched in the medullary TAL, whereas claudin-16
is expressed predominantly in the cortical TAL*. Pathogenic germline variantsin CLDN16 are causative
of familial hypomagnesemia, hypercalciuria and nephrocal cinosis, which can lead to end-stage renal
disease™ . Interestingly, Cldn10 deletion causes hypermagnesemiain mice*, and even rescues Cldn16-
deficient mice from hypomagnesemia and hypercalciuria®. These dataindicate that CLDN10 and
CLDN16 may confer opposing segment-specific tight junction cation selectivity. To determineif we
could detect subpopulations of cells with variable claudin expression patterns, we performed
unsupervised clustering on the thick ascending limb in our sSnRNA-seq dataset (Supplementary Fig. 9a) to
identify 3 groups of cells. There was a group of cells (SLC12A1+UMOD+) that expressed cortical TAL
markers (CLDN16, KCNJ10 and PTH1R) and a second group that expressed the medullary TAL marker,
CLDN10 (Supplementary Fig. 9b). The third group of cells was identified as ascending thin limb (ATL)
based on expression of previously-published markers’.

We analyzed the thick ascending limb cluster in the snATAC-seq dataset and identified 3 groups of cells
that echoed our findings in the snRNA-seq dataset (Supplementary Fig. 9¢,d). Our findings suggest that
TAL subpopulations can be defined by either transcription or chromatin accessibility profiles. We
identified differential transcription factor ‘activity’ for HNF1B and ESRRB that defined cortical and
medullary subpopulations (Supplementary Fig. 9e). Furthermore, HNF1B and ESRRB transcription factor
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motifs were enriched in the differentially accessible chromatin regions (DAR) that distinguish between
cortical and medullary thick ascending limb popul ations (Supplementary Fig. 9f). ESRRB is an orphan
nuclear receptor with acritical rolein early development and pluripotency*®*® and HNF1B isa
homeodomain-containing transcription factor that regulates nephrogenesis. Pathogenic germline HNF1B
variants are a known cause of autosomal dominant tubulointerstitial kidney disease with hypomagnesemia
and hypercalciuria®. Interestingly, genetic deletion of Hnflb in mouse kidney was found to increase
Cldn10 expression®, suggesting that HNF1B may be involved in the regulation of CLDN10. Collectively,
our multimodal analysis demonstrates heterogeneity within the TAL at a transcriptomic and chromatin
accessibility level and highlights transcription factors that likely contribute to these differences.

NF-kB regulatesthe molecular signature of a subpopulation of proximal tubule that expresses
VCAM1

We detected a subset of proximal tubule cells that had increased expression and chromatin accessibility of
VCAML1, which we designated PT_VCAM1 (Fig. 1). Immunofluorescence studies demonstrated VCAM1
expression in a scattered distribution amongst proximal tubule epithelium (Fig. 4a). Our single cell
studies estimate that PT_VCAM 1 represents ~2% of total cells and 6% of proximal tubular epithelium.
Despite the fact that kidney samples originated from patients without kidney injury, the PT_VCAM1
popul ation showed increased expression of kidney injury molecule-1 (HAVCRL, KIM1), whichisa
biomarker that is increased in acute kidney injury® and chronic kidney disease™. Interestingly,
PT_VCAM1 aso expressed VIM (vimentin), CD24, and CD133 (PROM1) (Supplementary Fig. 10),
which is consistent with a previously-described population of cells with progenitor-like featuresin the
proximal tubule'®?°. These findings suggest that the PT_VCAM1 cluster may represent an injured or

regenerative subpopulation.

We compared the transcriptional profile of PT_VCAM1 to the remaining proximal tubule to identify
differentially expressed genes (Supplementary Data4). Gene ontology enrichment analysis of the
differentially expressed genes showed an enrichment for pathways involved in metabolism, cell
migration, angiogenesis, proliferation, and apoptosis. In particular, there was enrichment for genes that
control branching morphogenesis of epithelial tubes and the MAPK and Wnt signaling pathways
(Supplementary Data 5). These results suggest that the signaling pathways in this subpopulation are
distinct from the remaining proximal tubule.

We performed pseudotemporal ordering with Monocle™ to determine which genes drive the transition
from healthy proximal tubule to the PT_VCAM1 state (Fig. 4b). We identified VCAM1 and TPML1 as
genes that show increased expression in PT_VCAM1 cells and SLC5A12 and SLC5A4 as genes that show
decreased expression (Fig. 4b). VCAM1 is a key mediator of angiogenesis™ and TPM1 encodes
tropomyosin 1, which is an actin-binding protein involved in the cytoskeletal contraction™. In contrast,
SLC5A12 and SLC4A4 encode a lactate and bicarbonate transporter. SLC5A12 and SLC5A4 are
abundantly-expressed in the proximal tubule and VCAM1 and TPM1 can be detected in a subset of cells.
We constructed a complementary pseudotemporal trajectory with Cicero (13) to examine changesin
chromatin accessibility during the transition from PT to PT_VCAML. Increased transcription of VCAM1
and TPM1 (Fig. 4b) was associated with increased chromatin accessibility within the VCAM1 gene body
and promoter region (Fig. 4c,d). Similarly, decreased transcription of S.C5A12 and SLC4A4 (Fig. 4b)
was associated with decreased chromatin accessibility (Fig. 4d, Supplementary Fig. 11). We identified
transcription factors that likely regulate the transition between proximal tubule and PT_VCAM1 by

ng chromV AR transcription factor activities. Interestingly, the proximal tubule showed robust
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activity of HNF4A, which was decreased in the PT_VCAM1 cluster and coincided with increased activity
of REL and RELA (Fig. 4e). NF-«xB is afamily of inducible transcription factors that share homology in
the Rel domain® that has been implicated in the inflammatory response in renal disease®®. In particular,
ischemia-reperfusion injury-induced acute kidney injury activates NF-xB and NF-xB inhibition improves
renal function®. Consistent with this finding, gene set enrichment analysis™®" of the differentially
expressed genesin PT_VCAM1 compared to PT implicated NF-xB signaling (Supplementary Fig. 12).
The TNF family of cytokines are well-established activators of NF-«xB 2. To further validate these
insights, we used TNFu to induce NF-«xB in an in vitro model of the proximal tubule (RPTEC). TNFa
stimulation increased expression of VCAM1 and TPM1 and decreased expression of SLC5A12 and
SLC4A4 (Fig. 4f). These observations suggest that NF-xB induction may play arole in the transition from
proximal tubuleto the PT_VCAM1 cell state.

The proportion of PT_VCAM1liseevated in acute kidney injury and chronic kidney disease

We performed deconvolution of bulk RNA-seq obtained from mouse IRI to determine if the proportion of
PT_VCAM1 isrelated to acute kidney injury. BisqueRNA estimates cell type abundance from bulk RNA-
seq using a sScRNA-seq reference-based deconvolution ®. The estimated proportion of PT_VCAM1
significantly increased 24 hours post-IRI and persisted for at |east 7 days; corresponding with a decrease
in the proportion of normal PT (Fig. 5a). Interestingly, the estimated proportion of PT_VCAM1 in the no
surgery control mouse kidneysincreased in older mice (Fig. 5b) and was accompanied by an increasein
leukocytes. These results suggest arole for aging-related chronic inflammation and acute kidney injury in
the appearance of PT_VCAM1. To further characterize the role of PT_VCAM1 in acute kidney injury,
we used a snRNA-seq mouse IRI* dataset to predict the corresponding cell type for PT_VCAM1 in the
injured mouse kidney. Label transfer of cell type annotations from mouse IRI to human indicates that the
majority of PT_VCAM1 are related to the failed repair population in the mouse (Failed-repair PT) (Fig.
5¢).

We retrieved bulk RNA-seq datasets of healthy and injured human kidneys to estimate the proportion of
PT_VCAM1%. Weidentified 72 non-tumor kidney samplesin The Cancer Genome Atlas (TCGA) using
the GDC dataportal. The TCGA patients had a mean age of 62.5 years (SD=11.9y) and had undergone
nephrectomy for renal cell carcinoma. Deconvolution of the non-tumor kidney samples with
BisqueRNA®® estimated that the proportion of PT_VCAM1 cells was 2.6% (Fig. 5d), which is consistent
with our snRNA-seq and snATAC-seq estimates. Next, we analyzed bulk RNA-seq from kidney biopsies
of patients with type 2 diabetes™. The patients with advanced diabetic nephropathy had a significantly
higher proportion of PT_VCAM1 compared to control or early diabetic nephropathy patients (Fig. 5€),
suggesting that PT_VCAM1 may be related to disease progression in diabetic nephropathy.

Discussion

We performed snRNA-seq and snATAC-seq sequencing in parallel to describe the transcriptional and
chromatin accessibility landscape of the adult human kidney. Our analysis demonstrates that sShRNA-seq
and snATAC-seg are comparable methods for determining cell identity and cell-type-specific chromatin
accessibility provides additional information that further elucidates cellular heterogeneity. Multimodal
single cell profiling (“ multi-omics”)™ has greatly improved our ability to detect unique cell types and
states while introducing a host of bioinformatics challenges and opportunities™. In this study, we outline
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our integration approach to analyzing paired snRNA-seq and snATAC-seq datasets to highlight functional
heterogeneity in the proximal tubule and thick ascending limb.

Studies in mouse and human suggest that there are structural and functional differences between
medullary and cortical TAL driven by regional expression patterns of claudins . Claudin-10 and
claudin-16 regulate paracellular reabsorption of calcium and magnesium in the thick ascending limb.
Mice lacking Cldn16 develop hypercal ciuria and hypomagnesemia, which is similar to the phenotype of
patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) that carry
pathogenic variants in CLDN16. In contrast, targeted deletion of Cldn10 in the thick ascending limb
resultsin impaired paracellular sodium permesability and hypermagnesemia®. Interestingly, Cldn10
deletion can partially rescue the phenotype of Cldn16-deficient mice (double knockout)*. These data
suggest that Cldn10 and Cldn16 have opposing effects on cation reabsorption in the thick ascending limb
and are supported by the observation that Cldn10 and Cldn16 are expressed in a mosaic pattern in mice®.
We observed two distinct subpopulations of UMOD+ cellsin the thick ascending limb
(CLDN10+CLDN16- and CLDN10-CLDN16+ ). In motif enrichment analysis, the CLDN10-CLDN16+
popul ation had increased transcription factor activity of HNF1B (Supplementary Fig.9e,f). Pathogenic
germline variantsin HNF1B are causative of autosomal dominant tubulointerstitial kidney disease with
hypomagnesemia and hypercalciuria®. Deletion of Hnf1b the mouse kidney increases Cldn10 expression,
suggesting that Cldn10 is regulated by HNF1B transcription factor activity. Future studies using human
cell lines derived from TAL or kidney organoids may help to validate this hypothesis.

The proximal tubule is the most abundant cell type in the kidney cortex and is divided into segments (S1,
S2, S3) with unique functions driven by segment-specific expression of various transporters, including
SGLT1 and SGLT2%. SGLT2 is atherapeutic target in diabetic nephropathy and the genes and signaling
pathways that regulate SGLT2 expression may be of clinical interest®. snRNA-seq detected SLC5A1
(SGLT1) and SLC5A2 (SGLT?2) in the proximal tubule, but lacked the power to clearly distinguish
between the S1/S2 segments that express SGLT2 and the S3 segment that expresses SGLT1. In contrast,
SnATAC-seq was able to separate the S1/S2 and S3 segments based on chromatin accessibility within the
gene body and promoter of SLC5A1 and SLC5A2. These data suggest that snATAC-seq may help to
further refine segment-specific cell types; particularly those that are defined by genes transcribed at low
levels or genesthat are not detected by snRNA-seq. Furthermore, snATAC-seq can predict the
transcription factors that drive cell-type-specificity, which may improve our understanding of kidney
development and directed differentiation of kidney organoids. We used this approach to implicate NFkB
signaling in a subpopulation of proximal tubule epithelial cells.

We used snRNA-seq and snATAC-seq to identify a subpopulation of proximal tubule (PT_VCAM1) that
expressed VCAM1, HAVCRL1 (KIM-1), vimentin (VIM), PROM1 (CD133), and CD24. The PT_VCAM1
population was also identified in bulk RNA-seq datasets from non-tumor TCGA kidney and human
diabetic nephropathy®. The proportion of PT_VCAM 1 increased in response to acute and chronic kidney
injury in both mouse and human®. CD133+CD24+ progenitor-like cells have been previously-described
in the human kidney in a scattered distribution*®** and VCAM1 (CD106) expression is present in
CD133+CD24+ rena progenitors localized to Bowman's capsule’. A separate population of
CD133+CD24+CD106- cells are localized to the proximal tubule and both CD133+CD24+CD106+ and
CD133+CD24+CD106- cells can engraft in SCID mice to repopulate the tubular epithelium following
acute tubular injury®®. VCAM1 (CD106), VIM, PROM1, and CD24 expression was enriched in the
PT_VCAML1 cluster in our snRNA-seq dataset (Supplementary Fig. 10), which differs from the
previously-described CD133+CD24+CD106- renal progenitor population localized to the proximal
tubule. We used immunofluorescence studies to demonstrate that VCAM1+ cells are present in a
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scattered distribution within the proximal tubule of human kidneys (Fig. 4a). Comparison of our human
data to a mouse snRNA-seq acute kidney injury dataset * suggests that PT_VCAM1 is closely-related to
apopulation of ‘failed-repair’ PT, which has a proinflammatory gene expression signature (Fig. 5¢).
HAVCR1 expression in PT_VCAM1 suggests that PT_VCAM1 likely represents a subpopul ation of PT
that is undergoing injury in situ, and undergoes expansion in aging and chronic kidney disease (Fig. 5b,d).
Pseudotemporal ordering (Fig. 4) indicated that PT_VCAM1 exist along a continuum with PT (Fig. 4),
further supporting the hypothesis that they represent an injured cell state. Matif enrichment analysis
showed that PT_VCAM1 had increased RELA transcription factor activity and NF«B induction by TNFo
increased VCAM1 expression in an in vitro model of proximal tubule cells. Our findings suggest that
NF«B plays arolein the maintenance of PT_VCAM1, which may be of clinical interest in designing
therapies for acute kidney injury. However, whether proximal tubule repair involves proliferation of a
progenitor population or dedifferentiation of mature epithelium still remains controversial®” and our own
results do not support the existence of a fixed intratubular progenitor population *"2.

An advantage of snATAC-seq isthe ability to measure covariance between accessible chromatin sitesto
predict cis-regulatory interactions™. This approach can link putative regulatory regions with their target
genes and has been applied to human pancreatic islets”, acute leukemia’™, and multiple mouse tissues,
including: hippocampus™, mammary gland™, T-cells””, and kidney among others®®. In particular, genome
wide association study (GWAS) risk loci can be linked to their target genes, which would complement the
progress made using chromosome conformation capture (Hi-C)*. We generated cell-type-specific cis-
coaccessibility networks (CCAN) that had significant overlap with a published database®. The remaining
interactions may represent the unique chromatin interaction landscape of the kidney. We have made all of
our data publicly-available and invite readers to explore cell-type-specific differentially accessible
chromatin regions (Supplementary Fig. 13).

The small sample size of this study does not adequately capture the expected heterogeneity of the general
population. Furthermore, our study focused on kidney cortex and did not include samples from the
medulla. Future studies would benefit from studying diseased kidneys to determine how chromatin
accessi bility changes with progression. Also, improvementsin peak calling algorithms for shATAC-seq
datawill help to narrow the differentially accessible chromatin regions and identify additional peaksin
less common cell types. Despite these limitations, our single-cell multimodal atlas of human kidney
redefines cellular heterogeneity of the kidney driven by cell-type-specific transcription factors. Our data
enhances the understanding of human kidney biology and provides a foundation for future studies.
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M ethods
Tissue procur ement

Non-tumor kidney cortex samples were obtained from patients undergoing partial or radical nephrectomy
for renal mass at Brigham and Women's Hospital (Boston, MA) under an established Institutional Review
Board protocol. Samples were frozen or retained in OCT for future studies. Histol ogic sections were
reviewed by arenal pathologist and laboratory data was abstracted from the medical record.

Nuclear dissociation and library preparation

For snATAC-seg, nuclei were isolated with Nuclei EZ Lysis buffer (NUC-101; Sigma-Aldrich)
supplemented with protease inhibitor (5892791001; Roche). Samples were cut into < 2 mm pieces,
homogenized using a Dounce homogenizer (885302-0002; Kimble Chase) in 2 ml of ice-cold Nuclel EZ
Lysis buffer, and incubated on ice for 5 minutes with an additional 2 ml of lysis buffer. The homogenate
was filtered through a 40-um cell strainer (43-50040-51; pluriSelect) and centrifuged at 500g for 5
minutes at 4°C. The pellet was resuspended, washed with 4 ml of buffer, and incubated on ice for 5
minutes. Following centrifugation, the pellet was resuspended in Nuclei Buffer (10x Genomics, PN-
2000153), filtered through a 5-um cell strainer (43-50020-50; pluriSelect), and counted. For snRNA-seq
preparation, the RNase inhibitors (Promega, N2615 and Life Technologies, AM2696) were added to the
lysis buffer, and the pellet was ultimatel y resuspended in nuclei suspension buffer (1x PBS, 1% BSA,
0.1% RNase inhibitor) "®. 10X Chromium libraries were prepared according to manufacturer protocol .

Single nucleus RNA sequencing bioinfor matics wor kflow

Five snRNA-seq libraries were abtained using 10X Genomics Chromium Single Cell 5 v2 chemistry
following nuclear dissociation’®. Three snRNA-seq libraries (patients 1-3) were prepared for a prior study
GSE131882°. Libraries were sequenced on an |llumina Novaseq instrument and counted with cellranger
v3.1.0 using a custom pre-mRNA GTF built on GRCh38 to include intronic reads. Datasets were
aggregated with cellranger v3.1.0 without depth normalization and preprocessed with Seurat v3.0.2*2 to
remove low-quality nuclel (Features > 500, Features < 4000, RNA count < 16000, %Mitochondrial genes
< 0.8, %Ribosomal protein large or small subunits < 0.4) and DoubletFinder v2.0.2” to remove
heterotypic doublets (assuming 5% of barcodes represent doublets). The filtered library was normalized
with SCTransform?, and corrected for batch effects with Harmony v1.0%%. After filtering, there was a
mean of 3997 +/- 930 cells per snRNA-seq library and amean of 1674 +/- 913 genes detected per
nucleus. Clustering was performed by constructing a KNN graph and applying the Louvain algorithm.
Dimensional reduction was performed with UMAP?? and individual clusters were annotated based on
expression of lineage-specific markers. The final ShRNA-seq library contained 19,985 cells and
represented all major cell types within the kidney cortex (Supplementary Table 1). Differential expression
between cell types was assessed with the Seurat FindMarkers function for transcripts detected in at least
20% of cells.

Single nucleus ATAC sequencing bioinfor matics wor kflow

Five snATAC-seq libraries were obtained using 10X Genomics Chromium Single Cell ATAC vl
chemistry following nuclear dissociation. Libraries were sequenced on an Illumina Novaseq instrument
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and counted with cellranger-atac v1.2 (10X Genomics) using GRCh38. Libraries were aggregated with
cellranger-atac without depth normalization and processed with Seurat v3.0.2 and its companion package
Signac v0.2.1 (https:/github.com/timoast/signac)*?. Low-quality cells were removed from the aggregated
SNATAC-seq library (peak region fragments > 2500, peak region fragments < 25000, %reads in peaks >
15, blacklist ratio < 0.001, nucleosome signal < 4 & mitochondrial gene ratio < 0.25) before
normalization with term-frequency inverse-document-frequency (TFIDF). Dimensional reduction was
performed via singular value decomposition (SVD) of the TFIDF matrix and UMAP. A KNN graph was
constructed to cluster cells with the Louvain algorithm. Batch effect was corrected with Harmony®. A
gene activity matrix was constructed by counting ATAC peaks within the gene body and 2kb upstream of
the transcriptional start site using protein-coding genes annotated in the Ensembl database®®. The gene
activity matrix was log-normalized prior to label transfer with the aggregated sSnRNA-seq Seurat object
using canonical correlation analysis. The aggregated snATAC-seq object was filtered using a 97%
confidence threshold for cell type assignment following label transfer to remove heterotypic doublets. The
filtered snATAC-seq object was reprocessed with TFIDF, SVD, and batch effect correction followed by
clustering and annotation based on lineage-specific gene activity. After filtering, there was a mean of
5408 +/- 1393 nuclel per snATAC-seq library with a mean of 7538 +/- 2938 peaks detected per nucleus.
Thefinal snATAC-seq library contained atotal of 214,890 unique peak regions among 27,034 nuclei and
represented all major cell types within the kidney cortex (Supplementary Table 2). Differential chromatin
accessibility between cell types was assessed with the Signac FindMarkers function for peaks detected in
at least 20% of cells using alikelihood ratio test. Genomic regions containing snATAC-seq peaks were
annotated with ChlPSeeker® and clusterProfiler® using the UCSC database on hg38®.

Comparison to previously-published database of DNase hyper sensitive sites

Glomerulus and tubulointerstitial DNase hypersensitive sites (DHS) were downloaded in bed format from
Sieber et d*. Glomerulus and tubulointerstitial DHS master lists were composed by merging the tissue-
specific bed files, converting to a GRanges object with the GenomicRanges package®, and collapsing the
intervals with the reduce function. cellranger-atac peaks were filtered by the proportion of nuclei
containing the sSnATAC-seq peak and subsequently overlapped with DHS sites.

Estimation of transcription factor activity from snATAC-seq data

Transcription factor activity was estimated using the final sSnATAC-seq library and chromVAR v1.6.0".
The positional weight matrix was obtained from the JASPAR2018 database™. Cell-type-specific
chromV AR activities were cal culated using the RunChromV AR wrapper in Signac v0.2.1 and differential
activity was computed with the FindMarkers function. Motif enrichment analysis was also performed on
the differential accessible regionswith the FindMotif function.

Generation of cis-coaccessibility networ ks with Cicero

Cis-coaccessibility networks were predicted using the final SnATAC-seq library and Cicero v1.2"*. The
SNATAC-seq library was partitioned into individual cell types and converted to cell dataset (CDS) objects
using the make_atac_cds function. The CDS objects were individually processed using the detect_genes()
and estimate_size factors() functions with default parameters prior to dimensional reduction and
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conversion to a Cicero CDS object. Cell-type-specific Cicero connections were abtained using the
run_cicero function with default parameters.

Construction of pseudotemporal trajectorieswith M onocle or Cicero

Monocle3* was used to convert the sSnRNA-seq dataset into a cell dataset object (CDS), preprocess,
correct for batch effects®, embed with dimensional reduction and perform pseudotemporal ordering.
Cicero ** was used to generate pseudotemporal trajectories for the snATAC-seq dataset. The CDS was
constructed from the snATAC-seq dataset, preprocessed, aligned and embedded. The proximal tubular
cellsidentified with Seurat/Signac were designated as the root cells.

Comparison of Cicer o co-accessibility Connectionsto GeneHancer Database

Cell-type-specific differentially accessible chromatin regions (DAR) were identified with the Signac™
FindMarkers function using alog-fold-change threshold of 0.25 for peaks present in at least 20% of cells.
Cell-type-specific DAR were extended 50kb up- and downstream to create bed files to query the UCSC
table browser® using the GeneHancer interactions tracks™. GeneHancer interactions were compared to
cell-type-specific Cicero connections to determine the mean proportion of overlap with increasing Cicero
coaccess threshold.

Geneontology enrichment analysis

Differentially expressed genesin the PT_VCAMZ1 cluster (compared to PT) were identified with the
FindMarkers function using alog-fold-change threshold of 0.25 for the genes expressed in at least 20% of
cells. Genes ontol ogy enrichment was performed with PANTHER (http://geneontol ogy.org/)**".

Gene set enrichment analysis

Differential expressed genesin PT_VCAM1 cluster (compared to PT) were identified with the
FindMarkers function using alog-fold-change threshold of 0.05 for peaks present in at least 5% of cells.
The pre-ranked gene list was analyzed with GSEA v4.0.3 (Broad Institute)®*®".

Deconvolution of bulk RNA-seq data

For the TCGA (The Cancer Genome Atlas) dataset, HTseq counts and metadata were downloaded from
the GDC data portal (portal.gdc.cancer.gov) by selecting “kidney”, “TCGA”, “RNA-seq”, and “solid
tissue normal”. Bulk RNA-seq counts were normalized with DESeq2%? and count matrices were
deconvoluted with BisqueRNA®® using snRNA-seq annotations. For the mouse ischemia reperfusion
dataset from Liu et al.%, anormalized count matrix was downloaded from GSE98622 and converted to
human annotations using biomaRt and ensembl prior to deconvolution with BisqueRNA with default
parameters. For the diabetic nephropathy dataset®, fastq files were downloaded from GSE128736,
transcript abundance was quantified with Salmon using GRCh38, count matrices were imported to
DESeq?2 with tximport, and data was normalized prior to deconvolution with BisqueRNA.
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I nter-species snRNA-seq data comparison

The snRNA-seq dataset for human adult kidneys was converted to mouse annotations using biomaRt and
ensembl, and integrated with a mouse IRl snRNA-seq dataset™ using the FindTransferAnchors function
in Seurat. Mouse cell type annotations were transferred to the human dataset.

Renal proximal tubule epithdial cell culture (RPTEC) and TNFa stimulation

RPTEC (Lonza) were cultured with Renal Epithelium Cell Growth Medium 2 (PromoCell). Cellswere
maintained in a humidified 5% CO, atmosphere at 37°C. Experiments were performed on early passages
(passage 2-3). Cellswere plated at adensity of 1x10° cells per well in a6-well plate, incubated overnight,
and subsequently treated with TNFo (R&D systems, 100 ng/ml). Cells were harvested at 24 h or 48 h
after treatment.

RT and real-time PCR analysis

Total RNA was extracted from RPTEC or kidney organoids with the Direct-zol MicroPrep Kit (Zymo)
following manufacturer’ sinstructions. The extracted RNA (2 ug) was reverse transcribed using the High-
Capacity cDNA Reverse Transcription Kit (Life Technologies). Quantitative PCR (RT-PCR) was
performed using iTag Universal SYBR Green Supermix (Bio-Rad). Data were normalized by the
abundance of GAPDH mRNA. Primer sequences (sense and antisense, respectively) are as follows:

5- GACAGTCAGCCGCATCTTCT-3 and 5- GCGCCCAATACGACCAAATC-3' for GAPDH,

5- GGGAAGATGGTCGTGATCCTT-3 and 5- TCTGGGGTGGTCTCGATTTTA-3' for VCAML,
5- GCCGACGTAGCTTCTCTGAAC-3 and 5- TTTGGGCTCGACTCTCAATGA-3' for TPM1,

5- AGGCAACTTCCCGAGAGTTC-3 and 5- CCCCAAAGCGGTAGACTTCAG-3' for SLC5A12,
5- TGATCGGGAGGCTTCTTCTCT-3' and 5- GGACCGAAGGTTGGATTTCTTG-3 for SLC4A4.

I mmunofluor escence studies

Formalin-fixed paraffin embedded tissue sections were deparaffinized and underwent antigen retrieval.
Sections were blocked with 1% bovine serum abumin, permeabilized with 0.1% Triton-X100 in PBS and
incubated overnight with primary antibodies for VCAM1 (abcam, ab134047) and Biotinylated Lotus
Tetragonol obus Lectin (Vector Laboratories, B-1325) followed by staining with secondary antibodies
(FITC-, Cy3, or Cy5-conjugated, Jackson ImmunoResearch). Sections were stained with DAPI (4,6 -
diamidino-2-phenylindole) and mounted in Prolong Gold (Life Technologies). Images were obtained by
confocal microscopy (Nikon C2+ Eclipse; Nikon, Méelville, NY).

Statistical analysis

No statistical methods were used to predetermine sample size. Experiments were not randomized and
investigators were not blinded to allocation during library preparation, experiments or anaysis.
Quantitative data (Fig. 4f) are presented as meanzs.d. and were compared between groups with atwo-
tailed Student’ s t-test unless otherwise indicated. Estimated proportion by deconvolution of RNA-seq data
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(Fig. 5a,b,e) were analysed with one-way ANOV A with post hoc Dunnett’s multiple comparisons test.
A P value of <0.05 was considered statistically significant.
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Figure L egends

Figure 1. Single Cell Transcriptional and Chromatin Accessibility Profiling on the human adult
kidneys

(a) Graphical abstract of experimental methodology. n=5 human adult kidneys were analyzed with
snRNA-seq and snATAC-seq. (b) Umap plots of sSnRNA-seq dataset. PT, proximal tubule; PT_VCAM1,
subpopulation of proximal tubule with VCAM1 expression; PEC, parietal epithelial cells; TAL, thick
ascending limb of loop of Henle; DCT, distal convoluted tubule; CNT, connecting tubule; PC, principle
cells, ICA, Type A intercalated cells; ICB, Type B intercalated cells; PODO, podocyte; ENDO,
endothelia cells; MES, mesangial cells, FIB, fibroblasts; LEUK, leukocytes. (c) Dotplots of snRNA-seq
dataset showing gene expression patterns of cluster-enriched markers. (d) Multi-omics integration
strategy for processing the snATAC-seq dataset. Following integration and label transfer, the sSnATAC-
seq dataset was filtered using a 97% prediction score threshold for cell type assignment. (€) Umap plots of
SNATAC-seq dataset with gene activities-based cell type assignments. PCT, proximal convoluted tubule;
PST, proximal straight tubule. (f) Dotplots of snATAC-seq dataset showing gene activity patterns of cell
type markers.

Figure 2. Distribution of cell type-specific chromatin accessibleregions

(&) Heatmap of average number of Tn5 cut sites within adifferentially accessible region (DAR) for each
cell type (left). Fragment coverage (frequency of Tn5 insertion) around the DAR (DAR +/-50 Kb) on the
LRP2 gene promoter is shown (right). (b) Pie plot of genomic annotations for all DAR in the dataset. (C)
Bar plot of annotated DAR locations for each cell type.

Figure 3. Cell-type-specific transcription factor activity and chromatin interaction networ ks

(a) Heatmap of average chromVar motif activity for each cell type. (b) Umap plot displaying chromVAR
motif activity (left), gene activity (middle) and gene expression (right) of HNF4A or TFAP2B. (¢) Cis-
coaccessihbility networks (CCAN, red or blue arcs) near the HNF4A locus in the proximal convoluted
tubule with multiple connections between differentially accessible regions (red boxes). DAR overlapping
with high-confidence GeneHancer interactions are shown as blue arcs. Fragment coverage (frequency of
Tn5 insertion) and called ATAC peaks are shown in the lower half. HNF4A gene track is shown along the
bottom of theimage. (d) Genomic features of Cis-coaccessibility networks (CCAN) in the PCT.

Figure 4. Identification and characterization of previously unrecognized PT subpopulation

(a) Umap plot displaying VCAM1 gene expression in the snRNA-seq dataset (left), and representative
immunohistochemical images of VCAM1 (red) or LTL (Lotus tetragonolobus lectin, green) in the adult
kidney (n = 3 patients). Arrowheads indicate the VCAM1+ PT. VCAM1 was expressed in PEC and a
subpopulation of LTL+ PT. Scale bar indicates 100 um (upper right) or 20 um (lower right). (b)
Pseudotemporal trgjectory from PT to PT_VCAM1 using shnRNA-seq was generated with Monocle3
(Ieft), and gene expression dynamics along a pseudotime trajectory from PT to PT_VCAM 1 are shown
(right); VCAML1 (upper left), TPM1 (upper right), SLC5A12 (lower left) and SLC4A4 (lower right). (c)
Fragment coverage (frequency of Tn5 insertion) around the representative DAR (DAR +/-5000 bp) in
VCAML1 locus. (d) Pseudotimetrgjectory from PT to PT_VCAM1 using snATAC-seq was generated with
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Cicero (right). Chromatin accessibility dynamics along the pseudotemporal trgjectory from PT to
PT_VCAML1 are shown (left). chr1:100719411-100719996 (VCAM1 promoter, upper left);
chr15:63040511-63045764 (TPM1 promoter, upper right), chr11:26714753-26720418 (S_LC5A12 gene
body, lower left) and chr4:71338336-71340367 (SLC4AL gene body, lower right). (€) Feature plot of
single cell chromV AR motif activity of RELA and HNF4A in the entire dataset or PT/PT_VCAM1
subset. (f) RT and real-time PCR analysis of mMRNAs for VCAM1, TPM1, SLC5A12 and S_.C4A4 in
RPTEC treated with TNFa (100 ng/ml) for 24 h or 48 h. *P < 0.05 (Student’ st test). Bar graphs represent
the mean and error bars are the s.d.

Figure5. The estimated proportion of VCAM 1+ PT increasesin acute and chronic kidney disease

(a, b) Deconvolution analysis of bulk RNA-seq mouse kidney IRI dataset (GSE98622) with BisqueRNA.
Sham control and IRI (&), or no surgery control (b). (c) Inter-species data integration was performed
between mouse IRI snRNA-seq (GSE139107) and human snRNA-seq with Seurat (left). PT and
PT_VCAM1 from human snRNA-seq (middle) are label-transferred from mouse IRl snRNA-seq, and the
frequencies of predicted cell types are shown on the heatmap (right). (d) Deconvol ution analysis of bulk
RNA-seq TCGA non-tumor kidney data (e) Deconvolution analysis of bulk RNA-seq human diabetic
nephropathy (DN) data (GSE142025) with BisqueRNA. Box-and-whisker plots depict the median,
guartilesand range. *P < 0.05; **P < 0.01; ***P < 0.005, one-way ANOV A with post hoc Dunnett’s
multiple comparisons test.
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Figure 5
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