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Abstract 

The integration of single cell transcriptome and chromatin accessibility datasets enables a deeper 
understanding of cell heterogeneity. We performed single nucleus ATAC (snATAC-seq) and RNA 
(snRNA-seq) sequencing to generate paired, cell-type-specific chromatin accessibility and transcriptional 
profiles of the adult human kidney. We demonstrate that snATAC-seq is comparable to snRNA-seq in the 
assignment of cell identity and can further refine our understanding of functional heterogeneity in the 
nephron. The majority of differentially accessible chromatin regions are localized to promoters and a 
significant proportion are closely-associated with differentially expressed genes. Cell-type-specific 
enrichment of transcription factor binding motifs implicates the activation of NFκB that promotes 
VCAM1 expression and drives transition between a subpopulation of proximal tubule epithelial cells. 
These datasets can be visualized at this resource: http://humphreyslab.com/SingleCell/. Our multi-omics 
approach improves the ability to detect unique cell states within the kidney and redefines cellular 
heterogeneity in the proximal tubule and thick ascending limb.  
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Introduction 

Single cell RNA sequencing (scRNA-seq) has fostered a greater understanding of the genes and pathways 
that define cell identity in the kidney1. Multiple scRNA-seq atlases of mature human2–5 and mouse kidney 
6,7 have established how transcription contributes to cell type specificity. Recent methods have expanded 
this approach to single cell profiling of chromatin accessibility 8–10. Single cell assay for transposase-
accessible chromatin using sequencing (scATAC-seq) is an extension of bulk ATAC-seq11 that employs 
hyperactive Tn5 transposase to measure chromatin accessibility in thousands of individual cells9. Joint 
profiling by scRNA-seq and scATAC-seq in the adult mouse kidney has provided a framework for 
understanding how chromatin accessibility regulates transcription8, however, the single-cell epigenomic 
landscape of the human kidney has not been described.  

Integration and analysis of multimodal single cell datasets is an emerging field with enormous potential 
for accelerating our understanding of kidney disease and development12,13. Bioinformatics tools can 
extract unique information from scATAC-seq datasets that is otherwise unavailable by scRNA-seq. 
Prediction of cell-type-specific cis-regulatory DNA interactions14 and transcription factor activity15 are 
two methods that complement the transcriptional information obtained by scRNA-seq. Long-range 
chromatin-chromatin interactions play an important role in transcriptional regulation and are influenced 
by transcription factor binding16,17. Chromatin accessibility profiling will help to identify distant 
regulatory regions that influence transcription via long-range interactions.  

The kidney is composed of diverse cell types with distinct subpopulations and single cell sequencing can 
dissect cellular heterogeneity at high resolution1. For example, a small subset of cells within the proximal 
tubule and Bowman's capsule express vimentin, CD24, and CD13318,19. These cells have a distinct 
morphology and expression profile and undergo expansion after acute kidney injury19. Furthermore, they 
have reported potential for tubular and podocyte regeneration 20–23 and have been implicated in the 
development of renal cell carcinoma 24. However, the sparsity of these cells has hampered further 
characterization. Another example of cellular heterogeneity is seen in the thick ascending limb (TAL). 
Studies in mouse and human suggest that there are structural and functional differences between 
medullary and cortical TAL, however, the signaling pathways that drive these differences are not well 
defined 25. 

Chromatin accessibility is a dynamic process that drives nephron development26. Nephron progenitors 
have distinct chromatin accessibility profiles that change as they differentiate10,26. The role of chromatin 
accessibility in promotion or inhibition of kidney repair and regeneration has important implications for 
designing therapies for acute and chronic kidney disease27 and may help to improve directed 
differentiation of kidney organoids28.  

We have performed single nucleus ATAC (snATAC-seq) and RNA (snRNA-seq) sequencing to examine 
how chromatin accessibility can refine our understanding of cell state and function in the mature human 
kidney. We generated an interactive multimodal atlas encompassing both transcriptomic and epigenomic 
data (http://humphreyslab.com/SingleCell/). Combined snRNA-seq and snATAC-seq analysis improved 
our ability to detect unique cell states within the proximal tubule and thick ascending limb and redefines 
cellular heterogeneity that may contribute to kidney regeneration and segment-specific cation 
permeability. 
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Results 

Single cell transcriptional and chromatin accessibility profiling in the adult human kidney 

snRNA-seq and snATAC-seq was performed on 5 healthy adult kidney samples (Fig. 1a). Selected 
patients ranged in age from 50 to 62 years and included men (N=3) and women (N=2). All patients had 
preserved kidney function (mean sCr = 1.07 mg/dl, eGFR = 64.4 +/- 4.7 ml/min/1.73m2). Histologic 
review showed no significant glomerulosclerosis or interstitial fibrosis and tubular atrophy 
(Supplementary Table 1). We performed snRNA-seq to determine the cellular composition of our 
samples, annotate cells based on their transcriptional profiles, and inform our snATAC-seq analysis (Fig. 
1a). snRNA-seq identified all major cell types within the kidney cortex (Fig. 1b, Supplementary Fig. 1a) 
based on expression of lineage-specific markers (Fig. 1c, Supplementary Fig. 1b) 29. We detected 
proximal tubule (PT), parietal epithelial cells (PEC), loop of Henle (TAL), distal tubule (DCT1, DCT2), 
connecting tubule (CNT), collecting duct (PC, ICA, ICB), endothelial cells (ENDO), glomerular cell 
types (MES, PODO), fibroblasts (FIB), and a small population of leukocytes (LEUK) (Supplementary 
Table 2, Supplementary Data 1). Notably, there was a subpopulation of proximal tubule that had 
increased expression of VCAM1 (PT_VCAM1). This subpopulation also expressed HAVCR1 (kidney 
injury molecule-1), which is a biomarker for acute kidney injury and predictor of long-term renal 
outcomes30,31. 

Integration of single nucleus RNA and ATAC datasets for prediction and validation of ATAC cell 
type assignments 

snATAC-seq captures the chromatin accessibility profile of individual cells9. Relatively less is known 
about cell-type-specific chromatin accessibility profiles; so we leveraged our annotated snRNA-seq 
dataset to predict snATAC-seq cell types with label transfer12. Label transfer was performed by creating a 
gene activity matrix from the snATAC-seq data, which is a measure of chromatin accessibility within the 
gene body and promoter of protein-coding genes. Transfer anchors were identified between the 
‘reference’ snRNA-seq dataset and ‘query’ gene activity matrix followed by assignment of predicted cell 
types. The distribution of snATAC-seq prediction scores showed that the vast majority of cells had a high 
prediction score and were confidently assigned to a single cell type (Supplementary Fig. 2). The 
snATAC-seq dataset was filtered using a 97% confidence threshold for cell type assignment to remove 
heterotypic doublets. Comparison between snATAC-seq cell type predictions obtained by label transfer 
(Fig. 1d) and curated annotations of unsupervised clusters (Fig. 1e, f, Supplementary Fig. 1c, d and 
Supplementary Table 3) indicates that all major cell types were present in both datasets and that snATAC-
seq is comparable to snRNA-seq in the detection and assignment of cell identities (Supplementary Fig. 3). 
We performed downstream analyses with gene-activity-based cell type assignments, which were obtained 
by unsupervised clustering of the snATAC-seq dataset. Interestingly, snATAC-seq was able to detect two 
subpopulations within the proximal tubule cluster, which likely represent the proximal convoluted tubule 
(Fig. 1e, PCT) and the proximal straight tubule (Fig. 1e, PST). PCT showed greater chromatin 
accessibility in SLC5A2, which encodes sodium glucose cotransporter 2 (SGLT2); whereas PST showed 
greater accessibility in SLC5A1 (Fig. 1f, Supplementary Fig. 4). SGLT2 reabsorbs glucose in the S1 and 
S2 segments of the proximal tubule and SGLT1 (SLC5A1) is located in S332. The delineation between 
S1/S2 and S3 was less clear in the snRNA-seq dataset (Supplementary Fig. 4), which suggests that 
snATAC-seq provides complementary information that may refine cell type assignment; particularly for 
genes transcribed at low levels or genes that are not detected by snRNA-seq. The chromatin accessibility 
profile of S1/S2 may be of clinical interest in determining the factors that drive glucose reabsorption, 
which is the therapeutic target of SGLT2 inhibitors32. Together, our multimodal snATAC-seq and 
snRNA-seq analysis improved our ability to dissect cellular heterogeneity.  
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Chromatin accessibility defines cell type     

We detected 214,890 accessible chromatin regions among 27,034 cells in the snATAC-seq library. We 
compared these regions to a previously-published dataset of DNase I-hypersensitive sites (DHS) in bulk 
glomeruli and tubulointerstitium33. DNase hypersensitivity is an alternative measure of chromatin 
accessibility and approximately 50% of all regions identified by our pipeline were overlapping with a 
DHS in the glomerulus or tubulointerstitium. The proportion of overlapping regions increased to ~85% 
when our dataset was filtered for regions contained in at least 10% of nuclei (Supplementary Fig. 5). 
These data suggest that snATAC-seq is a robust method for the detection of accessible chromatin in the 
adult kidney. 

We used the R package Signac12 to investigate differences in chromatin accessibility between cell types. 
Cell types can be distinguished based on whether differentially accessible chromatin regions (DAR) are 
‘open’ or ‘closed’ (Fig. 2a, Supplementary Data 2). Approximately 20% (mean proportion=0.203 +/- 
0.04) of DAR were closely-associated with differentially expressed genes in their respective cell types 
(Supplementary Table 4). For example, LRP2 is a lineage-specific gene expressed in the proximal tubule 
and a coverage plot in this region shows an increase in number and amplitude of ATAC peaks within its 
promoter and gene body (Fig. 2a). In fact, the majority of DAR were located in a promoter region within 
3kb of the nearest transcriptional start site (Fig. 2b, Supplementary Fig. 6). The second most common 
location was intronic and the distribution of DAR was relatively conserved across cell types (Fig. 2c). A 
minority of cell-type-specific differentially expressed genes were closely-associated with a DAR (mean 
proportion=0.358 +/- 0.07), which raises the question of assigning function to DAR that are not located 
near differentially expressed genes. Regulatory regions can associate via long-range interactions and a 
DAR does not necessarily regulate the closest gene34. Bioinformatics tools can infer regulatory chromatin 
interactions and may be useful for assigning function to DAR14. Long-range interactions mediate the 
association between enhancers and promoters via chromatin looping and are regulated in part by 
transcription factors16.  

 

Chromatin accessibility is associated with cell-type-specific transcription factor activity and 
chromatin interaction networks 

Transcription factors are key determinants of cell fate that drive cellular differentiation in kidney ageing 
and development35–37. Transcription factor ‘activity’ can be predicted for individual cell types based on 
the presence of binding motifs within differentially accessible chromatin regions (DAR). We used 
chromVAR15 to infer transcription-factor-associated chromatin accessibility in our snATAC-seq dataset. 
We observed that individual cell types can be defined by transcription factor ‘activity’ (Fig. 3a, 
Supplementary Data 3), suggesting that cell-type-specific transcription factors likely regulate chromatin 
accessibility. For example, HNF4A encodes a key transcription factor that drives proximal tubule 
differentiation38. chromVAR detected an enrichment of HNF4A binding motifs within DAR in the 
proximal tubule (Fig. 3b, motif activity) that was supported by increased chromatin accessibility in 
HNF4A (Fig. 3b, gene activity) and increased HNF4A transcription in the snRNA-seq dataset (Fig. 3b, 
gene expression). A similar pattern was seen for TFAP2B, which regulates development in the distal 
nephron39. There was increased TFAP2B transcription factor ‘activity’ in the thick ascending limb and 
distal convoluted tubule (Fig. 3b, motif activity), in addition to increased chromatin accessibility in 
TFAP2B (Fig. 3b, gene activity) and increased TFAP2B transcription (Fig. 3b, gene expression).   
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We used the R package Cicero14 to predict cis-regulatory chromatin interactions for individual cell types. 
Cis-coaccessibility networks (CCAN) are families of chromatin-chromatin interactions that regulate gene 
expression by approximating enhancers and promoters. Within HNF4A, we observed a robust CCAN in 
the proximal convoluted tubule with multiple connections (red or blue arcs) between differentially 
accessible regions (Fig. 3c, red boxes) in the promoter, gene body, and distal 3’ region (Fig. 3c). We 
compared these interactions with the GeneHancer database40 to determine which connections had been 
previously-reported in the literature. GeneHancer is a collection of human enhancers and their inferred 
target genes created using 4 methods: promoter capture Hi-C, enhancer-targeted transcription factors, 
expression quantitative trait loci, and tissue co-expression correlation between genes and enhancer RNA. 
The subset of GeneHancer interactions with ‘double elite’ status is the most stringent set of interactions in 
the database40 and the majority of predicted Cicero interactions within 50kb of a cell-type-specific 
differentially accessible region (DAR) were overlapping with ‘double elite’ GeneHancer interactions (Fig. 
3c, blue arcs). The proportion of Cicero connections present in the ‘double elite’ GeneHancer database 
was dependent on the Cicero coaccessibility score, which is a measure of increased confidence of the 
predicted interaction (Supplementary Fig. 7). The Cicero connections with a lower coaccessibility score 
(threshold=0.1, mean proportion in GeneHancer=0.68) were less likely (p < 0.0001, Paired t-test) to be in 
the GeneHancer ‘double elite’ database compared to Cicero connections with a higher coaccessibility 
score (threshold=0.5, mean proportion in GeneHancer=0.75). Within the proximal convoluted tubule, the 
majority of Cicero connections were either within a promoter region or between a promoter and another 
location (Fig. 3d) and this distribution was similar in other cell types (Supplementary Fig. 8). In 
summary, Cicero is a robust method for predicting chromatin-chromatin interactions that may play a role 
in the regulation of cell-type-specific chromatin accessibility.  

 

Multi-modal analysis highlights cellular heterogeneity in the thick ascending limb 

The thick ascending limb regulates extracellular fluid volume, urinary concentration, and calcium and 
magnesium homeostasis in the outer medulla and cortex41. The majority of bivalent cations are reabsorbed 
in the cortical segment and are regulated by expression of claudins42. Claudins are a family of tight 
junction proteins that confer segment-specific cation permeability and regulate the reabsorption of Na+, 
K+, Cl-, Mg++ and Ca++43. Claudin-10 expression is enriched in the medullary TAL, whereas claudin-16 
is expressed predominantly in the cortical TAL44. Pathogenic germline variants in CLDN16  are causative 
of familial hypomagnesemia, hypercalciuria and nephrocalcinosis, which can lead to end-stage renal 
disease45,46.  Interestingly, Cldn10 deletion causes hypermagnesemia in mice47, and even rescues Cldn16-
deficient mice from hypomagnesemia and hypercalciuria48. These data indicate that CLDN10 and 
CLDN16 may confer opposing segment-specific tight junction cation selectivity. To determine if we 
could detect subpopulations of cells with variable claudin expression patterns, we performed 
unsupervised clustering on the thick ascending limb in our snRNA-seq dataset (Supplementary Fig. 9a) to 
identify 3 groups of cells. There was a group of cells (SLC12A1+UMOD+) that expressed cortical TAL 
markers (CLDN16, KCNJ10 and PTH1R) and a second group that expressed the medullary TAL marker, 
CLDN10 (Supplementary Fig. 9b). The third group of cells was identified as ascending thin limb (ATL) 
based on expression of previously-published markers2.   

We analyzed the thick ascending limb cluster in the snATAC-seq dataset and identified 3 groups of cells 
that echoed our findings in the snRNA-seq dataset (Supplementary Fig. 9c,d). Our findings suggest that 
TAL subpopulations can be defined by either transcription or chromatin accessibility profiles. We 
identified differential transcription factor ‘activity’ for HNF1B and ESRRB that defined cortical and 
medullary subpopulations (Supplementary Fig. 9e). Furthermore, HNF1B and ESRRB transcription factor 
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motifs were enriched in the differentially accessible chromatin regions (DAR) that distinguish between 
cortical and medullary thick ascending limb populations (Supplementary Fig. 9f). ESRRB is an orphan 
nuclear receptor with a critical role in early development and pluripotency49,50 and HNF1B is a 
homeodomain-containing transcription factor that regulates nephrogenesis. Pathogenic germline HNF1B 
variants are a known cause of autosomal dominant tubulointerstitial kidney disease with hypomagnesemia 
and hypercalciuria51. Interestingly, genetic deletion of Hnf1b  in mouse kidney was found to increase 
Cldn10 expression52, suggesting that HNF1B may be involved in the regulation of CLDN10. Collectively, 
our multimodal analysis demonstrates heterogeneity within the TAL at a transcriptomic and chromatin 
accessibility level and highlights transcription factors that likely contribute to these differences. 

 

NF-kB regulates the molecular signature of a subpopulation of proximal tubule that expresses 
VCAM1 

We detected a subset of proximal tubule cells that had increased expression and chromatin accessibility of 
VCAM1, which we designated PT_VCAM1 (Fig. 1). Immunofluorescence studies demonstrated VCAM1 
expression in a scattered distribution amongst proximal tubule epithelium (Fig. 4a). Our single cell 
studies estimate that PT_VCAM1 represents ~2% of total cells and 6% of proximal tubular epithelium. 
Despite the fact that kidney samples originated from patients without kidney injury, the PT_VCAM1 
population showed increased expression of kidney injury molecule-1 (HAVCR1, KIM1), which is a 
biomarker that is increased in acute kidney injury30 and chronic kidney disease53. Interestingly, 
PT_VCAM1 also expressed VIM (vimentin), CD24, and CD133 (PROM1) (Supplementary Fig. 10), 
which is consistent with a previously-described population of cells with progenitor-like features in the 
proximal tubule18–20. These findings suggest that the PT_VCAM1 cluster may represent an injured or 
regenerative subpopulation. 

We compared the transcriptional profile of PT_VCAM1 to the remaining proximal tubule to identify 
differentially expressed genes (Supplementary Data 4).  Gene ontology enrichment analysis of the 
differentially expressed genes showed an enrichment for pathways involved in metabolism, cell 
migration, angiogenesis, proliferation, and apoptosis.  In particular, there was enrichment for genes that 
control branching morphogenesis of epithelial tubes and the MAPK and Wnt signaling pathways 
(Supplementary Data 5).  These results suggest that the signaling pathways in this subpopulation are 
distinct from the remaining proximal tubule. 

We performed pseudotemporal ordering with Monocle54 to determine which genes drive the transition 
from healthy proximal tubule to the PT_VCAM1 state (Fig. 4b). We identified VCAM1 and TPM1 as 
genes that show increased expression in PT_VCAM1 cells and SLC5A12 and SLC5A4 as genes that show 
decreased expression (Fig. 4b). VCAM1 is a key mediator of angiogenesis55 and TPM1 encodes 
tropomyosin 1, which is an actin-binding protein involved in the cytoskeletal contraction56. In contrast, 
SLC5A12 and SLC4A4 encode a lactate and bicarbonate transporter. SLC5A12 and SLC5A4 are 
abundantly-expressed in the proximal tubule and VCAM1 and TPM1 can be detected in a subset of cells. 
We constructed a complementary pseudotemporal trajectory with Cicero (13) to examine changes in 
chromatin accessibility during the transition from PT to PT_VCAM1. Increased transcription of VCAM1 
and TPM1 (Fig. 4b) was associated with increased chromatin accessibility within the VCAM1 gene body 
and promoter region (Fig. 4c,d). Similarly, decreased transcription of SLC5A12 and SLC4A4 (Fig. 4b) 
was associated with decreased chromatin accessibility (Fig. 4d, Supplementary Fig. 11). We identified 
transcription factors that likely regulate the transition between proximal tubule and PT_VCAM1 by 
assessing chromVAR transcription factor activities. Interestingly, the proximal tubule showed robust 
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activity of HNF4A, which was decreased in the PT_VCAM1 cluster and coincided with increased activity 
of REL and RELA (Fig. 4e). NF-κB is a family of inducible transcription factors that share homology in 
the Rel domain57 that has been implicated in the inflammatory response in renal disease58. In particular, 
ischemia-reperfusion injury-induced acute kidney injury activates NF-κB and NF-κB inhibition improves 
renal function59. Consistent with this finding, gene set enrichment analysis60,61 of the differentially 
expressed genes in PT_VCAM1 compared to PT implicated NF-κB signaling (Supplementary Fig. 12). 
The TNF family of cytokines are well-established activators of NF-κB 62. To further validate these 
insights, we used TNFα to induce NF-κB in an in vitro model of the proximal tubule (RPTEC). TNFα 
stimulation increased expression of VCAM1 and TPM1 and decreased expression of SLC5A12 and 
SLC4A4 (Fig. 4f). These observations suggest that NF-κB induction may play a role in the transition from 
proximal tubule to the PT_VCAM1 cell state. 

 

The proportion of PT_VCAM1 is elevated in acute kidney injury and chronic kidney disease  

We performed deconvolution of bulk RNA-seq obtained from mouse IRI to determine if the proportion of 
PT_VCAM1 is related to acute kidney injury. BisqueRNA estimates cell type abundance from bulk RNA-
seq using a scRNA-seq reference-based deconvolution 63. The estimated proportion of PT_VCAM1 
significantly increased 24 hours post-IRI and persisted for at least 7 days; corresponding with a decrease 
in the proportion of normal PT (Fig. 5a). Interestingly, the estimated proportion of PT_VCAM1 in the no 
surgery control mouse kidneys increased in older mice (Fig. 5b) and was accompanied by an increase in 
leukocytes. These results suggest a role for aging-related chronic inflammation and acute kidney injury in 
the appearance of PT_VCAM1. To further characterize the role of PT_VCAM1 in acute kidney injury, 
we used a snRNA-seq mouse IRI64 dataset to predict the corresponding cell type for PT_VCAM1 in the 
injured mouse kidney. Label transfer of cell type annotations from mouse IRI to human indicates that the 
majority of PT_VCAM1 are related to the failed repair population in the mouse (Failed-repair PT) (Fig. 
5c).  

We retrieved bulk RNA-seq datasets of healthy and injured human kidneys to estimate the proportion of 
PT_VCAM163. We identified 72 non-tumor kidney samples in The Cancer Genome Atlas (TCGA) using 
the GDC data portal. The TCGA patients had a mean age of 62.5 years (SD=11.9y) and had undergone 
nephrectomy for renal cell carcinoma. Deconvolution of the non-tumor kidney samples with 
BisqueRNA63 estimated that the proportion of PT_VCAM1 cells was 2.6% (Fig. 5d), which is consistent 
with our snRNA-seq and snATAC-seq estimates. Next, we analyzed bulk RNA-seq from kidney biopsies 
of patients with type 2 diabetes65. The patients with advanced diabetic nephropathy had a significantly 
higher proportion of PT_VCAM1 compared to control or early diabetic nephropathy patients (Fig. 5e), 
suggesting that PT_VCAM1 may be related to disease progression in diabetic nephropathy.  

 

Discussion 

We performed snRNA-seq and snATAC-seq sequencing in parallel to describe the transcriptional and 
chromatin accessibility landscape of the adult human kidney. Our analysis demonstrates that snRNA-seq 
and snATAC-seq are comparable methods for determining cell identity and cell-type-specific chromatin 
accessibility provides additional information that further elucidates cellular heterogeneity. Multimodal 
single cell profiling (“multi-omics”)13 has greatly improved our ability to detect unique cell types and 
states while introducing a host of bioinformatics challenges and opportunities12. In this study, we outline 
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our integration approach to analyzing paired snRNA-seq and snATAC-seq datasets to highlight functional 
heterogeneity in the proximal tubule and thick ascending limb.  

Studies in mouse and human suggest that there are structural and functional differences between 
medullary and cortical TAL driven by regional expression patterns of claudins 47,48. Claudin-10 and 
claudin-16 regulate paracellular reabsorption of calcium and magnesium in the thick ascending limb. 
Mice lacking Cldn16 develop hypercalciuria and hypomagnesemia, which is similar to the phenotype of 
patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) that carry 
pathogenic variants in CLDN1644. In contrast, targeted deletion of Cldn10 in the thick ascending limb 
results in impaired paracellular sodium permeability and hypermagnesemia47. Interestingly, Cldn10 
deletion can partially rescue the phenotype of Cldn16-deficient mice (double knockout)48. These data 
suggest that Cldn10 and Cldn16 have opposing effects on cation reabsorption in the thick ascending limb 
and are supported by the observation that Cldn10 and Cldn16 are expressed in a mosaic pattern in mice66. 
We observed two distinct subpopulations of UMOD+ cells in the thick ascending limb 
(CLDN10+CLDN16-  and CLDN10-CLDN16+ ). In motif enrichment analysis, the CLDN10-CLDN16+ 
population had increased transcription factor activity of HNF1B (Supplementary Fig.9e,f). Pathogenic 
germline variants in HNF1B are causative of autosomal dominant tubulointerstitial kidney disease with 
hypomagnesemia and hypercalciuria51. Deletion of Hnf1b the mouse kidney increases Cldn10 expression, 
suggesting that Cldn10 is regulated by HNF1B transcription factor activity. Future studies using human 
cell lines derived from TAL or kidney organoids may help to validate this hypothesis. 

The proximal tubule is the most abundant cell type in the kidney cortex and is divided into segments (S1, 
S2, S3) with unique functions driven by segment-specific expression of various transporters, including 
SGLT1 and SGLT267. SGLT2 is a therapeutic target in diabetic nephropathy and the genes and signaling 
pathways that regulate SGLT2 expression may be of clinical interest68. snRNA-seq detected SLC5A1 
(SGLT1) and SLC5A2 (SGLT2) in the proximal tubule, but lacked the power to clearly distinguish 
between the S1/S2 segments that express SGLT2 and the S3 segment that expresses SGLT1. In contrast, 
snATAC-seq was able to separate the S1/S2 and S3 segments based on chromatin accessibility within the 
gene body and promoter of SLC5A1 and SLC5A2. These data suggest that snATAC-seq may help to 
further refine segment-specific cell types; particularly those that are defined by genes transcribed at low 
levels or genes that are not detected by snRNA-seq. Furthermore, snATAC-seq can predict the 
transcription factors that drive cell-type-specificity, which may improve our understanding of kidney 
development and directed differentiation of kidney organoids. We used this approach to implicate NFκB 
signaling in a subpopulation of proximal tubule epithelial cells. 

We used snRNA-seq and snATAC-seq to identify a subpopulation of proximal tubule (PT_VCAM1) that 
expressed VCAM1, HAVCR1 (KIM-1), vimentin (VIM), PROM1 (CD133), and CD24. The PT_VCAM1 
population was also identified in bulk RNA-seq datasets from non-tumor TCGA kidney and human 
diabetic nephropathy65. The proportion of PT_VCAM1 increased in response to acute and chronic kidney 
injury in both mouse and human69. CD133+CD24+ progenitor-like cells have been previously-described 
in the human kidney in a scattered distribution18,19 and VCAM1 (CD106) expression is present in 
CD133+CD24+ renal progenitors localized to Bowman’s capsule20. A separate population of 
CD133+CD24+CD106- cells are localized to the proximal tubule and both CD133+CD24+CD106+ and 
CD133+CD24+CD106- cells can engraft in SCID mice to repopulate the tubular epithelium following 
acute tubular injury20. VCAM1 (CD106), VIM, PROM1, and CD24 expression was enriched in the 
PT_VCAM1 cluster in our snRNA-seq dataset (Supplementary Fig. 10), which differs from the 
previously-described CD133+CD24+CD106- renal progenitor population localized to the proximal 
tubule. We used immunofluorescence studies to demonstrate that VCAM1+ cells are present in a 
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scattered distribution within the proximal tubule of human kidneys (Fig. 4a). Comparison of our human 
data to a mouse snRNA-seq acute kidney injury dataset 64 suggests that PT_VCAM1 is closely-related to 
a population of ‘failed-repair’ PT, which has a proinflammatory gene expression signature (Fig. 5c). 
HAVCR1 expression in PT_VCAM1 suggests that PT_VCAM1 likely represents a subpopulation of PT 
that is undergoing injury in situ, and undergoes expansion in aging and chronic kidney disease (Fig. 5b,d). 
Pseudotemporal ordering (Fig. 4) indicated that PT_VCAM1 exist along a continuum with PT (Fig. 4), 
further supporting the hypothesis that they represent an injured cell state. Motif enrichment analysis 
showed that PT_VCAM1 had increased RELA transcription factor activity and NFκB induction by TNFα 
increased VCAM1 expression in an in vitro model of proximal tubule cells. Our findings suggest that 
NFκB plays a role in the maintenance of PT_VCAM1, which may be of clinical interest in designing 
therapies for acute kidney injury. However, whether proximal tubule repair involves proliferation of a 
progenitor population or dedifferentiation of mature epithelium still remains controversial27 and our own 
results do not support the existence of a fixed intratubular progenitor population 70–72.  

An advantage of snATAC-seq is the ability to measure covariance between accessible chromatin sites to 
predict cis-regulatory interactions14. This approach can link putative regulatory regions with their target 
genes and has been applied to human pancreatic islets73, acute leukemia74, and multiple mouse tissues, 
including: hippocampus75, mammary gland76, T-cells77, and kidney among others8,9. In particular, genome 
wide association study (GWAS) risk loci can be linked to their target genes, which would complement the 
progress made using chromosome conformation capture (Hi-C)33. We generated cell-type-specific cis-
coaccessibility networks (CCAN) that had significant overlap with a published database40. The remaining 
interactions may represent the unique chromatin interaction landscape of the kidney. We have made all of 
our data publicly-available and invite readers to explore cell-type-specific differentially accessible 
chromatin regions (Supplementary Fig. 13). 

The small sample size of this study does not adequately capture the expected heterogeneity of the general 
population. Furthermore, our study focused on kidney cortex and did not include samples from the 
medulla. Future studies would benefit from studying diseased kidneys to determine how chromatin 
accessibility changes with progression. Also, improvements in peak calling algorithms for snATAC-seq 
data will help to narrow the differentially accessible chromatin regions and identify additional peaks in 
less common cell types.  Despite these limitations, our single-cell multimodal atlas of human kidney 
redefines cellular heterogeneity of the kidney driven by cell-type-specific transcription factors. Our data 
enhances the understanding of human kidney biology and provides a foundation for future studies.  
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Methods 

Tissue procurement 

Non-tumor kidney cortex samples were obtained from patients undergoing partial or radical nephrectomy 
for renal mass at Brigham and Women’s Hospital (Boston, MA) under an established Institutional Review 
Board protocol. Samples were frozen or retained in OCT for future studies. Histologic sections were 
reviewed by a renal pathologist and laboratory data was abstracted from the medical record.  

 

Nuclear dissociation and library preparation 

For snATAC-seq, nuclei were isolated with Nuclei EZ Lysis buffer (NUC-101; Sigma-Aldrich) 
supplemented with protease inhibitor (5892791001; Roche). Samples were cut into < 2 mm pieces, 
homogenized using a Dounce homogenizer (885302–0002; Kimble Chase) in 2 ml of ice-cold Nuclei EZ 
Lysis buffer, and incubated on ice for 5 minutes with an additional 2 ml of lysis buffer. The homogenate 
was filtered through a 40-μm cell strainer (43–50040–51; pluriSelect) and centrifuged at 500g for 5 
minutes at 4°C. The pellet was resuspended, washed with 4 ml of buffer, and incubated on ice for 5 
minutes. Following centrifugation, the pellet was resuspended in Nuclei Buffer (10× Genomics, PN-
2000153), filtered through a 5-μm cell strainer (43–50020–50; pluriSelect), and counted. For snRNA-seq 
preparation, the RNase inhibitors (Promega, N2615 and Life Technologies, AM2696) were added to the 
lysis buffer, and the pellet was ultimately resuspended in nuclei suspension buffer (1x PBS, 1% BSA, 
0.1% RNase inhibitor) 78. 10X Chromium libraries were prepared according to manufacturer protocol.  

 

Single nucleus RNA sequencing bioinformatics workflow 

Five snRNA-seq libraries were obtained using 10X Genomics Chromium Single Cell 5’ v2 chemistry 
following nuclear dissociation78. Three snRNA-seq libraries (patients 1-3) were prepared for a prior study 
GSE1318825. Libraries were sequenced on an Illumina Novaseq instrument and counted with cellranger 
v3.1.0 using a custom pre-mRNA GTF built on GRCh38 to include intronic reads. Datasets were 
aggregated with cellranger v3.1.0 without depth normalization and preprocessed with Seurat v3.0.212 to 
remove low-quality nuclei (Features > 500, Features  < 4000, RNA count < 16000, %Mitochondrial genes 
< 0.8,  %Ribosomal protein large or small subunits < 0.4) and DoubletFinder v2.0.279 to remove 
heterotypic doublets (assuming 5% of barcodes represent doublets). The filtered library was normalized 
with SCTransform80, and corrected for batch effects with Harmony v1.081. After filtering, there was a 
mean of 3997 +/- 930 cells per snRNA-seq library and a mean of 1674 +/- 913 genes detected per 
nucleus. Clustering was performed by constructing a KNN graph and applying the Louvain algorithm. 
Dimensional reduction was performed with UMAP82 and individual clusters were annotated based on 
expression of lineage-specific markers. The final snRNA-seq library contained 19,985 cells and 
represented all major cell types within the kidney cortex (Supplementary Table 1). Differential expression 
between cell types was assessed with the Seurat FindMarkers function for transcripts detected in at least 
20% of cells.  

 

Single nucleus ATAC sequencing bioinformatics workflow 

Five snATAC-seq libraries were obtained using 10X Genomics Chromium Single Cell ATAC v1 
chemistry following nuclear dissociation. Libraries were sequenced on an Illumina Novaseq instrument 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2020. ; https://doi.org/10.1101/2020.06.14.151167doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.14.151167
http://creativecommons.org/licenses/by-nc-nd/4.0/


and counted with cellranger-atac v1.2 (10X Genomics) using GRCh38. Libraries were aggregated with 
cellranger-atac without depth normalization and processed with Seurat v3.0.2 and its companion package 
Signac v0.2.1 (https://github.com/timoast/signac)12. Low-quality cells were removed from the aggregated 
snATAC-seq library (peak region fragments > 2500, peak region fragments < 25000, %reads in peaks > 
15, blacklist ratio < 0.001, nucleosome signal < 4 & mitochondrial gene ratio < 0.25) before 
normalization with term-frequency inverse-document-frequency (TFIDF). Dimensional reduction was 
performed via singular value decomposition (SVD) of the TFIDF matrix and UMAP. A KNN graph was 
constructed to cluster cells with the Louvain algorithm. Batch effect was corrected with Harmony81. A 
gene activity matrix was constructed by counting ATAC peaks within the gene body and 2kb upstream of 
the transcriptional start site using protein-coding genes annotated in the Ensembl database83. The gene 
activity matrix was log-normalized prior to label transfer with the aggregated snRNA-seq Seurat object 
using canonical correlation analysis. The aggregated snATAC-seq object was filtered using a 97% 
confidence threshold for cell type assignment following label transfer to remove heterotypic doublets. The 
filtered snATAC-seq object was reprocessed with TFIDF, SVD, and batch effect correction followed by 
clustering and annotation based on lineage-specific gene activity. After filtering, there was a mean of 
5408 +/- 1393 nuclei per snATAC-seq library with a mean of 7538 +/- 2938 peaks detected per nucleus. 
The final snATAC-seq library contained a total of 214,890 unique peak regions among 27,034 nuclei and 
represented all major cell types within the kidney cortex (Supplementary Table 2). Differential chromatin 
accessibility between cell types was assessed with the Signac FindMarkers function for peaks detected in 
at least 20% of cells using a likelihood ratio test. Genomic regions containing snATAC-seq peaks were 
annotated with ChIPSeeker84 and clusterProfiler85 using the UCSC database on hg3886.  

 

Comparison to previously-published database of DNase hypersensitive sites 

Glomerulus and tubulointerstitial DNase hypersensitive sites (DHS) were downloaded in bed format from 
Sieber et al33. Glomerulus and tubulointerstitial DHS master lists were composed by merging the tissue-
specific bed files, converting to a GRanges object with the GenomicRanges package87, and collapsing the 
intervals with the reduce function. cellranger-atac peaks were filtered by the proportion of nuclei 
containing the snATAC-seq peak and subsequently overlapped with DHS sites.  

 

Estimation of transcription factor activity from snATAC-seq data 

Transcription factor activity was estimated using the final snATAC-seq library and chromVAR v1.6.015. 
The positional weight matrix was obtained from the JASPAR2018 database88.  Cell-type-specific 
chromVAR activities were calculated using the RunChromVAR wrapper in Signac v0.2.1 and differential 
activity was computed with the FindMarkers function. Motif enrichment analysis was also performed on 
the differential accessible regions with the FindMotif function. 

 

Generation of cis-coaccessibility networks with Cicero 

Cis-coaccessibility networks were predicted using the final snATAC-seq library and Cicero v1.214. The 
snATAC-seq library was partitioned into individual cell types and converted to cell dataset (CDS) objects 
using the make_atac_cds function. The CDS objects were individually processed using the detect_genes() 
and estimate_size_factors() functions with default parameters prior to dimensional reduction and 
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conversion to a Cicero CDS object. Cell-type-specific Cicero connections were obtained using the 
run_cicero function with default parameters. 

 

Construction of pseudotemporal trajectories with Monocle or Cicero 

Monocle354 was used to convert the snRNA-seq dataset into a cell dataset object (CDS), preprocess, 
correct for batch effects89, embed with dimensional reduction and perform pseudotemporal ordering. 
Cicero 14 was used to generate pseudotemporal trajectories for the snATAC-seq dataset. The CDS was 
constructed from the snATAC-seq dataset, preprocessed, aligned and embedded. The proximal tubular 
cells identified with Seurat/Signac were designated as the root cells. 

 

Comparison of Cicero co-accessibility Connections to GeneHancer Database 

Cell-type-specific differentially accessible chromatin regions (DAR) were identified with the Signac12 
FindMarkers function using a log-fold-change threshold of 0.25 for peaks present in at least 20% of cells. 
Cell-type-specific DAR were extended 50kb up- and downstream to create bed files to query the UCSC 
table browser86 using the GeneHancer interactions tracks40. GeneHancer interactions were compared to 
cell-type-specific Cicero connections to determine the mean proportion of overlap with increasing Cicero 
coaccess threshold.  

 

Gene ontology enrichment analysis 

Differentially expressed genes in the PT_VCAM1 cluster (compared to PT) were identified with the 
FindMarkers function using a log-fold-change threshold of 0.25 for the genes expressed in at least 20% of 
cells. Genes ontology enrichment was performed with PANTHER (http://geneontology.org/)90,91. 

 

Gene set enrichment analysis 

Differential expressed genes in PT_VCAM1 cluster (compared to PT) were identified with the 
FindMarkers function using a log-fold-change threshold of 0.05 for peaks present in at least 5% of cells. 
The pre-ranked gene list was analyzed with GSEA v4.0.3 (Broad Institute)60,61. 

 

Deconvolution of bulk RNA-seq data 

For the TCGA (The Cancer Genome Atlas) dataset, HTseq counts and metadata were downloaded from 
the GDC data portal (portal.gdc.cancer.gov) by selecting “kidney”, “TCGA”, “RNA-seq”, and “solid 
tissue normal”. Bulk RNA-seq counts were normalized with DESeq292 and count matrices were 
deconvoluted with BisqueRNA63 using snRNA-seq annotations. For the mouse ischemia reperfusion 
dataset from Liu et al.69, a normalized count matrix was downloaded from GSE98622 and converted to 
human annotations using biomaRt and ensembl prior to deconvolution with BisqueRNA with default 
parameters. For the diabetic nephropathy dataset65, fastq files were downloaded from GSE128736, 
transcript abundance was quantified with Salmon using GRCh38, count matrices were imported to 
DESeq2 with tximport, and data was normalized prior to deconvolution with BisqueRNA.  
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Inter-species snRNA-seq data comparison 

The snRNA-seq dataset for human adult kidneys was converted to mouse annotations using biomaRt and 
ensembl, and integrated with a mouse IRI snRNA-seq dataset64 using the FindTransferAnchors function 
in Seurat. Mouse cell type annotations were transferred to the human dataset. 

 

Renal proximal tubule epithelial cell culture (RPTEC) and TNFα stimulation 

RPTEC (Lonza) were cultured with Renal Epithelium Cell Growth Medium 2 (PromoCell). Cells were 
maintained in a humidified 5% CO2 atmosphere at 37°C. Experiments were performed on early passages 
(passage 2-3).  Cells were plated at a density of 1x105 cells per well in a 6-well plate, incubated overnight, 
and subsequently treated with TNFα (R&D systems, 100 ng/ml). Cells were harvested at 24 h or 48 h 
after treatment. 

 

RT and real-time PCR analysis 

Total RNA was extracted from RPTEC or kidney organoids with the Direct-zol MicroPrep Kit (Zymo) 
following manufacturer’s instructions. The extracted RNA (2 ug) was reverse transcribed using the High-
Capacity cDNA Reverse Transcription Kit (Life Technologies). Quantitative PCR (RT-PCR) was 
performed using iTaq Universal SYBR Green Supermix (Bio-Rad). Data were normalized by the 
abundance of GAPDH mRNA. Primer sequences (sense and antisense, respectively) are as follows:  

5'- GACAGTCAGCCGCATCTTCT-3' and 5'- GCGCCCAATACGACCAAATC-3' for GAPDH,  
5'- GGGAAGATGGTCGTGATCCTT-3' and 5'- TCTGGGGTGGTCTCGATTTTA-3' for VCAM1,  
5'- GCCGACGTAGCTTCTCTGAAC-3' and 5'- TTTGGGCTCGACTCTCAATGA-3' for TPM1,  
5'- AGGCAACTTCCCGAGAGTTC-3' and 5'- CCCCAAAGCGGTAGACTTCAG-3' for SLC5A12,  
5'- TGATCGGGAGGCTTCTTCTCT-3' and 5'- GGACCGAAGGTTGGATTTCTTG-3' for SLC4A4. 
 
Immunofluorescence studies 
 
Formalin-fixed paraffin embedded tissue sections were deparaffinized and underwent antigen retrieval. 
Sections were blocked with 1% bovine serum albumin, permeabilized with 0.1% Triton-X100 in PBS and 
incubated overnight with primary antibodies for VCAM1 (abcam, ab134047) and Biotinylated Lotus 
Tetragonolobus Lectin (Vector Laboratories, B-1325) followed by staining with secondary antibodies 
(FITC-, Cy3, or Cy5-conjugated, Jackson ImmunoResearch). Sections were stained with DAPI (4 �,6 �- 
diamidino-2-phenylindole) and mounted in Prolong Gold (Life Technologies). Images were obtained by 
confocal microscopy (Nikon C2+ Eclipse; Nikon, Melville, NY). 
 

Statistical analysis 

No statistical methods were used to predetermine sample size. Experiments were not randomized and 
investigators were not blinded to allocation during library preparation, experiments or analysis. 
Quantitative data (Fig. 4f) are presented as mean±s.d. and were compared between groups with a two-
tailed Student’s t-test unless otherwise indicated. Estimated proportion by deconvolution of RNA-seq data 
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(Fig. 5a,b,e) were analysed with one-way ANOVA with post hoc Dunnett’s multiple comparisons test. 

A P value of <0.05 was considered statistically significant. 
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Figure Legends 

Figure 1. Single Cell Transcriptional and Chromatin Accessibility Profiling on the human adult 
kidneys 

(a) Graphical abstract of experimental methodology. n=5 human adult kidneys were analyzed with 
snRNA-seq and snATAC-seq. (b) Umap plots of snRNA-seq dataset. PT, proximal tubule; PT_VCAM1, 
subpopulation of proximal tubule with VCAM1 expression; PEC, parietal epithelial cells; TAL, thick 
ascending limb of loop of Henle; DCT, distal convoluted tubule; CNT, connecting tubule; PC, principle 
cells, ICA, Type A intercalated cells; ICB, Type B intercalated cells; PODO, podocyte; ENDO, 
endothelial cells; MES, mesangial cells, FIB, fibroblasts; LEUK, leukocytes. (c) Dotplots of snRNA-seq 
dataset showing gene expression patterns of cluster-enriched markers. (d) Multi-omics integration 
strategy for processing the snATAC-seq dataset. Following integration and label transfer, the snATAC-
seq dataset was filtered using a 97% prediction score threshold for cell type assignment. (e) Umap plots of 
snATAC-seq dataset with gene activities-based cell type assignments. PCT, proximal convoluted tubule; 
PST, proximal straight tubule. (f) Dotplots of snATAC-seq dataset showing gene activity patterns of cell 
type markers.  

 

Figure 2. Distribution of cell type-specific chromatin accessible regions 

(a)  Heatmap of average number of Tn5 cut sites within a differentially accessible region (DAR) for each 
cell type (left). Fragment coverage (frequency of Tn5 insertion) around the DAR (DAR +/-50 Kb) on the 
LRP2 gene promoter is shown (right). (b) Pie plot of genomic annotations for all DAR in the dataset. (C) 
Bar plot of annotated DAR locations for each cell type.   

 

Figure 3. Cell-type-specific transcription factor activity and chromatin interaction networks 

(a) Heatmap of average chromVar motif activity for each cell type. (b) Umap plot displaying chromVAR 
motif activity (left), gene activity (middle) and gene expression (right) of HNF4A or TFAP2B. (c) Cis-
coaccessibility networks (CCAN, red or blue arcs) near the HNF4A locus in the proximal convoluted 
tubule with multiple connections between differentially accessible regions (red boxes). DAR overlapping 
with high-confidence GeneHancer interactions are shown as blue arcs. Fragment coverage (frequency of 
Tn5 insertion) and called ATAC peaks are shown in the lower half. HNF4A gene track is shown along the 
bottom of the image. (d) Genomic features of Cis-coaccessibility networks (CCAN) in the PCT. 

 

Figure 4. Identification and characterization of previously unrecognized PT subpopulation 

(a) Umap plot displaying VCAM1 gene expression in the snRNA-seq dataset (left), and representative 
immunohistochemical images of VCAM1 (red) or LTL (Lotus tetragonolobus lectin, green) in the adult 
kidney (n = 3 patients). Arrowheads indicate the VCAM1+ PT. VCAM1 was expressed in PEC and a 
subpopulation of LTL+ PT. Scale bar indicates 100 µm (upper right) or 20 µm (lower right). (b) 
Pseudotemporal trajectory from PT to PT_VCAM1 using snRNA-seq was generated with Monocle3 
(left), and gene expression dynamics along a pseudotime trajectory from PT to PT_VCAM 1 are shown 
(right); VCAM1 (upper left), TPM1 (upper right), SLC5A12 (lower left) and SLC4A4 (lower right). (c) 
Fragment coverage (frequency of Tn5 insertion) around the representative DAR (DAR +/-5000 bp) in 
VCAM1 locus. (d) Pseudotime trajectory from PT to PT_VCAM1 using snATAC-seq was generated with 
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Cicero (right). Chromatin accessibility dynamics along the pseudotemporal trajectory from PT to 
PT_VCAM1 are shown (left). chr1:100719411-100719996 (VCAM1 promoter, upper left); 
chr15:63040511-63045764 (TPM1 promoter, upper right), chr11:26714753-26720418 (SLC5A12 gene 
body, lower left) and chr4:71338336-71340367 (SLC4A1 gene body, lower right). (e) Feature plot of 
single cell chromVAR motif activity of RELA and HNF4A in the entire dataset or PT/PT_VCAM1 
subset. (f) RT and real-time PCR analysis of mRNAs for VCAM1, TPM1, SLC5A12 and SLC4A4 in 
RPTEC treated with TNFα (100 ng/ml) for 24 h or 48 h. *P < 0.05 (Student’s t test). Bar graphs represent 
the mean and error bars are the s.d. 

 

Figure 5. The estimated proportion of VCAM1+ PT increases in acute and chronic kidney disease 

(a, b) Deconvolution analysis of bulk RNA-seq mouse kidney IRI dataset (GSE98622) with BisqueRNA. 
Sham control and IRI (a), or no surgery control (b). (c) Inter-species data integration was performed 
between mouse IRI snRNA-seq (GSE139107) and human snRNA-seq with Seurat (left). PT and 
PT_VCAM1 from human snRNA-seq (middle) are label-transferred from mouse IRI snRNA-seq, and the 
frequencies of predicted cell types are shown on the heatmap (right). (d) Deconvolution analysis of bulk 
RNA-seq TCGA non-tumor kidney data (e) Deconvolution analysis of bulk RNA-seq human diabetic 
nephropathy (DN) data (GSE142025) with BisqueRNA. Box-and-whisker plots depict the median, 
quartiles and range. *P < 0.05; **P < 0.01; ***P < 0.005, one-way ANOVA with post hoc Dunnett’s 
multiple comparisons test. 
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