

Validation and performance of a quantitative IgG assay for the screening of SARS-CoV-2 antibodies

4 Ana M. Espino^{a*}, Petraleigh Pantoja^{a*} and Carlos A. Sariol^{a*}

5

⁶ ^aDepartment of Microbiology and Medical Zoology, University of Puerto Rico-Medical
⁷ Sciences Campus, San Juan, PR, USA.

8

9 Running Title: UPR-MSC CovIgG-Assay

10

11 * Ana M. Espino, Petraleigh Pantoja and Carlos A. Sariol contributed equally to this work.

12 Author order was determined based on the basis of data analyses

13

14 # Address correspondence to Ana M Espino, ana.espino1@upr.edu or Carlos A. Sariol

15 carlos.sariol1@upr.edu

16

17

18

19 **Abstract**

20
21 The current COVID-19 epidemic imposed an unpreceded challenge to the scientific
22 community in terms of treatment, epidemiology, diagnosis, social interaction, fiscal policies
23 and many other areas. The development of accurate and reliable diagnostic tools (high
24 specificity and sensitivity) is crucial in the current period, the near future and in the long
25 term. These assays should provide guidance to identify immune presumptive protected
26 persons, potential plasma, and/or B cell donors and vaccine development among others.
27 Also, such assays will be contributory in supporting prospective and retrospective studies to
28 identify the prevalence and incidence of COVID-19 and to characterize the dynamics of the
29 immune response. As of today, only thirteen serological assays have received the
30 Emergency Use Authorization (EUA) by the U.S. Federal Drug Administration (FDA). In this
31 work we describe the development and validation of a quantitative IgG enzyme-linked
32 immunoassay (ELISA) using the recombinant SARS-CoV-2 Spike Protein S1 domain,
33 containing the receptor-binding domain (RBD), showing 98% sensitivity, 98.9% specificity
34 and positive and negative predictive values of 100% and 99.2%, respectively. The assay
35 showed to be useful to test for SARS-CoV-2 IgG antibodies in plasma samples from
36 COVID-19-recovered subjects as potential donors for plasmapheresis. This assay is
37 currently under review by the Federal Drug Administration for an Emergency Use
38 Authorization request (Submission Number EUA201115).

39
40

41 **Introduction**

42

43 The current severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) pandemic and

44 the resulting unprecedented outbreak of coronavirus disease 2019 (COVID-19) have

45 shifted the paradigm for viral research, epidemiology and diagnostic. Both molecular and

46 serological methods have been developed at an extraordinary speed. As of April 2, 2020

47 only four months after the virus was detected for first time in Wuhan region, 28 companies

48 obtained Emergency Use Authorization (EUA) approvals from US Federal Drug

49 Administration (FDA) for their commercial Reverse Transcription-Polymerase Chain

50 Reaction (RT-PCR) diagnostics. Those assays are intended to detect the virus during the

51 acute phase of the infection, providing no information regarding the immunological status of

52 these patients. By the same time, from the more than 25 rapid serological tests available

53 only one had the EUA granted. These rapid tests are relatively simple to perform and

54 interpret and therefore require limited test operator training. The main drawback of these

55 rapid tests is that the specificity and particularly the sensitivity are lower than the standard

56 Enzyme-linked Immunosorbent Assays (ELISA). As of June 1, 2020 FDA had received

57 more than 198 notifications from manufacturers confirming they have validated and intend

58 to distribute their tests in the market. However only 13 of those tests have indeed the EUA

59 from FDA. Moreover, in May 2020, FDA removed 28 SARS-CoV-2 serological tests from

60 the notification list of tests offered during the COVID-10 emergency for not having an EUA

61 request. Choosing an appropriate test to screen for the presence of humoral immune

62 response to SARS-CoV-2 is critical. Such serologic tests are expected to play a key role in

63 the fight against COVID-19 by helping to identify individuals who had developed an

64 adaptive immune response and may be at lower risk of infection. Also, validated serological

65 tests are needed to confirm which subjects, being confirmed positive for COVID-19, truly

66 developed a substantial humoral immune response and may be considered as plasma

67 donors (1). Different antigens have been used to detect antibodies against another novel

68 coronavirus such as SARS-CoV and MERS-CoV (2-5). From these previous works it can
69 be concluded that spike-derived (S) antigens are more sensitive, specific and accurate than
70 nucleocapsid protein-derived (NP) antigens. Also results from assays using S antigens
71 correlated much better with the neutralizing titers than those using NP antigens (6). A
72 recent work showed the usefulness for the Receptor Binding Domain (RBD) and the full
73 Spike protein to detect SARS-CoV-2 specific antibodies (7) and their correlation with
74 neutralizing antibodies nAb (8). For these reasons we choose to use a recombinant SARS-
75 CoV-2 Spike Protein, S1 domain containing the RBD.

76 With this work we described the validation of a quantitative ELISA, CovIgG-Assay
77 (<https://prsciencetrust.org/the-covigg-assay-kit/>), showing a very low background and lack
78 of cross reactivity with other respiratory and non-respiratory pathogens in more than 132
79 samples collected before June 2019. Also the correlation with three serological tests
80 available in the market is described. Finally, we confirm the usefulness of the assay
81 detecting anti-SARS-CoV-2 antibodies in plasma samples from potential plasma donors.
82 CovIgG-Assay is a useful tool to characterize, quantify and to study the dynamics of the
83 humoral immune response to SARS-CoV-2.

84

85 **Materials and Methods**

86

87

88 **Study Design**

89

90 The study population included a total of 181 samples. Forty-nine (49) samples were from
91 individuals with symptomatic infection and positive diagnosis for SARS-CoV-2. Forty-eight
92 (48) were confirmed by RT-PCR tests EUA authorized and one (1) diagnosed by COVID-19
93 ELISA IgG Antibody Test – Mount Sinai, also EUA authorized. De-identified serum or
94 plasma specimens were obtained from local clinical laboratories and Blood Banks and no
95 personal identifiers were retained. The other 132 de-identified samples had been taken
96 previously to 2019 and belonged to the Virology or the Immunology UPR-RCM serum bank.
97 From these samples, 78 had no previous history of viral, allergic or bacterial infections
98 according to our cross-reactivity panel. Nine (9) were previously diagnosed with Zika, three
99 (3) with Dengue, thirteen (13) with history of respiratory allergies and one (1) with Influenza
100 H1N1. We also included a cross reactivity panel with 28 samples kindly donated by the
101 Centers for Disease Control and Prevention (CDC) Dengue Branch, San Juan, PR. These
102 samples included six (6) positives for Respiratory Syncytial Virus (RSV)-IgM, twelve (12)
103 RT-PCR positive for Influenza A or B, five (5) Zika-IgM positive and five (5) positive for
104 Dengue-IgM. This cross-reactive panel was selected according to the most common viral
105 and respiratory infections affecting our population. Additionally, we tested nine (9) samples
106 from individuals that resulted positive for Mycoplasma-IgM and three (3) positives for
107 Chikungunya, which were collected during COVID-19 pandemic. Although these 12
108 samples were included in the cross-reactive study they were excluded from the statistical
109 analysis to establish the cut-point and diagnostic specificity/sensitivity of CovIgG-Assay. All
110 samples were stored at -80°C until use.

111 For comparison with two others serological tests (CoronaCheck and Abbott Architect)
112 holding an EUA, we used a set of nine (9) samples assumed to be positive for IgG and IgM

113 and eighteen (18) assumed to be IgG positive for SARS-CoV-2 antibodies. Those samples
114 were also received de-identified from local laboratories.

115

116 **CovIgG-Assay**

117 CovIgG-Assay is an indirect ELISA for quantitative determination of human IgG antibody
118 class, which was optimized by checkerboard titration. Disposable high bind flat-bottomed
119 polystyrene 96-wells microtiter plates (Costar, Corning MA No. 3361) were coated
120 overnight at 4°C with 2µg/ml of recombinant SARS-CoV-2 S1-RBD protein (GenScript No.
121 Z03483-1) in carbonate-bicarbonate buffer (Sigma Aldrich No. 08058). Plates were washed
122 3 times with phosphate buffered saline (PBS) containing 0.05% Tween-20 (PBST) and
123 blocked for 30 min at 37°C with 250µl/well of 3% non-fat, skim milk in PBST. Samples
124 (serum or plasma) were diluted 1:100 in PBST; 100µL/well was added in duplicates and
125 incubated at 37°C for 30 min. The excess antibody was washed off with PBST. Horseradish
126 peroxidase (HRP) labeled-mouse anti-human IgG-Fc specific (GenScript No. A01854)
127 diluted 1:10,000 in PBST was added (100µl/well) and incubated for 30 min at 37°C. After
128 another washing step, the substrate solution (Sigma Aldrich No. P4809) was added
129 (100µl/well) followed by 15 min incubation in dark. The reaction was stopped by the
130 addition of 50µl/well 10% HCl and the absorbance was measured at 492nm (A₄₉₂) using a
131 Multiskan FC reader (Thermo Fisher Scientific). In every CovIgG-Assay determination two
132 in-house controls, a high positive control (HPC) and negative control (NC) were included.
133 HPC and NC were prepared by diluting an IgG anti-SARS-CoV-2 at a concentration of
134 30µg/ml and 0.070µg/ml, respectively in PBST containing 10% glycerol. The IgG anti-
135 SARS-CoV-2 was purified from plasma of a convalescent patient using a 5/5 HiTrap
136 rProtein-A column (GE Healthcare, USA). See detailed information about this procedure in
137 **Supplementary method No.1.**

138

139 **Antibody class specificity**

140 To confirm that our assay accurately detects antibody IgG class and excludes the potential
141 for human IgM to cross-react with IgG, five (5) COVID-19 samples (1:100 diluted) were
142 treated with 5mM DTT for 30 min at 37°C prior testing. After treatment, samples were
143 added in duplicate (100µl/well) followed by the addition of the anti-human IgG-Fc-HRP
144 (GenScript No. A01854) conjugate (diluted 1:10,000) or the addition of an anti-human IgM-
145 HRP conjugate (Abcam No. ab97205) diluted 1:8,000 in PBST and the assay progressed
146 as described above.

147

148 **Estimation of Antibody Titer**

149 To estimate the IgG antibody titer, 40 COVID-19 samples were subjected to serial dilutions
150 from 1:100 to 1:12,800. Each dilution was tested in duplicate in the CovIgG-Assay and
151 each experiment was replicated twice. A standard curve was created in which the mean
152 individual absorbance (A_{492}) of each sample at 1:100 dilutions was correlated with its
153 corresponding IgG antibody titer. Antibody titer was defined as the highest serum dilution
154 that renders A_{492} values greater than the cut point estimated by the ROC analysis.

155

156 **Comparison with other serological assays approved for emergency use**

157 We tested a set of 9 samples reported as IgM/IgG positives and 18 reported as IgG
158 positives for SARS-CoV-2 antibodies by CoronaCheck (20/20 BioResponse, 20/20
159 Genesystems, Inc, Rockville, MA, USA). The information provided by the manufacturer
160 claims that this assay use Roche's technology (Roche Diagnostics GmbH, Sandhofer
161 Strasse 116, D-68305 Mannheim, Germany). Same set of 18 samples reported as SARS-
162 CoV-2 IgG positive were also tested by Abbott Architect SARS-CoV-2 IgG (Abbott
163 Laboratories Diagnostics Division Abbott Park, IL 60064 USA). For comparison, both set of
164 samples (n=27) were tested with our CovIgG-Assay. Moreover, another set of 18 samples

165 from convalescent COVID-19 subjects, which had been confirmed by PCR were tested by
166 CovIgG-Assay and Elecsys Anti-SARS-CoV-2 method (Cobas).

167

168 **Data analysis**

169 Each CovIgG-Assay determination was performed in duplicate and the results expressed
170 as the mean absorbance at 492 nm (A_{492}) for each determination. The optimal cut point for
171 the assay was established within a 95% confidence interval (CI) by receiver operating
172 characteristic (ROC) curve analysis using the EpiTools epidemiological calculator
173 (<http://epitools.ausvet.com.au>). Arbitrary guidelines were followed for analyzing the area
174 under curve (AUC) as follows: non-informative, $AUC=0.5$; low accurate, $0.5 < AUC < 0.7$;
175 moderately accurate, $0.7 < AUC < 1$; perfect, $AUC = 1$ (9). Intra-plate repeatability was
176 evaluated for CovIgG-Assay by measuring the coefficient variation (CV) of 60 repeats of a
177 High Positive Control (HPC) and a Negative Control (NC). For reproducibility evaluation, we
178 completed three independent runs in different days for the CovIgG Assay using HPC, NC
179 (30 replicates), four (4) negative and four (4) COVID-19 positive sera (6 replicates).
180 Correlation between the A_{492} at 1:100 dilutions and the antibody titer as well as between the
181 results of CovIgG Assay and the RT-PCR test results were evaluated using the Pearson
182 correlation coefficient (with the 95% CI). To evaluate the agreement between the CovIgG-
183 Assay and the RT-PCR, CovIgG-Assay and CoronaCheck, Abbott Architect SARS-CoV-2
184 IgG or Elecsys, inter-rater agreement (κ) was calculated according to the method
185 described by Thrusfield (10). The Kappa values (κ) were considered as follows: poor
186 agreement, $\kappa < 0.02$; fair agreement, $\kappa = 0.21$ to 0.4; moderate agreement, $\kappa = 0.41$ to 0.6;
187 substantial agreement, $\kappa = 0.61$ to 0.8; very good agreement, $\kappa = 0.81$ to 1.0.

188

189

190 **Results**

191 **Distribution of absorbance values of sera and ROC analysis**

192 We used the RT-PCR for COVID-19 positive samples, as recommended standard
193 reference method, to build ROC curves on the basis of the absorbance values (A_{492})
194 obtained with specimens from two reference populations: subjects infected with SARS-
195 CoV-2 that were all RT-PCR positive (assumed infected population) and healthy subjects or
196 subjects that had been diagnosed with other respiratory or viral infections prior to the
197 COVID-19 pandemic (uninfected population). The A_{492} values of uninfected population
198 ranged between 0.011 and 0.312 with a mean \pm SD A_{492} value of 0.075 ± 0.052 whereas
199 samples from assumed infected population showed A_{492} values that ranged between 0.045
200 (one sample) and 3.21 with a mean A_{492} value of 1.99 ± 0.727 . The mean value of the
201 infected population was significantly different from the mean value of the uninfected
202 population ($p<0.0001$). The distribution of A_{492} values of these two reference populations
203 was very different. Approximately the 75% of infected population had A_{492} values between
204 0.828 and 2.5 (median 2.01), whereas that the 95% of uninfected population had A_{492}
205 values between 0.011 and 0.176 (median 0.065) (**Figure-1**). Receiving operating
206 characteristic analysis was used to determine the best cut-points for the CovIgG-Assay.
207 The ROC optimized cut-point was 0.312. The selection of this cut-point derived from three
208 different conditions: (a) maximum specificity at which the sensitivity was still 100%, (b)
209 maximum sensitivity at which the specificity of the assay was also maximized, and (c)
210 maximum value for Youden's J index ($S + Sp-1$) and test efficiency (**Table-1**).
211 The area under curve values (AUC) (accuracy) for the ROC curve was 0.985 (**Figure-2**).
212 Based on the established cut-point only one seronegative was detected in the infected
213 group whereas no seropositive was detected in the uninfected group. A sample from the
214 uninfected group, collected between 1995 and June 2019, had A_{492} values equal to the cut-
215 point and was considered negative. Significant differences ($p<0.0001$) were obtained

216 between the mean OD values of COVID-19 infection sera (1.99 ± 0.727) compared to those
217 from uninfected subjects (0.075 ± 0.052).
218 To verify the cross reactivity of the assay we tested 67 samples known to be positive to
219 common respiratory and non-respiratory infections (RSV, Flu A and B, Zika, and dengue)
220 or allergies which are very common in the local population and that had been collected
221 prior pandemic. As it is showed in figure 3, all those samples were negative showing no-
222 cross reactivity in CovIgG-Assay. Thus, under these optimized conditions, CovIgG-Assay
223 reached 98.9% specificity and 98.0% sensitivity with estimated predictive positive value
224 (PPV) and predictive negative value (PNV) for CovIgG-Assay of 100% and 99.2%,
225 respectively (**Table-2**). Importantly, all the 12 samples from individuals with Mycoplasma
226 and Chikungunya that were collected during pandemic also resulted negative in the
227 CovIgG-Assay (Figure-3), which confirmed the absence of cross-reaction in the CovIgG-
228 Assay. There was substantial agreement (97.95%, $\kappa=0.657$) between CovIgG-Assay and
229 RT-PCR. Detailed optical densities (ODs) values of the positive and negative samples,
230 including the cross-reactivity panel are provided (**Supplementary tables 1 and 2**
231 **respectively**). We also assessed the reproducibility of the CovIgG-Assay by calculating the
232 CV of data from 3 different assays and 30 repeats of controls and 6 repeats of selected
233 negative and positive samples. The intra-assay and inter-assay reproducibility values were
234 both lower than 10% (**Supplementary Table 3**).
235

236 **Class antibody specificity of CovIgG-Assay**

237 To confirm that the positivity showed by CovIgG-Assay with the COVID-19 samples was
238 mostly due to the presence of IgG antibody class and not due to potential cross-reactions
239 with IgM antibody, five samples treated with DTT were tested in parallel on the CovIgG-
240 Assay using as secondary antibody anti-human IgG- and anti-human IgM-HRP conjugates
241 and the results obtained were compared with those obtained for the same samples

242 previous to the DTT treatment. As expected, the A_{492} values of DTT-treated samples tested
243 with the anti-IgM-HRP conjugate significantly dropped to values similar to the background.
244 In contrast, the A_{492} values for the same DTT-treated samples tested with the anti-IgG-HRP
245 conjugate were similar to those obtained with the untreated samples, confirming that
246 positive results were from IgG antibodies. (**Table-3**).

247

248 **Correlation between the A_{492} values and the IgG antibody titer**

249 To determine whether the magnitude of the A_{492} values correlate with the antibody titer we
250 selected 40 samples from infected individuals with A_{492} values among 0.321 to 3.12, which
251 were the lowest and the greatest A_{492} obtained from the sample population studied,
252 respectively. All 40 sera were diluted from 1:100 to 1:12,800 and each dilution was tested
253 in duplicate in the CovIgG-Assay. The number of individuals with different antibody titers
254 (defined as the maximal dilution that renders a positive result) is shown in Table-4. We
255 found a lineal correlation ($r^2=0.9946$) between the antibody titer (maximal dilution that
256 render $A_{492} > 0.312$) and the individual A_{492} value at the working dilution (1:100). Thus,
257 results reported by CovIgG-Assay could be quantitatively reported by estimating the titer,
258 using the lineal equation ($Y= 1.268*X -2.036$) derived from the lineal correlation between
259 antibody titer and the magnitude of absorbance values (**Figure-4**). Based on this analysis
260 antibody estimated titers are reported in the range among 1:100 to 1:12,800. Samples with
261 A_{492} in the range of 0.312 to 0.49 would have antibody titer lower than 1:100. Such a
262 samples would be considered as weakly positive with undetermined antibody titer. It would
263 be highly recommendable that another sample from such subjects collected 2-3 weeks
264 thereafter can be tested. Samples with $A_{492} > 3.12$ are reported with estimated antibody titer
265 $>1:12,800$ (**Supplementary table 4**).

266

267

268 **Agreement between CovIgG-Assay and other serological tests**

269 To evaluate the performance of CovIgG-Assay with other tests in the market, we analyzed
270 a group of samples that have been previously reported as positive for IgG/IgM (n=9) or only
271 positive for IgG (n=18) by CoronaCheck rapid test. CovIgG-Assay had 100% agreement
272 with the CoronaCheck results for the IgG/IgM positive samples. These samples were all
273 reported as positive by CovIgG-Assay with antibody titers that ranged between 1:100 and
274 1:3,251. However, the agreement was fair (38.88%) for samples only reported positive for
275 IgG by CoronaCheck since 7 from 18 samples were reported as positive by CovIgG-Assay
276 (**Table-5**). Interestingly, all 18 these presumptive IgG positive samples were found negative
277 by the Abbot Architec SARS-CoV-2 IgG method, which reveal a better agreement (61.0%)
278 between our CovIgG-Assay method and Abbot Architec SARS-CoV-2 IgG (**Table-5**) and
279 might suggest that most of these 18 samples could be false positives.

280 In another experiment, samples from subjects confirmed by PCR (n=18) were analyzed by
281 our CovIgG-Assay and Elecsys Anti-SARS-CoV-2 method. CovIgG-Assay reported as
282 positive all these 18 samples with antibody estimated titers ranging among 1:200 and
283 >1:12,800 whereas Elecsys Anti-SARS-CoV-2 method reported 17 positive. Thus, very
284 good agreement (94.4%) between Elecsys and our CovIgG-Assay was observed (**Table-5**).
285

286 **Discussion**

287 Since the circulation of SARS-CoV-2 was spillover outside of China, the global efforts to
288 develop serological assays have been unprecedently huge. The precise diagnostic of
289 COVID-19 poses multiples challenges. The proposed method reference is the molecular
290 diagnostic, which determines the presence of an active infection. However the timing of
291 viral replication and the development of immune response is quite variable (reviewed in
292 (11) and the presence of IgM and or IgG at the time of the molecular diagnostic is merely
293 speculative. While the molecular testing results are a guide, they should not be considered

294 gold standards, as it has been the practice so far. Other factors as clinical presentation and
295 epidemiological aspects need to be considered at the time of selecting the appropriate
296 samples to validate any assay. Here we selected 48 samples reported positive by
297 authorized molecular methods and 1 sample reported as positive by an authorized
298 serological assay which is not considered a rapid test (7). As negative samples we used a
299 set of 132 sera that were collected in the period of 1995 to June 2019, before COVID-19
300 period. The CovIgG-Assay data were subjected to ROC curve analysis. During the last two
301 decades this type of analysis has become a popular method for evaluating the accuracy of
302 medical diagnostic systems and has been used not only to evaluate the ability of a test to
303 discriminate between infected and healthy subjects (12) but also to compare the diagnostic
304 performance of a number of tests (13). The ROC curve is obtained by plotting the true-
305 positive rate (sensitivity) as a function of the false-positive rate (100-specificity) that is
306 associated with each cut-point. The AUC is then used as a measure of the accuracy of the
307 test. If the assay can distinguish between infected and normal populations the AUC will be
308 equal to 1 and ROC curve will reach the upper left corner. As our results demonstrate, the
309 AUC value obtained from the ROC curve analysis conducted on the CovIgG-Assay data
310 was very high, indicating the high accuracy of this test. The only sample that was not
311 detected by CovIgG-Assay could be a false positive in the RT-PCR. Currently, there are
312 few reports addressing those discordant results. Several molecular assays have been
313 developed with high specificity and low limit of detections (14-17) and are considered the
314 reference method for SARS-CoV-2 diagnostic (18). However everyday there are more
315 reports addressing problems with the RT-PCR accuracy (14, 19-21). Otherwise that sample
316 may be collected within a window where the immune response was not developed yet.
317 Nevertheless, our results reinforce the complexity of the diagnostic of COVID-19 and the
318 need for prospective studies with more samples and better-characterized cohorts to expand
319 our understanding of the dynamics of the immune response to this novel coronavirus.

320 We also considered fundamental to develop a quantitative test, in addition to suggesting a
321 qualitative result. This would provide a guide about quantity or the dimension of the
322 immune response mounted by an individual. Up to today, few works on COVID-19
323 addressed the relation between the titer of the IgG and the neutralizing capability of that
324 sample. But all of them coincide that there is a direct correlation (1, 21-23). While the
325 scientific community develops safe (BSL-2) and reproducible neutralization assays to
326 determine nAbs against SARS-CoV-2, quantitative assays like CovIgG-Assay are useful
327 tools for a reliable serological characterization.

328 The notable disagreement observed between CoronaCheck and Abbot Architec SARS-
329 CoV-2 IgG method for the same set of samples (100% and 0% positive samples,
330 respectively) resulted surprising and at the same time worrisome since both methods have
331 FDA EUA. Since these samples were kindly donated by Clinical Laboratories de-identified
332 we unknown whether the presence of virus was confirmed in any of these subjects.
333 However, because our assay had significant agreement with the Abbot method (61%) and
334 very good agreement (94%) with Elecsys method using a set of samples from PCR-
335 confirmed SARS-CoV-2 infection, we could suggest that most IgG positive samples
336 reported by CoronaCheck might be false positive. Furthermore we have recent results
337 showing that the sample reported as negative by Elecsys and positive by CovIgG-Assay
338 had neutralizing antibodies (data not shown-manuscript in preparation). Together those
339 results reinforce the notion that our method is capable to offer accurate and efficient
340 diagnostic testing for detection of antiviral antibodies in infected individuals.

341 The finding of contradictory results in the performance of different immunoenzymatic
342 diagnostic methods strengthen the need for better assays and for better validations in the
343 context of clinical presentations (24). The best characteristics of CovIgG-Assay are its PPV
344 of 100% along a PNV of 99.2%, which render highly trustable positive results. A subject
345 confirmed as positive by this assay, with a high degree of confidence can be

346 reincorporating to a normal life in support of the rest of the community. On the other hand
347 the high NPV of the assay increase its value to know which individuals may be still at risk to
348 be infected. Altogether, the quantification of the IgG, after a subject being reported as
349 positive, provides a second step of certainty of possible protection against SARS-CoV-2
350 infection. However such correlation studies using a larger set of samples are under way.

351

352 **Authors Contribution**

353 AME and CAS conceived and supervised the studies. PP and AME performed the
354 experiments. CAS and AME drafted the manuscript. CAS, AME and PP reviewed the final
355 version of the manuscript. CAS and AME obtained the funds. CAS prepared and CAS and
356 AME submitted the Emergency Use Authorization request to the US Federal Drug
357 Administration.

358

359 **Acknowledgement**

360 Authors want to thank Ilia Toledo, MT, Francheska Rivera, MT and Drs. Consuelo Climent,
361 Gerardo Latoni and Ivelisse Martin for their contribution and diligent access to the samples
362 from subject presumptive exposed to SARS-CoV-2 and from plasma donors. Also, thanks
363 to Dr. Jorge L. Muñoz-Jordan for providing the panel to improve the cross-reactivity testing.
364 Particular acknowledgement deserves all administrative and supportive staff at the Medical
365 Sciences Campus, University of Puerto Rico, Laboratorio Clinico Toledo, Laboratorio
366 Clinico Martin, Banco de Sangre Centro Médico and Banco de Sangre Servicios Mutuos for
367 their availability and commitment during the curfew imposed by the quarantine period. The
368 Puerto Rico Science, Technology and Research Trust supported research reported in this
369 work under agreement number 2020-00272 to AME and CAS. The excellent support of Ms.
370 Andreica Maldonado and Grace Rendon from PRSTRT was instrumental in support of the
371 work described here.

372 **References**

373

374 1. Amanat F, Stadlbauer D, Strohmeier S, Nguyen THO, Chromikova V, McMahon M,
375 Jiang K, Arunkumar GA, Jurczyszak D, Polanco J, Bermudez-Gonzalez M, Kleiner
376 G, Aydillo T, Miorin L, Fierer DS, Lugo LA, Kojic EM, Stoever J, Liu STH,
377 Cunningham-Rundles C, Felgner PL, Moran T, García-Sastre A, Caplivski D, Cheng
378 AC, Kedzierska K, Vapalahti O, Hepojoki JM, Simon V, Krammer F. 2020. A
379 serological assay to detect SARS-CoV-2 seroconversion in humans. *Nat Med*
380 doi:10.1038/s41591-020-0913-5.

381 2. Al Kahlout RA, Nasrallah GK, Farag EA, Wang L, Lattwein E, Muller MA, El
382 Zowalaty ME, Al Romaihi HE, Graham BS, Al Thani AA, Yassine HM. 2019.
383 Comparative Serological Study for the Prevalence of Anti-MERS Coronavirus
384 Antibodies in High- and Low-Risk Groups in Qatar. *J Immunol Res* 2019:1386740.

385 3. Hsueh PR, Huang LM, Chen PJ, Kao CL, Yang PC. 2004. Chronological evolution
386 of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated
387 coronavirus. *Clin Microbiol Infect* 10:1062-6.

388 4. Ko JH, Müller MA, Seok H, Park GE, Lee JY, Cho SY, Ha YE, Baek JY, Kim SH,
389 Kang JM, Kim YJ, Jo IJ, Chung CR, Hahn MJ, Drosten C, Kang CI, Chung DR,
390 Song JH, Kang ES, Peck KR. 2017. Serologic responses of 42 MERS-coronavirus-
391 infected patients according to the disease severity. *Diagn Microbiol Infect Dis*
392 89:106-111.

393 5. Mo HY, Xu J, Ren XL, Zeng GQ, Tan YX, Chen RC, Chan-Yeung M, Zhong NS.
394 2005. Evaluation by indirect immunofluorescent assay and enzyme linked
395 immunosorbent assay of the dynamic changes of serum antibody responses
396 against severe acute respiratory syndrome coronavirus. *Chin Med J (Engl)* 118:446-
397 50.

398 6. Hashem AM, Al-Amri SS, Al-Subhi TL, Siddiq LA, Hassan AM, Alawi MM, Alhabbab
399 RY, Hindawi SI, Mohammed OB, Amor NS, Alagaili AN, Mirza AA, Azhar EI. 2019.
400 Development and validation of different indirect ELISAs for MERS-CoV serological
401 testing. *J Immunol Methods* 466:41-46.

402 7. Stadlbauer D, Amanat F, Chromikova V, Jiang K, Strohmeier S, Arunkumar GA,
403 Tan J, Bhavsar D, Capuano C, Kirkpatrick E, Meade P, Brito RN, Teo C, McMahon
404 M, Simon V, Krammer F. 2020. SARS-CoV-2 Seroconversion in Humans: A
405 Detailed Protocol for a Serological Assay, Antigen Production, and Test Setup. *Curr
406 Protoc Microbiol* 57:e100.

407 8. Krammer F, Simon V. 2020. Serology assays to manage COVID-19. *Science*
408 doi:10.1126/science.abc1227.

409 9. Swets JA. 1988. Measuring the accuracy of diagnostic systems. *Science* 240:1285-
410 93.

411 10. Thrusfield M. 1995. *Veterinary epidemiology*. London, United Kingdom, 2nd ed
412 Blackwell Science.

413 11. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, Levantovsky R, Malle L,
414 Moreira A, Park MD, Pia L, Risson E, Saffern M, Salomé B, Esai Selvan M, Spindler
415 MP, Tan J, van der Heide V, Gregory JK, Alexandropoulos K, Bhardwaj N, Brown
416 BD, Greenbaum B, Gümüş ZH, Homann D, Horowitz A, Kamphorst AO, Curotto de
417 Lafaille MA, Mehandru S, Merad M, Samstein RM. 2020. *Immunology of COVID-19:
418 Current State of the Science*. *Immunity* doi:10.1016/j.jimmuni.2020.05.002.

419 12. Hajian-Tilaki K. 2013. Receiver Operating Characteristic (ROC) Curve Analysis for
420 Medical Diagnostic Test Evaluation. *Caspian J Intern Med* 4:627-35.

421 13. Surujballi O, Mallory M. 2001. Competitive enzyme-linked immunosorbent assay for
422 detection of *Leptospira interrogans* serovar pomona antibodies in bovine sera. *Clin
423 Diagn Lab Immunol* 8:40-3.

424 14. Arevalo-Rodriguez I, Buitrago-Garcia D, Simancas-Racines D, Zambrano-Achig P,
425 del Campo R, Ciapponi A, Sued O, Martinez-Garcia L, Rutjes A, Low N, Perez-
426 Molina JA, Zamora J. 2020. FALSE-NEGATIVE RESULTS OF INITIAL RT-PCR
427 ASSAYS FOR COVID-19: A SYSTEMATIC REVIEW. medRxiv
428 doi:10.1101/2020.04.16.20066787:2020.04.16.20066787.

429 15. Chan JF, Yip CC, To KK, Tang TH, Wong SC, Leung KH, Fung AY, Ng AC, Zou Z,
430 Tsoi HW, Choi GK, Tam AR, Cheng VC, Chan KH, Tsang OT, Yuen KY. 2020.
431 Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and
432 Specific COVID-19-RdRp/HeL Real-Time Reverse Transcription-PCR Assay
433 Validated In Vitro and with Clinical Specimens. *J Clin Microbiol* 58.

434 16. Loeffelholz MJ, Tang YW. 2020. Laboratory diagnosis of emerging human
435 coronavirus infections - the state of the art. *Emerg Microbes Infect* 9:747-756.

436 17. Tang YW, Schmitz JE, Persing DH, Stratton CW. 2020. Laboratory Diagnosis of
437 COVID-19: Current Issues and Challenges. *J Clin Microbiol* 58.

438 18. CDC. 2020. Interim Clinical Guidance for Management of Patients with Confirmed
439 Coronavirus Disease (COVID-19). Updated June 2.

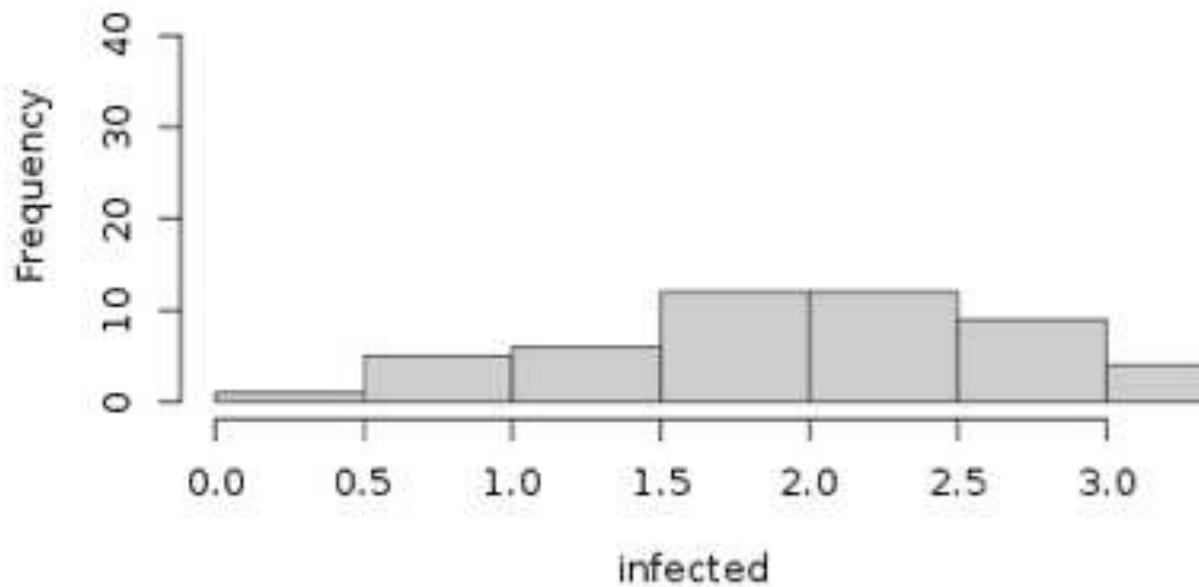
440 19. Byambasuren O, Cardona M, Bell K, Clark J, McLaws M-L, Glasziou P. 2020.
441 Estimating the extent of asymptomatic COVID-19 and its potential for community
442 transmission: systematic review and meta-analysis. medRxiv
443 doi:10.1101/2020.05.10.20097543:2020.05.10.20097543.

444 20. Cohen AN, Kessel B. 2020. False positives in reverse transcription PCR testing for
445 SARS-CoV-2. medRxiv doi:10.1101/2020.04.26.20080911:2020.04.26.20080911.

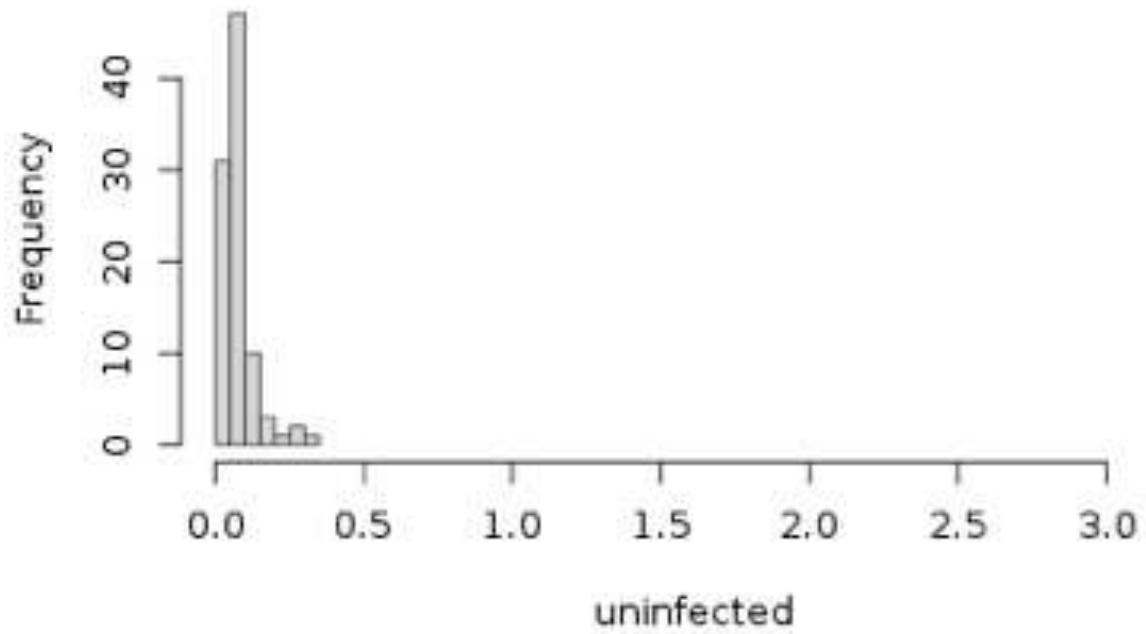
446 21. Jiang S, Hillyer C, Du L. 2020. Neutralizing Antibodies against SARS-CoV-2 and
447 Other Human Coronaviruses. *Trends Immunol* 41:355-359.

448 22. Dingens AS, Crawford KH, Adler A, Steele SL, Lacombe K, Eguia R, Amanat F,
449 Walls AC, Wolf CR, Murphy M, Pettie D, Carter L, Qin X, King NP, Veesler D,

450 Krammer F, Chu HY, Englund JA, Bloom JD. 2020. Seroprevalence of SARS-CoV-
451 2 among children visiting a hospital during the initial Seattle outbreak. medRxiv
452 doi:10.1101/2020.05.26.20114124:2020.05.26.20114124.

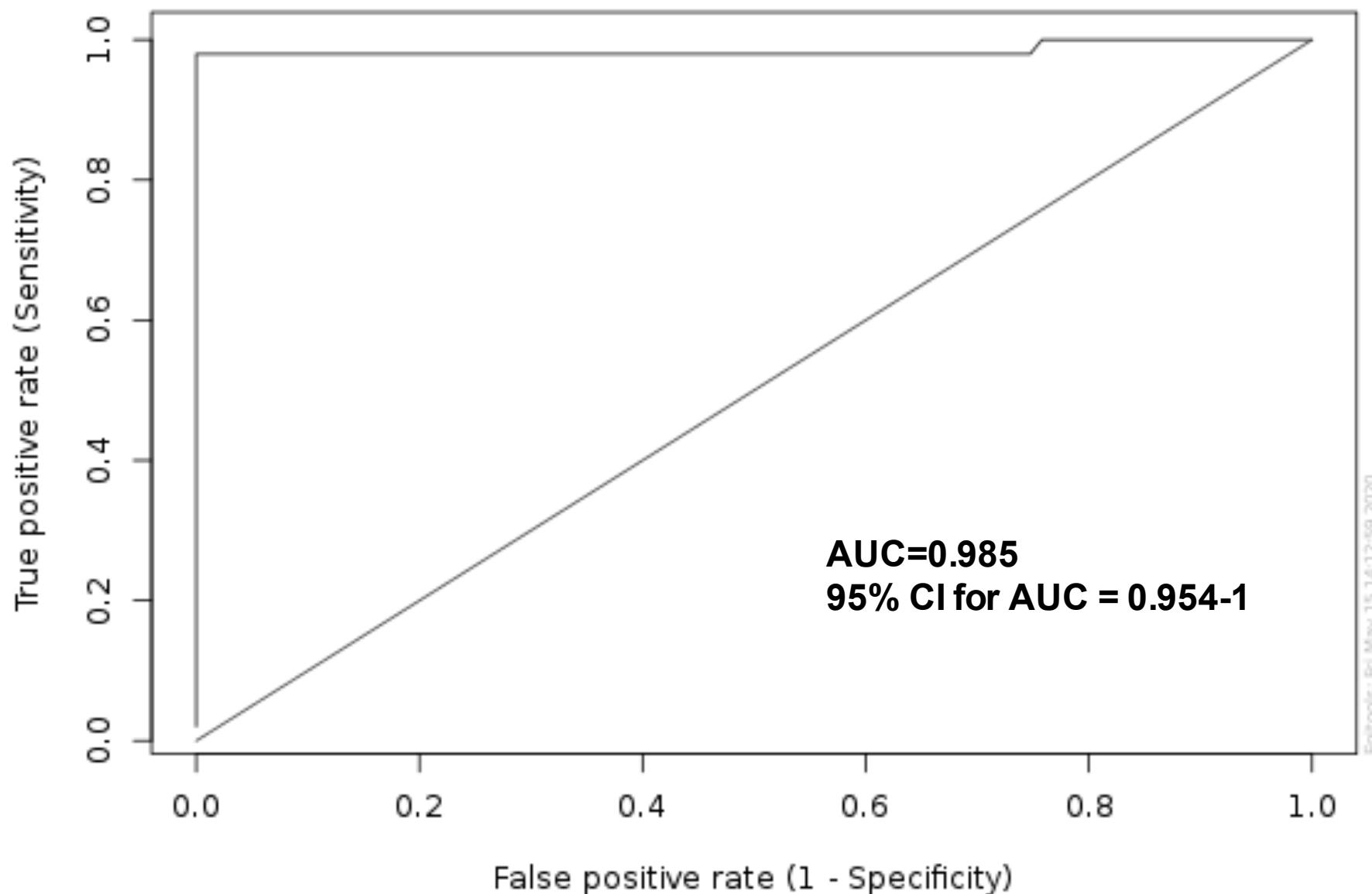

453 23. Okba NMA, Müller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM, Lamers
454 MM, Sikkema RS, de Bruin E, Chandler FD, Yazdanpanah Y, Le Hingrat Q,
455 Descamps D, Houhou-Fidouh N, Reusken C, Bosch BJ, Drosten C, Koopmans
456 MPG, Haagmans BL. 2020. Severe Acute Respiratory Syndrome Coronavirus 2-
457 Specific Antibody Responses in Coronavirus Disease 2019 Patients. *Emerg Infect*
458 *Dis* 26.

459 24. Woloshin S, Patel N, Kesselheim AS. 2020. False Negative Tests for SARS-CoV-2
460 Infection — Challenges and Implications. *New England Journal of Medicine*
461 doi:10.1056/NEJMp2015897.


462

463

Distribution of test results for infected



Distribution of test results for uninfected

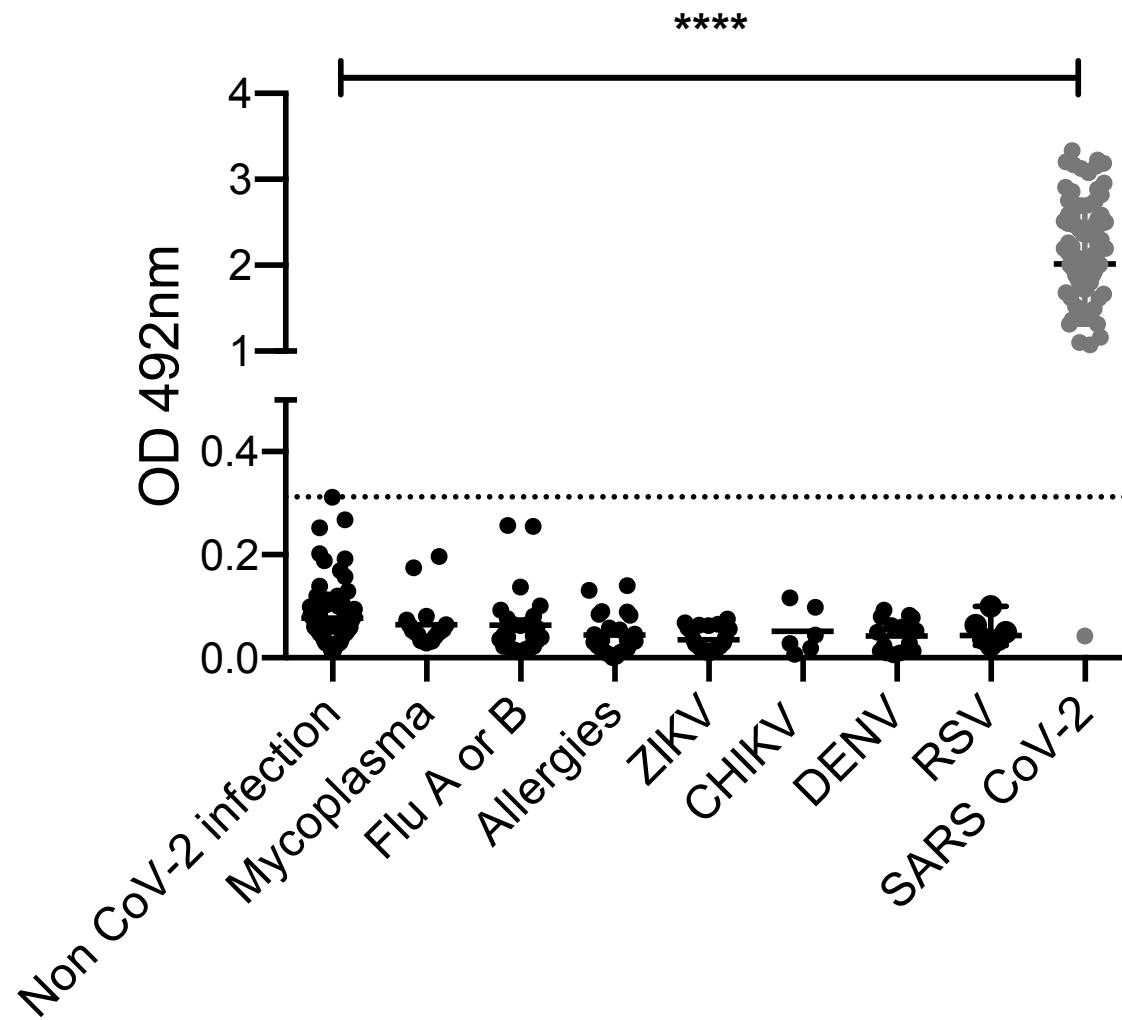


Figure 1: Distribution of absorbance values obtained with CovIgG-Assay. The CovIgG-Assay was optimized using as antigen recombinant Spike-S1-RBD from SARS-CoV-2. Absorbance values were distributed in form of frequency histograms to clearly visualize the separation between true positives (SARS-CoV-2 infected) (upper figure) and true negative population (non-SARS-CoV-2 infection), which include healthy subjects and subjects carrying other respiratory and viral infections collected prior pandemic (lower figure).

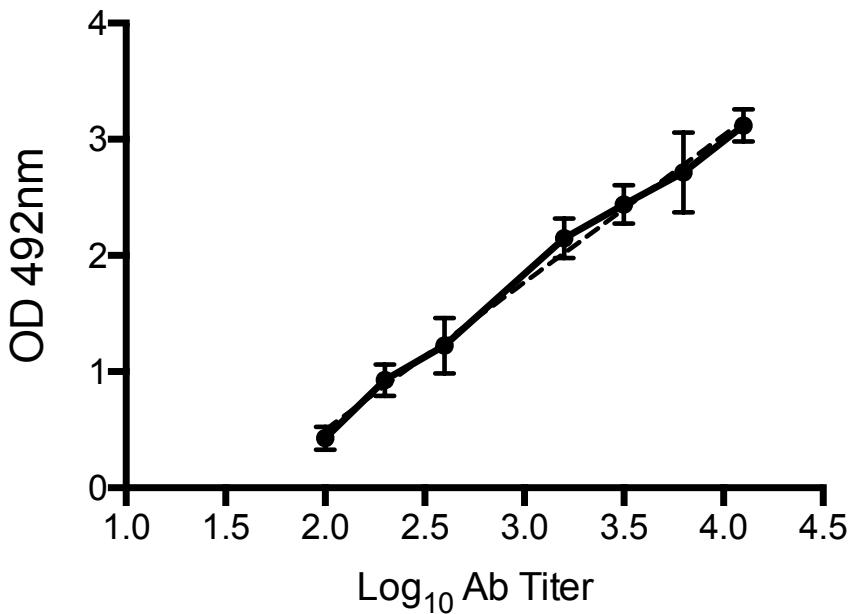

ROC Curve

Figure 2: Receiver-operator characteristic (ROC) curve. The ROC curve was built for 132 sera from healthy subjects or subjects carrying other respiratory or other viral infections and 49 COVID-19 confirmed subjects. The area under the ROC curve (accuracy) was 0.985 and the 95% Confident interval (CI) for AUC= 0.954-1.

Figure 3: Validation of use of Spike S1-RBD ELISA for detection of SARS-CoV-2 IgG antibodies. Black dots indicate samples from negative cohorts (non-CoV-2 infection) collected prior 2019 with no previous history of selected viral infections or respiratory allergies (n= 78) and samples that tested positive for Mycoplasma IgM, (n = 9), Influenza A or B (n=13), respiratory allergies (n=13), Zika virus (ZIKV, n=14), Chikungunya virus (CHIKV, n=3), Dengue virus (DENV, n=8) or RSV (n=6). Grey dots indicate samples from patients with confirmed SARS CoV-2 infection (n=49). Dotted horizontal line indicate CovIgG-Assay cut-point value (OD₄₉₂ = 0.312). S1-RBD: Spike subunit-1-Receptor biding domaine. Each dot indicates mean OD of each sample tested in duplicate.

Best-fit values	
Slope	1.268 ± 0.04190
Y-intercept when X=0.0	-2.036 ± 0.1323
X-intercept when Y=0.0	1.606
1/slope	0.7888
95% Confidence Intervals	
Slope	1.160 to 1.375
Y-intercept when X=0.0	-2.376 to -1.696
X-intercept when Y=0.0	1.455 to 1.736
Goodness of Fit	
R square	0.9946

Figure 4: Correlation between absorbance at 492nm (A_{492}) and antibody titter. A total of 40 sera from confirmed COVID-19 subjects that resulted positive by CovIgG-Assay were titrated at dilutions among 1:100 to 1:12,800. A lineal regression analysis was then done in which the mean A_{492} of sera with similar antibody titer were plotted with their corresponding A_{492} values. We found a lineal correlation ($r^2=0.9946$) between the antibody titer (maximal dilution that render $A_{492} \geq 0.312$) and the individual A_{492} value at the working dilution (1:100). From this analysis the following lineal equation ($Y= 1.268*X -2.036$) was obtained, which was further used to estimate the antibody titer of all sera reported as seropositive by CovIgG-Assay.

Table-1. Specificity (Sp) and sensitivity (Se) of the CovIgG-Assay based on cut-points from the comparison between infected and uninfected populations.

Target Sp	Cut-point	Specificity	Sp Lower 95% CL	Sp Upper 95% CL	Sensitivity	Se Lower 95% CL	Se Upper 95% CL
0.999	0.745	1	0.961	1	0.980	0.893	0.996
0.995	0.745	1	0.961	1	0.980	0.893	0.996
0.990	0.745	1	0.961	1	0.980	0.893	0.996
0.980	0.312	0.989	0.943	0.998	0.980	0.893	0.996
0.950	0.202	0.958	0.897	0.984	0.980	0.893	0.996
0.900	0.129	0.905	0.830	0.949	0.980	0.893	0.996
0.800	0.099	0.800	0.709	0.868	0.980	0.893	0.996

Table-2. Agreement between the results of CovIgG-Assay and the PCR-based assay used as reference method for COVID-19 diagnosis.

		PCR-based assay*		
		Positive	Negative	Total
CovIgG-Assay	Positive	48	0	48
	Negative	1	132	133
	Total	49	132	181

Positive Predictive Value (PPV)=100% is calculated as the number of individuals with a positive result by CovIgG-Assay / the total of true positive individuals x 100. Negative Predictive Value (PNV)= 99.2% is calculated as the number of individuals reported as negative by CovIgG-Assay / the total of true negative individuals x 100.

*One sample was reported positive by Mt. Sinai Laboratory COVID-19 ELISA Antibody Test.

Table-3. Samples before and after treatment with DTT (Dithiothreitol) showing IgG class specificity for CovIgG-Assay. Each result represents OD at 492nm absorbance.

ID	IgG			IgG DTT			IgM			IgM DTT		
	OD1	OD2	Average OD	OD1	OD2	Average OD	OD1	OD2	Average OD	OD1	OD2	Average OD
45	2.7594	2.6820	2.7207	1.7638	1.7889	1.7763	1.6503	1.5807	1.6155	0.0244	0.0235	0.0239
121	3.1175	2.9996	3.0585	2.7779	2.6761	2.7270	3.5162	3.5980	3.5571	0.3303	0.3293	0.3298
122	2.7393	2.3747	2.5569	1.9655	1.9516	1.9585	2.6131	2.5388	2.5759	0.1060	0.1019	0.1039
146	2.7958	2.7973	2.7965	2.3467	2.3361	2.3414	1.0818	1.0508	1.0663	0.0898	0.0876	0.887
147	2.8958	2.7455	2.8206	2.4553	2.3915	2.4234	3.2084	3.2769	3.2426	0.8243	0.8349	0.8296
183	1.4743	1.4506	1.4624	0.8341	0.8457	0.8399	3.3603	3.3997	3.3800	0.0607	0.0519	0.0563

Sample 183 was confirmed by PCR and the others were confirmed by PCR and IgG/IgM rapid tests

Table-4. Experimental antibody titers of SARS-CoV-2 infected subjects in relation with their absorbance value at 492nm (1:100 dilution).

Antibody titer*	No. Individuals	Absorbance at 492nm (A₄₉₂) range	Mean A₄₉₂ ± SD
100	6	0.321-0.538	0.427 ± 0.0983
200	10	0.687-1.111	0.927 ± 0.135
400	8	0.802-1.518	1.224 ± 0.238
800	--	--	--
1600	6	1.980-2.385	2.149 ± 0.169
3200	6	2.175-2.577	2.439 ± 0.165
6400	2	2.372-3.059	2.715 ± 0.343
12800	2	2.851-3.128	2.985 ± 0.138

*Antibody titer is defined as the maximal serum dilution that renders A₄₉₂ greater than the optimized cut-point (A₄₉₂ ≥ 0.312) determined by ROC analysis.

Table 5. Comparison of three serological tests against CoVIgG-Assay for the detection of anti SARS CoV-2 antibodies

Sample ID	CoronaCheck ¹ (Rapid COVID-19 IgG/IgM)	CoronaCheck ¹ (Rapid COVID-19 IgG)	CoVIgG-Assay ² Estimated titer	Abbott Architect SARS-CoV-2 IgG ³ (Index value)	Elecsys ⁴ Anti SARS CoV-2 Cobas®
32	+		>12800		
33	+		>12800		
34	+		1:649		
35	+		1:11040		
36	+		1:1963		
37	+		>12800		
38	+		1:8241		
39	+		>12800		
40	+		>12800		
46		+	-	.05	
47		+	†	.03	
48		+	-	.03	
49		+	1:254	.05	
50		+	-	.03	
51		+	-	.05	
52		+	-	.02	
53		+	-	.04	
54		+	1:254	.05	
55		+	-	.04	
56		+	-	.07	
57		+	-	.37	
58		+	†	.08	
59		+	†	.02	
60		+	-	.05	
61		+	-	.01	
62		+	1:219	.69	
63		+	1:220	.05	
105			1:3200 [‡]		+
106			1:200 [‡]		+
132			1:3200 [‡]		+
133			1:400 [‡]		+
134			1:200 [‡]		-
154			1:200 [‡]		+
148			1:1600 [‡]		+
149			1:800 [‡]		+
150			1:200 [‡]		+
151			1:1600 [‡]		+
152			1:400 [‡]		+
153			1:6400 [‡]		+
194			>1:12800		+
195			>1:12800		+
197			1:1064		+

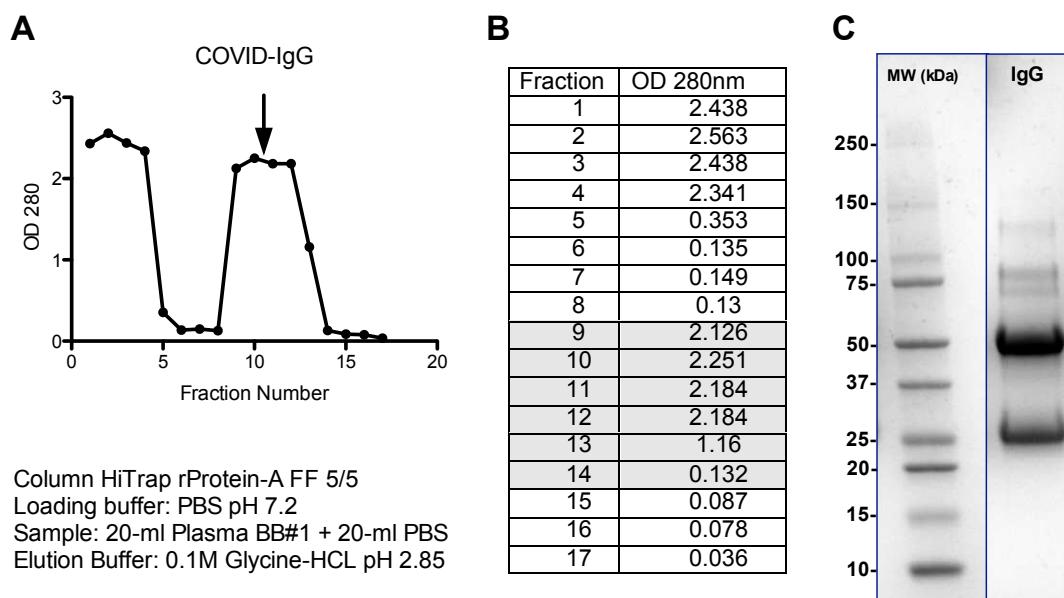
220			>1:12800		+
221			>1:12800		+
222			1:3236		+

[‡]Titer determined by endpoint dilution from the average of duplicates OD492.

¹Lateral flow rapid test intended to qualitatively detect antibodies to SARS-CoV-2. Presence of IgG/IgM antibodies are indicated by a visible line in the specific region on the device (On the manufacturer's website mention holding FDA EUA). Positive results may be due to cross reactivity with other Coronavirus strains (non CoV-2). Information regarding antigen used is not available.

²Quantitative ELISA for the detection SARS CoV-2 IgG antibodies using Spike S1-RBD (GenScript) as capture antigen. Samples with OD492<0.312 are considered negative. [†]IgG titration of positive samples by CovIgG-Assay range from 1:100 to 1:12,800.

³Chemiluminescent microparticle immunoassay for the qualitative detection of IgG antibodies against SARS CoV-2 (FDA EUA).


Assay is designed to detect IgG antibodies to the nucleocapsid protein of SARS CoV-2. Samples with an index value <1.4 are considered negative. ⁴Electrochemiluminescence immunoassay intended for qualitative detection of antibodies to SARS-CoV-2 in human serum and plasma using a recombinant protein representing the nucleocapsid antigen of SARS-CoV-2 (FDA EUA).

1 **SUPPLEMENTARY DATA**
2

3 **Supplementary Method-1**
4

5 **IgG Purification for positive and negative controls elaboration**
6

7 For the assay quality control; positive and negative controls were included for each
8 assay. These controls were prepared in-house from a convalescent subject with COVID-19.
9 **(A)** 20mL of the plasma sample was mixed 1:1 with phosphate buffer saline (PBS) and
10 loaded onto a 5/5 HiTrap rProtein-A column (GE Healthcare, USA) at a flow rate: of
11 1.5mL/min. The equilibration buffer used was PBS (pH 7.2), for elution we used 0.1M
12 Glycine-HCl (pH 2.85) and the neutralization buffer used was 1M Tris pH 8.5. **(B)** A total of
13 17 fractions were collected and absorbance (OD) at 280nm for each fraction was
14 measured. Fractions 9 to 14 were pooled in a total volume of 20ml and the pooled sample
15 had $A_{280}=2.179$. Pooled sample was desalting by PD-10 column and the desalting
16 fraction had $A_{280}=2.076$. The final concentration for this fraction was 1.48mg/mL (2.076 /14)
17 x 10 in 28mL, for a total of 41.44 mg. **(C)** A total of 2 μ g-purified IgG was suspended in
18 loading SDS-buffer containing 5mM DTT and analyzed for purity by 4-20% sodium dodecyl
19 sulfate polyacrylamide electrophoresis (SDS-PAGE) and stained with Coomassie-blue. The
20 purified IgG fraction was used to prepare a high positive control (HPC) and a negative control
21 (NC) to be used in the CovIgG-Assay. For the HPC preparation IgG was diluted 30 μ g/mL
22 and for the NC IgG was diluted 380-fold to get a concentration equivalent to 0.078 μ g/mL, both
23 controls were prepared in PBST containing 10% glycerol.
24

25
26
27

28

29 **Supplementary Table-1. Positive samples used CovIgG-Assay validation. Each result**
 30 **represent the absorbance measurement at 492nm.**

31

Immunological status/Source	Numeric ID	Confirmatory Method	Sample Date	OD1	OD2	Average OD	Estimated Titer
PCR+/ IgG/IgM Positive Local Laboratory	45	LabCorp	4/12/20	2.034	2.251	2.291	1:2691
Blood Bank 1 PCR+	102	Roche or LabCorp or CDC	4/27/20	2.533	2.591	2.555	1:4487
	103	Roche or LabCorp or CDC	4/27/20	2.584	2.463	2.539	1:4355
	104	Roche or LabCorp or CDC	4/27/20	0.972	0.975	0.973	1:207
	105	Roche or LabCorp or CDC	4/27/20	2.422	2.487	2.447	1:3639
	106	Roche or LabCorp or CDC	4/27/20	0.797	0.876	0.826	1:156
Local Major Hospital PCR+	120	Cepheid	4/27/20	2.022	2.005	2.014	1:1570
Local Major Hospital PCR+ / IgG/IgM Positive	121	Cepheid	4/24/20	2.390	2.355	2.372	1:3148
Local Major Hospital PCR+/ IgG+/IgM-	143	Cepheid	4/28/20	2.885	2.818	2.851	1:7980
PCR+ / IgG/IgM Positive Local Laboratory	122	LabCorp	4/16/20	1.991	1.970	1.981	1:1472
Blood Bank 1 PCR+	132	Roche or LabCorp or CDC	4/30/20	2.153	2.198	2.176	1:2148
	133	Roche or LabCorp or CDC	4/30/20	1.163	0.998	1.081	1:256
	134	Roche or LabCorp or CDC	4/30/20	0.828	0.816	0.822	1:155
	135	Roche or LabCorp or CDC	4/30/20	1.953	2.009	1.981	1:1472
	136	Roche or LabCorp or CDC	4/30/20	0.048	0.043	0.045	N/A
	137	Roche or LabCorp or CDC	4/30/20	0.973	1.100	1.037	1:235
Blood Bank 2 PCR+	155	Quest PCR	5/11/20	1.429	1.314	1.371	1:450
	156	Quest PCR	5/11/20	1.793	1.724	1.759	1:955
	157	Quest PCR	5/11/20	2.464	2.501	2.483	1:3899
	158	Roche	5/11/20	3.080	3.334	3.207	>12800
	159	PR ASEM PCR	5/11/20	2.906	3.206	3.056	1:11,885
	160	Quest PCR	5/11/20	1.916	1.879	1.897	1:1,250
	161	Quest PCR	5/11/20	2.746	3.170	2.958	1:9,817
	162	Roche	5/11/20	2.264	1.981	2.122	1:1936
	163	Roche	5/11/20	1.415	1.460	1.437	1:512
	164	Roche	5/11/20	2.694	2.513	2.604	1:4932
	165	Roche	5/11/20	2.199	2.194	2.196	1:2239
	166	Roche	5/11/20	1.715	1.851	1.783	1:1002
	167	Roche	5/11/20	1.796	1.800	1.798	1:1032

	170	VA Orlando, FL PCR	5/11/20	3.128	3.152	3.140	>12800
	171	Roche	5/11/20	2.468	2.487	2.477	1:3864
	173	PR Dept. of Health PCR	5/11/20	3.185	3.223	3.204	>12800
	176	VA San Juan PCR	5/11/20	2.484	2.541	2.512	1:4130
	177	PR Dept. of Health PCR	5/11/20	2.103	2.296	2.200	1:2254
	178	Quest PCR	5/11/20	1.621	1.521	1.571	1:664
	181	Roche	5/11/20	1.748	1.682	1.715	1:879
	182	Quest PCR	5/11/20	2.857	2.955	2.906	1:8872
	183	COVID-19 Ab Assay - Titer 2880 Mount Sinai	5/11/20	1.758	1.663	1.711	1:871
	184	Quest PCR	5/11/20	1.889	1.616	1.752	1:944
	185	Roche	5/11/20	1.362	1.497	1.430	1:505
PCR+ Local Laboratory	146	LabCorp	5/11/20	2.707	2.756	2.732	1:6324
	147	LabCorp	5/11/20	2.573	2.700	2.636	1:5260
Blood Bank 1 PCR+	148	Roche or LabCorp or CDC	5/11/20	2.480	2.019	2.250	1:2483
	149	Roche or LabCorp or CDC	5/11/20	2.052	2.131	2.092	1:1824
	150	Roche or LabCorp or CDC	5/11/20	0.925	0.848	0.886	1:175
	151	Roche or LabCorp or CDC	5/11/20	2.153	2.220	2.187	1:2193
	152	Roche or LabCorp or CDC	5/11/20	1.316	1.073	1.195	1:319
	153	Roche or LabCorp or CDC	5/11/20	2.365	2.155	2.260	1:2529
	154	Roche or LabCorp or CDC	5/11/20	0.984	0.990	0.987	1:213

Estimated titer was calculated , using the lineal equation (Y= 1.185*X -1.773) derived from the lineal correlation between antibody titer and the magnitude of absorbance values.

32

33

34

Supplementary Table 2. Sera from subjects with non-SARS-CoV-2 infection used for CovIgG-Assay validation. Each result represent the absorbance measurement at 492nm.

Sample Source	Numeric ID	Immunological status	Sample Testing Date	OD1	OD2	Average OD
Virology Serum Bank	VB1	Healthy Subjects	5/23/95	0.028	0.027	0.027
	VB2		12/7/95	0.211	0.194	0.202
	VB3		2/10/97	0.082	0.087	0.085
	VB4		5/25/97	0.054	0.053	0.054
	VB5		2/17/06	0.041	0.054	0.047
	VB6		6/28/16	0.054	0.059	0.056
	VB7		4/10/17	0.092	0.106	0.099
	VB8		8/15/16	0.067	0.102	0.084
	VB9		8/15/16	0.310	0.225	0.268
	VB10		6/27/17	0.075	0.058	0.067
	VB11		1/10/17	0.023	0.000	0.011
	VB12		4/28/17	0.076	0.061	0.068
	VB13		6/26/18	0.330	0.294	0.312
	VB14		6/26/18	0.025	0.025	0.025
	VB15		6/28/18	0.036	0.030	0.033
	VB16		9/8/00	0.040	0.050	0.045
	VB17		5/8/19	0.026	0.033	0.029
	VB18		6/6/19	0.069	0.077	0.073
Immunology Bank	IB95	Healthy Subjects	2012	0.087	0.094	0.090
	IB96		2012	0.042	0.050	0.046
	IB97		2012	0.081	0.076	0.078
	IB100		2012	0.032	0.031	0.032
	IB144		2012	0.100	0.100	0.100
	IB145		2012	0.048	0.036	0.042
	IB146		2012	0.072	0.067	0.069
	IB147		2012	0.035	0.038	0.036
	IB148		2012	0.028	0.031	0.029
	IB149		2012	0.043	0.049	0.046
	IB135		2012	0.044	0.044	0.044
	IB136		2012	0.112	0.095	0.103
	IB137		2012	0.024	0.027	0.025
	IB138		2012	0.023	0.034	0.029
	IB139		2012	0.028	0.027	0.027
	IB140		2012	0.107	0.106	0.106
	IB141		2012	0.033	0.025	0.029

	IB142		2012	0.049	0.040	0.044
	IB143		2012	0.041	0.040	0.040
	IM		2012	0.032	0.029	0.030
	AO		2012	0.096	0.090	0.093
	OF		2012	0.075	0.069	0.072
	VB83		2012	0.064	0.060	0.062
	IB37		2012	0.069	0.078	0.074
	IB58		2012	0.055	0.059	0.057
	IB86		2012	0.016	0.015	0.015
	IB84		2012	0.014	0.016	0.015
Virology Serum Bank	RB	ZIKV +	2016	0.084	0.082	0.083
	FM		2016	0.019	0.024	0.021
	VB82		2016	0.083	0.088	0.085
	JN		8/11/16	0.076	0.054	0.065
	JR		8/15/16	0.157	0.157	0.157
	EXP		4/1/17	0.040	0.015	0.028
Immunology Bank	IB133	Healthy Subjects	2012	0.029	0.004	0.017
	IB130		2012	0.073	0.061	0.067
	IB131		2012	0.024	0.025	0.024
	IB132		2012	0.253	0.251	0.252
Immunology Bank	IB1	Resp. Allergies	2012	0.081	0.084	0.083
	IB2		2012	0.044	0.048	0.046
	IB3		2012	0.048	0.049	0.049
	IB4		2012	0.055	0.123	0.089
	IB5		2012	0.127	0.061	0.094
	IB6		2012	0.050	0.050	0.050
	IB7		2012	0.103	0.107	0.105
	IB8		2012	0.081	0.080	0.081
	IB9		2012	0.090	0.095	0.093
	IB10		2012	0.003	0.045	0.024
	IB11		2012	0.255	0.128	0.192
	IB12		2012	0.065	0.064	0.065
	IB13		2012	0.058	0.317	0.188
Immunology Bank	BVF		2012	0.052	0.059	0.056
	VA		2012	0.058	0.064	0.061
	JJF		2012	0.070	0.075	0.073
	IB53		2012	0.067	0.062	0.065
	IB54		2012	0.058	0.059	0.059
	IB55		2012	0.049	0.050	0.050

Healthy Subjects	IB56		2012	0.180	0.158	0.169
	IB64		2012	0.095	0.082	0.089
	IB65		2012	0.051	0.062	0.057
	IB66		2012	0.065	0.066	0.066
	IB74		2012	0.062	0.063	0.063
	IB75		2012	0.113	0.112	0.113
	IB77		2012	0.063	0.062	0.063
	IB78		2012	0.132	0.146	0.139
	IB79		2012	0.137	0.121	0.129
	IB80		2012	0.108	0.103	0.106
	IB81		2012	0.089	0.093	0.091
	IB83		2012	0.121	0.118	0.120
	IB84		2012	0.106	0.102	0.104
	IB85		2012	0.059	0.055	0.057
	IB86		2012	0.066	0.067	0.067
	IB89		2012	0.064	0.062	0.063
	IB90		2012	0.100	0.139	0.120
	IB22		2012	0.066	0.063	0.065
	IB23		2012	0.068	0.068	0.068
	IB35		2012	0.063	0.061	0.062
	IB69		2012	0.069	0.068	0.069
	IB82		2012	0.059	0.060	0.060
CDC*	CDC233	DENV+	4/28/20	0.013	0.013	0.013
	CDC255	DENV+	4/28/20	0.010	0.009	0.010
	CDC269	DENV+	4/28/20	0.014	0.006	0.010
	CDC713	DENV+	4/28/20	0.052	0.050	0.051
	CDC736	DENV+	4/28/20	0.082	0.080	0.081
	CDC315	ZIKV +	4/28/20	0.058	0.052	0.055
	CDC324	ZIKV +	4/28/20	0.017	0.024	0.021
	CDC432	ZIKV +	4/28/20	0.011	0.012	0.011
	CDC493	ZIKV +	4/28/20	0.075	0.064	0.069
	CDC518	ZIKV +	4/28/20	0.055	0.062	0.059
	CDC101	Influenza A+	4/28/20	0.011	0.018	0.014
	CDC102	Influenza A+	4/28/20	0.023	0.023	0.023
	CDC103	Influenza A+	4/28/20	0.042	0.045	0.044
	CDC104	Influenza A+	4/28/20	0.015	0.020	0.017
	CDC105	Influenza B+	4/28/20	0.064	0.064	0.064
	CDC106	Influenza B+	4/28/20	0.257	0.255	0.256
	CDC107	Influenza B+	4/28/20	0.077	0.137	0.107

	CDC108	Influenza B+	4/28/20	0.035	0.036	0.035
	CDC109	Influenza B+	4/28/20	0.014	0.017	0.015
	CDC110	Influenza B+	4/28/20	0.080	0.022	0.051
	CDC111	Influenza B+	4/28/20	0.093	0.101	0.097
	CDC112	Influenza B+	4/28/20	0.058	0.063	0.060
	CDC113	RSV	4/28/20	0.058	0.070	0.064
	CDC114	RSV	4/28/20	0.036	0.034	0.035
	CDC115	RSV	4/28/20	0.050	0.050	0.050
	CDC116	RSV	4/28/20	0.022	0.025	0.024
	CDC117	RSV	4/28/20	0.098	0.101	0.100
	CDC118	RSV	4/28/20	0.036	0.037	0.037
	1		4/26/17	0.061	0.069	0.065
	3	FluA H1N1+	6/26/18	0.039	0.041	0.040
Virology Serum Bank	5	DENV +	10/11/17	0.092	0.078	0.085
	7	DENV +	8/17/14	0.024	0.029	0.026
	9	DENV +	6/24/16	0.060	0.062	0.061
	29	ZIKV +	6/29/16	0.027	0.022	0.024
	VB83	ZIKV +	2016	0.014	0.009	0.012
	VB84	ZIKV +	2016	0.012	0.016	0.014
Mycoplasma IgGM+	107	Mycoplasma IgGM+	4/28/20	0.0289	0.0309	0.0299
	123		4/28/20	0.0472	0.0456	0.0464
	124		4/28/20	0.0313	0.0331	0.0322
	125		4/28/20	0.1966	0.1743	0.1854
	126		4/28/20	0.0499	0.0554	0.0526
	127		4/28/20	0.0641	0.0804	0.0722
	128		4/28/20	0.0516	0.0536	0.0526
	129		4/28/20	0.0286	0.0402	0.0344
	130		4/28/20	0.0323	0.0315	0.0319
	131		4/28/20	0.0631	0.0738	0.0684
Virology Serum Bank	119	Chikungunya +	5/4/20	0.0067	0.0445	0.0256
	20		4/15/20	0.1159	0.0982	0.1070
	118		5/4/20	0.0184	0.0281	0.0232

* All these samples were collected prior to December 2019 in Puerto Rico. The data showed is the date in the panel of those samples was assembled at CDC Dengue Branch in support this study.

36 **Supplementary Table-3. Reproducibility of CovIgG-Assay**

37

Sample	N	Mean A_{492}	Repeatability			
			(Within-Run)	Within-Laboratory ^a		
		SD	% CV	SD	% CV	
NC	30	0.022	0.021	N/A ^b	0.0026	N/A ^b
HPC	30	2.476	0.211	8.52	0.219	8.84
NS-1	6	0.049	0.011	N/A ^b	0.014	N/A ^b
NS-2	6	0.043	0.016	N/A ^b	0.032	N/A ^b
NS-3	6	0.042	0.024	N/A ^b	0.035	N/A ^b
NS-4	6	0.062	0.005	N/A ^b	0.006	N/A ^b
PS-1	6	2.085	0.011	0.527	0.075	3.59
PS-2	6	2.37	0.05	2.109	0.012	0.506
PS-3	6	2.235	0.015	0.671	0.15	6.71
PS-4	6	3.17	0.057	1.79	0.28	8.83

38 ^aIncludes repeatability (Within-run), between-run and between-day variability

39 ^bNot applicable

40 HPC: High positive control, NS: Negative serum, PC: Positive serum

41 NC: Negative control

42

43

44
45
46
47

Supplementary Table-4. Samples titrated for establishing lineal correlation between OD (1:100) and antibody titer.

Sample No.	Numeric ID	Test Date	Dilution	OD1	OD2	Odx	Titer		
1	34	4/28/20	100	0.4869	0.5379	0.512	1:100		
			200	0.2833	0.2530	0.268			
			400	0.1394	0.1448	0.142			
			800	0.0960	0.0914	0.094			
			1600	0.0631	0.0628	0.063			
			3200	0.0529	0.0526	0.053			
			6400	0.0481	0.0496	0.049			
			12800	0.0453	0.0448	0.045			
2	47	6/26/20	100	0.3188	0.3332	0.326	1:100		
			200	0.1033	0.0950	0.099			
			400	0.0290	0.0295	0.029			
			800	0.0128	0.0109	0.012			
			1600						
			3200						
			6400						
			12800						
3	58	6/26/20	100	0.5478	0.5276	0.538	1:100		
			200	0.2545	0.2686	0.262			
			400	0.1369	0.1376	0.137			
			800	0.0612	0.0705	0.066			
			1600						
			3200						
			6400						
			12800						
4	201	6/26/20	100	0.3051	0.3363	0.321	1:100		
			200	0.1579	0.1481	0.153			
			400	0.0757	0.0731	0.074			
			800	0.0255	0.0269	0.026			
			1600						
			3200						
			6400						
			12800						
5	216	6/26/20	100	0.3333	0.3473	0.340	1:100		
			200	0.1503	0.1605	0.155			
			400	0.0795	0.0819	0.081			
			800	0.0455	0.0474	0.046			
			1600						
			3200						
			6400						
			12800						
			100	0.5076	0.5395	0.524			
			200	0.2410	0.2394	0.240			

6	172	6/26/20	400	0.1042	0.1080	0.106	1:100
			800	0.0514	0.0473	0.049	
			1600				
			3200				
			6400				
			12800				
7	104	4/28/20	100	0.9717	0.9752	0.973	1:200
			200	0.5333	0.5404	0.537	
			400	0.2533	0.2778	0.266	
			800	0.1348	0.1434	0.139	
			1600	0.0486	0.0608	0.055	
			3200	0.0306	0.0301	0.030	
			6400	0.0150	0.0176	0.016	
			12800	0.0060	0.0104	0.008	
8	106	4/28/20	100	0.7967	0.8761	0.836	1:200
			200	0.4181	0.4621	0.440	
			400	0.1768	0.2351	0.206	
			800	0.0998	0.1105	0.105	
			1600	0.0460	0.0363	0.041	
			3200	0.0271	0.0292	0.028	
			6400	0.0114	0.0140	0.013	
			12800	0.0071	0.0115	0.009	
9	54	4/28/20	100	0.9500	1.1300	1.040	1:200
			200	0.6640	0.6885	0.676	
			400	0.2636	0.3388	0.301	
			800	0.1524	0.1567	0.155	
			1600	0.0846	0.0782	0.081	
			3200	0.0638	0.0637	0.064	
			6400	0.0504	0.0525	0.051	
			12800	0.0505	0.0449	0.048	
10	134	5/2/20	100	0.9500	1.1300	1.040	1:200
			200	0.6640	0.6885	0.676	
			400	0.2636	0.3388	0.301	
			800	0.1524	0.1567	0.155	
			1600	0.0846	0.0782	0.081	
			3200	0.0638	0.0637	0.064	
			6400	0.0504	0.0525	0.051	
			12800	0.0505	0.0449	0.048	
11	137	5/2/20	100	0.9732	1.0999	1.037	1:200
			200	0.6146	0.5656	0.590	
			400	0.2925	0.2601	0.276	
			800	0.1270	0.1434	0.135	
			1600	0.0675	0.0601	0.064	
			3200	0.0264	0.0289	0.028	
			6400	0.0168	0.0126	0.015	
			12800	0.0076	0.0075	0.008	
			100	0.9245	0.8482	0.886	
			200	0.4733	0.4452	0.459	
			400	0.2409	0.2095	0.225	

12	150	5/12/20	800	0.1094	0.0997	0.105	1:200
			1600	0.0532	0.0460	0.050	
			3200	0.0207	0.0185	0.020	
			6400	0.0085	0.0089	0.009	
			12800	0.0079	-0.0001	0.004	
13	154	5/12/20	100	0.9835	0.9899	0.987	1:200
			200	0.5533	0.5347	0.544	
			400	0.2375	0.2643	0.251	
			800	0.1069	0.1334	0.120	
			1600	0.0507	0.0538	0.052	
			3200	0.0234	0.0252	0.024	
			6400	0.0109	0.0164	0.014	
			12800	0.0071	0.0044	0.006	
			100	0.6982	0.6759	0.687	
14	216	6/24/20	200	0.3516	0.3389	0.345	1:200
			400	0.1579	0.1615	0.160	
			800	0.0650	0.0718	0.068	
			1600	0.0301	0.0303	0.030	
			3200	0.0073	0.0117	0.010	
			6400	-0.0029	0.0011	-0.001	
			12800	0.0039	0.0003	0.002	
			100	1.1191	1.1038	1.111	
			200	0.5989	0.6113	0.605	
15	49	6/26/20	400	0.3058	0.3080	0.307	1:200
			800	0.1876	0.1522	0.170	
			1600				
			3200				
			6400				
			12800				
			100	1.0007	1.0650	1.033	
			200	0.4657	0.5784	0.522	
			400	0.2586	0.2404	0.249	
16	59	6/26/20	800	0.1159	0.1044	0.110	1:200
			1600				
			3200				
			6400				
			12800				
			100	1.2787	1.0590	1.169	
			200	0.7156	0.6355	0.676	
			400	0.3584	0.3298	0.344	
			800	0.1805	0.1539	0.167	
17	36	4/28/20	1600	0.0942	0.0690	0.082	1:400
			3200	0.0631	0.0562	0.060	
			6400	0.0505	0.0469	0.049	
			12800	0.0470	0.0452	0.046	
			100	1.1632	0.9980	1.081	
			200	0.7341	0.7633	0.749	
			400	0.3873	0.4138	0.401	
			800	0.1791	0.2104	0.195	
18	133	5/2/20					1:400

			1600	0.0881	0.1002	0.094	
			3200	0.0371	0.0465	0.042	
			6400	0.0213	0.0236	0.022	
			12800	0.0119	0.0145	0.013	
19	149	5/15/20	100	2.0521	2.1313	2.092	1:800
			200	1.2680	1.2933	1.281	
			400	0.7667	0.7253	0.746	
			800	0.3935	0.3880	0.391	
			1600	0.2208	0.1876	0.204	
			3200	0.0976	0.0972	0.097	
			6400	0.0451	0.0396	0.042	
			12800	0.0220	0.0144	0.018	
20	152	5/12/20	100	1.3163	1.0732	1.195	1:400
			200	0.7488	0.7716	0.760	
			400	0.3602	0.3523	0.356	
			800	0.1927	0.1857	0.189	
			1600	0.0999	0.0860	0.093	
			3200	0.0404	0.0424	0.041	
			6400	0.0209	0.0195	0.020	
			12800	0.0132	0.0124	0.013	
21	163	6/24/20	100	1.4934	1.5267	1.510	1:400
			200	0.7820	0.8445	0.813	
			400	0.3944	0.3925	0.393	
			800	0.1904	0.1869	0.189	
			1600	0.0931	0.0841	0.089	
			3200	0.0402	0.0415	0.041	
			6400	0.0186	0.0174	0.018	
			12800	0.0114	0.0124	0.012	
22	62	6/26/20	100	1.1285	0.9897	1.059	1:400
			200	0.6192	0.6303	0.625	
			400	0.3311	0.3188	0.325	
			800	0.1542	0.1757	0.165	
			1600				
			3200				
			6400				
			12800				
23	63	6/26/20	100	1.5425	1.4930	1.518	1:400
			200	0.8156	0.8586	0.837	
			400	0.4495	0.4619	0.456	
			800	0.2100	0.2269	0.218	
			1600				
			3200				
			6400				
			12800				
24	42	6/26/20	100	0.8688	0.7354	0.802	1:200
			200	0.4387	0.4302	0.434	
			400	0.2134	0.2007	0.207	
			800	0.0999	0.1000	0.100	
			1600				

			3200				
			6400				
			12800				
			100	2.0222	2.0052	2.014	
			200	1.8618	1.6005	1.731	
			400	1.4337	1.5597	1.497	
			800	1.0007	1.0090	1.005	
25	120	5/2/20	1600	0.5712	0.5883	0.580	1:1,600
			3200	0.2744	0.2653	0.270	
			6400	0.1360	0.1439	0.140	
			12800	0.0781	0.0803	0.079	
			100	1.9911	1.9703	1.981	
26	122	5/2/20	200	1.8679	1.7005	1.784	1:1,600
			400	1.3115	1.2880	1.300	
			800	0.8457	0.9002	0.873	
			1600	0.4816	0.4654	0.474	
			3200	0.2219	0.2303	0.226	
			6400	0.1239	0.1290	0.126	
			12800	0.0627	0.0660	0.064	
27	135	5/2/20	100	1.9532	2.0085	1.981	1:1,600
			200	1.6756	1.6682	1.672	
			400	1.1874	1.1280	1.158	
			800	0.7737	0.7315	0.753	
			1600	0.3755	0.3583	0.367	
			3200	0.1864	0.1863	0.186	
			6400	0.0877	0.0890	0.088	
			12800	0.0511	0.0466	0.049	
28	38	5/6/20	100	2.3136	2.4567	2.385	1:1,600
			200	1.6694	1.7264	1.698	
			400	1.1548	1.1688	1.162	
			800	0.6065	0.7014	0.654	
			1600	0.3298	0.3129	0.321	
			3200	0.1599	0.1609	0.160	
			6400	0.0730	0.0802	0.077	
			12800	0.0398	0.0390	0.039	
29	39	5/7/20	100	2.3385	2.3616	2.350	1:1,600
			200	2.0048	1.9391	1.972	
			400	1.2542	1.3920	1.323	
			800	0.9147	0.9688	0.942	
			1600	0.4241	0.4908	0.457	
			3200	0.2482	0.2410	0.245	
			6400	0.0588	0.1070	0.083	
			12800	0.0560	0.0473	0.052	
30	151	5/12/20	100	2.1525	2.2204	2.186	1:1,600
			200	1.7488	1.7520	1.750	
			400	1.2940	1.2440	1.269	
			800	0.7536	0.7430	0.748	
			1600	0.3648	0.4260	0.395	
			3200	0.2118	0.2133	0.213	

			6400	0.1127	0.1025	0.108	
			12800	0.0622	0.0588	0.061	
31	102	4/28/20	100	2.5331	2.5908	2.562	1:3,200
			200	2.2574	2.3355	2.296	
			400	1.8572	1.8475	1.852	
			800	1.3643	1.2219	1.293	
			1600	0.7555	0.7154	0.735	
			3200	0.3826	0.3698	0.376	
			6400	0.2024	0.1752	0.189	
			12800	0.1045	0.1046	0.105	
			100	2.4223	2.4874	2.455	
32	105	4/28/20	200	2.2955	2.3155	2.305	1:3,200
			400	1.8623	1.8930	1.878	
			800	1.3086	1.2429	1.276	
			1600	0.7716	0.7072	0.739	
			3200	0.3724	0.3818	0.377	
			6400	0.1674	0.2172	0.192	
			12800	0.1049	0.0913	0.098	
			100	2.1529	2.1981	2.176	1:3,200
			200	2.1780	2.3296	2.254	
33	132	5/2/20	400	1.8968	1.4301	1.663	
			800	1.4837	1.5024	1.493	
			1600	0.8612	0.7826	0.822	
			3200	0.5374	0.4550	0.496	
			6400	0.2470	0.2643	0.256	
			12800	0.1507	0.1283	0.140	
			100	2.7072	2.7559	2.732	1:1,600
			200	1.9902	2.0991	2.045	
			400	1.5837	1.4940	1.539	
34	146	5/15/20	800	1.1582	1.0425	1.100	1:1,600
			1600	0.6085	0.5643	0.586	
			3200	0.3054	0.3015	0.303	
			6400	0.1436	0.1585	0.151	
			12800	0.0849	0.0918	0.088	
			100	2.5725	2.7002	2.636	
			200	2.1213	2.4363	2.279	
			400	1.9729	2.1135	2.043	
			800	1.4755	1.5723	1.524	
35	147	5/12/20	1600	1.0330	0.9994	1.016	1:3,200
			3200	0.5196	0.5754	0.547	
			6400	0.2717	0.2903	0.281	
			12800	0.1414	0.1443	0.143	
			100	2.3651	2.1547	2.260	1:3,200
			200	2.0569	2.1836	2.120	
			400	1.4118	1.4230	1.417	
			800	1.0265	0.8761	0.951	
			1600	0.6102	0.5617	0.586	
36	153	5/12/20	3200	0.3374	0.3209	0.329	1:3,200
			6400	0.1781	0.1888	0.183	

			12800	0.0959	0.0925	0.094	
37	40	4/28/20	100	3.0662	3.0520	3.059	1:6,400
			200	2.5939	2.5867	2.590	
			400	2.3322	2.0433	2.188	
			800	1.8097	1.7007	1.755	
			1600	0.8596	0.9741	0.917	
			3200	0.6036	0.6416	0.623	
			6400	0.3190	0.3377	0.328	
			12800	0.2060	0.2043	0.205	
			100	2.3896	2.3548	2.372	
38	121	5/2/20	200	2.3850	2.3421	2.364	1:6,400
			400	2.1573	2.1270	2.142	
			800	1.7675	1.9848	1.876	
			1600	1.4231	1.3634	1.393	
			3200	0.8557	0.8547	0.855	
			6400	0.4810	0.4662	0.474	
			12800	0.2406	0.2418	0.241	
			100	3.2099	3.0455	3.128	>1:12,800
			200	3.0308	2.9626	2.997	
39	33	5/6/20	400	2.8015	2.6544	2.728	
			800	2.4501	2.4730	2.462	
			1600	1.6862	1.7521	1.719	
			3200	1.0987	1.1226	1.111	
			6400	0.5937	0.6122	0.603	
			12800	0.3338	0.3550	0.344	
			100	2.8849	2.8177	2.851	>1:12,800
			200	2.8338	2.7436	2.789	
			400	2.4554	2.5898	2.523	
40	143	5/7/20	800	2.3795	2.3766	2.378	
			1600	2.0173	1.9755	1.996	
			3200	1.4074	1.4552	1.431	
			6400	0.9191	0.9061	0.913	
			12800	0.5609	0.5505	0.556	