

1 **Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking**
2 **membrane fusion**

3
4 Ruochen Zang^{1,2}, James Brett Case³, Maria Florencia Gomez Castro¹, Zhuoming Liu¹,
5 Qiru Zeng¹, Haiyan Zhao⁴, Juhee Son^{1,5}, Paul W. Rothlauf^{1,6}, Gaopeng Hou¹, Sayantan
6 Bose⁷, Xin Wang², Michael D. Vahey⁸, Tomas Kirchhausen⁹, Daved H. Fremont⁴, Michael
7 S. Diamond^{1,3,4}, Sean P.J. Whelan¹, Siyuan Ding¹

8
9 ¹Department of Molecular Microbiology, Washington University School of Medicine, St.
10 Louis, MO, USA. ²Key Laboratory of Marine Drugs, Ministry of Education, Ocean
11 University of China, Qingdao, China. ³Department of Medicine, Division of Infectious
12 Diseases, Washington University School of Medicine, St. Louis, MO, USA. ⁴Department
13 of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO,
14 USA. ⁵Program in Molecular Cell Biology, Washington University School of Medicine, St.
15 Louis, MO, USA. ⁶Program in Virology, Harvard Medical School, Boston, MA, USA.
16 ⁷Autonomous Therapeutics, Inc., New York, NY, USA. ⁸Department of Biomedical
17 Engineering, McKelvey School of Engineering, Washington University in St. Louis, St.
18 Louis, MO, USA. ⁹Program in Cellular and Molecular Medicine, Boston Children's Hospital
19 and Department of Cell Biology, Harvard Medical School, Boston, MA, USA.

20
21 Correspondence: Siyuan Ding, siyuan.ding@wustl.edu

22
23

24 **Abstract**

25 Cholesterol 25-hydroxylase (CH25H) is an interferon-stimulated gene (ISG) that shows
26 broad antiviral activities against a wide range of enveloped viruses. Here, using an ISG
27 screen against VSV-SARS-CoV and VSV-SARS-CoV-2 chimeric viruses, we identified
28 CH25H and its enzymatic product 25-hydroxycholesterol (25HC) as potent inhibitors of
29 virus replication. Mechanistically, internalized 25HC accumulates in the late endosomes
30 and blocks cholesterol export, thereby restricting SARS-CoV-2 spike protein catalyzed
31 membrane fusion. Our results highlight a unique antiviral mechanism of 25HC and
32 provide the molecular basis for its possible therapeutic development.

33

34 **Main Text**

35 The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the
36 etiological agent of coronavirus disease-2019 (COVID-19)^{1, 2}, has infected millions of
37 people worldwide and caused hundreds of thousands of deaths, with a case fatality rate
38 as high as 5%³. Currently, there are no FDA approved vaccines available. In most
39 instances, treatment is limited to supportive therapies to help alleviate symptoms.
40 Chloroquine phosphate, hydroxychloroquine sulfate, and a polymerase inhibitor
41 remdesivir represent the only drug products that the FDA has approved for emergency
42 use authorization⁴, and concern exists that monotherapy would rapidly result in the
43 emergence of resistance. There is a pressing need to identify effective antivirals as
44 countermeasures before safe and efficacious vaccines are developed and deployed.
45 Here, we sought to harness the host innate immune responses to inhibit SARS-CoV-2
46 replication. Interferons (IFNs) are a group of small, secreted proteins^{5, 6} that potently

47 suppress the replication of many viruses through the action of hundreds of IFN-stimulated
48 genes (ISGs)⁷. IFN and ISG levels are upregulated in SARS-CoV-2 infected cells and
49 lung tissues from COVID-19 patients^{8, 9}. Compared to SARS-CoV, SARS-CoV-2 appears
50 to be more sensitive to the antiviral activities of IFNs¹⁰. SARS-CoV-2 replication is
51 inhibited by IFN treatment in both immortalized and primary cells^{11, 12, 13}. While direct IFN
52 administration often results in adverse effects in humans^{14, 15}, a targeted approach of
53 activating the antiviral effects of specific ISGs holds promise.

54

55 To identify potential anti-coronavirus (CoV) ISG effector proteins that act at the entry or
56 egress stages of the virus replication cycle, we utilized replication-competent chimeric
57 vesicular stomatitis virus (VSV) eGFP reporter viruses decorated with either full length
58 SARS-CoV spike (S) protein or SARS-CoV-2 S in place of the native glycoprotein (G)¹⁶.
59 We also constructed a HEK293 cell line that stably expresses plasma membrane-
60 localized mCherry-tagged human ACE2, the SARS-CoV and SARS-CoV-2 receptor^{2, 17,}
61 ^{18, 19} (**Fig. S1A**). HEK293-hACE2 cells supported 100-fold more VSV-SARS-CoV-2
62 replication than wild-type HEK293 cells (**Fig. S1B-D**). We recently showed robust SARS-
63 CoV-2 infection of primary human intestinal enteroids²⁹. By RNA-sequencing of these
64 intestinal enteroid cultures, we identified the ISGs most highly and commonly induced by
65 type I IFN (IFN- β) and type III IFN (IFN- λ). We transduced HEK293-hACE2 stable cells
66 with lentiviruses encoding 57 of these individual ISGs and tested their ability to suppress
67 VSV-SARS-CoV and VSV-SARS-CoV-2 replication.

68

69 Ectopic expression of AXIN2, CH25H, EPSTI1, GBP5, IFIH1, IFITM2, IFITM3, and LY6E
70 resulted in a marked reduction (< 36%) in the infectivity of both viruses, indicated by the
71 number of GFP infected cells (**Fig. 1A, Dataset S1**). Among these genes, IFIH1 (also
72 known as MDA5) activates IFN signaling upon ectopic expression²⁰. LY6E and IFITMs
73 recently were reported to inhibit SARS-CoV-2^{21, 22} and thus served as positive controls
74 for our assay. We validated the top candidates in HEK293-hACE2 cells expressing
75 CH25H, IFITM1, IFITM2, or IFITM3 respectively (**Fig. S1E**). Consistent with our screen
76 results, the expression of IFITM2 or IFITM3 but not IFITM1 suppressed VSV-SARS-CoV-
77 2 infection as evident by a reduction in viral mRNA and protein levels (**Fig. 1B and S1F**).
78 CH25H was comparable to IFITM2 and blocked virus replication at 18 hours post infection
79 (hpi) (**Fig. 1B**).
80

81 *CH25H* encodes a cholesterol 25-hydroxylase²³ that catalyzes the formation of 25-
82 hydroxycholesterol (25HC) from cholesterol²³. In macrophages, 25HC is further
83 converted to 7- α , 25-dihydroxycholesterol (7- α , 25-OHC), an oxysterol that functions as
84 a chemoattractant for T cells and B cells²⁴. 25HC exhibits broad inhibitory activities
85 against enveloped viruses of different families^{25, 26}, including two porcine CoVs²⁷. Within
86 a single-cycle of replication (6 hpi), CH25H expression inhibited the replication of VSV-
87 SARS-CoV and VSV-SARS-CoV-2 viruses, as detected by measurement of eGFP
88 expression using flow cytometry (**Fig. 1C**). CH25H also weakly decreased wild-type VSV
89 replication (**Fig. 1C**), as previously reported²⁸. In contrast, rotavirus and adenovirus
90 replication were not affected (**Fig. 1D**). Unlike IFIH1, CH25H expression or 25HC
91 treatment did not induce type I or type III IFN expression (**Fig. S1G**). The replication of a

92 clinical isolate of SARS-CoV-2 also was suppressed in HEK293-hACE2 cells expressing
93 CH25H compared to control plasmid transfection (**Fig. 1E**).

94
95 Next, we tested whether the antiviral activity of CH25H depends on 25HC synthesis. As
96 compared to the control 7- α , 25-OHC, pre-treatment of HEK293-hACE2 cells with 25HC
97 for 1 hour prior to VSV-SARS-CoV-2 infection recapitulated the suppressive effect of
98 CH25H overexpression and reduced virus replication (**Fig. 2A**). 25HC dose-dependently
99 inhibited VSV-SARS-CoV-2 infection in MA104 cells, with an approximate EC₅₀ of 1.03
100 μ M (**Fig. 2B**). No cytotoxicity was observed at the highest concentration tested (30 μ M).
101 When plaque assays were performed in the presence of 25HC, there was a reduction in
102 both plaque numbers and sizes (**Fig. S2A-B**). Wild-type SARS-CoV-2 virus replication
103 also was inhibited by 25HC but not 7- α , 25-OHC treatment (**Fig. 2C**). Collectively, our
104 results suggest an antiviral activity of CH25H and its natural product 25HC in suppressing
105 SARS-CoV-2 virus infection.

106
107 During SARS-CoV-2 entry into host cells, S protein binding to ACE2 enables its cleavage
108 by membrane-bound TMPRSS serine proteases and subsequent fusion of the viral
109 membrane to the host cell membrane^{17, 29, 30}. Previous work suggests that trypsin
110 treatment or TMPRSS2 expression alleviates IFITM mediated restriction of SARS-CoV
111 and HCoV-229E entry^{31, 32}. Further, TMPRSS2 is abundantly expressed in human nasal
112 and intestinal epithelial cells^{30, 33}. Thus, we examined whether the presence of TMPRSS2
113 assists VSV-SARS-CoV-2 to overcome ISG restriction. TMPRSS2 expression enhanced
114 VSV-SARS-CoV and VSV-SARS-CoV-2 infection at 6 hpi (**Fig. S3A**), compared to control

115 HEK293-hACE2 cells (Fig. 1C). Unlike IFITM3, CH25H partially retained its antiviral
116 activity and led to reduced VSV-SARS-CoV-2 replication in TMPRSS2-expressing cells
117 (**Fig. 3A**). Similarly, wild-type SARS-CoV-2 replication was inhibited by CH25H and 25HC
118 in TMPRSS2 expressing cells (**Fig. 3B**).

119
120 We next examined the effect of 25HC on SARS-CoV S and SARS-CoV-2 S mediated
121 membrane fusion, since 25HC blocks cell fusion by Nipah F and VSV G proteins²⁸, which
122 are class I and class III viral fusion proteins respectively³⁴. We set up an *in vitro* cell-to-
123 cell fusion assay based on the expression of S, GFP, ACE2, and TMPRSS2 in HEK293
124 cells, independently of virus infection (**Fig. 3C**). CH25H expression substantially reduced
125 syncytia formation mediated by SARS-CoV-2 S (**Fig. 3C**). Although IFITM2 and IFITM3
126 inhibited VSV-SARS-CoV-2 replication (**Fig. 1A-B**), neither prevented S-mediated fusion
127 (**Fig. 3C**), suggesting a distinct mode of antiviral action. Compared to SARS-CoV-2 S,
128 SARS-CoV S induced weaker cell fusion as recently reported³⁵, and this process was
129 also blocked by CH25H expression (**Fig. 3C**). CH25H also inhibited the syncytia formation
130 induced by Western equine encephalitis virus glycoproteins (class II) and VSV-G (class
131 III) but not reovirus FAST p10 (class IV) fusion protein³⁶ (**Fig. 3D**). To mimic the virus-cell
132 membrane fusion, we co-transfected SARS-CoV-2 S and GFP into donor cells and mixed
133 at 1:1 ratio with ACE2+TMPRSS2+TdTomato co-transfected target cells. As expected,
134 we observed robust syncytia formation under mock conditions (**Fig. S3B**). CH25H
135 expression in ‘recipient’ cells almost completely abolished cell-cell fusion (**Fig. S3B**).
136 Exogenous 25HC treatment phenocopied CH25H expression and blocked SARS-CoV-2

137 S mediated syncytia formation (**Fig. S3B and 3E**). Similar to CH25H, 25HC failed to inhibit
138 reovirus FAST p10 mediated fusion (**Fig. S3C**).

139
140 To define the underlying antiviral mechanisms of the IFN-CH25H-25HC axis further, we
141 investigated whether 25HC acts on viral or host membranes. Pre-incubation of VSV-
142 SARS-CoV-2 with 10 μ M of 25HC for 20 minutes had no effect on infectivity, as opposed
143 to the pre-treatment of host cells (**Fig. S4A**). The timing of 25HC addition suggests it
144 primarily acted at the entry stage of VSV-SARS-CoV-2 replication (**Fig. S4B**). We
145 examined a series of early events and excluded possible effects of 25HC on: (i) ACE2
146 surface levels; (ii) S cleavage by TMPRSS2; (iii) lipid raft localization, stained by a
147 fluorophore-conjugated cholera toxin subunit B, (iv) plasma membrane fluidity, stained by
148 6-dodecanoyl-2-dimethylamino naphthalene (Laurdan)³⁷, (v) endosomal pH, and (vi) its
149 ability to directly bind to recombinant SARS-CoV-2 S protein (**Fig. S4C-D** and data not
150 shown).

151
152 23-(dipyrrometheneboron difluoride)-24-norcholesterol (TopFluor-cholesterol) and [4-
153 (dipyrrometheneboron difluoride) butanoyl]-25-hydroxycholesterol (C4 TopFluor-25HC)
154 are chemically fluorescently labeled cholesterol and 25HC derivatives that have been
155 used to study membrane incorporation and lipid metabolism³⁸. C4 TopFluor-25HC
156 retained its anti-VSV-SARS-CoV-2 activity (**Fig. S4E**) and blocked SARS-CoV-2 S
157 induced syncytia formation (**Fig. 4A**), enabling us to use it as a tool to probe the antiviral
158 mechanism of 25HC. After host cell uptake, C4 TopFluor-25HC exhibited punctate
159 patterns and partially co-localized with lysobisphosphatidic acid (LBPA) positive late

160 endosomes and LAMP1 positive lysosomes but not Rab4 positive early and recycling
161 endosomes (**Fig. 4B**). Thus, we hypothesized that SARS-CoV-2 depends on endosomal
162 trafficking to establish active replication. Consistent with this hypothesis, ectopic
163 expression of Rab5 and Rab7 dominant negative mutants but not the wild-type proteins
164 significantly decreased VSV-SARS-CoV-2 infection (**Fig. 4C and S4F**). However, Rab5
165 and Rab7 mutants did not have an additive effect with 25HC treatment (**Fig. 4C**), further
166 suggesting that 25HC may act at these endosomal vesicles. 25HC is capable of binding
167 Niemann-Pick C1 (NPC1) *in vitro*³⁹, responsible for the egress of cholesterol from the
168 endosomal/lysosomal compartment⁴⁰. 25HC treatment led to an accumulation of
169 intracellular TopFluor-cholesterol (**Fig. 4D**). 25HC failed to inhibit the replication of VSV-
170 SARS-CoV-2 in serum-free media, in which the infectivity was markedly enhanced (**Fig.**
171 **4E**). Itraconazole (ICZ), a small-molecule inhibitor of NPC1 that elevates endosomal
172 cholesterol levels⁴¹, mirrored 25HC and inhibited VSV-SARS-CoV-2 replication, more
173 potently than the furin inhibitor decanoyl-RVKR-CMK (**Fig. 4F**). The antiviral activity of
174 ICZ also depended on cholesterol and restricted VSV-SARS-CoV-2 in a cell-type
175 independent manner (**Fig. 4F-G**). In contrast to chloroquine and camostat, both of which
176 are antiviral but through different mechanisms, cholesterol-depleting agent methyl- β -
177 cyclodextrin⁴² reduced SARS-CoV-2 S mediated cell-cell fusion (**Fig. 4H**). Either ICZ or
178 25HC also efficiently reduced syncytia formation (**Fig. 4H**). Finally, ICZ suppressed the
179 replication of a recombinant SARS-CoV-2 virus that encodes a mNeon-Green reporter⁴³
180 in Vero-E6 cells (**Fig. 4I**). Collectively, our data support a model that 25HC inhibits SARS-
181 CoV-2 replication via enhancing endosomal cholesterol levels and blocking virus fusion.
182

183 The identification of ISGs against different virus families have provided invaluable insights
184 into both virus entry pathways and host innate immune system evolution^{44, 45, 46, 47}. To
185 date, few ISGs that restrict SARS-CoV replication have been identified: GILT⁴⁸, IFITMs³²,
186 and recently published LY6E^{21, 22}. Here, we present evidence that IFN-inducible *CH25H*
187 and its natural product 25HC restrict S mediated membrane fusion and block SARS-CoV-
188 2 entry into host cells. 25HC has shown broad antiviral activity against a wide range of
189 enveloped viruses^{26, 28, 49, 50}, and non-enveloped viruses such as reovirus⁵¹ and murine
190 norovirus⁵². However, there seems to be two modes of inhibitory mechanisms involved.
191 One requires a high micromolar concentration and more than 6 hours of pre-incubation
192 time to be effective, in the case of reovirus⁵¹, pseudorabies virus⁵³ and human
193 papillomavirus-16⁵⁴, suggesting an indirect metabolic/cellular pathway-mediated
194 mechanism, whereas the other, which includes influenza A virus²⁶, Lassa fever virus⁵⁵,
195 hepatitis C virus⁵⁶, and SARS-CoV-2 (**Fig. 2**), functions at a low micromolar/high
196 nanomolar range. Combined with the recent report that apilimod, a PIKfyve kinase
197 inhibitor, effectively inhibits SARS-CoV-2 infection⁵⁷, we confirm that this virus reaches
198 late endosomal compartment for membrane fusion and access to the cytosol, at least in
199 ACE2+TMPRSS2- cells. However, our data of endosomal cholesterol accumulation does
200 not explain how the virus-cell fusion at the plasma membrane driven by SARS-CoV-2 S
201 is effectively blocked by 25HC. A recent study demonstrates that 25HC treatment
202 depletes 'free' cholesterol from the plasma membrane and prevents Listeria
203 dissemination⁵⁸. Treatment of cells with 25HC results in reduced cell surface but
204 enhanced intracellular cholesterol levels (**Fig. 4D**). Therefore, it is plausible that 25HC
205 acts at more than one subcellular compartment and that redistribution of cholesterol leads

206 to the inhibition of membrane fusion. Our data also instruct potential drug combinations
207 of 25HC in conjunction with those targeting the cytoplasmic steps of the SARS-CoV-2
208 replication cycle such as its main protease^{59, 60} or polymerase⁶¹. Further *in vivo* studies in
209 animal models of SARS-CoV-2 infection and pathogenesis are required to establish the
210 physiological impact of 25-HC-based drugs or compounds that modulate antiviral
211 activities.

212

213 **Materials and Methods**

214

215 **Plasmids, Cells, Reagents, and Viruses**

216 **Plasmids:** Human ACE2 was cloned into pWPxld-DEST lentiviral vector with a C-terminal
217 mCherry tag. CH25H, IFIH1, IFITM1, IFITM2, IFITM3, LY6E were cloned into pLX304
218 lentiviral vector with a C-terminal V5 tag. TMPRSS2, TMPRSS4 plasmids were used as
219 previously described³⁰. GFP-tagged Rab5 and Rab7 constructs were used as reported⁶².
220 Codon-optimized SARS-CoV-2 S was a kind gift from Nevan Krogan at the University of
221 California, San Francisco⁶³. pCAGGS-SARS-CoV S was a kind gift of Paul Bates at the
222 University of Pennsylvania⁶⁴. pMIG-WEEV-IRES-GFP plasmid was generated by Z. Liu
223 in the Whelan laboratory at the Washington University School of Medicine. PM-GFP and
224 VSV-G plasmids were obtained from Addgene (#21213 and #12259, respectively).
225 pCAGGS-FAST-p10 from pteropine orthoreovirus was generated in the Kobayashi
226 laboratory⁶⁵. pEGFP-N1 and pCMV-TdTomato were obtained from Clontech.

227

228 **Cells:** Human embryonic kidney cell line HEK293 (CRL-1573) were originally obtained
229 from American Type Culture Collection (ATCC) and cultured in complete DMEM. Rhesus
230 kidney epithelial cell lines MA104 cells were cultured in complete M199 medium.
231 HEK293-hACE2-mCherry stable cell lines were cultured in DMEM with the addition of 5
232 µg/ml of blasticidin. HEK293 cells stably expressing ACE2 and TMPRSS2 were used as
233 previously described³⁰.

234

235 **Reagents:** 25HC, 7- α 25-OHC, methyl- β -cyclodextrin, furin inhibitor decanoyl-RVKR-
236 CMK, and trypsin were purchased from Sigma-Aldrich. C4 TopFluor- 25-HC and
237 TopFluor-cholesterol were purchased from Avanti Polar Lipids. 6-dodecanoyl-2-
238 dimethylaminonaphthalene (Laurdan, D250), cholera toxin subunit B (C34777), and
239 pHrodo™ AM Variety Pack (P35380) were purchased from Thermo Fisher. Itraconazole
240 and camostat were purchased from Selleck Chemicals. Chloroquine (tlrl-chq) was
241 purchased from Invivogen.

242

243 **Viruses:** Recombinant VSV-eGFP-SARS-CoV-2 was previously described¹⁶. VSV-
244 eGFP-SARS-CoV was constructed in a similar manner (from S. Bose and S. Whelan, to
245 be published separately). Adenovirus (serotype 5) and rotavirus (rhesus RRV strain) were
246 propagated and used as previously described⁶⁶. A clinical isolate of SARS-CoV-2 (2019-
247 nCoV/USA-WA1/2020 strain) was obtained from the Centers for Disease Control and
248 Prevention (gift of Natalie Thornburg). A mNeonGreen SARS-CoV-2 reporter virus was
249 used as previously reported⁴³. SARS-CoV-2 viruses were passaged in Vero CCL81 cells
250 and titrated by focus-forming assay on Vero-E6 cells. Plaque assays were performed in

251 MA104 cells seeded in 6-well plates using an adapted version of the rotavirus plaque
252 assay protocol⁶⁷. The plaque plates were scanned by Amersham Typhoon 5 (GE) and
253 diameters were measured by ImageJ (NIH).

254

255 **RNA extraction and quantitative PCR**

256 Total RNA was extracted from cells using RNeasy Mini kit (Qiagen) and reverse
257 transcription was performed with High Capacity RT kit and random hexamers as
258 previously described⁶⁸. Quantitive PCR was performed using the AriaMX (Agilent) with a
259 25 µl reaction, composed of 50 ng of cDNA, 12.5 µl of Power SYBR Green master mix or
260 Taqman master mix (Applied Biosystems), and 200 nM both forward and reverse primers.

261 All SYBR Green primers and Taqman probes used in this study are listed in **Table S1**.

262

263 **Flow cytometry**

264 HEK293-hACE2 or HEK293-hACE2-TMPRSS2 cells with or without CH25H expression
265 were inoculated with wild-type VSV-GFP, VSV-SARS-CoV, or VSV-SARS-CoV-2 at an
266 MOI = 10 (based on titers in Vero cells) for 1 hr at 37°C. At 6 hpi, cells were harvested
267 and fixed in 4% PFA. GFP positive cells were determined by BD LSRIFortessa™ X-20
268 cell analyzer and analyzed by FlowJo v10.6.2 (BD).

269

270 **Bright-field and immunofluorescence microscopy**

271 For brightfield and epifluorescence, cultured cells were imaged by REVOLVE4
272 microscope (ECHO) with a 10X objective. For confocal microscopy, samples in 8-well
273 chamber slides were fixed in 4% paraformaldehyde for 10 min at room temperature and

274 stained as previously described⁶⁹. Cells were permeabilized and stained with antibodies
275 against DAPI (P36962, Thermo Fisher), LAMP1 (9091S, Cell Signaling), LBPA
276 (MABT837, Sigma), and Rab4 (ab13252, Abcam). Stained cells were washed with PBS,
277 whole mounted with Antifade Mountant, and imaged with a Zeiss LSM880 Confocal
278 Microscope at the Molecular Microbiology imaging core facility at Washington University
279 in St. Louis. Images were visualized by Volocity v6.3 and quantification was determined
280 by ImageJ (NIH).

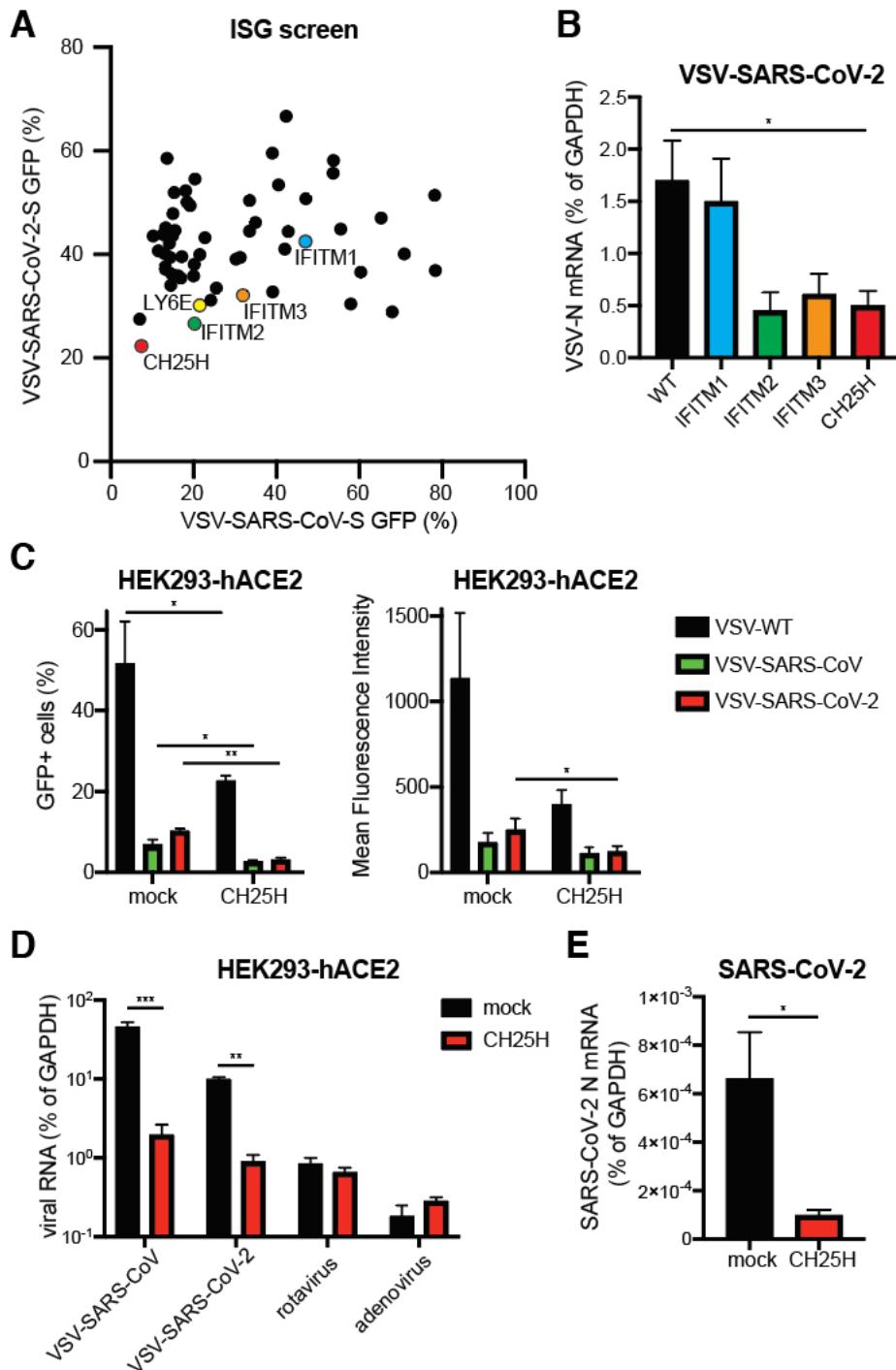
281

282 **Western blotting**

283 Cell lysates were harvested in RIPA buffer supplemented with protease inhibitor cocktail
284 and phosphatase inhibitor. Proteins were resolved in SDS-PAGE and analyzed by
285 antibody as described (45) using the following antibodies and dilutions: GAPDH (631402,
286 Biolegend), GFP (2555S, Cell Signaling), SARS-CoV-2 S1 (40590-T62, Sino Biological),
287 SARS-CoV-2 S2 (40592-T62, Sino Biological), and V5 (13202S, Cell Signaling).
288 Secondary antibodies were anti-rabbit (#7074, Cell Signaling) or anti-mouse (#7076, Cell
289 Signaling) immunoglobulin G horseradish peroxidase-linked antibodies. Protein bands
290 were visualized with Clarity ECL substrate and a Biorad Gel Doc XR system.

291

292 **Statistical Analysis**


293 All bar graphs were displayed as means \pm SEM. Statistical significance in data Fig. 1E,
294 3B, S1C, S1D, and S2B was calculated by Student's t test using Prism 8.4.2 (GraphPad).
295 Statistical significance in data Fig. 1B, 1C, 1D, 4C, S1G, and S4A was calculated by
296 pairwise ANOVA using Prism 8. Non-linear regression (curve fit) was performed to

297 calculate EC₅₀ values for Fig. 2B and 4I. All data were presented as asterisks (*p≤0.05;
298 **p≤0.01; ***p≤0.001). All experiments other than Fig. 1A were repeated at least three
299 times. Fig. 1A was performed twice with average numbers indicated on the graph. The
300 raw data is included in Dataset S1.

301
302

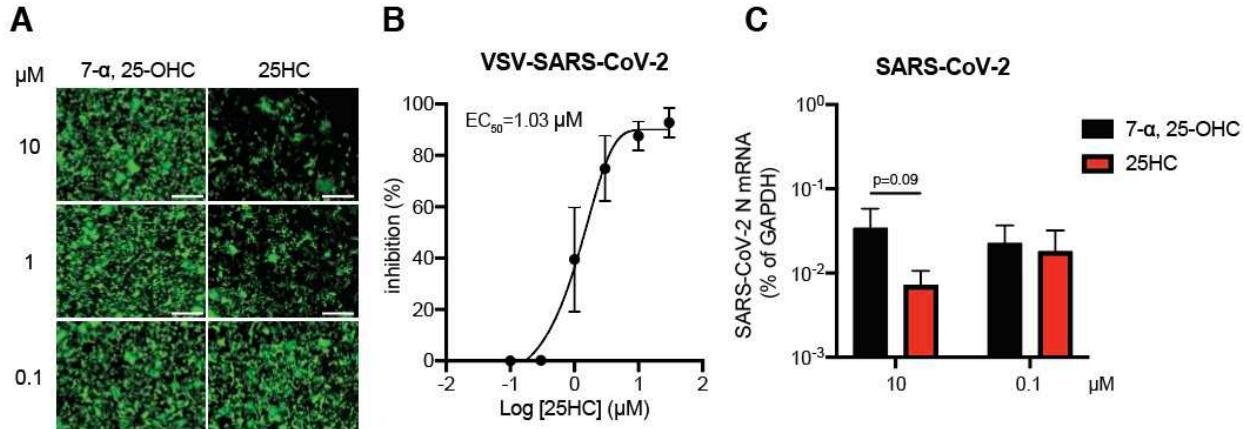
303 **Figures and Figure Legends**

Figure 1

305 **Fig. 1. ISG screen identifies CH25H as an antiviral host factor that restricts SARS-
306 CoV-2 infection**

307 (A) HEK293-hACE2-mCherry cells were transduced with lentiviral vectors encoding
308 individual ISGs for 72 hr and infected with VSV-SARS-CoV or VSV-SARS-CoV-2
309 (MOI=1) for 24 hr. The percentage of GFP⁺ cells were quantified and plotted.
310 (B) Wild-type (WT) HEK293-hACE2 cells or HEK293-hACE2 cells stably expressing
311 indicated ISGs were infected with VSV-SARS-CoV-2 (MOI=1). At 18 hpi, the
312 mRNA level of VSV N was measured by RT-qPCR and normalized to GAPDH
313 expression.
314 (C) HEK293-hACE2 cells with or without CH25H expression were infected with wild-
315 type VSV, VSV-SARS-CoV or VSV-SARS-CoV-2 (MOI=10) for 6 hr. Cells were
316 harvested and measured for GFP percentage and intensity by flow cytometry.
317 (D) HEK293-hACE2 cells with or without CH25H expression were infected with VSV-
318 SARS-CoV, VSV-SARS-CoV-2, rotavirus RRV strain, or adenovirus serotype 5
319 (MOI=3) for 24 hr. Viral RNA levels were measured by RT-qPCR and normalized
320 to GAPDH expression.
321 (E) HEK293-hACE2 cells with or without CH25H expression were infected with wild-
322 type SARS-CoV-2 (MOI=0.5). At 24 hpi, the mRNA level of SARS-CoV-2 N was
323 measured by RT-qPCR and normalized to GAPDH expression.
324 For all figures except A, experiments were repeated at least three times with
325 similar results. Fig. 1A was performed twice with average numbers indicated on
326 the graph. Raw data is listed in Dataset S1. Data are represented as mean ± SEM.

327 Statistical significance is from pooled data of the multiple independent experiments


328 (*p≤0.05; **p≤0.01; ***p≤0.001).

329

330

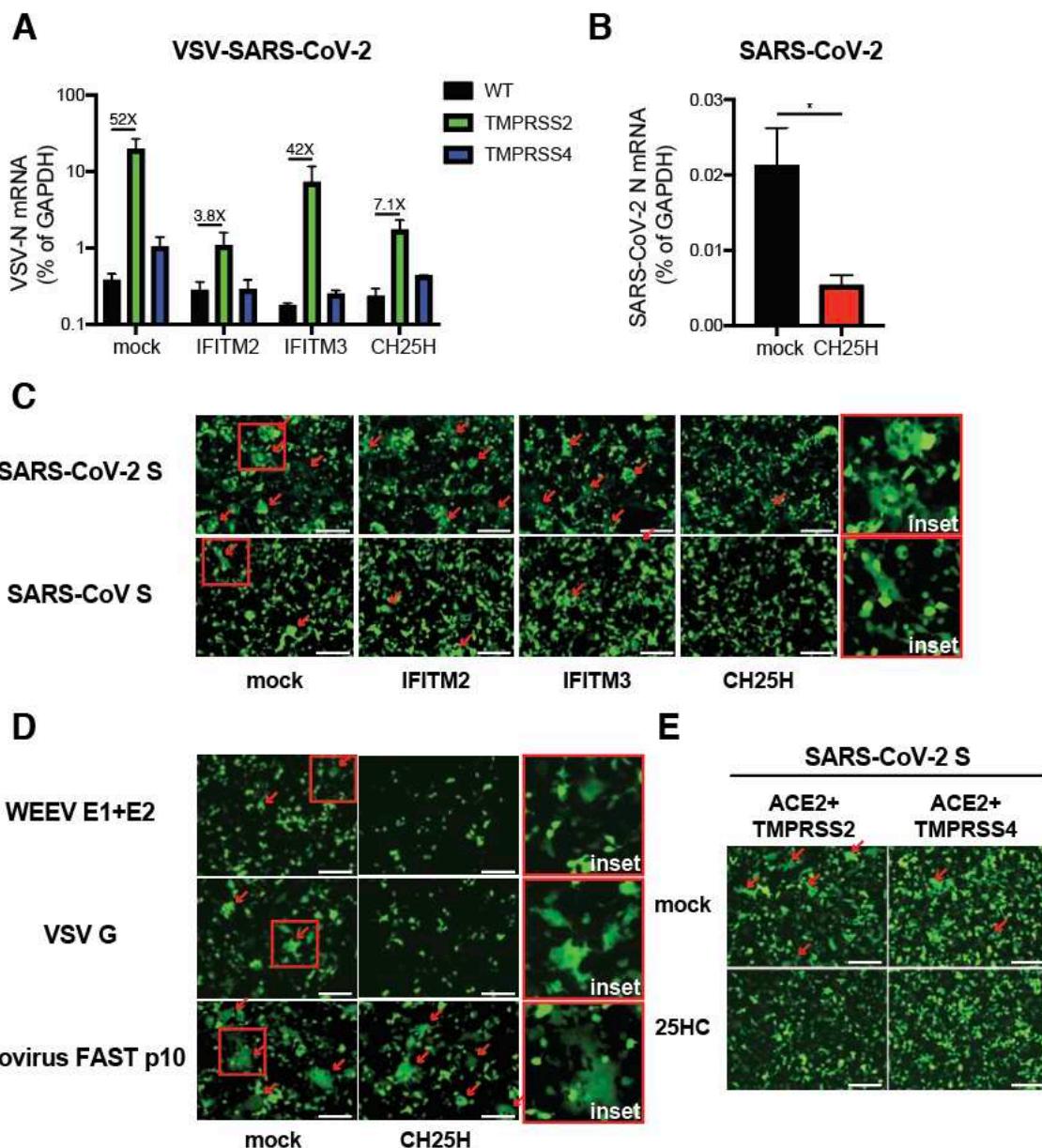
331

Figure 2

332

333 **Fig. 2. 25HC inhibits SARS-CoV-2 replication**

334 (A) HEK293-hACE2 cells were treated with 7- α , 25-OHC or 25HC at 0.1, 1, or 10 μM
335 for 1 hr and infected with VSV-SARS-CoV-2 (MOI=5). GFP signals were detected
336 at 24 hpi. Scale bar: 200 μm.


337 (B) MA104 cells were treated with 25HC at indicated concentrations for 1 hr and
338 infected with VSV-SARS-CoV-2 (MOI=0.1) for 24 hr. GFP signals were quantified
339 by ImageJ and plotted as percentage of inhibition.

340 (C) HEK293-hACE2 cells were treated with 7- α , 25-OHC or 25HC at 0.1 or 10 μM for
341 1 hr and infected with SARS-CoV-2 (MOI=0.5). At 24 hpi, the mRNA level of SARS-
342 CoV-2 N was measured by RT-qPCR and normalized to GAPDH expression.

343 For all figures, experiments were repeated at least three times with similar results.
344 Data are represented as mean \pm SEM. Statistical significance is from pooled data
345 of the multiple independent experiments.

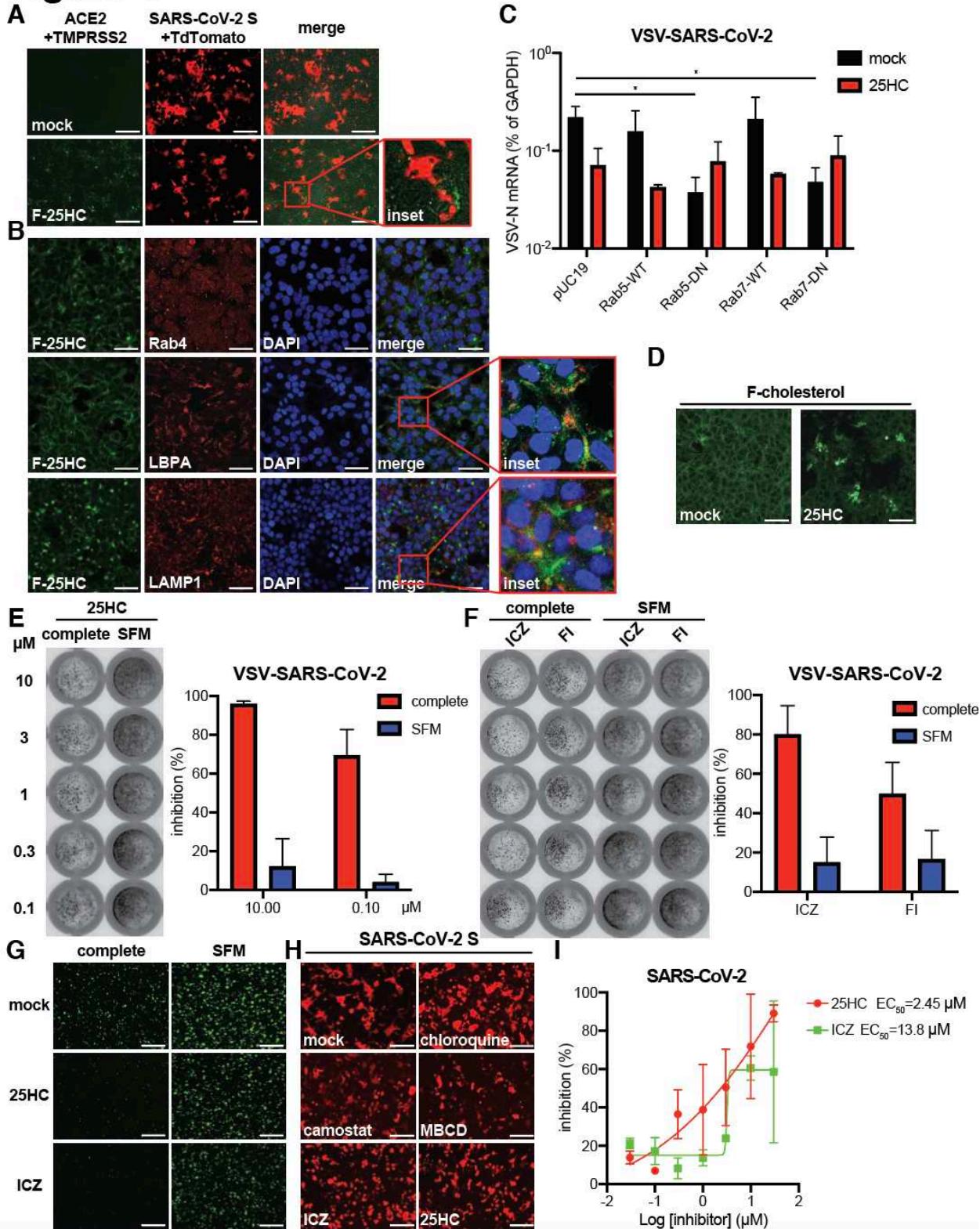
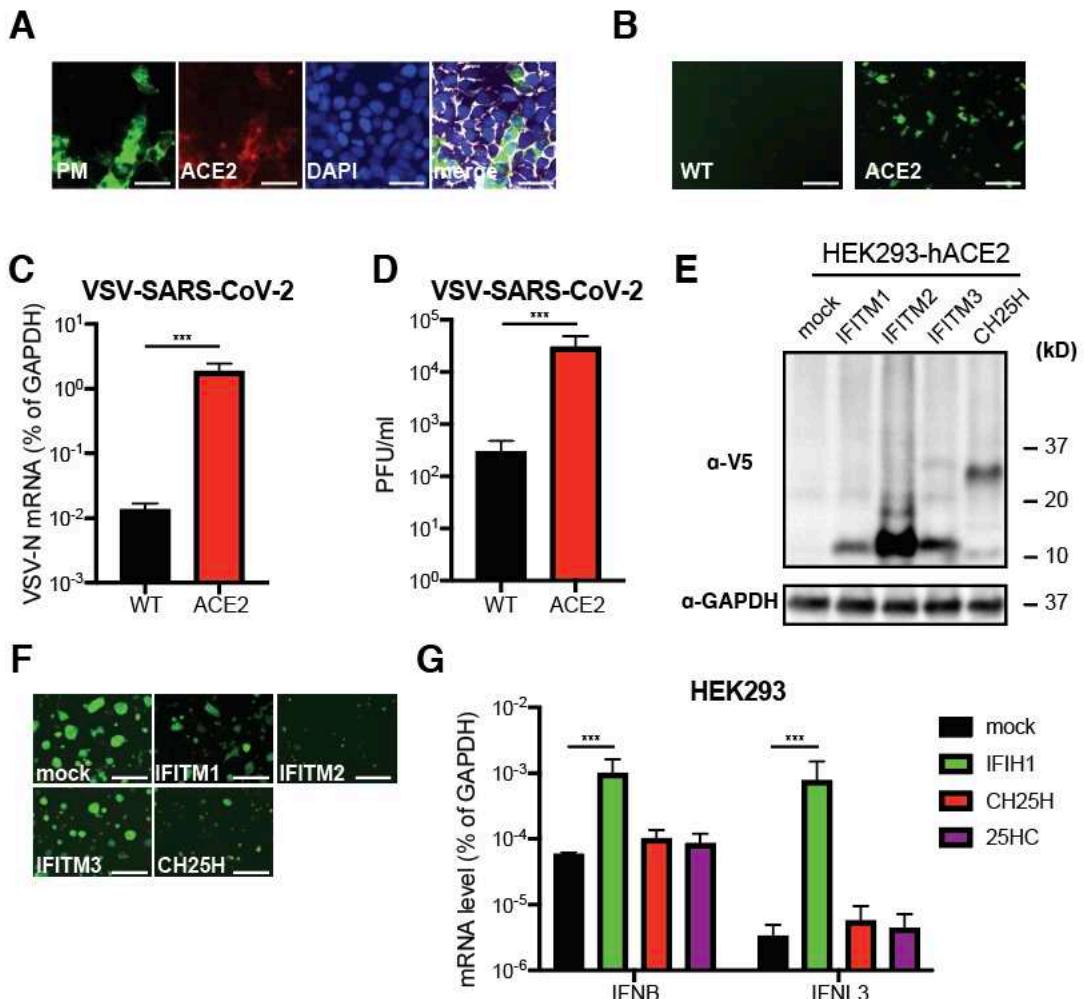

346

Figure 3

353 (B) HEK293-hACE2-TMPRSS2 cells with or without CH25H expression were infected
354 with wild-type SARS-CoV-2 (MOI=0.5). At 24 hpi, the mRNA level of SARS-CoV-
355 2 N was measured by RT-qPCR and normalized to GAPDH expression.
356 (C) HEK293-hACE2-TMPRSS2 cells were co-transfected with GFP, either SARS-CoV
357 S or SARS-CoV-2 S, and IFITM2, IFITM3, or CH25H for 24 hr. The red arrows
358 highlight the syncytia formation. Enlarged images of mock condition are highlighted
359 by red boxes and included as insets. Scale bar: 200 μ m.
360 (D) HEK293 cells were co-transfected with GFP, Western equine encephalomyelitis
361 virus (WEEV) E1 and E2, VSV G, or reovirus FAST p10, with or without CH25H
362 for 24 hr. The red arrows highlight the syncytia formation. Enlarged images of mock
363 condition are highlighted by red boxes and included as insets. Scale bar: 200 μ m.
364 (E) HEK293-hACE2 cells stably expressing TMPRSS2 or TMPRSS4 were co-
365 transfected with SARS-CoV-2 S and GFP with or without 25HC (10 μ M) for 24 hr.
366 The red arrows highlight the syncytia formation. Scale bar: 200 μ m.
367 For all figures, experiments were repeated at least three times with similar results.
368 Data are represented as mean \pm SEM. Statistical significance is from pooled data
369 of the multiple independent experiments (* $p\leq 0.05$; ** $p\leq 0.01$; *** $p\leq 0.001$).
370

Figure 4

371


372 **Fig. 4. 25HC inhibits endosomal cholesterol export to block SARS-CoV-2 fusion**

373 (A) HEK293-hACE2-TMPRSS2 cells were treated with or without C4 TopFluor-25HC
374 (F-25HC, 3 μ M) and co-cultured at 1:1 ratio with HEK293 cells transfected with
375 SARS-CoV-2 and TdTomato for 24 hr. Note that the fused cells (red) stop at the
376 boundary of 25HC treated cells (green). Scale bar: 200 μ m.
377 (B) HEK293 cells were incubated with C4 TopFluor-25HC (F-25HC, 2 μ M) for 1 hr,
378 fixed, and stained for early/recycling endosome (Rab4), late endosome (LBPA),
379 lysosome (LAMP1), and nucleus (blue, DAPI). Scale bar: 30 μ m.
380 (C) HEK293-hACE2 cells were transfected with wild-type (WT) or dominant negative
381 (DN) mutants of Rab5 or Rab7 for 24 hr and infected with VSV-SARS-CoV-2
382 (MOI=1) with or without 25HC (10 μ M). At 24 hpi, the mRNA level of VSV N was
383 measured by RT-qPCR and normalized to GAPDH expression.
384 (D) HEK293 cells were treated with TopFluor-cholesterol (F-cholesterol, 2 μ M) with or
385 without 25HC (20 μ M) for 1 hr. Scale bar: 30 μ m.
386 (E) MA104 cells were treated with 25HC at indicated concentrations in either complete
387 or serum-free media (SFM) for 1 hr and infected with VSV-SARS-CoV-2 (MOI=1)
388 for 24 hr. Cells were fixed and scanned with Typhoon. Green signals were
389 quantified by ImageJ.
390 (F) MA104 cells were treated with itraconazole (ICZ) or furin inhibitor (FI) decanoyl-
391 RVKR-CMK at indicated concentrations in either complete or serum-free media for
392 1 hr and infected with VSV-SARS-CoV-2 (MOI=1) for 24 hr. Cells were fixed and
393 scanned with Typhoon for green signals.
394 (G) HEK293-hACE2-TMPRSS2 cells were treated with 25HC (10 μ M) or ICZ (3 μ M)
395 for 1 hr and infected with VSV-SARS-CoV-2 (MOI=1) for 20 hr. Scale bar: 500 μ m.

396 (H) HEK293-ACE2-TMPRSS2 cells were transfected with SARS-CoV-2 S and
397 TdTomato plasmids for 24 hr in the presence of chloroquine (10 μ M), camostat (10
398 μ M), methyl- β -cyclodextrin (MCBD, 1 mM), ICZ (3 μ M), or 25HC (20 μ M). Scale
399 bar: 200 μ m.

400 (I) Vero-E6 cells were treated with ICZ or 25HC at indicated concentrations for 1 hr
401 and infected with SARS-CoV-2-mNeonGreen (MOI=0.5) for 24 hr. Cells were fixed
402 and green signals were scanned with Typhoon and quantified by ImageJ.
403 For all figures, experiments were repeated at least three times with similar results.
404 Data are represented as mean \pm SEM. Statistical significance is from pooled data
405 of the multiple independent experiments (* $p\leq 0.05$; ** $p\leq 0.01$; *** $p\leq 0.001$).
406

Figure S1

407

408 **Fig. S1. CH25H suppresses VSV-SARS-CoV-2 replication in HEK293-hACE2 cells.**

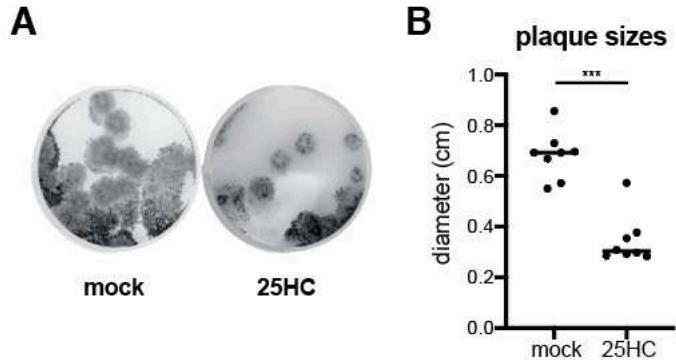
409 (A) HEK293-hACE2-mCherry cells were transfected with plasma membrane (PM)-
410 localized GFP and stained for cell surface (green), ACE2 (red), nucleus (DAPI),
411 blue), and actin (white). Scale bar: 30 μ m.

412 (B) Wild-type (WT) HEK293 or HEK293-hACE2-mCherry cells were infected with
413 VSV-SARS-CoV-2 (MOI=1) for 8 hr. Scale bar: 200 μ m.

414 (C) Same as (B) except that infection was 24 hr and RNA was harvested for RT-qPCR
415 measuring the mRNA level of VSV N compared to GAPDH expression.

416 (D) Same as (B) except that infection was 24 hr and cell lysates were harvested for
417 plaque assays.

418 (E) HEK293-hACE2 cells stably expressing indicated ISGs were harvested for
419 western blot and probed for V5-tagged ISG and GAPDH protein levels.


420 (F) HEK293-hACE2 cells stably expressing indicated ISGs were infected with VSV-
421 SARS-CoV-2 (MOI=1) for 24 hr. Scale bar: 200 μ m.

422 (G) HEK293 cells were transfected with mock, IFIH1, or CH25H plasmids for 24 hr or
423 treated with 25HC (10 μ M) for 1 hr. RNA was harvested and the mRNA levels of
424 IFN- β (IFNB) and IFN- λ (IFNL3) were measured by RT-qPCR and normalized to
425 GAPDH expression.

426 For all figures, experiments were repeated at least three times with similar results.
427 Data are represented as mean \pm SEM. Statistical significance is from pooled data
428 of the multiple independent experiments (* $p \leq 0.05$; ** $p \leq 0.01$; *** $p \leq 0.001$).

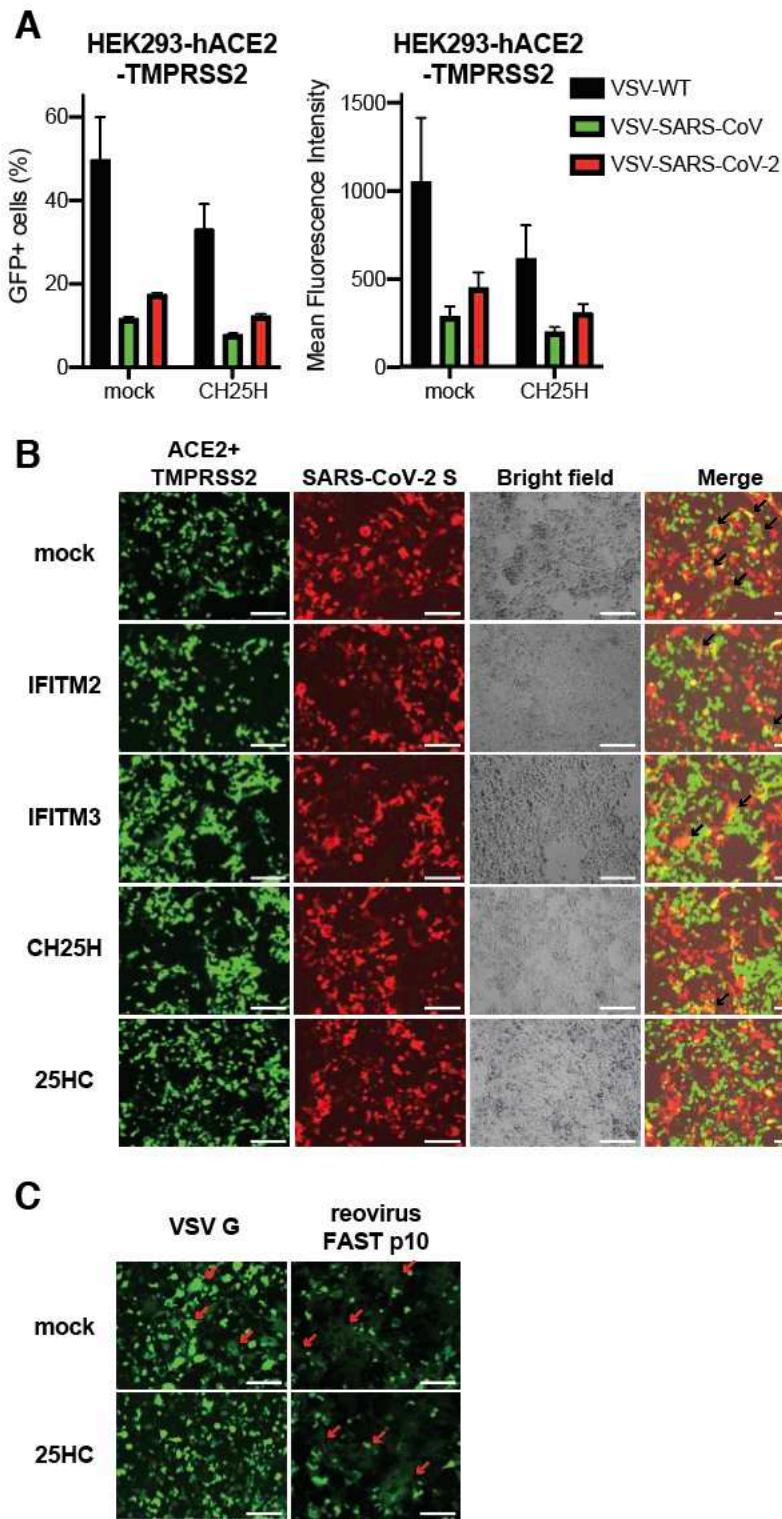
429

Figure S2

430

431 **Fig. S2. 25HC restricts VSV-SARS-CoV-2 replication in MA104 cells.**

432 (A) MA104 cells were infected with serially diluted VSV-SARS-CoV-2 (10^5 shown here)
433 with or without 25HC (10 μ M). At 3 dpi, GFP signals were scanned with Typhoon.


434 (B) Quantification of plaque sizes in (A).

435 For all figures, experiments were repeated at least three times with similar results.

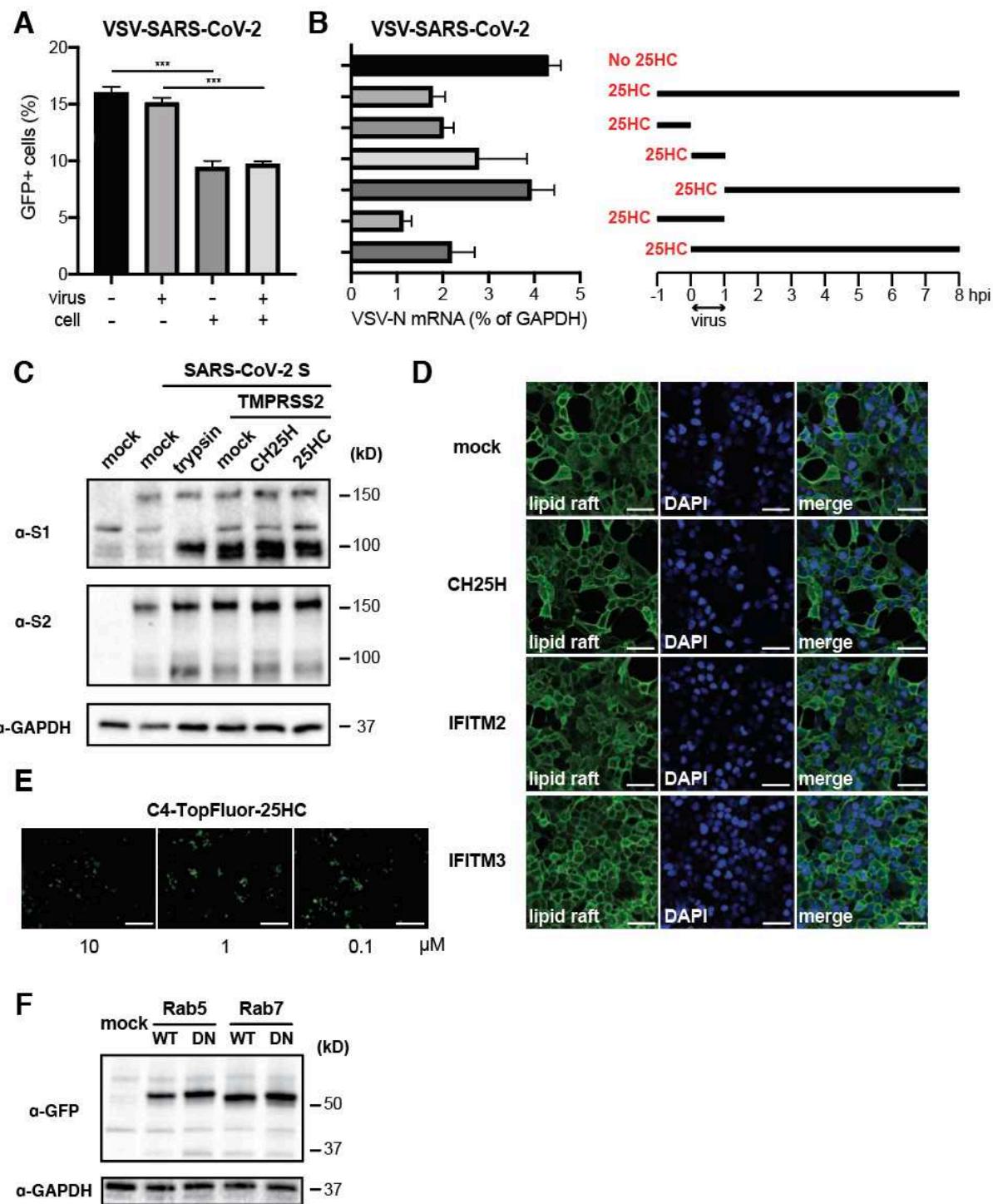
436 Individual data point is indicated (* $p \leq 0.05$; ** $p \leq 0.01$; *** $p \leq 0.001$).

437

Figure S3

438

439 Fig. S3. CH25H and 25HC block SARS-CoV-2 S mediated fusion.


440 (A) HEK293-hACE2-TMPRSS2 cells were infected with wild-type VSV, VSV-SARS-
441 CoV or VSV-SARS-CoV-2 (MOI=10) for 6 hr. Cells were harvested and measured
442 for GFP percentage and intensity by flow cytometry.

443 (B) HEK293-hACE2-TMPRSS2 cells expressing GFP and indicated ISGs or treated
444 with 25HC (10 μ M) were mixed at 1:1 ratio and co-cultured with HEK293 cells
445 expressing SARS-CoV-2 S and TdTomato for 24 hr. Note the formation of cell-cell
446 fusion (yellow), highlighted by black arrows. Scale bar: 200 μ m.

447 (C) HEK293 cells were co-transfected with GFP, VSV G, or reovirus FAST p10, with
448 or without 25HC (10 μ M) for 24 hr. The red arrows highlight the syncytia formation.
449 Scale bar: 200 μ m.

450 For all figures, experiments were repeated at least three times with similar results.
451 Data are represented as mean \pm SEM.

Figure S4

452

453 **Fig. S4. CH25H and 25HC do not affect S cleavage or lipid raft organization.**

454 (A) VSV-SARS-CoV-2 was incubated with 25HC (10 μ M) for 30 min. HEK293-hACE2
455 cells were treated with 25HC (10 μ M) for 1 hr. At 6 hpi, cells were harvested and
456 measured for GFP percentage and intensity by flow cytometry.

457 (B) MA104 cells were treated with 25HC (10 μ M) based on the scheme (right panel)
458 and infected with VSV-SARS-CoV-2 (MOI=1). At 24 hpi, the mRNA level of VSV
459 N was measured by RT-qPCR and normalized to GAPDH expression (left panel).

460 (C) HEK293-hACE2 cells were transfected with SARS-CoV-2 for 24 hr. Some cells
461 were also transfected with TMPRSS2 or treated with trypsin (0.5 μ g/ml) or 25HC
462 (10 μ M). Cells were harvested for western blot and probed for SARS-CoV-2 S1,
463 S2, and GAPDH protein levels.

464 (D) HEK293-hACE2 cells stably expressing indicated ISGs were stained for lipid rafts
465 (cholera toxin B, green) and nucleus (DAPI, blue). Scale bar: 30 μ m.

466 (E) HEK293 cells were treated with C4-TopFluor-25HC (10, 1, or 0.1 μ M) for 1 hr
467 and infected with VSV-SARS-CoV-2 (MOI=0.5) for 24 hr. Scale bar: 500 μ m.

468 (F) HEK293-hACE2 cells were transfected GFP-tagged wild-type (WT) or dominant
469 negative (DN) mutants of Rab5 or Rab7 for 24 hr. Cells were harvested for western
470 blot and probed for GFP and GAPDH protein levels.

471 For all figures, experiments were repeated at least three times with similar results.
472 Data are represented as mean \pm SEM. Statistical significance is from pooled data
473 of the multiple independent experiments (* $p\leq 0.05$; ** $p\leq 0.01$; *** $p\leq 0.001$).

474

475 **Funding**

476 This work is supported by the National Institutes of Health (NIH) grants K99/R00
477 AI135031 and R01 AI150796 to S.D., NIH contracts and grants (75N93019C00062 and
478 R01 AI127828) and the Defense Advanced Research Project Agency (HR001117S0019)
479 to M.S.D., and unrestricted funds from Washington University School of Medicine and
480 R37 AI059371 to S.P.W. J.B.C. is supported by a Helen Hay Whitney Foundation
481 postdoctoral fellowship.

482

483 **Acknowledgements**

484 We appreciate the helpful discussion with Drs. Rohit Pappu (School of Engineering),
485 Kartik Mani, Abhinav Diwan (Center for Cardiovascular research), Anil Cashikar, Steven
486 Paul (Department of Psychiatry), and David Holtzman (Department of Neurology). We
487 are thankful to assistance from Matthew Williams (Molecular Microbiology Media and
488 Glassware Facility), Wandy Betty (Molecular Microbiology Imaging Facility), and Marina
489 Cella and Erica Lantelme (flow cytometry core facility, Department of Pathology and
490 immunology). SARS-CoV-2 Taqman probe and viral RNA standards were prepared by
491 Adam Bailey (Division of Infectious Diseases).

492

493 **Supplemental Information**

494 Table S1. Quantitative PCR primer information

495 Dataset S1. Results of ISG screens against VSV-SARS-CoV and VSV-SARS-CoV-2

496

497

498 **References**

499

500 1. Wu, F. *et al.* A new coronavirus associated with human respiratory disease in China.
501 *Nature* **579**, 265-269 (2020).

502 2. Zhou, P. *et al.* A pneumonia outbreak associated with a new coronavirus of probable bat
503 origin. *Nature* **579**, 270-273 (2020).

504 3. Goh, H.P., Mahari, W.I., Ahad, N.I., Chaw, L., Kifli, N., Goh, B.H., Yeoh, S.F., Ming, L.C.
505 Risk factors affecting COVID-19 case fatality rate: A quantitative analysis of top 50
506 affected countries. *MedRxiv* (2020).

507 4. Emergency Use Authorization (EUA) information, a.l.o.a.c.E. Emergency Use
508 Authorization. (2020).

509 5. Donnelly, R.P. & Kotenko, S.V. Interferon-lambda: a new addition to an old family.
510 *Journal of interferon & cytokine research : the official journal of the International Society*
511 *for Interferon and Cytokine Research* **30**, 555-564 (2010).

512 6. Durbin, J.E. *et al.* Type I IFN modulates innate and specific antiviral immunity. *Journal of*
513 *immunology* **164**, 4220-4228 (2000).

514 7. Schoggins, J.W. & Rice, C.M. Interferon-stimulated genes and their antiviral effector
515 functions. *Current opinion in virology* **1**, 519-525 (2011).

516 8. Blanco-Melo, D., Nilsson-Payant, B.E., Liu, W., et al. Imbalanced hostresponse to
517 SARS-CoV-2 drives development of COVID-19. *Cell* (2020).

518 9. Lamers, M.M. *et al.* SARS-CoV-2 productively infects human gut enterocytes. *Science*
519 (2020).

520 10. Ogando, N.S., Dalebout, T.J., Zevenhoven-Dobbe, J.C., Limpens, R.W., van der Meer,
521 Y., Caly, L., Druce, J., de Vries, J.J.C., Kikkert, M., Barcena, M., Sidorov, I., Snijder, E.J.
522 SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation
523 and cytopathology. *bioRxiv* (2020).

524 11. Kokugamine, K.G.H., A. Schindewolf, C. Rajsbaum, R. Menachery, V.D. SARS-CoV-2
525 sensitive to type I interferon pretreatment. *PrePrint* (2020).

526 12. Stanifer, M.L., Kee, C., Cortese, M., Triana, S.. Mukenhirn, M., Kraeusslich, H.,
527 Alexandrov, T., Bartenschlager, R., Boulant, S. Critical role of type III interferon in
528 controlling SARS-CoV-2 infection, replication and spread in primary human intestinal
529 epithelial cells. *bioRxiv* (2020).

530 13. Vanderheiden, A., Ralfs, P., Chirkova, T., Upadhyay, A.A., Zimmerman, M.G., et al.,
531 Type I and Type III IFN Restrict SARS-CoV-2 Infection of Human Airway Epithelial
532 Cultures. *bioRxiv* (2020).

533

534

535

536

537

538

539

540

541

542

543

544

545

546 14. Dusheiko, G. Side effects of alpha interferon in chronic hepatitis C. *Hepatology* **26**,
547 112S-121S (1997).

548

549 15. Major, J., Crotta, S., Llorian, M., McCabe, T.M., Gad, H.H., Hartmann, R., Wack, A. Type
550 I and III interferons disrupt lung epithelial repair during recovery from viral infection.
551 *bioRxiv* (2020).

552

553 16. Case, J.B., Rothlauf, P.W., Chen, R.E., Liu, Z., Zhao, H., Kim, A.S., Bloyet, L., Zeng, Q.,
554 Tahan, S., Droit, L., et al.,. Neutralizing antibody and soluble ACE2 inhibition of a
555 replication-competent VSV-SARS-CoV-2 and a clinical isolate of SARS-CoV-2. *bioRxiv*
556 (2020).

557

558 17. Hoffmann, M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is
559 Blocked by a Clinically Proven Protease Inhibitor. *Cell* (2020).

560

561 18. Letko, M., Marzi, A. & Munster, V. Functional assessment of cell entry and receptor
562 usage for SARS-CoV-2 and other lineage B betacoronaviruses. *Nature microbiology* **5**,
563 562-569 (2020).

564

565 19. Walls, A.C. et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike
566 Glycoprotein. *Cell* (2020).

567

568 20. Loo, Y.M. & Gale, M., Jr. Immune signaling by RIG-I-like receptors. *Immunity* **34**, 680-
569 692 (2011).

570

571 21. Pfaender, S.M., K.B. et al., . LY6E impairs coronavirus fusion and confers immune
572 control of viral disease. *bioRxiv* (2020).

573

574 22. Zhao, X.Z., S. Chen, D. Zheng, M. Li, X. Li, X. Lin, H. Chang, J. Zeng, H. Guo, J.T. LY6E
575 Restricts the Entry of Human Coronaviruses, including the currently pandemic SARS-
576 CoV-2. *bioRxiv* (2020).

577

578 23. Lund, E.G., Kerr, T.A., Sakai, J., Li, W.P. & Russell, D.W. cDNA cloning of mouse and
579 human cholesterol 25-hydroxylases, polytopic membrane proteins that synthesize a
580 potent oxysterol regulator of lipid metabolism. *The Journal of biological chemistry* **273**,
581 34316-34327 (1998).

582

583 24. Hannedouche, S. et al. Oxysterols direct immune cell migration via EBI2. *Nature* **475**,
584 524-527 (2011).

585

586 25. Schoggins, J.W. Interferon-Stimulated Genes: What Do They All Do? *Annu Rev Virol* **6**,
587 567-584 (2019).

588

589 26. Blanc, M. et al. The transcription factor STAT-1 couples macrophage synthesis of 25-
590 hydroxycholesterol to the interferon antiviral response. *Immunity* **38**, 106-118 (2013).

591

592 27. Zhang, Y. et al. Cholesterol 25-hydroxylase negatively regulates porcine intestinal
593 coronavirus replication by the production of 25-hydroxycholesterol. *Vet Microbiol* **231**,
594 129-138 (2019).

595

596 28. Liu, S.Y. *et al.* Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry
597 by production of 25-hydroxycholesterol. *Immunity* **38**, 92-105 (2013).

598

599 29. Matsuyama, S. *et al.* Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells.
600 *Proceedings of the National Academy of Sciences of the United States of America* **117**,
601 7001-7003 (2020).

602

603 30. Zang, R. *et al.* TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human
604 small intestinal enterocytes. *Sci Immunol* **5** (2020).

605

606 31. Bertram, S. *et al.* TMPRSS2 activates the human coronavirus 229E for cathepsin-
607 independent host cell entry and is expressed in viral target cells in the respiratory
608 epithelium. *Journal of virology* **87**, 6150-6160 (2013).

609

610 32. Huang, I.C. *et al.* Distinct patterns of IFITM-mediated restriction of filoviruses, SARS
611 coronavirus, and influenza A virus. *PLoS pathogens* **7**, e1001258 (2011).

612

613 33. Sungnak, W. *et al.* SARS-CoV-2 entry factors are highly expressed in nasal epithelial
614 cells together with innate immune genes. *Nature medicine* **26**, 681-687 (2020).

615

616 34. Podbilewicz, B. Virus and cell fusion mechanisms. *Annual review of cell and
617 developmental biology* **30**, 111-139 (2014).

618

619 35. Xia, S. *et al.* Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly
620 potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high
621 capacity to mediate membrane fusion. *Cell research* **30**, 343-355 (2020).

622

623 36. Shmulevitz, M. & Duncan, R. A new class of fusion-associated small transmembrane
624 (FAST) proteins encoded by the non-enveloped fusogenic reoviruses. *The EMBO
625 journal* **19**, 902-912 (2000).

626

627 37. Li, K. *et al.* IFITM proteins restrict viral membrane hemifusion. *PLoS pathogens* **9**,
628 e1003124 (2013).

629

630 38. Sengupta, P. *et al.* A lipid-based partitioning mechanism for selective incorporation of
631 proteins into membranes of HIV particles. *Nature cell biology* **21**, 452-461 (2019).

632

633 39. Kwon, H.J. *et al.* Structure of N-terminal domain of NPC1 reveals distinct subdomains for
634 binding and transfer of cholesterol. *Cell* **137**, 1213-1224 (2009).

635

636 40. Carstea, E.D. *et al.* Niemann-Pick C1 disease gene: homology to mediators of
637 cholesterol homeostasis. *Science* **277**, 228-231 (1997).

638

639 41. Trinh, M.N. *et al.* Triazoles inhibit cholesterol export from lysosomes by binding to NPC1.
640 *Proceedings of the National Academy of Sciences of the United States of America* **114**,
641 89-94 (2017).

642

643 42. Rodal, S.K. *et al.* Extraction of cholesterol with methyl-beta-cyclodextrin perturbs
644 formation of clathrin-coated endocytic vesicles. *Molecular biology of the cell* **10**, 961-974
645 (1999).

646

647 43. Xie, X. *et al.* An Infectious cDNA Clone of SARS-CoV-2. *Cell host & microbe* (2020).

648 44. Richardson, R.B. *et al.* A CRISPR screen identifies IFI6 as an ER-resident interferon
649 effector that blocks flavivirus replication. *Nature microbiology* **3**, 1214-1223 (2018).

650 45. Schoggins, J.W. *et al.* Pan-viral specificity of IFN-induced genes reveals new roles for
651 cGAS in innate immunity. *Nature* **505**, 691-695 (2014).

652 46. Schoggins, J.W. *et al.* A diverse range of gene products are effectors of the type I
653 interferon antiviral response. *Nature* **472**, 481-485 (2011).

654 47. Ganser-Pornillos, B.K. & Pornillos, O. Restriction of HIV-1 and other retroviruses by
655 TRIM5. *Nature reviews. Microbiology* **17**, 546-556 (2019).

656 48. Chen, D. *et al.* GILT restricts the cellular entry mediated by the envelope glycoproteins
657 of SARS-CoV, Ebola virus and Lassa fever virus. *Emerg Microbes Infect* **8**, 1511-1523
658 (2019).

659 49. Anggakusuma *et al.* Interferon-inducible cholesterol-25-hydroxylase restricts hepatitis C
660 virus replication through blockage of membranous web formation. *Hepatology* **62**, 702-
661 714 (2015).

662 50. Chen, Y. *et al.* Interferon-inducible cholesterol-25-hydroxylase inhibits hepatitis C virus
663 replication via distinct mechanisms. *Scientific reports* **4**, 7242 (2014).

664 51. Doms, A., Sanabria, T., Hansen, J.N., Altan-Bonnet, N. & Holm, G.H. 25-
665 Hydroxycholesterol Production by the Cholesterol-25-Hydroxylase Interferon-Stimulated
666 Gene Restricts Mammalian Reovirus Infection. *Journal of virology* **92** (2018).

667 52. Shawli, G.T., Adeyemi, O.O., Stonehouse, N.J. & Herod, M.R. The Oxysterol 25-
668 Hydroxycholesterol Inhibits Replication of Murine Norovirus. *Viruses* **11** (2019).

669 53. Wang, J. *et al.* Cholesterol 25-hydroxylase acts as a host restriction factor on
670 pseudorabies virus replication. *The Journal of general virology* **98**, 1467-1476 (2017).

671 54. Civra, A. *et al.* 25-Hydroxycholesterol and 27-hydroxycholesterol inhibit human rotavirus
672 infection by sequestering viral particles into late endosomes. *Redox Biol* **19**, 318-330
673 (2018).

674 55. Shrivastava-Ranjan, P. *et al.* 25-Hydroxycholesterol Inhibition of Lassa Virus Infection
675 through Aberrant GP1 Glycosylation. *mBio* **7** (2016).

676 56. Xiang, Y. *et al.* Identification of Cholesterol 25-Hydroxylase as a Novel Host Restriction
677 Factor and a Part of the Primary Innate Immune Responses against Hepatitis C Virus
678 Infection. *Journal of virology* **89**, 6805-6816 (2015).

679 57. Kang, Y.L., Chou, Y.Y., Rothlauf, P.W., Liu, Z., Soh, T.K., Cureton, D., Case, J.B., Chen,
680 R.E., Diamond, M.S., Whelan, S.P.J., Kirchhausen, T. Inhibition of PIKfyve kinase
681 prevents infection by EBOV and SARS-CoV-2. *bioRxiv* (2020).

682 693 694 695 696

697 58. Abrams, M.E. *et al.* Oxysterols provide innate immunity to bacterial infection by
698 mobilizing cell surface accessible cholesterol. *Nature microbiology* (2020).

699

700 59. Jin, Z. *et al.* Structure of M(pro) from COVID-19 virus and discovery of its inhibitors.
701 *Nature* (2020).

702

703 60. Zhang, L. *et al.* Crystal structure of SARS-CoV-2 main protease provides a basis for
704 design of improved alpha-ketoamide inhibitors. *Science* **368**, 409-412 (2020).

705

706 61. Gao, Y. *et al.* Structure of the RNA-dependent RNA polymerase from COVID-19 virus.
707 *Science* (2020).

708

709 62. Wolf, M., Deal, E.M. & Greenberg, H.B. Rhesus rotavirus trafficking during entry into
710 MA104 cells is restricted to the early endosome compartment. *Journal of virology* **86**,
711 4009-4013 (2012).

712

713 63. Gordon, D.E.e.a. A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals
714 Drug Targets and Potential Drug-Repurposing. *bioRxiv* (2020).

715

716 64. Simmons, G. *et al.* Characterization of severe acute respiratory syndrome-associated
717 coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. *Proceedings of the
718 National Academy of Sciences of the United States of America* **101**, 4240-4245 (2004).

719

720 65. Kanai, Y. *et al.* Entirely plasmid-based reverse genetics system for rotaviruses.
721 *Proceedings of the National Academy of Sciences of the United States of America*
722 (2017).

723

724 66. Li, B. *et al.* Drebrin restricts rotavirus entry by inhibiting dynamin-mediated endocytosis.
725 *Proceedings of the National Academy of Sciences of the United States of America* **114**,
726 E3642-E3651 (2017).

727

728 67. Ding, S. *et al.* Rotavirus VP3 targets MAVS for degradation to inhibit type III interferon
729 expression in intestinal epithelial cells. *eLife* **7** (2018).

730

731 68. Bolen, C.R., Ding, S., Robek, M.D. & Kleinstein, S.H. Dynamic expression profiling of
732 Type I and Type III Interferon-stimulated hepatocytes reveals a stable hierarchy of gene
733 expression. *Hepatology* (2013).

734

735 69. Ding, S. *et al.* STAG2 deficiency induces interferon responses via cGAS-STING pathway
736 and restricts virus infection. *Nature communications* **9**, 1485 (2018).

737

738