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 2 

Abstract 24 

Cholesterol 25-hydroxylase (CH25H) is an interferon-stimulated gene (ISG) that shows 25 

broad antiviral activities against a wide range of enveloped viruses. Here, using an ISG 26 

screen against VSV-SARS-CoV and VSV-SARS-CoV-2 chimeric viruses, we identified 27 

CH25H and its enzymatic product 25-hydroxycholesterol (25HC) as potent inhibitors of 28 

virus replication. Mechanistically, internalized 25HC accumulates in the late endosomes 29 

and blocks cholesterol export, thereby restricting SARS-CoV-2 spike protein catalyzed 30 

membrane fusion. Our results highlight a unique antiviral mechanism of 25HC and 31 

provide the molecular basis for its possible therapeutic development.  32 

 33 

Main Text 34 

The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the 35 

etiological agent of coronavirus disease-2019 (COVID-19)1, 2, has infected millions of 36 

people worldwide and caused hundreds of thousands of deaths, with a case fatality rate 37 

as high as 5%3. Currently, there are no FDA approved vaccines available. In most 38 

instances, treatment is limited to supportive therapies to help alleviate symptoms. 39 

Chloroquine phosphate, hydroxychloroquine sulfate, and a polymerase inhibitor 40 

remdesivir represent the only drug products that the FDA has approved for emergency 41 

use authorization4, and concern exists that monotherapy would rapidly result in the 42 

emergence of resistance. There is a pressing need to identify effective antivirals as 43 

countermeasures before safe and efficacious vaccines are developed and deployed. 44 

Here, we sought to harness the host innate immune responses to inhibit SARS-CoV-2 45 

replication. Interferons (IFNs) are a group of small, secreted proteins5, 6 that potently 46 
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suppress the replication of many viruses through the action of hundreds of IFN-stimulated 47 

genes (ISGs)7. IFN and ISG levels are upregulated in SARS-CoV-2 infected cells and 48 

lung tissues from COVID-19 patients8, 9. Compared to SARS-CoV, SARS-CoV-2 appears 49 

to be more sensitive to the antiviral activities of IFNs10. SARS-CoV-2 replication is 50 

inhibited by IFN treatment in both immortalized and primary cells11, 12, 13. While direct IFN 51 

administration often results in adverse effects in humans14, 15, a targeted approach of 52 

activating the antiviral effects of specific ISGs holds promise.  53 

 54 

To identify potential anti-coronavirus (CoV) ISG effector proteins that act at the entry or 55 

egress stages of the virus replication cycle, we utilized replication-competent chimeric 56 

vesicular stomatitis virus (VSV) eGFP reporter viruses decorated with either full length 57 

SARS-CoV spike (S) protein or SARS-CoV-2 S in place of the native glycoprotein (G)16. 58 

We also constructed a HEK293 cell line that stably expresses plasma membrane-59 

localized mCherry-tagged human ACE2, the SARS-CoV and SARS-CoV-2 receptor2, 17, 60 

18, 19 (Fig. S1A). HEK293-hACE2 cells supported 100-fold more VSV-SARS-CoV-2 61 

replication than wild-type HEK293 cells (Fig. S1B-D). We recently showed robust SARS-62 

CoV-2 infection of primary human intestinal enteroids29. By RNA-sequencing of these 63 

intestinal enteroid cultures, we identified the ISGs most highly and commonly induced by 64 

type I IFN (IFN-³) and type III IFN (IFN-»). We transduced HEK293-hACE2 stable cells 65 

with lentiviruses encoding 57 of these individual ISGs and tested their ability to suppress 66 

VSV-SARS-CoV and VSV-SARS-CoV-2 replication. 67 

 68 
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Ectopic expression of AXIN2, CH25H, EPSTI1, GBP5, IFIH1, IFITM2, IFITM3, and LY6E 69 

resulted in a marked reduction (< 36%) in the infectivity of both viruses, indicated by the 70 

number of GFP infected cells (Fig. 1A, Dataset S1). Among these genes, IFIH1 (also 71 

known as MDA5) activates IFN signaling upon ectopic expression20. LY6E and IFITMs 72 

recently were reported to inhibit SARS-CoV-221, 22 and thus served as positive controls 73 

for our assay. We validated the top candidates in HEK293-hACE2 cells expressing 74 

CH25H, IFITM1, IFITM2, or IFITM3 respectively (Fig. S1E). Consistent with our screen 75 

results, the expression of IFITM2 or IFITM3 but not IFITM1 suppressed VSV-SARS-CoV-76 

2 infection as evident by a reduction in viral mRNA and protein levels (Fig. 1B and S1F). 77 

CH25H was comparable to IFITM2 and blocked virus replication at 18 hours post infection 78 

(hpi) (Fig. 1B).  79 

 80 

CH25H encodes a cholesterol 25-hydroxylase23 that catalyzes the formation of 25-81 

hydroxycholesterol (25HC) from cholesterol23. In macrophages, 25HC is further 82 

converted to 7-³, 25-dihydroxycholesterol (7-³, 25-OHC), an oxysterol that functions as 83 

a chemoattractant for T cells and B cells24. 25HC exhibits broad inhibitory activities 84 

against enveloped viruses of different families25, 26, including two porcine CoVs27. Within 85 

a single-cycle of replication (6 hpi), CH25H expression inhibited the replication of VSV-86 

SARS-CoV and VSV-SARS-CoV-2 viruses, as detected by measurement of eGFP 87 

expression using flow cytometry (Fig. 1C). CH25H also weakly decreased wild-type VSV 88 

replication (Fig. 1C), as previously reported28. In contrast, rotavirus and adenovirus 89 

replication were not affected (Fig. 1D). Unlike IFIH1, CH25H expression or 25HC 90 

treatment did not induce type I or type III IFN expression (Fig. S1G). The replication of a 91 
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clinical isolate of SARS-CoV-2 also was suppressed in HEK293-hACE2 cells expressing 92 

CH25H compared to control plasmid transfection (Fig. 1E). 93 

 94 

Next, we tested whether the antiviral activity of CH25H depends on 25HC synthesis. As 95 

compared to the control 7-³, 25-OHC, pre-treatment of HEK293-hACE2 cells with 25HC 96 

for 1 hour prior to VSV-SARS-CoV-2 infection recapitulated the suppressive effect of 97 

CH25H overexpression and reduced virus replication (Fig. 2A). 25HC dose-dependently 98 

inhibited VSV-SARS-CoV-2 infection in MA104 cells, with an approximate EC50 of 1.03 99 

µM (Fig. 2B). No cytotoxicity was observed at the highest concentration tested (30 µM). 100 

When plaque assays were performed in the presence of 25HC, there was a reduction in 101 

both plaque numbers and sizes (Fig. S2A-B). Wild-type SARS-CoV-2 virus replication 102 

also was inhibited by 25HC but not 7-³, 25-OHC treatment (Fig. 2C). Collectively, our 103 

results suggest an antiviral activity of CH25H and its natural product 25HC in suppressing 104 

SARS-CoV-2 virus infection.  105 

 106 

During SARS-CoV-2 entry into host cells, S protein binding to ACE2 enables its cleavage 107 

by membrane-bound TMPRSS serine proteases and subsequent fusion of the viral 108 

membrane to the host cell membrane17, 29, 30. Previous work suggests that trypsin 109 

treatment or TMPRSS2 expression alleviates IFITM mediated restriction of SARS-CoV 110 

and HCoV-229E entry31, 32. Further, TMPRSS2 is abundantly expressed in human nasal 111 

and intestinal epithelial cells30, 33. Thus, we examined whether the presence of TMPRSS2 112 

assists VSV-SARS-CoV-2 to overcome ISG restriction. TMPRSS2 expression enhanced 113 

VSV-SARS-CoV and VSV-SARS-CoV-2 infection at 6 hpi (Fig. S3A), compared to control 114 
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HEK293-hACE2 cells (Fig. 1C). Unlike IFITM3, CH25H partially retained its antiviral 115 

activity and led to reduced VSV-SARS-CoV-2 replication in TMPRSS2-expressing cells 116 

(Fig. 3A). Similarly, wild-type SARS-CoV-2 replication was inhibited by CH25H and 25HC 117 

in TMPRSS2 expressing cells (Fig. 3B). 118 

 119 

We next examined the effect of 25HC on SARS-CoV S and SARS-CoV-2 S mediated 120 

membrane fusion, since 25HC blocks cell fusion by Nipah F and VSV G proteins28, which 121 

are class I and class III viral fusion proteins respectively34. We set up an in vitro cell-to-122 

cell fusion assay based on the expression of S, GFP, ACE2, and TMPRSS2 in HEK293 123 

cells, independently of virus infection (Fig. 3C). CH25H expression substantially reduced 124 

syncytia formation mediated by SARS-CoV-2 S (Fig. 3C). Although IFITM2 and IFITM3 125 

inhibited VSV-SARS-CoV-2 replication (Fig. 1A-B), neither prevented S-mediated fusion 126 

(Fig. 3C), suggesting a distinct mode of antiviral action. Compared to SARS-CoV-2 S, 127 

SARS-CoV S induced weaker cell fusion as recently reported35, and this process was 128 

also blocked by CH25H expression (Fig. 3C). CH25H also inhibited the syncytia formation 129 

induced by Western equine encephalitis virus glycoproteins (class II) and VSV-G (class 130 

III) but not reovirus FAST p10 (class IV) fusion protein36 (Fig. 3D). To mimic the virus-cell 131 

membrane fusion, we co-transfected SARS-CoV-2 S and GFP into donor cells and mixed 132 

at 1:1 ratio with ACE2+TMPRSS2+TdTomato co-transfected target cells. As expected, 133 

we observed robust syncytia formation under mock conditions (Fig. S3B). CH25H 134 

expression in 8recipient9 cells almost completely abolished cell-cell fusion (Fig. S3B). 135 

Exogenous 25HC treatment phenocopied CH25H expression and blocked SARS-CoV-2 136 
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S mediated syncytia formation (Fig. S3B and 3E). Similar to CH25H, 25HC failed to inhibit 137 

reovirus FAST p10 mediated fusion (Fig. S3C).  138 

 139 

To define the underlying antiviral mechanisms of the IFN-CH25H-25HC axis further, we 140 

investigated whether 25HC acts on viral or host membranes. Pre-incubation of VSV-141 

SARS-CoV-2 with 10 µM of 25HC for 20 minutes had no effect on infectivity, as opposed 142 

to the pre-treatment of host cells (Fig. S4A). The timing of 25HC addition suggests it 143 

primarily acted at the entry stage of VSV-SARS-CoV-2 replication (Fig. S4B). We 144 

examined a series of early events and excluded possible effects of 25HC on: (i) ACE2 145 

surface levels; (ii) S cleavage by TMPRSS2; (iii) lipid raft localization, stained by a 146 

fluorophore-conjugated cholera toxin subunit B, (iv) plasma membrane fluidity, stained by 147 

6-dodecanoyl-2-dimethylamino naphthalene (Laurdan)37, (v) endosomal pH, and (vi) its 148 

ability to directly bind to recombinant SARS-CoV-2 S protein (Fig. S4C-D and data not 149 

shown).  150 

 151 

23-(dipyrrometheneboron difluoride)-24-norcholesterol (TopFluor-cholesterol) and [4-152 

(dipyrrometheneboron difluoride) butanoyl]-25-hydroxycholesterol (C4 TopFluor-25HC) 153 

are chemically fluorescently labeled cholesterol and 25HC derivatives that have been 154 

used to study membrane incorporation and lipid metabolism38. C4 TopFluor-25HC 155 

retained its anti-VSV-SARS-CoV-2 activity (Fig. S4E) and blocked SARS-CoV-2 S 156 

induced syncytia formation (Fig. 4A), enabling us to use it as a tool to probe the antiviral 157 

mechanism of 25HC. After host cell uptake, C4 TopFluor-25HC exhibited punctate 158 

patterns and partially co-localized with lysobisphosphatidic acid (LBPA) positive late 159 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.141077doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.08.141077
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

endosomes and LAMP1 positive lysosomes but not Rab4 positive early and recycling 160 

endosomes (Fig. 4B). Thus, we hypothesized that SARS-CoV-2 depends on endosomal 161 

trafficking to establish active replication. Consistent with this hypothesis, ectopic 162 

expression of Rab5 and Rab7 dominant negative mutants but not the wild-type proteins 163 

significantly decreased VSV-SARS-CoV-2 infection (Fig. 4C and S4F). However, Rab5 164 

and Rab7 mutants did not have an additive effect with 25HC treatment (Fig. 4C), further 165 

suggesting that 25HC may act at these endosomal vesicles. 25HC is capable of binding 166 

Niemann-Pick C1 (NPC1) in vitro39, responsible for the egress of cholesterol from the 167 

endosomal/lysosomal compartment40. 25HC treatment led to an accumulation of 168 

intracellular TopFluor-cholesterol (Fig. 4D). 25HC failed to inhibit the replication of VSV-169 

SARS-CoV-2 in serum-free media, in which the infectivity was markedly enhanced (Fig. 170 

4E). Itraconazole (ICZ), a small-molecule inhibitor of NPC1 that elevates endosomal 171 

cholesterol levels41, mirrored 25HC and inhibited VSV-SARS-CoV-2 replication, more 172 

potently than the furin inhibitor decanoyl-RVKR-CMK (Fig. 4F). The antiviral activity of 173 

ICZ also depended on cholesterol and restricted VSV-SARS-CoV-2 in a cell-type 174 

independent manner (Fig. 4F-G). In contrast to chloroquine and camostat, both of which 175 

are antiviral but through different mechanisms, cholesterol-depleting agent methyl-³-176 

cyclodextrin42 reduced SARS-CoV-2 S mediated cell-cell fusion (Fig. 4H). Either ICZ or 177 

25HC also efficiently reduced syncytia formation (Fig. 4H). Finally, ICZ suppressed the 178 

replication of a recombinant SARS-CoV-2 virus that encodes a mNeon-Green reporter43 179 

in Vero-E6 cells (Fig. 4I). Collectively, our data support a model that 25HC inhibits SARS-180 

CoV-2 replication via enhancing endosomal cholesterol levels and blocking virus fusion. 181 

 182 
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The identification of ISGs against different virus families have provided invaluable insights 183 

into both virus entry pathways and host innate immune system evolution44, 45, 46, 47. To 184 

date, few ISGs that restrict SARS-CoV replication have been identified: GILT48, IFITMs32, 185 

and recently published LY6E21, 22. Here, we present evidence that IFN-inducible CH25H 186 

and its natural product 25HC restrict S mediated membrane fusion and block SARS-CoV-187 

2 entry into host cells. 25HC has shown broad antiviral activity against a wide range of 188 

enveloped viruses26, 28, 49, 50, and non-enveloped viruses such as reovirus51 and murine 189 

norovirus52. However, there seems to be two modes of inhibitory mechanisms involved. 190 

One requires a high micromolar concentration and more than 6 hours of pre-incubation 191 

time to be effective, in the case of reovirus51, pseudorabies virus53 and human 192 

papillomavirus-1654, suggesting an indirect metabolic/cellular pathway-mediated 193 

mechanism, whereas the other, which includes influenza A virus26, Lassa fever virus55, 194 

hepatitis C virus56, and SARS-CoV-2 (Fig. 2), functions at a low micromolar/high 195 

nanomolar range. Combined with the recent report that apilimod, a PIKfyve kinase 196 

inhibitor, effectively inhibits SARS-CoV-2 infection57, we confirm that this virus reaches 197 

late endosomal compartment for membrane fusion and access to the cytosol, at least in 198 

ACE2+TMPRSS2- cells. However, our data of endosomal cholesterol accumulation does 199 

not explain how the virus-cell fusion at the plasma membrane driven by SARS-CoV-2 S 200 

is effectively blocked by 25HC. A recent study demonstrates that 25HC treatment 201 

depletes 8free9 cholesterol from the plasma membrane and prevents Listeria 202 

dissemination58. Treatment of cells with 25HC results in reduced cell surface but 203 

enhanced intracellular cholesterol levels (Fig. 4D). Therefore, it is plausible that 25HC 204 

acts at more than one subcellular compartment and that redistribution of cholesterol leads 205 
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to the inhibition of membrane fusion. Our data also instruct potential drug combinations 206 

of 25HC in conjunction with those targeting the cytoplasmic steps of the SARS-CoV-2 207 

replication cycle such as its main protease59, 60 or polymerase61. Further in vivo studies in 208 

animal models of SARS-CoV-2 infection and pathogenesis are required to establish the 209 

physiological impact of 25-HC-based drugs or compounds that modulate antiviral 210 

activities.  211 

 212 

Materials and Methods 213 

 214 

Plasmids, Cells, Reagents, and Viruses 215 

Plasmids: Human ACE2 was cloned into pWPxld-DEST lentiviral vector with a C-terminal 216 

mCherry tag. CH25H, IFIH1, IFITM1, IFITM2, IFITM3, LY6E were cloned into pLX304 217 

lentiviral vector with a C-terminal V5 tag. TMPRSS2, TMPRSS4 plasmids were used as 218 

previously described30. GFP-tagged Rab5 and Rab7 constructs were used as reported62. 219 

Codon-optimized SARS-CoV-2 S was a kind gift from Nevan Krogan at the University of 220 

California, San Franscico63. pCAGGS-SARS-CoV S was a kind gift of Paul Bates at the 221 

University of Pennsylvania64. pMIG-WEEV-IRES-GFP plasmid was generated by Z. Liu 222 

in the Whelan laboratory at the Washington University School of Medicine. PM-GFP and 223 

VSV-G plasmids were obtained from Addgene (#21213 and #12259, respectively). 224 

pCAGGS-FAST-p10 from pteropine orthoreovirus was generated in the Kobayashi 225 

laboratory65. pEGFP-N1 and pCMV-TdTomato were obtained from Clontech. 226 

 227 
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Cells: Human embryonic kidney cell line HEK293 (CRL-1573) were originally obtained 228 

from American Type Culture Collection (ATCC) and cultured in complete DMEM. Rhesus 229 

kidney epithelial cell lines MA104 cells were cultured in complete M199 medium. 230 

HEK293-hACE2-mCherry stable cell lines were cultured in DMEM with the addition of 5 231 

¿g/ml of blasticidin. HEK293 cells stably expressing ACE2 and TMPRSS2 were used as 232 

previously described30.  233 

 234 

Reagents: 25HC, 7-³ 25-OHC, methyl-³-cyclodextrin, furin inhibitor decanoyl-RVKR-235 

CMK, and trypsin were purchased from Sigma-Aldrich. C4 TopFluor- 25-HC and 236 

TopFluor-cholesterol were purchased from Avanti Polar Lipids. 6-dodecanoyl-2-237 

dimethylaminonaphthalene (Laurdan, D250), cholera toxin subunit B (C34777), and 238 

pHrodo# AM Variety Pack (P35380) were purchased from Thermo Fisher. Itraconazole 239 

and camostat were purchased from Selleck Chemicals. Chloroquine (tlrl-chq) was 240 

purchased from Invivogen. 241 

 242 

Viruses: Recombinant VSV-eGFP-SARS-CoV-2 was previously described16. VSV-243 

eGFP-SARS-CoV was constructed in a similar manner (from S. Bose and S. Whelan, to 244 

be published separately). Adenovirus (serotype 5) and rotavirus (rhesus RRV strain) were 245 

propagated and used as previously described66. A clinical isolate of SARS-CoV-2 (2019-246 

nCoV/USA-WA1/2020 strain) was obtained from the Centers for Disease Control and 247 

Prevention (gift of Natalie Thornburg). A mNeonGreen SARS-CoV-2 reporter virus was 248 

used as previously reported43. SARS-CoV-2 viruses were passaged in Vero CCL81 cells 249 

and titrated by focus-forming assay on Vero-E6 cells. Plaque assays were performed in 250 
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MA104 cells seeded in 6-well plates using an adapted version of the rotavirus plaque 251 

assay protocol67. The plaque plates were scanned by Amersham Typhoon 5 (GE) and 252 

diameters were measured by ImageJ (NIH).  253 

 254 

RNA extraction and quantitative PCR 255 

Total RNA was extracted from cells using RNeasy Mini kit (Qiagen) and reverse 256 

transcription was performed with High Capacity RT kit and random hexamers as 257 

previously described68. Quantitive PCR was performed using the AriaMX (Agilent) with a 258 

25 µl reaction, composed of 50 ng of cDNA, 12.5 µl of Power SYBR Green master mix or 259 

Taqman master mix (Applied Biosystems), and 200 nM both forward and reverse primers. 260 

All SYBR Green primers and Taqman probes used in this study are listed in Table S1. 261 

 262 

Flow cytometry 263 

HEK293-hACE2 or HEK293-hACE2-TMPRSS2 cells with or without CH25H expression 264 

were inoculated with wild-type VSV-GFP, VSV-SARS-CoV, or VSV-SARS-CoV-2 at an 265 

MOI = 10 (based on titers in Vero cells) for 1 hr at 37°C. At 6 hpi, cells were harvested 266 

and fixed in 4% PFA. GFP positive cells were determined by BD LSRFortessa# X-20 267 

cell analyzer and analyzed by FlowJo v10.6.2 (BD). 268 

 269 

Bright-field and immunofluorescence microscopy  270 

For brightfield and epifluorescence, cultured cells were imaged by REVOLVE4 271 

microscope (ECHO) with a 10X objective. For confocal microscopy, samples in 8-well 272 

chamber slides were fixed in 4% paraformaldehyde for 10 min at room temperature and 273 
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stained as previously described69. Cells were permeabilized and stained with antibodies 274 

against DAPI (P36962, Thermo Fisher), LAMP1 (9091S, Cell Signaling), LBPA 275 

(MABT837, Sigma), and Rab4 (ab13252, Abcam). Stained cells were washed with PBS, 276 

whole mounted with Antifade Mountant, and imaged with a Zeiss LSM880 Confocal 277 

Microscope at the Molecular Microbiology imaging core facility at Washington University 278 

in St. Louis. Images were visualized by Volocity v6.3 and quantification was determined 279 

by ImageJ (NIH). 280 

 281 

Western blotting 282 

Cell lysates were harvest in RIPA buffer supplemented with protease inhibitor cocktail 283 

and phosphatase inhibitor. Proteins were resolved in SDS-PAGE and analyzed by 284 

antibody as described (45) using the following antibodies and dilutions: GAPDH (631402, 285 

Biolegend), GFP (2555S, Cell Signaling), SARS-CoV-2 S1 (40590-T62, Sino Biological), 286 

SARS-CoV-2 S2 (40592-T62, Sino Biological), and V5 (13202S, Cell Signaling). 287 

Secondary antibodies were anti-rabbit (#7074, Cell Signaling) or anti-mouse (#7076, Cell 288 

Signaling) immunoglobulin G horseradish peroxidase-linked antibodies. Protein bands 289 

were visualized with Clarity ECL substrate and a Biorad Gel Doc XR system. 290 

 291 

Statistical Analysis 292 

All bar graphs were displayed as means ± SEM. Statistical significance in data Fig. 1E, 293 

3B, S1C, S1D, and S2B was calculated by Student's t test using Prism 8.4.2 (GraphPad). 294 

Statistical significance in data Fig. 1B, 1C, 1D, 4C, S1G, and S4A was calculated by 295 

pairwise ANOVA using Prism 8. Non-linear regression (curve fit) was performed to 296 
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calculate EC50 values for Fig. 2B and 4I. All data were presented as asterisks (*pf0.05; 297 

**pf0.01; ***pf0.001). All experiments other than Fig. 1A were repeated at least three 298 

times. Fig. 1A was performed twice with average numbers indicated on the graph. The 299 

raw data is included in Dataset S1.  300 

 301 

  302 
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Figures and Figure Legends 303 

 304 
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Fig. 1. ISG screen identifies CH25H as an antiviral host factor that restricts SARS-305 

CoV-2 infection 306 

(A) HEK293-hACE2-mCherry cells were transduced with lentiviral vectors encoding 307 

individual ISGs for 72 hr and infected with VSV-SARS-CoV or VSV-SARS-CoV-2 308 

(MOI=1) for 24 hr. The percentage of GFP+ cells were quantified and plotted.  309 

(B) Wild-type (WT) HEK293-hACE2 cells or HEK293-hACE2 cells stably expressing 310 

indicated ISGs were infected with VSV-SARS-CoV-2 (MOI=1). At 18 hpi, the 311 

mRNA level of VSV N was measured by RT-qPCR and normalized to GAPDH 312 

expression. 313 

(C) HEK293-hACE2 cells with or without CH25H expression were infected with wild-314 

type VSV, VSV-SARS-CoV or VSV-SARS-CoV-2 (MOI=10) for 6 hr. Cells were 315 

harvested and measured for GFP percentage and intensity by flow cytometry. 316 

(D) HEK293-hACE2 cells with or without CH25H expression were infected with VSV-317 

SARS-CoV, VSV-SARS-CoV-2, rotavirus RRV strain, or adenovirus serotype 5 318 

(MOI=3) for 24 hr. Viral RNA levels were measured by RT-qPCR and normalized 319 

to GAPDH expression. 320 

(E) HEK293-hACE2 cells with or without CH25H expression were infected with wild-321 

type SARS-CoV-2 (MOI=0.5). At 24 hpi, the mRNA level of SARS-CoV-2 N was 322 

measured by RT-qPCR and normalized to GAPDH expression. 323 

For all figures except A, experiments were repeated at least three times with 324 

similar results. Fig. 1A was performed twice with average numbers indicated on 325 

the graph. Raw data is listed in Dataset S1. Data are represented as mean ± SEM. 326 
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Statistical significance is from pooled data of the multiple independent experiments 327 

(*pf0.05; **pf0.01; ***pf0.001). 328 

 329 

  330 

  331 
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 332 

Fig. 2. 25HC inhibits SARS-CoV-2 replication 333 

(A) HEK293-hACE2 cells were treated with 7-³, 25-OHC or 25HC at 0.1, 1, or 10 µM 334 

for 1 hr and infected with VSV-SARS-CoV-2 (MOI=5). GFP signals were detected 335 

at 24 hpi. Scale bar: 200 µm. 336 

(B) MA104 cells were treated with 25HC at indicated concentrations for 1 hr and 337 

infected with VSV-SARS-CoV-2 (MOI=0.1) for 24 hr. GFP signals were quantified 338 

by ImageJ and plotted as percentage of inhibition.  339 

(C)  HEK293-hACE2 cells were treated with 7-³, 25-OHC or 25HC at 0.1 or 10 µM for 340 

1 hr and infected with SARS-CoV-2 (MOI=0.5). At 24 hpi, the mRNA level of SARS-341 

CoV-2 N was measured by RT-qPCR and normalized to GAPDH expression. 342 

For all figures, experiments were repeated at least three times with similar results. 343 

Data are represented as mean ± SEM. Statistical significance is from pooled data 344 

of the multiple independent experiments. 345 

 346 
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 347 

Fig. 3. CH25H and 25HC block SARS-CoV-2 S mediated membrane fusion 348 

(A) Wild-type (WT) HEK293-hACE2 cells or those stably expressing TMPRSS2 or 349 

TMPRSS4 were transfected with mock, IFITM2, IFITM3, or CH25H for 24 hr and 350 

infected with VSV-SARS-CoV-2 (MOI=1). At 24 hpi, the mRNA level of VSV N was 351 

measured by RT-qPCR and normalized to GAPDH expression. 352 
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(B) HEK293-hACE2-TMPRSS2 cells with or without CH25H expression were infected 353 

with wild-type SARS-CoV-2 (MOI=0.5). At 24 hpi, the mRNA level of SARS-CoV-354 

2 N was measured by RT-qPCR and normalized to GAPDH expression. 355 

(C) HEK293-hACE2-TMPRSS2 cells were co-transfected with GFP, either SARS-CoV 356 

S or SARS-CoV-2 S, and IFITM2, IFITM3, or CH25H for 24 hr. The red arrows 357 

highlight the syncytia formation. Enlarged images of mock condition are highlighted 358 

by red boxes and included as insets. Scale bar: 200 µm. 359 

(D) HEK293 cells were co-transfected with GFP, Western equine encephalomyelitis 360 

virus (WEEV) E1 and E2, VSV G, or reovirus FAST p10, with or without CH25H 361 

for 24 hr. The red arrows highlight the syncytia formation. Enlarged images of mock 362 

condition are highlighted by red boxes and included as insets. Scale bar: 200 µm. 363 

(E) HEK293-hACE2 cells stably expressing TMPRSS2 or TMPRSS4 were co-364 

transfected with SARS-CoV-2 S and GFP with or without 25HC (10 µM) for 24 hr. 365 

The red arrows highlight the syncytia formation. Scale bar: 200 µm. 366 

For all figures, experiments were repeated at least three times with similar results. 367 

Data are represented as mean ± SEM. Statistical significance is from pooled data 368 

of the multiple independent experiments (*pf0.05; **pf0.01; ***pf0.001). 369 

 370 
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 371 

Fig. 4. 25HC inhibits endosomal cholesterol export to block SARS-CoV-2 fusion 372 
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(A) HEK293-hACE2-TMPRSS2 cells were treated with or without C4 TopFluor-25HC 373 

(F-25HC, 3 µM) and co-cultured at 1:1 ratio with HEK293 cells transfected with 374 

SARS-CoV-2 and TdTomato for 24 hr. Note that the fused cells (red) stop at the 375 

boundary of 25HC treated cells (green). Scale bar: 200 µm. 376 

(B) HEK293 cells were incubated with C4 TopFluor-25HC (F-25HC, 2 µM) for 1 hr, 377 

fixed, and stained for early/recycling endosome (Rab4), late endosome (LBPA), 378 

lysosome (LAMP1), and nucleus (blue, DAPI). Scale bar: 30 µm. 379 

(C) HEK293-hACE2 cells were transfected with wild-type (WT) or dominant negative 380 

(DN) mutants of Rab5 or Rab7 for 24 hr and infected with VSV-SARS-CoV-2 381 

(MOI=1) with or without 25HC (10 µM). At 24 hpi, the mRNA level of VSV N was 382 

measured by RT-qPCR and normalized to GAPDH expression. 383 

(D) HEK293 cells were treated with TopFluor-cholesterol (F-cholesterol, 2 µM) with or 384 

without 25HC (20 µM) for 1 hr. Scale bar: 30 µm. 385 

(E) MA104 cells were treated with 25HC at indicated concentrations in either complete 386 

or serum-free media (SFM) for 1 hr and infected with VSV-SARS-CoV-2 (MOI=1) 387 

for 24 hr. Cells were fixed and scanned with Typhoon. Green signals were 388 

quantified by ImageJ. 389 

(F) MA104 cells were treated with itraconazole (ICZ) or furin inhibitor (FI) decanoyl-390 

RVKR-CMK at indicated concentrations in either complete or serum-free media for 391 

1 hr and infected with VSV-SARS-CoV-2 (MOI=1) for 24 hr. Cells were fixed and 392 

scanned with Typhoon for green signals. 393 

(G) HEK293-hACE2-TMPRSS2 cells were treated with 25HC (10 µM) or ICZ (3 µM) 394 

for 1 hr and infected with VSV-SARS-CoV-2 (MOI=1) for 20 hr. Scale bar: 500 µm. 395 
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(H) HEK293-ACE2-TMPRSS2 cells were transfected with SARS-CoV-2 S and 396 

TdTomato plasmids for 24 hr in the presence of chloroquine (10 µM), camostat (10 397 

µM), methyl-³-cyclodextrin (MCBD, 1 mM), ICZ (3 µM), or 25HC (20 µM). Scale 398 

bar: 200 µm. 399 

(I) Vero-E6 cells were treated with ICZ or 25HC at indicated concentrations for 1 hr 400 

and infected with SARS-CoV-2-mNeonGreen (MOI=0.5) for 24 hr. Cells were fixed 401 

and green signals were scanned with Typhoon and quantified by ImageJ.   402 

For all figures, experiments were repeated at least three times with similar results. 403 

Data are represented as mean ± SEM. Statistical significance is from pooled data 404 

of the multiple independent experiments (*pf0.05; **pf0.01; ***pf0.001). 405 

 406 
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 407 

Fig. S1. CH25H suppresses VSV-SARS-CoV-2 replication in HEK293-hACE2 cells.  408 

(A) HEK293-hACE2-mCherry cells were transfected with plasma membrane (PM)-409 

localized GFP and stained for cell surface (green), ACE2 (red), nucleus (DAPI, 410 

blue), and actin (white). Scale bar: 30 µm. 411 

(B)  Wild-type (WT) HEK293 or HEK293-hACE2-mCherry cells were infected with 412 

VSV-SARS-CoV-2 (MOI=1) for 8 hr. Scale bar: 200 µm. 413 
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(C) Same as (B) except that infection was 24 hr and RNA was harvested for RT-qPCR 414 

measuring the mRNA level of VSV N compared to GAPDH expression. 415 

(D) Same as (B) except that infection was 24 hr and cell lysates were harvested for 416 

plaque assays. 417 

(E) HEK293-hACE2 cells stably expressing indicated ISGs were harvested for 418 

western blot and probed for V5-tagged ISG and GAPDH protein levels. 419 

(F) HEK293-hACE2 cells stably expressing indicated ISGs were infected with VSV-420 

SARS-CoV-2 (MOI=1) for 24 hr. Scale bar: 200 µm. 421 

(G) HEK293 cells were transfected with mock, IFIH1, or CH25H plasmids for 24 hr or 422 

treated with 25HC (10 µM) for 1 hr. RNA was harvested and the mRNA levels of 423 

IFN-³ (IFNB) and IFN-» (IFNL3) were measured by RT-qPCR and normalized to 424 

GAPDH expression. 425 

For all figures, experiments were repeated at least three times with similar results. 426 

Data are represented as mean ± SEM. Statistical significance is from pooled data 427 

of the multiple independent experiments (*pf0.05; **pf0.01; ***pf0.001). 428 

 429 
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 430 

Fig. S2. 25HC restricts VSV-SARS-CoV-2 replication in MA104 cells. 431 

(A) MA104 cells were infected with serially diluted VSV-SARS-CoV-2 (105 shown here) 432 

with or without 25HC (10 µM). At 3 dpi, GFP signals were scanned with Typhoon.   433 

(B) Quantification of plaque sizes in (A). 434 

For all figures, experiments were repeated at least three times with similar results. 435 

Individual data point is indicated (*pf0.05; **pf0.01; ***pf0.001). 436 

 437 
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 438 

Fig. S3. CH25H and 25HC block SARS-CoV-2 S mediated fusion.  439 
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(A) HEK293-hACE2-TMPRSS2 cells were infected with wild-type VSV, VSV-SARS-440 

CoV or VSV-SARS-CoV-2 (MOI=10) for 6 hr. Cells were harvested and measured 441 

for GFP percentage and intensity by flow cytometry. 442 

(B) HEK293-hACE2-TMPRSS2 cells expressing GFP and indicated ISGs or treated 443 

with 25HC (10 µM) were mixed at 1:1 ratio and co-cultured with HEK293 cells 444 

expressing SARS-CoV-2 S and TdTomato for 24 hr. Note the formation of cell-cell 445 

fusion (yellow), highlighted by black arrows. Scale bar: 200 µm. 446 

(C) HEK293 cells were co-transfected with GFP, VSV G, or reovirus FAST p10, with 447 

or without 25HC (10 µM) for 24 hr. The red arrows highlight the syncytia formation. 448 

Scale bar: 200 µm. 449 

For all figures, experiments were repeated at least three times with similar results. 450 

Data are represented as mean ± SEM.  451 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.141077doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.08.141077
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

 452 

Fig. S4. CH25H and 25HC do not affect S cleavage or lipid raft organization.  453 
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(A) VSV-SARS-CoV-2 was incubated with 25HC (10 µM) for 30 min. HEK293-hACE2 454 

cells were treated with 25HC (10 µM) for 1 hr. At 6 hpi, cells were harvested and 455 

measured for GFP percentage and intensity by flow cytometry.  456 

(B) MA104 cells were treated with 25HC (10 µM) based on the scheme (right panel) 457 

and infected with VSV-SARS-CoV-2 (MOI=1). At 24 hpi, the mRNA level of VSV 458 

N was measured by RT-qPCR and normalized to GAPDH expression (left panel).  459 

(C) HEK293-hACE2 cells were transfected with SARS-CoV-2 for 24 hr. Some cells 460 

were also transfected with TMPRSS2 or treated with trypsin (0.5 µg/ml) or 25HC 461 

(10 µM). Cells were harvested for western blot and probed for SARS-CoV-2 S1, 462 

S2, and GAPDH protein levels. 463 

(D) HEK293-hACE2 cells stably expressing indicated ISGs were stained for lipid rafts 464 

(cholera toxin B, green) and nucleus (DAPI, blue). Scale bar: 30 µm. 465 

(E) HEK293 cells were treated with C4-TopFluor-25HC (10, 1, or 0.1 µM) for 1 hr 466 

and infected with VSV-SARS-CoV-2 (MOI=0.5) for 24 hr. Scale bar: 500 µm. 467 

(F) HEK293-hACE2 cells were transfected GFP-tagged wild-type (WT) or dominant 468 

negative (DN) mutants of Rab5 or Rab7 for 24 hr. Cells were harvested for western 469 

blot and probed for GFP and GAPDH protein levels. 470 

For all figures, experiments were repeated at least three times with similar results. 471 

Data are represented as mean ± SEM. Statistical significance is from pooled data 472 

of the multiple independent experiments (*pf0.05; **pf0.01; ***pf0.001). 473 
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