
1

2 Lineage and Spatial Mapping of Glioblastoma-associated Immunity

3

4

5 **Vidhya M. Ravi^{1,2,3,4,†}, Nicolas Neidert^{1,2,3,†}, Paulina Will^{1,2,3,†}, Kevin Joseph^{1,2,3}, Julian P. Maier^{1,2,3},**

6 Jan Kückelhaus^{1,2,3}, Lea Vollmer^{1,2,3}, Jonathan M Goeldner^{1,2,3}, Simon P. Behringer^{1,2,3}, Florian

7 Scherer^{3,5}, Melanie Boerries^{3,6,7,8}, Marie Follo^{3,5}, Tobias Weiss⁹, Daniel Delev^{10,11}, Julius Kernbach^{10,11},

8 Pamela Franco^{3,4}, Nils Schallner^{3,12}, Christine Dierks^{3,5}, Maria Stella Carro^{3,4}, Ulrich G. Hofmann^{3,4},

9 Christian Fung^{2,3}, Jürgen Beck^{2,3,15}, Roman Sankowski^{3,13}, Marco Prinz^{3,13,14,15}, Oliver Schnell^{2,3,16,†},

10 Dieter Henrik Heiland^{1,2,3†}

11

12 ¹*Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg,*

13 *Germany*

14 ²*Department of Neurosurgery, Medical Center, University of Freiburg, Germany*

15 ³*Faculty of Medicine, Freiburg University, Germany*

16 ⁴*Neuroelectronic Systems, Medical Center, University of Freiburg, Germany*

17 ⁵*Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine,*

18 *University of Freiburg, Germany.*

19 ⁶*Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg,*

20 *79110 Freiburg, Germany.*

21 ⁷*Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine and Medical Center - University*

22 *of Freiburg, 79106 Freiburg, Germany.*

23 ⁸*German Cancer Consortium (DKTK), partner site Freiburg.*

24 ⁹*Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of*

25 *Zurich, Switzerland*

26 ¹⁰*Department of Neurosurgery, RWTH University of Aachen, Aachen, Germany*

27 ¹¹*Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), Department of Neurosurgery,*

28 *RWTH University of Aachen, Aachen, Germany*

29 ¹²*Department of Anesthesiology and Critical Care Medicine, Medical Center-University of Freiburg,*

30 *79106 Freiburg, Germany*

31 ¹³*Institute of Neuropathology, Medical Center - University of Freiburg,*

32 ¹⁴*Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Germany*

33 ¹⁵*Center for NeuroModulation (NeuroModul), University of Freiburg, Freiburg, Germany*

34 ¹⁶*Translational NeuroOncology Research Group, Medical Center, University of Freiburg, Germany*

35

36 **# Equal contributed first authorship**

37 **† Equal contributed last authorship**

38 **DISCLOSURE OF CONFLICTS OF INTEREST:** No potential conflicts of interest were

39 disclosed by the authors.

40 **Corresponding author:**
41 Dieter Henrik Heiland
42 Department of Neurosurgery
43 Medical Center University of Freiburg
44 Breisacher Straße 64
45 79106 Freiburg
46 -Germany-
47 Tel: +49 (0) 761 270 50010
48 Fax: +49 (0) 761 270 51020
49 E-mail: dieter.henrik.heiland@uniklinik-freiburg.de

50 **Summary**

51 The diversity of molecular states and cellular plasticity of immune cells in the glioblastoma environment
52 is still poorly understood. Here, we performed scRNA sequencing of the immune compartment and
53 mapped potential cellular interactions leading to an immunosuppressive microenvironment and
54 dysfunction of T cells. Through inferring the dynamic adaptation during T cell activation, we identified
55 three different terminal states with unique transcriptional programs. Modeling of driver genes for terminal
56 T cell fate identified IL-10 signaling alterations in a subpopulation of HAVCR2(+) T cells. To explore in
57 depth cellular interactions, we established an *in-silico* model by the integration of spatial transcriptomic
58 and scRNA-sequencing, and identified a subset of HMOX1⁺ myeloid cells defined by IL10 release
59 leading to T cell exhaustion. We found a spatial overlap between HMOX(+) myeloid and HAVCR2(+) T
60 cells, suggesting that myeloid-lymphoid interaction causes immunosuppression present in tumor regions
61 with enriched mesenchymal gene expression. Using human neocortical GBM model, coupled with
62 patient-derived T cells, we confirmed that the functional interaction between myeloid and lymphoid cells,
63 leads to a dysfunctional state of T cells. This IL-10 driven T cell exhaustion was found to be rescued by
64 JAK/STAT inhibition. A comprehensive understanding of the cellular states and plasticity of lymphoid
65 cells in GBM will aid towards successful immunotherapeutic approaches.

66

67 **Introduction**

68 Tumor infiltrating lymphocytes, along with resident and migrated myeloid cells, account for a significant
69 part of the tumor microenvironment in glioblastoma¹⁻³. Most recently, the characterization of the myeloid
70 cell population using scRNA-sequencing revealed remarkable heterogeneity with regards to cellular
71 diversity and plasticity within the myeloid compartment^{1,4}. However, the diversity of lymphoid cell types
72 within malignant brain tumors remains unexplored and needs to be illuminated. Insights into the
73 heterogeneity of cell type composition and driver genes for lineage differentiation within lymphoid
74 compartment will aid in providing successful approaches for immunotherapy in the future. In other
75 cancer entities such as colorectal cancer⁵, liver cancer⁶ or melanoma⁷, different T cell states have been
76 investigated. Situations which involve prolonged immune activation and ambiguous stimulation, such as
77 uncontrolled tumor growth or chronic infections, impede the ability of CD8⁺ lymphocytes to secrete
78 proinflammatory cytokines and maintain their cytotoxic profile⁷⁻⁹. This cellular state, named
79 dysfunctional or "exhausted" CD8⁺ lymphocytes, represents a paramount barrier to successful immune-
80 vaccination or checkpoint therapy^{2,10,11}. T cell exhaustion is partially orchestrated by regulation of
81 inhibitory cell surface receptors (PD-1, CTLA-4, LAG-3, TIM-3 and others), in addition to anti-
82 inflammatory cytokines such as IL-10 and TGF- β . Glioblastoma, a common and very aggressive primary
83 brain tumor in adults, is archetypical for tumors with a strong immunosuppressive microenvironment¹².
84 Current, immunotherapeutic approaches such as PDL1/PD1 checkpoint blockade¹³ or peptide
85 vaccination¹⁴, led to remarkable responses in several cancers, has failed to demonstrate its effectiveness
86 in patients suffering from glioblastoma. To address the sparse knowledge with respect to the lymphoid
87 cell population in glioblastoma, we performed deep transcriptional profiling by means of scRNA-
88 sequencing, and mapped potential cellular interactions and cytokine responses that could lead to the
89 dysfunctional and exhausted phenotype of T cells. Pseudotime analysis revealed an increased response
90 to Interleukin 10 (IL10) during the transformation of T cells from the effector state to the dysfunctional
91 state. To computationally explore "connected" cells driving this transformation, we introduced a novel
92 approach termed "*nearest functionally connected neighbor* (NFCN)", which identified a subset of
93 myeloid cells marked by CD163⁺ and HMOX1⁺ expression. Furthermore, we performed spatially
94 resolved transcriptomics, which confirmed the spatial overlap of exhausted T cells with HMOX1⁺ myeloid
95 cells, within regions of the tumor enriched with mesenchymal transcriptional signatures. Furthermore,
96 using human neocortical GBM model with/without myeloid cell depletion, along with autografted T cell
97 stimulation, we were able to conclusively validate our findings from the computational approach, which
98 confirmed the role of myeloid cells as a key driver of the immunosuppressive microenvironment.

99

100 **Results:**

101 **Single cell Analysis of the Immune Cell Compartment in Glioblastoma**

102 In order to interrogate the diversity of the immune microenvironment in glioblastoma, we performed
103 droplet based 10X single cell sequencing of tissue samples from 8 patients, diagnosed with
104 Glioblastoma. Lymphoid and myeloid populations ($CD45^+/CD3^+$) were sorted from neoplastic tissue
105 specimens (**Figure 1a and Supplementary Figure 1a**). The scRNA-seq data consisted of 47,284 cells,
106 with a median number of 2,301 unique molecular identifiers (UMIs) and approximately 1023 uniquely
107 expressed genes per cell. We corrected the data for mitochondrial genes, regressed out cell cycle
108 effects and removed batch effects due to technical artifacts. We then decomposed the eigenvalue
109 frequencies of the first 100 principal components and determined the number of non-trivial components
110 by comparing them to randomized expression values, resulting in 41 meaningful components. Shared
111 nearest neighbor (SNN) graph clustering resulted in 21 clusters (C0-C20) containing uniquely expressed
112 genes. The major observed cell type when using the semi-supervised subtyping algorithm of scRNA-
113 seq (SCINA-Model)¹⁵ and SingleR¹⁶ are: microglia cells (*TMEM119*, *CX3CR1* and *P2RY12*) and
114 macrophages (*AIF1*, *CD68*, *CD163* and low expression of *TMEM119*, *CX3CR1*), followed by CD8⁺ T
115 cells (*CD8A*, *CD3D*), natural killer cells (*KLRD1*, *GZMH*, *GZMA*, *NKG7* and *CD52*), CD4⁺ T cells (*BCL6*,
116 *CD3D*, *CD4*, *CD84* and *IL6R*), T-memory cells (*TRBC2*, *LCK*, *L7R* and *SELL*), granulocytes (*LYZ*), a
117 minor number of oligodendrocytes and oligodendrocyte-progenitor cell (OPC's) (*OLIG1*, *MBP*, *PDGFA*),
118 and endothelial cells (*CD34*, *PCAM1*, *VEGFA*) **Figure 1b, Supplementary Figure 1b-f**. To identify
119 malignant cells, we inferred large scale copy number variations (CNVs) from scRNA-seq profiles by
120 averaging expression over stretches of 100 genes on their respective chromosomes¹⁷. With this
121 approach, we confirmed that there was minimal contamination by tumor cells (clustered as OPC cells),
122 based on their typical chromosomal alterations (gain in chromosome 7 and loss in chromosome 10),
123 **Supplementary Figure 2a**.

124

125 **Diversity of T cells in the Glioblastoma Microenvironment**

126 To investigate the diversity of the T cells present in the microenvironment, we examined them by two
127 different but complementary methods. Firstly, T cells were isolated *in-silico* by means of clustering (as
128 shown above), based on previously published marker gene expression profiles ($CD3^+$, $CD4^+/CD8^+$).
129 Secondly, they were isolated using the SCINA model, which resulted in a total of 7,547 cells
130 **Supplementary Figure 1g**. Focusing on the different regulatory states of these cells, we identified 13
131 subclusters using SNN-clustering which were then re-embedded into a dynamic model using RNA-
132 velocity, closely reflecting different activation states, **Supplementary Figure 1h and Figure 1c**. Reconstruction of lineage differentiation trajectories by means of both pseudotime and latent time
133 provided insights into the transformation of the cells over time¹⁸, **Figure 1c**. Based on common marker
134 signatures, we defined activated T cells by expressing *GZMA*, *CCL5* and *CCL4*, *IL7R* and other markers
135 (**Supplementary Figure 1i and 2b**) as well as increased proliferation (G2M-score, **Figure 1d**) (C1,C10),
136 and naive T cells by the expression of *SELL*, *TCF7* and *CCR7* (C0), **Figure 1c and Supplementary**
137 **Figure 1h**. We further identified T cell subgroups marked by hypoxia and heat-shock signaling (*HSPA8*,
138 C2, C5,C6) and by a subgroup which showed mixed expression of activation/dysfunctional/exhaustion
139 markers (*HAVCR2*, *GNLY*) and strong enrichment IL-10 signaling, **Figure 1d**. We estimated the G2M-
140

141 score and identified a lower frequency of cell cycle in the differentiated/later states of T cells with the
142 exception of the IFN-gamma subtype, **Figure 1d**. Additional marker plots are given in the
143 **Supplementary Figure 2b**. Regulatory CD4+ T cells (*FOXP3*, *IL2RA* and *CTLA4*) represents a minor
144 population in the glioblastoma microenvironment, **Figure 1c** and **Supplementary Figure 1i-j**.

145

146 **Dysfunctional State of T cells is Driven by IL-10 Signaling**

147 To gain insights into the regulatory mechanism of immune cells, we reconstructed fate decisions made
148 during T cell exhaustion using pseudotime trajectories along the estimated velocity streams, **Figure 1e**.
149 Using RNA-velocity, we estimated cells with high probability of initial and terminal states which resulted
150 in 3 major branches with unique cell fate drivers, **Figure 1e**. In order to determine the dynamic
151 adaptation across all branches (Velo trajectory 1-3), we computed pseudotime vectors using various
152 models. Only two trajectories confirmed the predicted ascending pseudotime inference across multiple
153 models (HAVCR2(+)-T cells and hypoxia-induced T cells), **Figure 1f**. We assume that terminal states
154 without significant pseudotime connection do not inevitably arise from the determined initial state, which
155 suggests that the lineage of IFN-gamma driven T cells coexists and most likely originated from an earlier
156 lineage branch **Figure 1g**.

157 Along our trajectory from effector to HAVCR2(+)-T cells, we showed a latent time-dependent increase of
158 the response to anti-inflammatory signaling such as IL-10 and TGF-beta signaling **Figure 1h**. Next, we
159 mapped the gene expression of defined exhausted and effector signatures along our differentiation
160 trajectory, revealing an enrichment of exhausted genes within the destination cluster. Thus, our data
161 suggests that this response to IL-10 contributes to the dysfunctional state of T cells and affects fate
162 decisions **Figure 1i**. To gain further insights into accurate downstream signaling of IL-10, IFN-gamma,
163 and IL2, we created a library of the 50 most highly up- and downregulated genes, **Supplementary**
164 **Figure 3a-b**. We then extracted signatures observed within the different T cell clusters and compared
165 them with stimulated T cells. As expected, genes upregulated by IL2 stimulation were significantly
166 enriched in cluster 1, while signature genes from IFN-gamma stimulation was enriched in cluster 12.
167 Signature genes from IL-10 stimulation showed a significant enrichment in the dysfunctional cluster
168 (Cluster 9), **Supplementary Figure 3c**. Furthermore, we mapped our signatures along our defined
169 velocity trajectory 1 which confirmed our predicted pathway inference, **Figure 1j-k** and **Supplementary**
170 **Figure 3d**.

171

172 **T cell Activation and Exhaustion Reveals Spatial Heterogeneity and Association with** 173 **Glioblastoma Subtypes**

174 Glioblastomas present a high degree of heterogeneity due to regional metabolic differences and varying
175 composition of the tumor microenvironment. Mapping of spatially resolved gene expression is a novel
176 technique which will help overcome the limitations of scRNA-seq, where spatial information is lost. We
177 performed spatial transcriptomic RNA sequencing (stRNA-seq) of 3 primary IDH1/2 wildtype
178 glioblastoma, containing a total number of 2,352 spots, **Figure 2a**. We observed a median of 8 cells per
179 spot (range: 4 to 22 cells per spot), which allows the spatial mapping of gene expression, but not at
180 single cell resolution. However, when we compared our dataset to the latest classification of
181 glioblastoma¹⁹, consistent results were obtained in accordance with the diversity of subtype expression,

182 **Figure 2b.** In particular, Neftel and colleagues raised evidence that the mesenchymal gene expression
183 is more likely associated with immune response and cellular interaction to myeloid cells¹⁹. In order to
184 investigate the spatial distribution of the mesenchymal subgroup, we performed gene set enrichment
185 analysis at spatial resolution which revealed spot-wise enrichments within all samples, **Figure 2c-d**. In
186 a next step, we used a seeded non-negative matrix factorization (NMF) regression²⁰ to estimate the
187 probability of individual T cell clusters at spatial resolution, **Figure 2e**. We computed the spatial overlap
188 of T cell clusters and glioblastoma states, using a Bayesian approach, which revealed a high estimated
189 correlation of the mesenchymal and T cell cluster 3 (T HAVCR2), cluster 5-7 (T Hypoxia), **Figure 2f**.
190 Further analysis confirming the strong overlap of dysfunctional/exhausted marker (LAG3 and HAVCR2)
191 exclusively with the mesenchymal gene expression signature, **Figure 2g**, suggesting that our data
192 support the findings from Neftel and colleagues.

193

194 **A Subset of Microglia and Macrophages Drive IL-10 Stimulation**

195 In our recent investigation²¹, the crosstalk between microglia cells and reactive astrocytes in the tumor
196 microenvironment was found to be responsible for upregulating IL10 release. This is mediated by
197 microglia/macrophages stimulated with IFN gamma, leading to JAK/STAT activation in tumor-
198 associated astrocytes. In this study we introduce the “nearest functionally connected neighbor” algorithm
199 (NFCN), an in-silico model to identify the most likely related cell pairs through divergent down- and up-
200 stream signal activity, **Figure 3a**. In our model, we assume that cellular interaction with distinct mutual
201 activation implies two fundamental prerequisites. On the one hand, the ligand needs to be expressed
202 and released, or otherwise exposed on the cell surface. To avoid the chances of randomly elevated
203 expression or technical artifacts, we also looked at the simultaneous occurrence of ligand induction
204 (upstream pathway signaling). On the other hand, the receptor needs to be expressed and, additionally,
205 downstream signaling has to be activated as well. This allows us to predict the functional status of the
206 receiver cell (Explanation of the model can be found in the Methods section, with an overview in
207 **Supplementary Figure 4**). We used our *in-silico* model to screen for potential cells responsible for IL-
208 10 activation of T cells. The algorithm identified pairs of lymphoid (T cell clusters) and myeloid cells
209 (macrophages and microglia cluster) and estimated the likelihood of mutual activation **Figure 3b,c**. By
210 extraction of the nearest connected cells (top 1% ranked cells), we identified a subset of myeloid cells
211 characterized by remarkably high *IL10* expression. Most of the receiver cells in the connected cells (top
212 1% ranked cells) originated from the T cell cluster **Figure 3d**. Our predicted IL10 interactions were also
213 supported by another computational approach (**Supplementary Figure 5**). In order to validate our
214 computational model, we used SPOTlight²⁰, an algorithm to predict the spatial position of cells from
215 scRNA-seq data, and were able to confirm a significant overlap. In order to explore the difference
216 between connected and non-connected cells, we extracted both connected and non-connected cells,
217 defined by the highest and lowest interaction-scores (quantile 97.5%). Using differential gene expression
218 analysis, we observed multiple genes which confirmed the non-inflammatory polarization status of highly
219 connected cells.

220 These findings are not surprising, since one of the essential markers of non-inflammatory myeloid cells
221 is *IL10*, **Figure 3e**. We showed that the subset of most highly connected cells were marked by *CD163*
222 and heme oxygenase 1 (*HMOX1*) expression. In a multilayer representation, we illustrated the estimated

223 cellular connections with respect to their most likely spatial coordinates, **Figure 3f**. *HMOX1* is activated
224 during inflammation and oxidative injuries and is regulated through the Nrf2/Bach1-axis, as well as
225 through the IL10/HMOX1-axis. This gene is also well known to be upregulated in the alternative
226 activated macrophage subtype²². Another immunosuppressive signaling marker closely related to the
227 alternative activation of macrophages/microglia is the release of TGF- β ²³, which was also found to be
228 up-regulated in highly connected cells, **Figure 3g**. Consistent with our findings, most downstream
229 signals of the IL10/HMOX1-axis such as STAT3 and p38 MAPK were found to be upregulated in a gene
230 set enrichment analysis, **Figure 3d,h**. In a recent investigation, the role of doublets in the detection of
231 cell-cell interactions was described²⁴. In our dataset the score of potential cell-cell connections was
232 similar to HMOX1 marked macrophages, within the doublet dominated cluster. We computed the marker
233 genes of our predicted connected myeloid and lymphoid genes and found each of the marker sets to be
234 highly expressed in the doublet cluster, which further validated the results from our computational model,
235 **Figure 3i**.

236

237 **Loss of Myeloid Cells Increases Antitumor Immunity**

238 To provide additional evidence for our findings from the presented computational approach, we made
239 use of the recently described human neocortical GBM model, where the cellular architecture of the CNS
240 is well preserved^{21,25}. We cultured non-infiltrated neocortical slices (defined in a recent report^{21,25})
241 coupled with autografted T cells along with myeloid cell depletion, to understand the communication
242 between myeloid cells in the tumor microenvironment along with lymphoid cells. Three days after
243 chemical depletion of the myeloid cells, we injected a primary cell line (BTSC#233, GFP-tagged,
244 previously characterized by RNA-seq profiling as mesenchymal)²⁶. After 4 days of culture, peripheral T
245 cells (same donors), tagged using CellTrace™ Far Red (CTFR) were additionally inoculated and the
246 sections were further cultured for another 48h, **Figure 4a**. Immunostainings showed that myeloid cell
247 depletion reduces the number of IBA1 $^+$ HMOX1 $^+$ cells, **Figure 4b**. Using an enzyme-linked
248 immunosorbent assay (ELISA) we found a significant reduction in IL10 when the myeloid cells were
249 depleted, regardless of the presence of tumor cells. The strongest difference in IL10 release was
250 observed in myeloid cell depleted sections in the presence of tumor cells, **Figure 4c**. Furthermore, we
251 stained for Granzyme B (GZMB $^+$) T cells and quantified IL2 release to examine the amount of effector
252 T cells in both the depleted and non-depleted sections. We found an increased number of GZMB $^+$ T
253 cells in sections with myeloid cell depletion, **Figure 4d**, along with a significant increase in IL2 and no
254 differences in IFN gamma release were observed, **Figure 4e-f**. We also stained for the exhaustion
255 marker TIM3 (Gen: HAVCR2), which was found to be enriched in T cells in the presence of myeloid cell
256 **Figure 4g**, suggesting that myeloid derived IL10 release (by HMOX1 $^+$ cells) leads to T cell exhaustion,
257 which is in agreement with the computational model.

258

259 In order to prove that the IL10 signaling is responsible for the induction of the expression of exhausted
260 T cell markers, we preincubated T cells using an IL10 neutralizing inhibitory antibody **Figure 4h**. This
261 resulted in a strong increase of GZMB $^+$ T cells, followed by a significant increase of IL2, suggesting that
262 IL10 inhibition drives T cell activity, **Figure 4i-j**.

263 From our recent study, we found that a JAK/STAT inhibition causing a significant reduction of IL10 within
264 the tumor microenvironment²¹. Based on this investigation, we pre-treated tissue sections with
265 Ruxolitinib, an FDA-approved JAK-inhibitor, before inoculating the sections with patient-derived T cells.
266 We were able to confirm that JAK inhibition caused a significant decrease of IL10 and increased levels
267 of the inflammatory marker IL2, **Figure 4k-l**.

268 Based on our above findings, we treated a first patient with a recurrent glioblastoma in a neoadjuvant
269 setting with Ruxolitinib for 4 weeks. After resection, we sorted CD45⁺ cells and performed scRNA-
270 sequencing **Figure 4m**. Immunostainings of the tumor revealed a relative increase of CD8⁺ and CD4⁺
271 T cells whereas CD68⁺ myeloid cells remained stable, **Figure 4n-o**. scRNA sequencing revealed a large
272 number of T cells, most of which express markers for T cell activation and a few cells showing a naive
273 signature, **Figure 4p**. When compared with T cells from our initial dataset, an enrichment of the T cells
274 from the JAK treated patient was seen within cluster 1 (activated T cells) and cluster 12 (B cells),
275 suggesting that JAK-inhibition could be a potential treatment option to boost T cell activation by reducing
276 immunosuppressive programs in both myeloid and glial cells, **Figure 4q-r**.

277

278

279 **Discussion:**

280 Although single-cell RNA-sequencing accurately maps the cellular architecture and reflects the diversity
281 of cellular states^{17,19,27,28}, there is a lack of spatial information. Here, we combine single cell RNA
282 sequencing of the immune compartment along with spatial transcriptomic RNA-sequencing (stRNA-seq)
283 to gain better insights into the complex crosstalk, cellular states and cellular plasticity leading to the
284 immunosuppressive environment found in glioblastoma (GBM).

285 Recent studies have reported different subtypes of microglia and macrophages occupying glial
286 tumors^{1,4,19,27,28}. However, detailed information about lymphoid infiltration cells is lacking. There is
287 intense interest in T cells and their varied states due to their importance in the development of targeted
288 therapies and to further the understanding of the immunosuppressive environment of glioblastoma. T
289 cell states, particularly in disease, are somehow difficult to accurately classify, leading to numerous
290 definitions and markers in recent years^{2,7,29-31}. Some authors use the terms "dysfunctional" and
291 "exhausted" synonymously³², whereas others differentiate between the dysfunctional and the exhausted
292 states of T cells^{29,31}. In this study we use the definition of cellular states proposed by Singer et al., 2016⁸.
293 On the basis of these gene sets, our data showed that only cells which remained activated along the
294 pseudotime-trajectory were able to enter a state of dysfunction, and later exhaustion. The dysfunction
295 appears to be a transient state, associated with increased proliferation, despite immunosuppressive
296 stimulation from the tumor environment. This imbalance between pro- and anti-inflammatory signaling,
297 dominated by IL10 secretion, leads to final exhaustion of the T cells, which is in agreement with the
298 current literature^{2,33}. In order to find a consensus with regard to marker genes we further validated our
299 findings on a set of exhausted marker genes recently published in an overview study³⁴. We and others
300 have shown that the GBM microenvironment aids in the evolution of immune suppression. In this
301 process, astrocytes and myeloid cells, both driven by STAT-3 signaling, orchestrate the
302 immunosuppressive environment^{4,21,35,36}. Based on the knowledge that IL10 interaction plays a crucial
303 role in the shift from activated to exhausted T cells, we built an *in-silico* model that identified potential
304 connected cells driving T cell exhaustion.

305 Using this model, we identified a subset of myeloid cells marked by high expression of *HMOX1*⁺, a gene
306 which is induced by oxidative stress and metabolic imbalance^{37,38}. *HMOX1* is linked to the STAT-3
307 pathway and induces IL10 production via MAPK activation, and all of these markers were also found to
308 be upregulated in our connected cells, as reported above. Furthermore, we used spatial transcriptomics
309 to confirm the spatial overlap of cells that we identified as highly connected. We were able to show that
310 the *HMOX1*⁺-myeloid cells were spatially correlated with exhaustion and the mesenchymal state of
311 glioblastoma. These findings are in accord with published reports, revealing that the mesenchymal cells
312 are the component of GBM responsible for the immune crosstalk¹⁹. *HMOX1* expression in GBM and
313 IDH-WT astrocytoma was found to be increased in recurrent GBM and negatively associated with overall
314 survival, **Supplementary Figure 6a,b**. In addition, we made use of a human neocortical GBM model
315 coupled with patient derived T cells in addition to depletion of myeloid cells. This model helped us to
316 simulate the function of the myeloid cells with regard to IL10 release and T cell stimulation. Fitting with
317 our computational model, we confirmed that *HMOX1*⁺ myeloid cells cause a reduction of effector T cells,
318 with a respective reduction in IL2 release and increased expression of our identified exhaustion marker
319 TIM3. Following our recent investigations in which we demonstrated that JAK-inhibition is able to reduce

320 the level of IL10 in human brain tumors²¹, we demonstrated that in a single patient that inhibition of the
321 JAK-STAT axis was able to partially rescue the immunosuppressive environment. The treated subject
322 is still alive but showed permanent disruption of the blood-brain barrier with repetitive increase of
323 contrast enhancing lesions. Each radiologically confirmed progress was sampled without evidence of a
324 tumor recurrence, suggesting that manipulation of the glia/myeloid environment simultaneously caused
325 exaggerated inflammation and pseudo progression. Our single-cell RNA-seq confirmed a pronounced
326 enrichment of activated T cells, while the number of myeloid cells remained relatively stable. In this
327 sample, we also detected the strongest contamination with glial cells. We assumed that potential
328 doublets or strong cell-cell connections led to glial cells being detected as CD45⁺, resulting in a false
329 positive sorting.

330 In conclusion, this work provides the first knowledge regarding lymphocyte population in the
331 glioblastoma microenvironment where we showed that the functional interaction between myeloid and
332 lymphoid cells, leads to a dysfunctional state of T cells. Using human neocortical GBM model and single
333 patient subject we showed that the IL-10 driven T cell exhaustion can be rescued by JAK/STAT
334 inhibition. Thus, the results from this work can be the steppingstone towards successful
335 immunotherapeutic approaches for GBM.

336

337 **Methods:**

338 **Ethical Approval**

339 The local ethics committee of the University of Freiburg approved the data evaluation, imaging
340 procedures and experimental design (protocol 100020/09 and 472/15_160880). The methods were
341 carried out in accordance with the approved guidelines, with written informed consent obtained from all
342 subjects. The studies were approved by an institutional review board. Further information and requests
343 for resources, raw data and reagents should be directed and will be fulfilled by the Contact: D. H.
344 Heiland, dieter.henrik.heiland@uniklinik-freiburg.de. A complete table of all materials used is given in
345 the supplementary information.

346

347 **T cell isolation and stimulation**

348 Blood was drawn from a healthy human individual into an EDTA (ethylenediaminetetraacetic acid)
349 cannula. T cells were extracted in a negative selection manner using a MACSxpress® Whole Blood Pan
350 T Cell Isolation Kit (Miltenyi Biotech). T cells were then transferred in Advanced RPMI 1640 Medium
351 (ThermoFisher Scientific, Pinneberg, Germany) and split for cytokine treatment: Three technical
352 replicates were used for each T cell-treatment condition. Interleukin 2 (IL-2, Abcam, Cambridge, UK)
353 was used at a final concentration of 1 ng/ml, Interleukin 10 (IL-10, Abcam) at 5 ng/ml, Interferon gamma
354 (IFN- γ , Abcam) at 1 ng/ml and Osteopontin (SPP-1, Abcam) at 3 μ g/ml. Cytokine treatment was
355 performed in Advanced RPMI 1640 Medium and T cells were incubated at 37°C and 5% CO2 for 24h.

356

357 **RNA sequencing of stimulated T Cells**

358 The purification of mRNA from total RNA samples was achieved using the Dynabeads mRNA
359 Purification Kit (Thermo Fisher Scientific, Carlsbad, USA). The subsequent reverse transcription
360 reaction was performed using SuperScript IV reverse transcriptase (Thermo Fisher Scientific, Carlsbad,
361 USA). For preparation of RNA sequencing, the Low Input by PCR Barcoding Kit and the cDNA-PCR
362 Sequencing Kit (Oxford Nanopore Technologies, Oxford, United Kingdom) were used as recommended
363 by the manufacturer. RNA sequencing was performed using the MinION Sequencing Device, the
364 SpotON Flow Cell and MinKNOW software (Oxford Nanopore Technologies, Oxford, United Kingdom)
365 according to the manufacturer's instructions. Samples were sequenced for 48h on two flow-cells.
366 Basecalling was performed by Albacore implemented in the nanopore software. Only D²-Reads with a
367 quality Score above 8 were used for further alignment.

368

369 **Sequence trimming and Alignment**

370 In the framework of this study, we developed an automated pipeline for nanopore cDNA-seq data, which
371 is available at github (<https://github.com/heilanddd/NanoPoreSeq>). First the pipeline set up a new class
372 termed "Poreseq" by a distinct sample description file. The analysis starts by rearranging the reads from
373 the *fastq* output from the nanopore sequencer containing all of the D²-Reads. All *fastq* files need to be
374 combined into one file. Multiplexed samples were separated according to their barcode and trimmed by
375 Porechop (<https://github.com/rrwick/Porechop>). Alignment was performed with minimap2
376 (<https://github.com/lh3/minimap2>) and processed with sam-tools.

377

378 **Posthoc Analysis of Bulk-RNA-seq**

379 A matrix of counted genes was further prepared by the RawToVis.R
380 (github.com/heilanddd/VRSD_Lab_v1.5) script, containing normalization of Mapped reads by DESeq,
381 batch effect removal (ComBat package) and fitting for differential gene expression. Gene set enrichment
382 analysis was performed by transformation of the log2 fold-change of DE into a ranked z-scored matrix,
383 which was used as the input. The expression matrix was analysed with AutoPipe
384 (<https://github.com/heilanddd/AutoPipe>) by a supervised machine-learning algorithm and visualized with
385 a heatmap. Full analysis was visualized with the Visualization of RNA-Seq Data (VRSD_Lab software,
386 github.com/heilanddd/VRSD_Lab_v1.5) as a dashboard app based on shiny R-software. We extracted
387 the 50 top up/down regulated genes respectively of each stimulation with respect to control condition to
388 construct a stimulation library.

389

390 **Single-Cell Suspension for scRNA-sequencing**

391 Tumor tissue was obtained from glioma surgery immediately after resection and was transported in
392 phosphate-buffered saline (PBS) within approximately 5 minutes into our cell culture laboratory. Tumor
393 tissue was processed under a laminar flow cabinet. Tissue was reduced to small pieces using two
394 scalpels and the tissue was processed with the Neural Tissue Dissociation Kit (T) using C-Tubes
395 (Miltenyi Biotech, Bergisch-Gladbach, Germany) according to the manufacturer's instructions. The
396 Debris Removal Kit from Miltenyi was used according to the manufacturer's instructions to remove
397 remaining myelin and extracellular debris. In order to remove the remaining erythrocytes, we
398 resuspended the pellet in 3,5 ml ACK lysis buffer (ThermoFisher Scientific, Pinneberg, Germany) and
399 incubated the suspension for 5 minutes followed by a centrifugation step (350g, 10 min, RT). Cell
400 quantification with a hematocytometer was performed after discarding the supernatant and
401 resuspending the pellet in PBS. Cell suspensions were centrifuged again (350g, 10 min, RT) and
402 resuspended in freezing medium containing 10% DMSO (Sigma-Aldrich, Schnelldorf, Germany) in FCS
403 (PAN-Biotech, Aidenbach, Germany). Cell suspensions were immediately placed in a freezing box
404 containing isopropanol and stored in a -80°C freezer for not more than 4 weeks.

405

406 **Cell sorting by Magnetic Beads**

407 Four frozen single-cell suspensions, originating from one patient with an IDH-mutated glioma and three
408 patients with an IDH-wildtype glioblastoma (GBM), were thawed and the dead cells magnetically labeled
409 and eliminated using a Dead Cell Removal Kit (Miltenyi Biotech). The tumor immune environment in
410 general and T cells in particular were positively selected by using CD3+-MACS (Miltenyi Biotech). Cells
411 were stained with trypan blue, counted using a hematocytometer and prepared at a concentration of
412 700 cells/µL.

413

414 **Droplet scRNA-sequencing**

415 At least 16000 cells per sample were loaded on the Chromium Controller (10x Genomics, Pleasanton,
416 CA, USA) for one reaction of the Chromium Next GEM Single Cell 3'v3.1 protocol (10x Genomics),
417 based on a droplet scRNA-sequencing approach. Library construction and sample indexing was
418 performed according to the manufacturer's instructions. scRNA-libraries were sequenced on a NextSeq

419 500/550 High Output Flow Cell v2.5 (150 Cycles) on an Illumina NextSeq 550 (Illumina, San Diego, CA,
420 USA). The bcl2fastq function and the cell ranger (v3.0) was used for quality control.

421

422 **Postprocessing scRNA-sequencing**

423 We used cell ranger to detect low-quality read pairs of single-cell RNA sequencing (scRNA-seq) data.
424 We filtered out reads which did not reach the following criteria: (1) bases with quality < 10, (2) no
425 homopolymers (3) 'N' bases accounting for $\geq 10\%$ of the read length. Filtered reads were mapped by
426 STAR aligner and the resulting filtered count matrix further processed by Seurat v3.0 (R-package). We
427 normalized gene expression values by dividing each estimated cell by the total number of transcripts
428 and multiplied by 10,000, followed by natural-log transformation. Next, we removed batch effects and
429 scaled data by a regression model including sample batch and percentage of ribosomal and
430 mitochondrial gene expression. For further analysis we used the 2000 most variable expressed genes
431 and decomposed eigenvalue frequencies of the first 100 principal components and determined the
432 number of non-trivial components by comparison to randomized expression values. The obtained non-
433 trivial components were used for SNN clustering followed by dimensional reduction using the UMAP
434 algorithm. Differently expressed genes (DE) of each cluster were obtained using a hurdle model tailored
435 to scRNA-seq data which is part of the MAST package. Cell types were identified by 3 different methods;
436 Classical expression of signature markers of immune cells; SingleR an automated annotation tool for
437 single-cell RNA sequencing data obtaining signatures from the Human Primary Cell Atlas, SCINA, a
438 semi-supervised cell type identification tool using cell-type signatures as well as a Gene-Set Variation
439 Analysis (GSVA). Results were combined and clusters were assigned to the cell type with the highest
440 enrichment within all models. In order to individually analyze T cells, we used the assigned cluster and
441 filter for the following criteria. For further analysis T cells were defined by: CD3 $^+$ CD8 $^+$ / CD4 $^+$ CD14 $^-$ LYZ $^-$
442 GFAP $^-$ CD163 $^-$ IBA $^-$.

443

444 **Spatial Transcriptomics**

445 The spatial transcriptomics experiments were done using the 10X Spatial transcriptomics kit
446 (<https://spatialtranscriptomics.com/>). All the instructions for Tissue Optimization and Library preparation
447 were followed according to the manufacturer's protocol. Here, we briefly describe the methods followed
448 using the library preparation protocol.

449

450 **Tissue collection and RNA quality control:**

451 Tissue samples from three patients, diagnosed with WHO IV glioblastoma multiforme (GBM), were
452 included in this study. Fresh tissue collected immediately post resection was quickly embedded in
453 optimal cutting temperature compound (OCT, Sakura) and snap frozen in liquid N₂. The embedded
454 tissue was stored at -80°C until further processing. A total of 10 sections (10 μ m each) per sample were
455 lysed using TriZOL (Invitrogen, 15596026) and used to determine RNA integrity. Total RNA was
456 extracted using PicoPure RNA Isolation Kit (Thermo Fisher, KIT0204) according to the manufacturer's
457 protocol. RIN values were determined using a 2100 Bioanalyzer (RNA 6000 Pico Kit, Agilent) according
458 to the manufacturer's protocol. It is recommended to only use samples with an RNA integrity value >7.
459

460

461 **Tissue staining and Imaging:**

462 Sections were mounted onto spatially barcoded glass slides with poly-T reverse transcription primers,
463 with one section per array. These slides can be stored at -80°C until use. The slides were then warmed
464 to 37°C, after which the sections were fixed for 10 minutes using 4% formaldehyde solution (Carl Roth,
465 P087.1), which was then washed off using PBS. The fixed sections were covered with propan-2-ol
466 (VWR, 20842312). Following evaporation for 40 seconds, sections were incubated in Mayer's
467 Hematoxylin (VWR, 1092490500) for 7 min, bluing buffer (Dako, CS70230-2) for 90 seconds and finally
468 in Eosin Y (Sigma, E4382) for 1 min. The glass slides were then washed using RNase/DNase free water
469 and incubated at 37°C for 5 min or until dry. Before imaging, the glass slides were mounted with 87%
470 glycerol (AppliChem, A3739) and covered with coverslips (R. Langenbrinck, 01-2450/1). Brightfield
471 imaging was performed at 10x magnification with a Zeiss Axio Imager 2 Microscope, and post-
472 processing was performed using ImageJ software.

473 The coverslips and glycerol were removed by washing the glass slides in RNase/DNase free water until
474 the coverslips came off, after which the slides were washed using 80% ethanol to remove any remaining
475 glycerol.

476

477 **Permeabilization, cDNA synthesis and tissue removal:**

478 For each capture array, 70µL of pre-permeabilization buffer, containing 50U/µL Collagenase along with
479 0.1% Pepsin in HCl was added, followed by an incubation for 20 minutes at 37°C. Each array well was
480 then carefully washed using 100µL 0.1x SSC buffer. 70µL of Pepsin was then added and incubated for
481 11 minutes at 37°C. Each well was washed as previously described and 75µL of cDNA synthesis master
482 mix containing: 96µL of 5X First strand buffer, 24 µL 0.1M DTT, 255.2µL of DNase/RNase free water,
483 4.8µL Actinomycin, 4.5µL of 20mg/mL BSA, 24µL of 10mM dNTP, 48µL of Superscript® and 24µL of
484 RNaseOUT™ was added to each well and incubated for 20 hours at 42°C without shaking. Cyanine 3-
485 dCTP was used to aid in the determination of the footprint of the tissue section used.

486 Since glioblastoma tissue is a fatty tissue, degradation and tissue removal was carried out using
487 Proteinase K treatment for which 420µL Proteinase K and PKD buffer (1:7), were added to each well
488 and then incubated at 56°C for 1hr with intermittent agitation (15 seconds / 3 minutes). After incubation,
489 the glass slides were washed three times with 100mL of 50°C SSC/SDS buffer with agitation for 10
490 minutes, 1 minute and finally for 1 minute at 300 rpm. The glass slides were then air-dried at room
491 temperature. Tissue cleavage was carried out by the addition of 70µL of cleavage buffer (320µL
492 RNase/DNase free water, 104µL Second strand buffer, 4.2µL of 10mM dNTP , 4.8µL of 20 mg/mL BSA
493 and 48µL of USER™ Enzyme) to each well and incubation at 37°C for 2 hours with intermittent agitation.

494

495 **Spot Hybridization:**

496 In order to determine the exact location and quality of each of the 1007 spots, fluorescent Cyanine-3 A
497 is hybridized to the 5' ends of the surface probes. 75µL of the hybridization solution (20µL of 10µM
498 Cyanine-3A probe and 20µL of 10µM Cyanine-3 Frame probe in 960µL of 1X PBS) was added to each
499 well and incubated for 10min at room temperature. The slides were then washed three times with 100ml

500 of SSC/SDS buffer preheated to 50°C for 10min, 1min and 1min at room temperature with agitation.
501 The slides were then air-dried and imaged after applying Slowfade® Gold Antifade medium and a
502 coverslip.

503

504 **Library Preparation:**

505 **1. Second Strand Synthesis**

506 5µL second strand synthesis mix containing 20µL of 5X First Strand Buffer, 14µL of DNA polymerase I
507 (10U/µL) and 3.5µL Ribonuclease H (2U/µL) were added to the cleaved sample and incubated at 16°C
508 for 2 hours. Eppendorf tubes were placed on ice and 5µL of T4 DNA polymerase (3U/µL) were added
509 to each strand and incubated for 20 minutes at 16°C. 25µL of 80mM EDTA (mix 30µL of 500mM EDTA
510 with 158µL DNase/RNase free water) was added to each sample and the samples were kept cool on
511 ice.

512 **2. cDNA purification**

513 cDNA from the previous step was purified using Agencourt RNAClean XP beads and DynaMag™- 2
514 magnetic rack, incubated at room temperature for 5 min. Further cleansing was performed by the
515 addition of 80% Ethanol to the sample tubes, while the samples were still placed in the magnetic rack.
516 Sample elution was then carried out using 13µL of NTP/water mix.

517 **3. In Vitro Transcription and Purification**

518 cDNA transcription to aRNA was carried out by adding 4µL of reaction mix containing: 10x Reaction
519 Buffer, T7 Enzyme mix and SUPERaseIn™ RNase Inhibitor (20 U/µL) to 12µL of the eluted cDNA
520 sample and incubated at 37°C, for 14 hours. The samples were purified using RNA clean XP beads
521 according to the manufacturer's protocol and further eluted into 10µL DNase/RNase free water. The
522 amount and average fragment length of amplified RNA was determined using the RNA 6000 Pico Kit
523 (Agilent, 5067-1513) with a 2100 Bioanalyzer according to the manufacturer's protocol.

524 **4. Adapter Ligation**

525 Next, 2.5µL Ligation adapter (IDT) was added to the sample and was heated for 2 min at 70°C and then
526 placed on ice. A total of 4.5µL ligation mix containing 11.3µL of 10X T4 RNA Ligase, T4 RNA truncated
527 Ligase 2 and 11.3µL of murine RNase inhibitor was then added to the sample. Samples were then
528 incubated at 25°C for 1 hour. The samples were then purified using RNAClean XP beads according to
529 the manufacturer's protocol.

530 **5. Second cDNA synthesis**

531 Purified samples were mixed with 1µL cDNA primer (IDT), 1µL dNTP mix up to a total volume of 12µL
532 and incubated at 65°C for 5 min and then directly placed on ice. A 1.5ml Eppendorf tube 8µL of the
533 sample was mixed with 30µL of First Strand Buffer(5X), , 7.5µL of DTT(0.1M), 7.5µL of DNase/RNase
534 free water, 7.5µL of SuperScript® III Reverse transcriptase and 7.5µL of RNaseOUT™ Recombinant
535 ribonuclease Inhibitor and incubated at 50°C for 1 hour followed by cDNA purification using Agencourt
536 RNAClean XP beads according to the manufacturer's protocol. Samples were then stored at -20°C.

537 **6. PCR amplification**

538 Prior to PCR amplification, we determined that 20 cycles were required for appropriate amplification. A
539 total reaction volume of 25µL containing 2x KAPA mix, 0.04µM PCRIInPE2 (IDT), 0.4µM PCR InPE1.0

540 (IDT), 0.5 μ M PCR Index (IDT) and 5 μ L of purified cDNA were amplified using the following protocol:
541 98°C for 3 min followed by 20 cycles at 98°C for 20 seconds, 60°C for 30 seconds, 72°C for 30 seconds
542 followed by 72°C for 5 minutes. The libraries were purified according to the manufacturer's protocol and
543 eluted in 20 μ L EB (elution buffer). The samples were then stored at -20°C until used.

544 7. Quality control of Libraries

545 The average length of the prepared libraries was quantified using an Agilent DNA 1000 high sensitivity
546 kit with a 2100 Bioanalyzer. The concentration of the libraries was determined using a Qubit dsDNA HS
547 kit. The libraries were diluted to 4nM, pooled and denatured before sequencing on the Illumina NextSeq
548 platform using paired-end sequencing. We used 30 cycles for read 1 and 270 cycles for read 2 during
549 sequencing.

Sequence

<i>Ligation Adapter</i>	/5rApp/AGATCGGAAGAGCACACGTCTGAACCTCCAGTCAC/3d- dC/
<i>cDNA primer</i>	GTGACTGGAGTTCAGACGTGTGCTCTTCCGA
<i>PCR primer INPE1</i>	AATGATACGGCGACCACCGAGATCTACACTCTTCCCTACACGACGCTCTT-CCGATCT
<i>PCR primer INPE2</i>	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
<i>PCR index primer</i>	CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTC

550

551 Postprocessing Spatial Transcriptomics

552 First, we aligned the H&E staining by the use of the st-pipeline (github.com/SpatialTranscriptomics-
553 Research/st_pipeline). The pipeline contains the following steps: Quality trimming and removing of low
554 quality bases (bases with quality < 10), sanity check (reads same length, reads order, etc..), remove
555 homopolymers, normalize for AT and GC content, mapping the read2 with STAR, demultiplexing based
556 on read1, sort for reads (read1) with valid barcodes, annotate the reads with htseq-count, group
557 annotated reads by barcode (spot position), gene and genomic location (with an offset) to get a read
558 count (github.com/SpatialTranscriptomics-Research/st_pipeline). The pipeline resulted in a gene count
559 matrix and a spatial information file containing the x and y position and the H&E image. We used the
560 Seurat v3.0 package to normalize gene expression values by dividing each estimated cell by the total
561 number of transcripts and multiplied by 10,000, followed by natural-log transformation. As described for
562 sc-RNA sequencing, we removed batch effects and scaled data by a regression model including sample
563 batch and percentage of ribosomal and mitochondrial gene expression. For further analysis we used
564 the 2000 most variable expressed genes and decomposed eigenvalue frequencies of the first 100
565 principal components and determined the number of non-trivial components by comparison to
566 randomized expression values. The obtained non-trivial components were used for SNN clustering
567 followed by dimensional reduction using the UMAP algorithm. Differently expressed genes (DE) of each
568 cluster were obtained using a hurdle model tailored to scRNA-seq data which is part of the MAST
569 package. We further build a user-friendly viewer for spatial transcriptomic data and provide tutorials on
570 analysis of data: <https://themilolab.github.io/SPATA/index.html>.

571

572 Spatial gene expression

573 For spatial expression plots, we used either normalized and scaled gene expression values (to plot
574 single genes) or scores of a set of genes, using the 0.5 quantile of a probability distribution fitting. The
575 x-axis and y-axis coordinates are given by the input file based on the localization at the H&E staining.
576 We computed a matrix based on the maximum and minimum extension of the spots used (32x33)
577 containing the gene expression or computed scores. Spots without tissue covering were set to zero.
578 Next, we transformed the matrix, using the squared distance between two points divided by a given
579 threshold, implemented in the fields package (R-software) and adapted the input values by increasing
580 the contrast between uncovered spots. The data are illustrated either as surface plots (plotly package
581 R-software) or as images (graphics package R-software).

582

583 **Representation of Cellular States**

584 We aligned cells/spots to variable states with regard to gene sets (GS) that were selected GS_(1,2,..n).
585 First, we separated cells into GS₍₁₊₂₎ versus GS₍₂₊₄₎, using the following equation:

$$586 A_1 = \| GS_{(1)}, GS_{(2)} \|_{\infty} - \| GS_{(3)}, GS_{(4)} \|_{\infty}$$

587 A1 defines the y-axis of the two-dimensional representation. In a next step, we calculated the x-axis
588 separately for spots A1<0 and A1>0:

$$589 A1 > 0: A_2 = \log 2 (\overline{GS_{(1)}} - [\overline{GS_{(2)}} + 1])$$

$$590 A1 < 0: A_2 = \log 2 (\overline{GS_{(3)}} - [\overline{GS_{(4)}}])$$

591 For further visualization of the enrichment of subsets of cells according to gene set enrichment across
592 the two-dimensional representation, we transformed the distribution to representative colors using a
593 probability distribution fitting. This representation is an adapted method published by Neftel and colleges
594 recently^{19,28}.

595

596 **Spatial correlation analysis**

597 The spatial correlation was performed by integrating a deep autoencoder for background noise reduction
598 and a Bayesian correlation model. In a first step, we performed noise reduction through an autoencoder
599 similar to recent described for single-cell RNA-sequencing studies³⁹. The autoencoder consist of an
600 encoder and decoder part which can be defined as transitions:

$$601 (1) \text{ encoder: } \phi: \mathcal{X} \rightarrow \mathcal{F} \text{ decoder: } \psi: \mathcal{F} \rightarrow \mathcal{X}$$

$$602 (2) \phi, \psi = \arg \min \| \mathcal{X} - (\phi, \psi) \mathcal{X} \|^2$$

603 The encoder stage of an autoencoder takes the input $x \in \mathbb{R}^d = \mathcal{X}$ and maps it to $z \in \mathbb{R}^p = \mathcal{F}$ at the
604 layer position φ :

$$605 (3) x = A^{\varphi=0}; z^{\varphi} = \text{ReLU}(W^{\varphi} \times A^{\varphi-1} + b^{\varphi})$$

606 z^{φ} is also referred to as *latent representation*, here presented as $z^1, z^2, \dots, z^{\varphi=n}$ in which φ describes
607 the number of hidden layers. W is the weight matrix and b represent the dropout or bias vector. Our
608 network architecture contained 32 hidden layers, as recommended³⁹. In the decoder weights and biases
609 are reconstructed through backpropagation ($\psi: \mathcal{F} \rightarrow \mathcal{X}$) and z is mapped to $x' = A^{\varphi=0}$ in the shape as x' .

$$610 (4) A^{\varphi-1'} = \sigma'(W^{\varphi'} \times z^{\varphi} + b^{\varphi'})$$

611 In this context, W', σ', b' from the decoder are unrelated to W, σ, b from the encoder. We used a loss
612 function to train the network in order to minimize reconstruction errors.

613 (5) $\mathcal{L}(x, x') = \|x - \sigma'(W'(\sigma(Wx + b)) + b')\|^2$

614 In the second step, we used the predicted gene expression matrix (x') and fitted and Bayesian
615 correlation model (Bayesian First Aid, https://github.com/rasmusab/bayesian_first_aid). An illustration
616 of the spatial correlation is given in the **supplementary figure 7**

617

618 **sc-RNA-sequencing integration into spatial context**

619 In order to integrate determined cluster into the spatial context of the spatial transcriptomic data. We
620 used the recent published spotlighted algorithm and integrated the output into our SPATA objects for
621 visualization²⁰.

622

623 **RNA-velocity and Pseudotime trajectory analysis**

624 In order to determine dynamic gene expression changes, we extracted spliced and unspliced genes
625 from the bam output created by cell ranger using the `velocyto.py` tool⁴⁰. The resulting *.loom files were
626 merged and transformed into .h5ad format for further processing by scVelo⁴¹ and CellRank⁴². The
627 pipeline is integrated into the SPATA toolbox⁴³. Single-cell data are reformatted into an SPATA S4 object
628 using the UMAP coordinates as spatial coordinates. Outputs of the scVelo script (implemented in the
629 development branch of the SPATA toolbox) are imported into the SPATA S4 object (`slot:@fdata`) and
630 available for visualization. RNA-velocity streams are converted into trajectories and imported to the
631 SPATA S4 object (`slot:@trajectories`). Dynamic gene expression changes along trajectories are
632 performed by the `assessTrajectoryTrends()` function.

633

634 **Gene set enrichment analysis**

635 Gene sets were obtained from the database MSigDB v7 and internally created gene sets are available
636 at github.com/heilanddd. For enrichment analysis of single clusters, the normalized and centered
637 expression data were used and further transformed to z-scores ranging from 1 to 0. Genes were ranked
638 in accordance to the obtained differential expression values and used as the input for GSEA.

639

640 **Identification of cycling cells**

641 We used the set of genes published by Neftel and colleagues to calculate proliferation scores based on
642 the GSVA package implemented in R-software. The analysis based on a non-parametric unsupervised
643 approach, which transformed a classic gene matrix (gene-by-sample) into a gene set by sample matrix
644 resulted in an enrichment score for each sample and pathway. From the output enrichment scores we
645 set a threshold based on distribution fitting to define cycling cells.

646

647 **Nearest Functionally Connected Neighbor (NFCN)**

648 To identify connected cells that interact by defined activation or inhibition of down-stream signals in the
649 responder cell, we created a novel model. Therefore, we assumed that a cell-cell interaction is given
650 only if a receptor/ligand pair induce correspondent down-stream signaling within the responder cell (cell
651 with expressed receptor). Furthermore, we take into account that the importance of an activator cell (cell
652 with expressed ligand) can be ranked according to their enriched signaling, which is responsible for
653 inducing ligand expression. Based on these assumptions we defined an algorithm to map cells along an

654 interaction-trajectory. The algorithm was designed to identify potential activators from a defined subset
655 of cells.

656 As input for the analysis we used a normalized and scaled gene expression matrix, a string containing
657 the subset of target cells, a list of genes defining ligand induction on the one side and receptor signaling
658 on the other side. These genes were chosen either by the MSigDB v7 database or our stimulation library
659 explained above. Next, we down-scaled the data to 3000 representative cells including all myeloid cell
660 types and calculated the enrichment of induction and activation of the receptor/ligand pair. Enrichment
661 scores were calculated by singular value decomposition (SVD) over the genes in the gene set and the
662 coefficients of the first right-singular vector defined the enrichment of induction/activation profile. Both
663 expression values and enrichment scores were fitted by a probability distribution model and cells outside
664 the 95% quantile were removed. Next, we fitted a model using a non-parametric kernel estimation
665 (Gaussian or Cauchy-Kernel), on the basis of receptor/ligand expression (A_{exp}) and up/downstream
666 signaling (A_{eff}) of each cell ($i=1,..n$). Both input vectors were normalized and z-scored:
667

$$668 (1) n_{exp\ i} = \frac{A_{exp\ i} - min(A_{exp})}{max(A_{exp}) - min(A_{exp})} \quad (2) \hat{f}_h(n_{exp\ i}) = \frac{1}{n} \sum_{i=1}^n K_h(n_{exp} - n_{exp\ i})$$

669
670 K is the kernel and $0.7 > h > 0.3$ is used to adjust the estimator. The model resulted in a trajectory which
671 was defined as Ligand⁽⁺⁾-Induction⁽⁺⁾ to cells of the target subset with Receptor⁽⁺⁾-Activation⁽⁺⁾. Further
672 cells were aligned along the “interaction-trajectory”. We defined connected cells by reaching the upper
673 70% CI in receptor/ligand expression as well as scores of induction/activation. The process of
674 representation is illustrated schematically in **Supplementary Figure 4**. Additionally we determined
675 receptor-ligand interaction by the NicheNet software as recommended by the authors⁴⁴.
676

677 **CNV estimation:**

678 Copy-number Variations (CNVs) were estimated by aligning genes to their chromosomal location and
679 applying a moving average to the relative expression values, with a sliding window of 100 genes within
680 each chromosome, as described recently¹⁷. First, we arranged genes in accordance to their respective
681 genomic localization using the CONICSmat package (R-software). As a reference set of non-malignant
682 cells, we in-silico extracted 400 CD8 positive cells (unlikely to be expressed on tumor cells). To avoid
683 the considerable impact of any particular gene on the moving average we limited the relative expression
684 values [-2.6,2.6] by replacing all values above/below $exp(\omega)=|2.6|$, by using the infercnv package (R-
685 software). This was performed only in the context of CNV estimation as previous reported¹¹.
686

687 **Flow cytometry:**

688 Single-Cell suspensions were obtained after Dead-Cell Removal and CD3 MACS-enrichment. Cells
689 were incubated with VivaFix™ 398/550 (BioRad Laboratories, CA, USA) according to the
690 manufacturer’s instructions. Cells were fixed in 4% paraformaldehyde (PFA) for 10 minutes. After
691 centrifugation (350 g; 4°C; 5 min) and removal of the supernatant, the cell pellet was suspended in 0.5
692 ml 4°C cold FACS buffer. Cell suspensions were washed and centrifuged at 350xg for 5 mins, followed
693 by resuspension in FACS buffer. The washing step was repeated twice. Finally, cells were resuspended
694 in at least 0.5 to 1 mL of FACS buffer depending on the number of cells. We used a Sony SP6800

695 spectral analyzer in standardization mode with PMT voltage set to maximum to reach a saturation rate
696 below 0.1 %. Gating was performed by FCS Express 7 plus at the Lighthouse Core Facility, University
697 of Freiburg.

698

699 **Immunofluorescence**

700 The same protocol was followed for human neocortical slices with or without microglia and tumor cell
701 injection. The media was removed and exchanged for 1 mL of 4% paraformaldehyde (PFA) for 1 h and
702 further incubated in 20% methanol in PBS for 5 minutes. Slices were then permeabilized by incubating
703 in PBS supplemented with 1 % Triton (TX-100) overnight at 4°C and further blocked using 20% BSA for
704 4 hours. The permeabilized and blocked slices were then incubated by primary antibodies in 5% BSA-
705 PBS incubated overnight at 4°C. After washing in PBS, slices were labelled with secondary antibodies
706 conjugated with Alexa 405, 488, 555, or 568 for 3 hours at room temperature. Finally, slices were
707 mounted on glass slides using DAPI fluoromount (Southern Biotech, Cat. No. 0100-20), as recently
708 described²¹.

709

710 **Human Organotypic Slice Culture**

711 Human neocortical slices were prepared as recently described^{21,25}. Capillaries and damaged tissue were
712 dissected away from the tissue block in the preparation medium containing Hibernate medium
713 supplemented with 13 mM D+ Glucose and 30 mM NMDG. Coronal slices of 300 μ m thickness were
714 sectioned using a vibratome (VT1200, Leica Germany) and incubated in preparation medium for 10
715 minutes before plating to avoid any variability due to tissue trauma. Three to four slices were gathered
716 per insert. The transfer of the slices was facilitated by a polished wide mouth glass pipette. Slices were
717 maintained in growth medium containing Neurobasal (L- Glutamine) supplemented with 2% serum free
718 B-27, 2% Anti- Anti, 10 mM D+ Glucose, 1 mM MgSO₄, and 1 mM Glutamax at 5% CO₂ and 37 °C. The
719 entire medium was replaced with fresh culture medium 24 hours post plating, and every 48 hours
720 thereafter.

721

722 **Chemical depletion of Microglia from slice cultures**

723 Selective depletion of the myeloid cell compartment in human neocortical slices was performed by
724 supplementing the growth medium with 11 μ mol of Clodronate (Sigma, D4434) for 72h at 37°C.
725 Subsequently, the slices were carefully rinsed with growth medium to wash away any debris.

726

727 **Tumor/T cell injection onto tissue cultures**

728 ZsGreen tagged BTSC#233 cell lines cultured and prepared as described in the cell culture section.
729 Post trypsinization, a centrifugation step was performed, following which the cells were harvested and
730 suspended in MEM media at 20,000 cells/ μ l. Cells were used immediately for injection onto tissue slices.
731 A 10 μ L Hamilton syringe was used to manually inject 1 μ L into the white matter portion of the slice
732 culture. Slices with injected cells were incubated at 37°C, 5% CO₂ for 7 days and fresh culture medium
733 was added every 2 days. Blood samples from the same donors from whom we obtained the healthy
734 cortex for our organotypic slice cultures was drawn into an EDTA-cannula. Peripheral T cells were

735 isolated using the same MACSxpress® Whole Blood Pan T Cell Isolation Kit (Miltenyi Biotech) and
736 erythrocytes were eliminated from the suspension using ACK-lysis buffer (Thermo Fisher Scientific).
737 T cells were tagged using the Cell Trace Far Red dye (ThermoFisher Scientific) prior to injection into
738 the slices. To block endogenous IL-10 receptor, the neutralizing antibody anti-IL10 hAB (R&D systems)
739 were added to the cells at the concentration of 5 µg/ml.

740

741 **Enzyme linked Immunosorbent Assay**

742 An enzyme linked immunosorbent assay (ELISA) was performed in order to measure cytokine
743 concentrations of IL-2, IL-10, IL-13 and IFN-gamma in the cell culture medium 48h after T cell injection.
744 The Multi-Analyte ELISArray Kit (Qiagen, Venlo, Netherlands; MEH-003A) was used according to the
745 manufacturer's instructions. Absorbance was measured using the Tecan Infinite® 200 (Tecan,
746 Männedorf, Switzerland).

747

748 **Treatment of patient with JAK-inhibitor**

749 A patient with a recurrent glioblastoma was treated with a daily dose of 40mg Ruxolitinib for 4 weeks.
750 Before treatment, we confirmed the progress by a biopsy. The treatment was performed as a
751 neoadjuvant therapy. After 4 weeks, the patient underwent a gross-total surgery and adjuvant
752 Temozolomide therapy.

753

754 **Acknowledgement**

755 DHH is funded by the Else-Kröner Stiftung and BMBF. We thank Manching Ku and Dietmar Pfeifer for
756 their helpful advice. We acknowledge Biorender.com.

757

758 **Conflict of interests**

759 No potential conflicts of interest were disclosed by the authors.

760

761 **Data availability**

762 scRNA-Sequencing Data available: (in preparation), Accession codes: www.github.com/heilanddd/.
763 VisLabv1.5 https://github.com/heilanddd/Vis_Lab1.5, NFCN Algorithm www.github.com/heilanddd/NFCN,
764 SPATA-Lab: www.github.com/heilanddd/-SPATA-Lab. Further information and requests for resources,
765 raw data and reagents should be directed and will be fulfilled by the Contact: D. H. Heiland,
766 dieter.henrik.heiland@uniklinik-freiburg.de.

767

768

769

770 Bibliography

771

- 772 1. Darmanis, S. *et al.* Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating
773 Front of Human Glioblastoma. *Cell Rep.* **21**, 1399–1410 (2017).
- 774 2. Woroniecka, K. *et al.* T-Cell Exhaustion Signatures Vary with Tumor Type and Are Severe in
775 Glioblastoma. *Clin. Cancer Res.* **24**, 4175–4186 (2018).
- 776 3. Chen, Z. & Hambardzumyan, D. Immune microenvironment in glioblastoma subtypes. *Front.*
777 *Immunol.* **9**, 1004 (2018).
- 778 4. Sankowski, R. *et al.* Mapping microglia states in the human brain through the integration of high-
779 dimensional techniques. *Nat. Neurosci.* **22**, 2098–2110 (2019).
- 780 5. Zhang, L. *et al.* Lineage tracking reveals dynamic relationships of T cells in colorectal cancer.
781 *Nature* **564**, 268–272 (2018).
- 782 6. Zheng, C. *et al.* Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell
783 Sequencing. *Cell* **169**, 1342–1356.e16 (2017).
- 784 7. Baitsch, L. *et al.* Exhaustion of tumor-specific CD8⁺ T cells in metastases from melanoma patients.
785 *J. Clin. Invest.* **121**, 2350–2360 (2011).
- 786 8. Singer, M. *et al.* A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-
787 Infiltrating T Cells. *Cell* **166**, 1500–1511.e9 (2016).
- 788 9. Anderson, A. C., Joller, N. & Kuchroo, V. K. Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with
789 Specialized Functions in Immune Regulation. *Immunity* **44**, 989–1004 (2016).
- 790 10. Im, S. J. *et al.* Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. *Nature*
791 **537**, 417–421 (2016).
- 792 11. Tirosh, I. *et al.* Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-
793 seq. *Science* **352**, 189–196 (2016).
- 794 12. Platten, M., Ochs, K., Lemke, D., Opitz, C. & Wick, W. Microenvironmental clues for glioma
795 immunotherapy. *Curr Neurol Neurosci Rep* **14**, 440 (2014).
- 796 13. Filley, A. C., Henriquez, M. & Dey, M. Recurrent glioma clinical trial, CheckMate-143: the game is
797 not over yet. *Oncotarget* **8**, 91779–91794 (2017).
- 798 14. Weller, M. *et al.* Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-
799 expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. *Lancet*
800 *Oncol.* **18**, 1373–1385 (2017).
- 801 15. Zhang, Z. *et al.* SCINA: A Semi-Supervised Subtyping Algorithm of Single Cells and Bulk Samples.
802 *Genes (Basel)* **10**, (2019).
- 803 16. Aran, D. *et al.* Reference-based analysis of lung single-cell sequencing reveals a transitional
804 profibrotic macrophage. *Nat. Immunol.* **20**, 163–172 (2019).
- 805 17. Patel, A. P. *et al.* Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma.
806 *Science* **344**, 1396–1401 (2014).
- 807 18. Chen, H. *et al.* Single-cell trajectories reconstruction, exploration and mapping of omics data with
808 STREAM. *Nat. Commun.* **10**, 1903 (2019).
- 809 19. Neftel, C. *et al.* An integrative model of cellular states, plasticity, and genetics for glioblastoma. *Cell*

810 178, 835–849.e21 (2019).

811 20. Elosua, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight:Seeded NMF regression to
812 Deconvolute Spatial Transcriptomics Spots with Single-Cell Transcriptomes. *BioRxiv* (2020).
813 doi:10.1101/2020.06.03.131334

814 21. Henrik Heiland, D. *et al.* Tumor-associated reactive astrocytes aid the evolution of
815 immunosuppressive environment in glioblastoma. *Nat. Commun.* **10**, 2541 (2019).

816 22. Naito, Y., Takagi, T. & Higashimura, Y. Heme oxygenase-1 and anti-inflammatory M2
817 macrophages. *Arch. Biochem. Biophys.* **564**, 83–88 (2014).

818 23. Qin, Y. *et al.* A Milieu Molecule for TGF- β Required for Microglia Function in the Nervous System.
819 *Cell* **174**, 156–171.e16 (2018).

820 24. Giladi, A. *et al.* Dissecting cellular crosstalk by sequencing physically interacting cells. *Nat.*
821 *Biotechnol.* **38**, 629–637 (2020).

822 25. Ravi, V. M. *et al.* Human organotypic brain slice culture: a novel framework for environmental
823 research in neuro-oncology. *Life Sci. Alliance* **2**, (2019).

824 26. Kling, T. *et al.* Integrative Modeling Reveals Annexin A2-mediated Epigenetic Control of
825 Mesenchymal Glioblastoma. *EBioMedicine* **12**, 72–85 (2016).

826 27. Venteicher, A. S. *et al.* Decoupling genetics, lineages, and microenvironment in IDH-mutant
827 gliomas by single-cell RNA-seq. *Science* **355**, (2017).

828 28. Tirosh, I. *et al.* Single-cell RNA-seq supports a developmental hierarchy in human
829 oligodendrogloma. *Nature* **539**, 309–313 (2016).

830 29. Blank, C. U. *et al.* Defining “T cell exhaustion”. *Nat. Rev. Immunol.* **19**, 665–674 (2019).

831 30. Jiang, Y., Li, Y. & Zhu, B. T-cell exhaustion in the tumor microenvironment. *Cell Death Dis.* **6**, e1792
832 (2015).

833 31. Wherry, E. J. T cell exhaustion. *Nat. Immunol.* **12**, 492–499 (2011).

834 32. Li, H. *et al.* Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment
835 within Human Melanoma. *Cell* **176**, 775–789.e18 (2019).

836 33. Woroniecka, K. I., Rhodin, K. E., Chongsathidkiet, P., Keith, K. A. & Fecci, P. E. T-cell Dysfunction
837 in Glioblastoma: Applying a New Framework. *Clin. Cancer Res.* **24**, 3792–3802 (2018).

838 34. Winkler, F. & Bengsch, B. Use of mass cytometry to profile human T cell exhaustion. *Front.*
839 *Immunol.* **10**, 3039 (2019).

840 35. Wurm, J. *et al.* Astrogliosis Releases Pro-Oncogenic Chitinase 3-Like 1 Causing MAPK Signaling
841 in Glioblastoma. *Cancers (Basel)* (2019).

842 36. Priego, N. *et al.* STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis.
843 *Nat. Med.* **24**, 1024–1035 (2018).

844 37. Kaiser, S. *et al.* Neuroprotection after Hemorrhagic Stroke Depends on Cerebral Heme
845 Oxygenase-1. *Antioxidants (Basel)* **8**, (2019).

846 38. Sebastián, V. P. *et al.* Heme Oxygenase-1 as a Modulator of Intestinal Inflammation Development
847 and Progression. *Front. Immunol.* **9**, 1956 (2018).

848 39. Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. & Theis, F. J. Single-cell RNA-seq denoising
849 using a deep count autoencoder. *Nat. Commun.* **10**, 390 (2019).

850 40. La Manno, G. *et al.* RNA velocity of single cells. *Nature* **560**, 494–498 (2018).

851 41. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient
852 cell states through dynamical modeling. *Nat. Biotechnol.* **38**, 1408–1414 (2020).

853 42. Lange, M. *et al.* CellRank for directed single-cell fate mapping. *BioRxiv* (2020).
854 doi:10.1101/2020.10.19.345983

855 43. Kueckelhaus, J. *et al.* Inferring spatially transient gene expression pattern from spatial
856 transcriptomic studies. *BioRxiv* (2020). doi:10.1101/2020.10.20.346544

857 44. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking
858 ligands to target genes. *Nat. Methods* **17**, 159–162 (2020).

859

860

861 **Figure Legends**

862

863 **Figure 1:** a) Illustration of the workflow, tissue specimens were obtained from 11 glioblastoma patients.
864 Samples from 8 patients were used for scRNA-seq and 3 for spatial transcriptomics. b) Dimensional
865 reduction using UMAP, cell type was determined by SingleR (github.com/dviraran/SingleR). c)
866 Dimensional reduction (UMAP) of CD3+/CD8+ cells. SNN-clustering reveal 13 different clusters. RNA-
867 velocity based pseudotime is presented by streams obtained from dynamic modeling in scvelo. Marker
868 expression in different subpopulations ranked by grade of activity. d) Dimensional reduction plots of
869 estimated gene-set enrichment (left), of cell proliferation (middle) and regulatory marker genes (right).
870 e,f) Detailed presentation of 3 major trajectories and its changes of estimated pseudotime across
871 different models. Velocity trajectory 2 reveals almost no temporal changes, but is marked by increasing
872 IFNg signaling along the trajectory. g) Line plot of IFNg signalling gene expression along the velocity
873 trajectory 2 (left) and dimensional reduction (right). h) Inferring dynamic alterations along the trajectory
874 revealed up-regulation of IL-10 and TGF- β signaling, presented as a line plot (top). (i) Gene set
875 enrichment analysis of the IL10 signaling enrichment in defined start and destination region of the
876 trajectory (bottom). j) Mapping of gene expression along the pseudotime trajectory. Bars at the bottom
877 indicate the enrichment of each cell to enrich effector or exhausted signatures. Line plots on the top,
878 showed enrichment for the T cell state signatures⁸.

879

880 **Figure 2:** a) Workflow of spatial transcriptomics b) 2D representation of heterogeneous states in
881 glioblastoma by Neftel, colors indicate the expression of cycling cells (quantile). c) H&E stainings and
882 (d) gene expression enrichment maps of the mesenchymal state defined by Neftel¹⁹. e) Enrichment
883 maps of T cell clusters by spotlight algorithm²⁰ in different samples. Maps are colored by a normalized
884 spotlight score. f) Correlation heatmap of a Bayesian correlation model of T cell clusters and
885 glioblastoma transcriptional subtypes. (g) Scatter plots of spot-wise correlation of *HAVCR2* and *LAG3*
886 expression and T cells (left side), mesenchymal-like gene expression (middle) and NPC-like gene
887 expression (right side), Rho correlation and CI95% are given at the top.

888

889 **Figure 3:** a) Workflow exploring cell-cell interactions using two approaches: 1. Predict functional
890 neighbors based on defined ligand-receptor interaction. 2. Validation in spatial transcriptomic datasets.
891 b) Cell-cell interaction plot as explained in supplementary figure 4. Cells with an interaction-score above
892 0.95 are mapped to the UMAP. C) Volcano plot of differential gene expression between highly connected
893 cells (CI>97.5%, left side) vs non-connected cells (CI<2.5%, right side), adjusted -log(p-vale) (FDR) was
894 used at the y-axis. Red cells are defined by fold-change above 2 and FDR < 0.05. d) Spatial surface
895 plots of gene expression and pathway enrichment. e) Multilayer representation of cellular interaction. At
896 the top layer, a UMAP is shown colored by expression levels of *HMOX1*. Each red line represents a cell
897 (upper CI>99% NFCNA-Score) and its most likely position within the spatial dataset. The second layer
898 is a spatial transcriptomic dataset, colored by the predicted NFCNA-score. At the bottom, the third layer
899 represents a UMAP colored accordingly to CD3 expression. Green lines showed the upper CI>99% of
900 receiver cells. f) Violin plots of the mean NFCNA score in each cluster. g) Violin plots of gene expression
901 between connected cells (CI>97.5%, left side) vs non-connected cells (CI<2.5%, right side). Wilcoxon

902 Rank Sum test and FDR adjustment was used for statistical testing. h) Gene Set enrichment analysis
903 of four different gene sets. i) Heatmap of differently expressed genes or connected myeloid (right) and
904 lymphoid (middle) cells and the cluster of doublets. At the top, scatterplot of total UMIs per cell in each
905 group.

906 **Figure 4:** a) Experimental workflow of the neocortical GBM model autografted with patient derived T
907 cells and with/without myeloid cell depletion. b) Immunostainings of IBA1 (Macrophages and Microglia)
908 in magenta and HMOX1 in cyan, tumor cells are depicted in grey. In the upper panel, the control set
909 with no myeloid cell depletion (M^+) is shown, the bottom panel contains the myeloid cell depleted
910 sections. c) ELISA measurements of IL10 d) Immunostainings of T cells (CSFE-Tagged, in red) and
911 GZMB, a marker of T cell activation (green). e, f) ELISA measurements of IL2 and IFNg g)
912 Immunostainings of TIM3 (gene: *HAVCR2*) in yellow, which was identified in the scRNA-seq, and T cell
913 in red. h) Illustration of the workflow. i) Immunostainings of tumor cells (grey), T cells (CSFE-Tagged, in
914 red) and GZMB a marker of T cell activation (green) with pre-treatment in anti-IL-10R antibodies. j)
915 ELISA measurements of IL2 in ctr and IL10R inhibition. k) Immunostainings of tumor cells (grey), T cells
916 (CSFE-Tagged, in red) and GZMB a marker of T cell activation (green) treated with JAK-inhibitor
917 Ruxolitinib. l) Heatmap of interleukin intensities different environment. Information regarding the
918 presence of myeloid cells are given at the bottom. m) Illustration of the workflow of JAK inhibition in a
919 recurrent GBM patient. n-o) Immunohistochemistry of immune marker and its quantification, white: pre
920 therapy, gray: post therapy p) Dimensional reduction of single-cell RNA-sequencing of the Ruxolitinib
921 treated patient revealed a large percentage of T cells (right side). q) Comparison of T cells from the
922 Ruxolitinib treated patient and the non-treated cohort. r) A barplot that indicates the cluster specific
923 enrichment of JAK treated T cells. P-values are determined by one-way ANOVA (c,e,f,j) adjusted by
924 Benjamini-Hochberger (c,e,f,j) for multiple testing. Data is given as mean \pm standard deviation.

925

926 **Supplementary Figures:**

927

928 **Supplementary Figure1:** a) Workflow and representative FACS images. b) UMAP representation of all
929 detected cell types. c-e) Distribution of patients across all clusters and cell types. d) UMAP
930 representation of all determined clusters (SNN) e) The graph representing the percentage of each
931 patient in different clusters f) Signature genes of each cluster g-i) UMAP representation of Isolated T
932 cells spitted into CD4+ and CD8+ cells and the total number of clusters (13). j) Heatmap of signature
933 genes

934 **Supplementary Figure2:** a) Copy-number alterations based on single cell data. Only a small subset of
935 tumor cells was found in the OPC cluster. b) Gene expression maps of common marker genes.

936 **Supplementary Figure3:** a) Workflow to build a library of stimulated T-cells b) T cell stimulation in order
937 to build a library for cytokine effects, illustrated is a heatmap of the 10 most significant marker genes of
938 each stimulation state, based on PAMR algorithm implemented in the AutoPipe. c) Dimensional
939 reduction (UMAP) of gene expression of the different simulation experiments. d) Z-scored expression
940 of each stimulation signature along the velocity trajectory 1 (Figure 1).

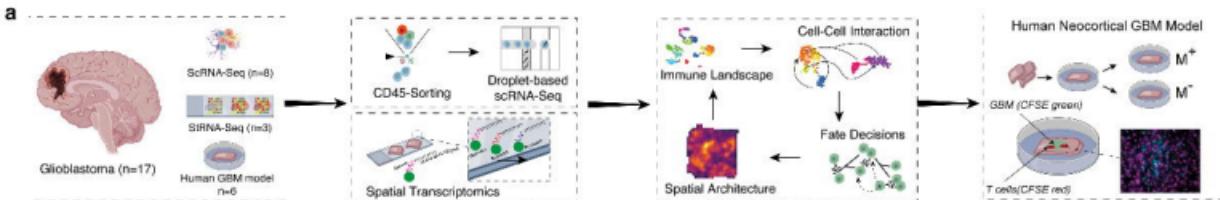
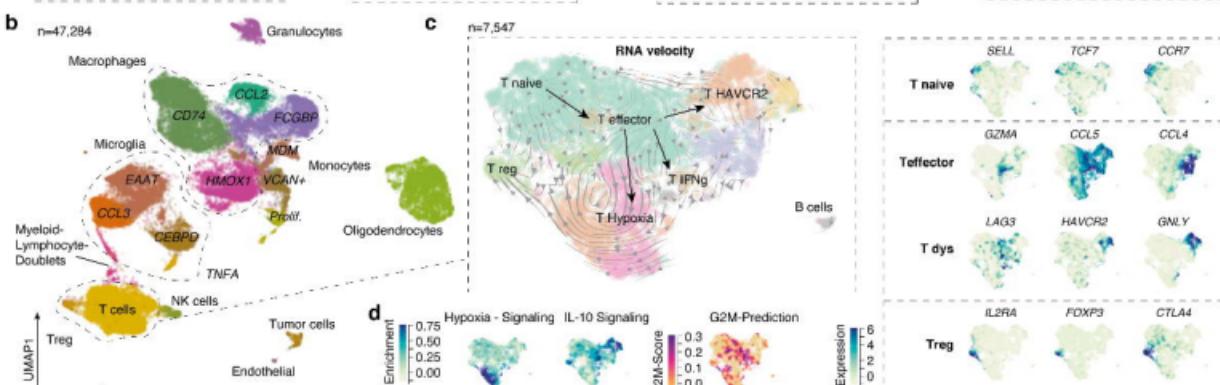
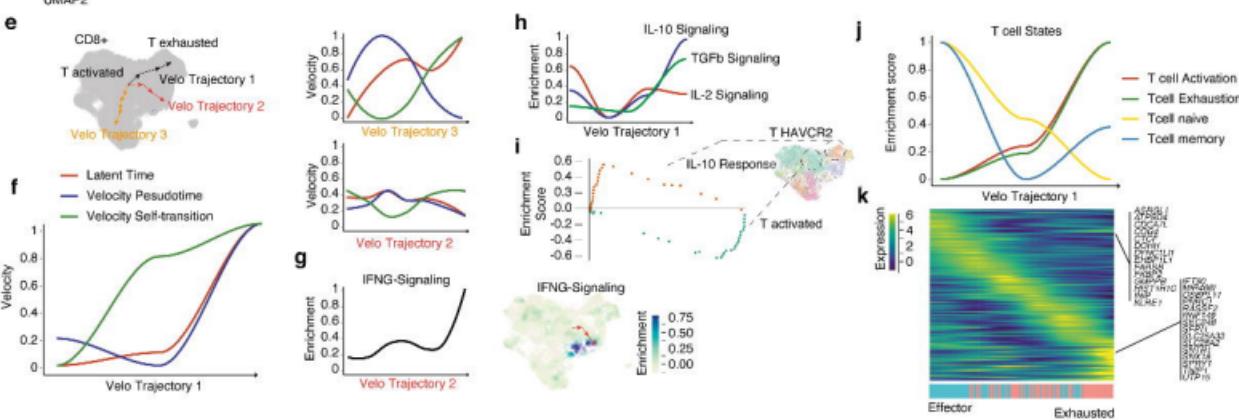
941 **Supplementary Figure 4:** a) Workflow and concept of the NFCN Analysis

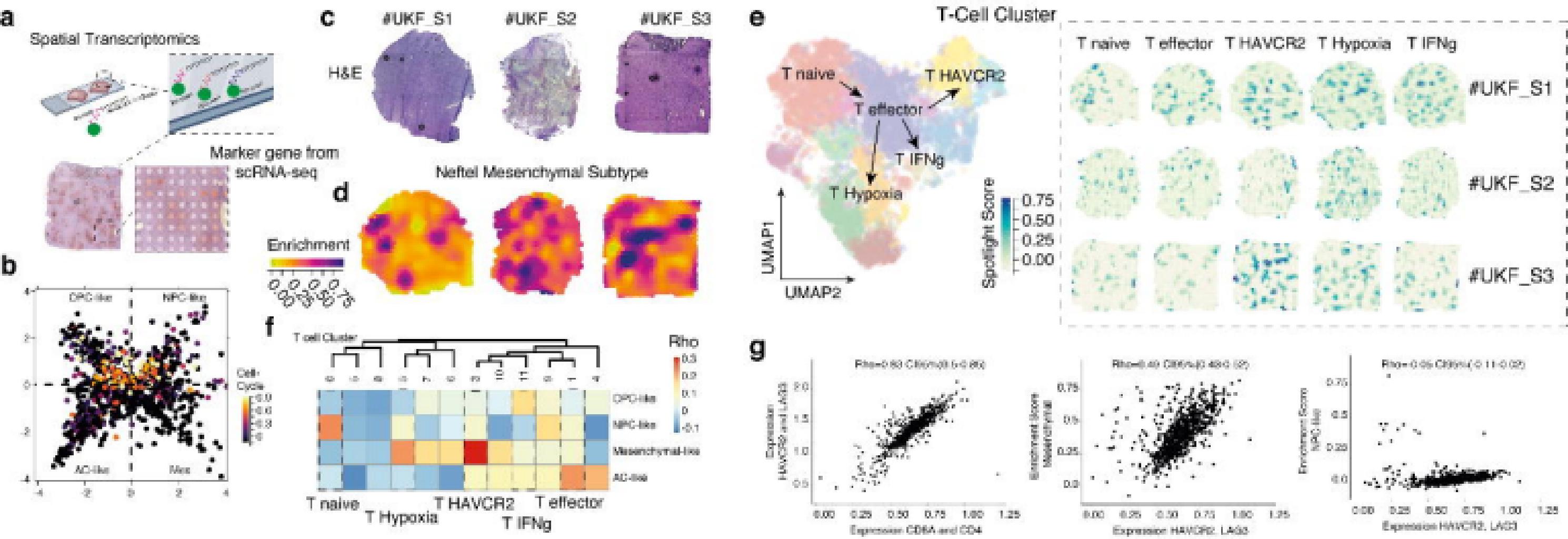
942 **Supplementary Figure 5:** a) Results from the Nichnet algorithm, left: The receptor-target interaction,
943 right: the receptor-ligand network.

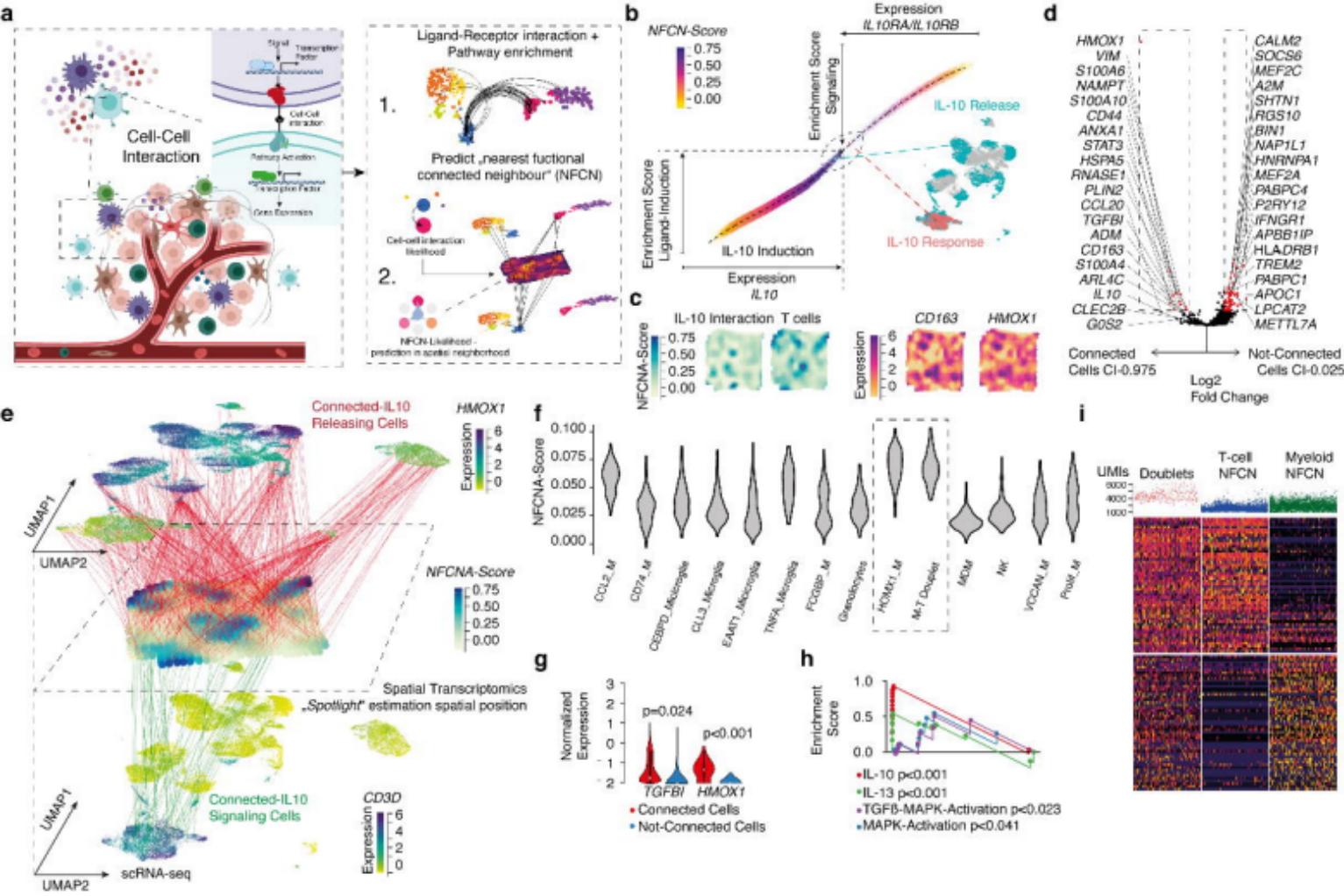
944 **Supplementary Figure 6:** a) Kaplan-Meier survival estimation of HMOX1 high/low expression GBM. b-
945 c) Expression of HMOX1 in different regions of the tumor (b) and in de-novo and recurrent stage (c).

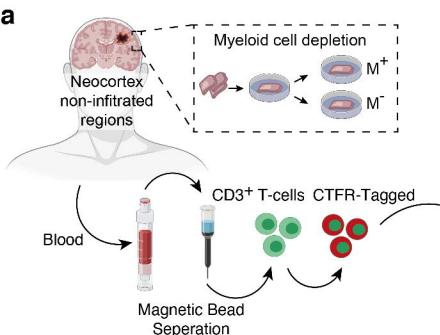
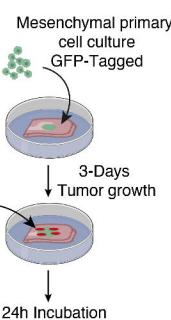
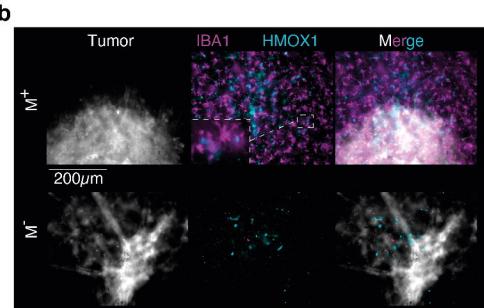
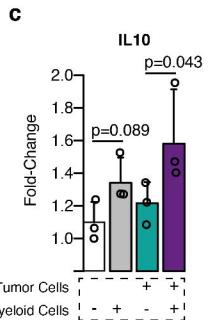
946 **Supplementary Figure 7:** a) Illustration of the workflow to determine the spatial correlation using a
947 deep autoencoder for denoising followed by a Bayesian correlation model. b) Examples of the predicted
948 overlap of T cells and CD163/HMOX1(+) myeloid cells. C) Distribution of the predicted correlation.

949

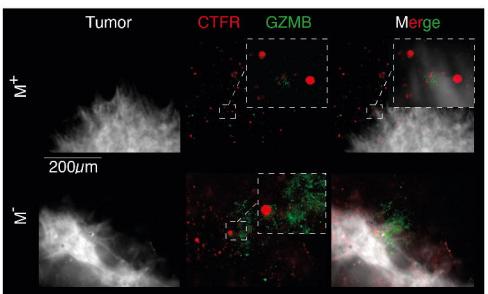




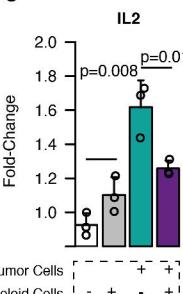




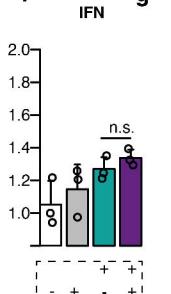
d



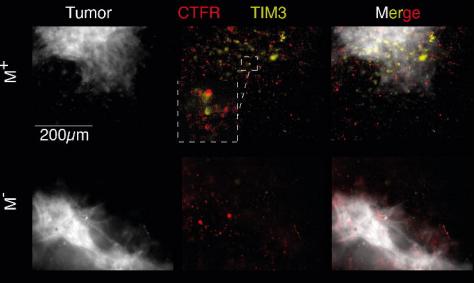
e



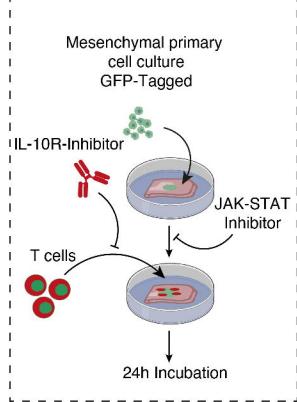
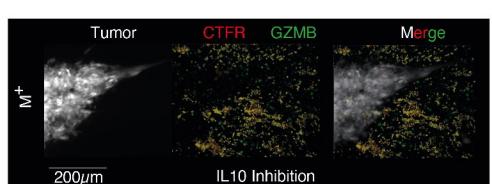
f



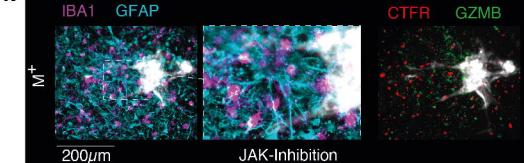
g



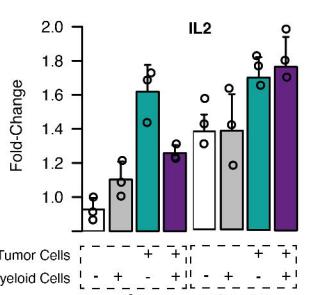
h



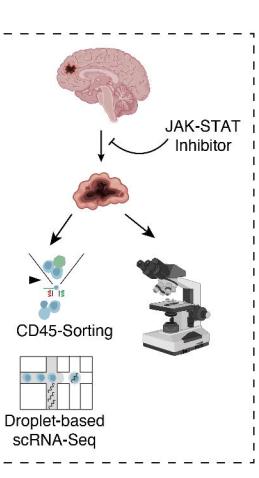
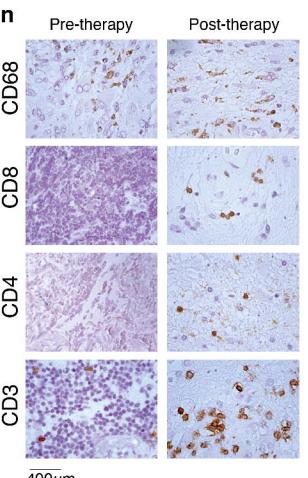
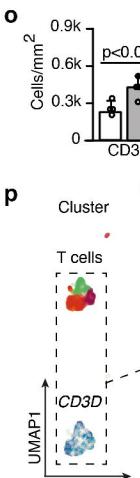
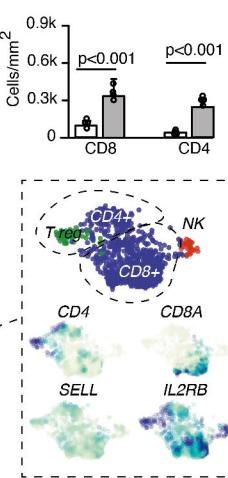
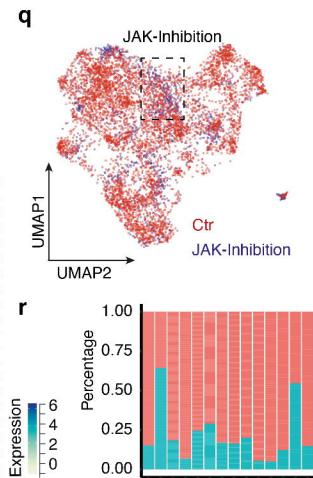
k



j



m



p

