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Summary 50 

The diversity of molecular states and cellular plasticity of immune cells in the glioblastoma environment 51 

is still poorly understood. Here, we performed scRNA sequencing of the immune compartment and 52 

mapped potential cellular interactions leading to an immunosuppressive microenvironment and 53 

dysfunction of T cells. Through inferring the dynamic adaptation during T cell activation, we identified 54 

three different terminal states with unique transcriptional programs. Modeling of driver genes for terminal 55 

T cell fate identified IL-10 signaling alterations in a subpopulation of HAVCR2(+) T cells. To explore in 56 

depth cellular interactions, we established an in-silico model by the integration of spatial transcriptomic 57 

and scRNA-sequencing, and identified a subset of HMOX1+ myeloid cells defined by IL10 release 58 

leading to T cell exhaustion. We found a spatial overlap between HMOX(+) myeloid and HAVCR2(+) T 59 

cells, suggesting that myeloid-lymphoid interaction causes immunosuppression present in tumor regions 60 

with enriched mesenchymal gene expression. Using human neocortical GBM model, coupled with 61 

patient-derived T cells, we confirmed that the functional interaction between myeloid and lymphoid cells, 62 

leads to a dysfunctional state of T cells. This IL-10 driven T cell exhaustion was found to be rescued by 63 

JAK/STAT inhibition. A comprehensive understanding of the cellular states and plasticity of lymphoid 64 

cells in GBM will aid towards successful immunotherapeutic approaches.  65 
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Introduction 67 

Tumor infiltrating lymphocytes, along with resident and migrated myeloid cells, account for a significant 68 

part of the tumor microenvironment in glioblastoma133. Most recently, the characterization of the myeloid 69 

cell population using scRNA-sequencing revealed remarkable heterogeneity with regards to cellular 70 

diversity and plasticity within the myeloid compartment1,4. However, the diversity of lymphoid cell types 71 

within malignant brain tumors remains unexplored and needs to be illuminated. Insights into the 72 

heterogeneity of cell type composition and driver genes for lineage differentiation within lymphoid 73 

compartment will aid in providing successful approaches for immunotherapy in the future. In other 74 

cancer entities such as colorectal cancer5, liver cancer6 or melanoma7, different T cell states have been 75 

investigated. Situations which involve prolonged immune activation and ambiguous stimulation, such as 76 

uncontrolled tumor growth or chronic infections, impede the ability of CD8+ lymphocytes to secrete 77 

proinflammatory cytokines and maintain their cytotoxic profile739. This cellular state, named 78 

dysfunctional or "exhausted" CD8+ lymphocytes, represents a paramount barrier to successful immune-79 

vaccination or checkpoint therapy2,10,11. T cell exhaustion is partially orchestrated by regulation of 80 

inhibitory cell surface receptors (PD-1, CTLA-4, LAG-3, TIM-3 and others), in addition to anti-81 

inflammatory cytokines such as IL-10 and TGF-ß. Glioblastoma, a common and very aggressive primary 82 

brain tumor in adults, is archetypical for tumors with a strong immunosuppressive microenviroment12. 83 

Current, immunotherapeutic approaches such as PDL1/PD1 checkpoint blockade13 or peptide 84 

vaccination14, led to remarkable responses in several cancers, has failed to demonstrate its effectivity 85 

in patients suffering from glioblastoma. To address the sparse knowledge with respect to the lymphoid 86 

cell population in glioblastoma, we performed deep transcriptional profiling by means of scRNA-87 

sequencing, and mapped potential cellular interactions and cytokine responses that could lead to the 88 

dysfunctional and exhausted phenotype of T cells. Pseudotime analysis revealed an increased response 89 

to Interleukin 10 (IL10) during the transformation of T cells from the effector state to the dysfunctional 90 

state. To computationally explore <connected= cells driving this transformation, we introduced a novel 91 

approach termed <nearest functionally connected neighbor (NFCN)=, which identified a subset of 92 

myeloid cells marked by CD163+ and HMOX1+ expression. Furthermore, we performed spatially 93 

resolved transcriptomics, which confirmed the spatial overlap of exhausted T cells with HMOX1+ myeloid 94 

cells, within regions of the tumor enriched with mesenchymal transcriptional signatures. Furthermore, 95 

using human neocortical GBM model with/without myeloid cell depletion, along with autografted T cell 96 

stimulation, we were able to conclusively validate our findings from the computational approach, which 97 

confirmed the role of myeloid cells as a key driver of the immunosuppressive microenvironment.  98 

  99 
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Results: 100 

Single cell Analysis of the Immune Cell Compartment in Glioblastoma  101 

In order to interrogate the diversity of the immune microenvironment in glioblastoma, we performed 102 

droplet based 10X single cell sequencing of tissue samples from 8 patients, diagnosed with 103 

Glioblastoma. Lymphoid and myeloid populations (CD45+/CD3+) were sorted from neoplastic tissue 104 

specimens (Figure 1a and Supplementary Figure 1a). The scRNA-seq data consisted of 47,284 cells, 105 

with a median number of 2,301 unique molecular identifiers (UMIs) and approximately 1023 uniquely 106 

expressed genes per cell. We corrected the data for mitochondrial genes, regressed out cell cycle 107 

effects and removed batch effects due to technical artifacts. We then decomposed the eigenvalue 108 

frequencies of the first 100 principal components and determined the number of non-trivial components 109 

by comparing them to randomized expression values, resulting in 41 meaningful components. Shared 110 

nearest neighbor (SNN) graph clustering resulted in 21 clusters (C0-C20) containing uniquely expressed 111 

genes. The major observed cell type when using the semi-supervised subtyping algorithm of scRNA-112 

seq (SCINA-Model)15 and SingleR16 are: microglia cells (TMEM119, CX3CR1 and P2RY12) and 113 

macrophages (AIF1, CD68, CD163 and low expression of TMEM119, CX3CR1), followed by CD8+ T 114 

cells (CD8A, CD3D), natural killer cells (KLRD1, GZMH, GZMA, NKG7 and CD52), CD4+ T cells (BCL6, 115 

CD3D, CD4, CD84 and IL6R), T-memory cells (TRBC2, LCK, L7R and SELL), granulocytes (LYZ), a 116 

minor number of oligodendrocytes and oligodendrocyte-progenitor cell (OPC9s) (OLIG1, MBP, PDGFA), 117 

and endothelial cells (CD34, PCAM1, VEGFA) Figure 1b, Supplementary Figure 1b-f .To identify 118 

malignant cells, we inferred large scale copy number variations (CNVs) from scRNA-seq profiles by 119 

averaging expression over stretches of 100 genes on their respective chromosomes17. With this 120 

approach, we confirmed that there was minimal contamination by tumor cells (clustered as OPC cells), 121 

based on their typical chromosomal alterations (gain in chromosome 7 and loss in chromosome 10), 122 

Supplementary Figure 2a. 123 

 124 

Diversity of T cells in the Glioblastoma Microenvironment 125 

To investigate the diversity of the T cells present in the microenvironment, we examined them by two 126 

different but complementary methods. Firstly, T cells were isolated in-silico by means of clustering (as 127 

shown above), based on previously published marker gene expression profiles (CD3+, CD4+/CD8+). 128 

Secondly, they were isolated using the SCINA model, which resulted in a total of 7,547 cells 129 

Supplementary Figure 1g. Focusing on the different regulatory states of these cells, we identified 13 130 

subclusters using SNN-clustering which were then re-embedded into a dynamic model using RNA-131 

velocity, closely reflecting different activation states, Supplementary Figure 1h and Figure 1c. 132 

Reconstruction of lineage differentiation trajectories by means of both pseudotime and latent time 133 

provided insights into the transformation of the cells over time18, Figure 1c. Based on common marker 134 

signatures, we defined activated T cells by expressing GZMA, CCL5 and CCL4, IL7RI and other markers 135 

(Supplementary Figure 1i and 2b) as well as increased proliferation (G2M-score, Figure 1d) (C1,C10), 136 

and naive T cells by the expression of SELL, TCF7 and CCR7 (C0), Figure 1c and Supplementary 137 

Figure 1h. We further identified T cell subgroups marked by hypoxia and heat-shock signaling (HSPA8, 138 

C2, C5,C6) and by a subgroup which showed mixed expression of activation/dysfunctional/exhaustion 139 

markers (HAVCR2, GNLY) and strong enrichment IL-10 signaling, Figure 1d. We estimated the G2M-140 
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score and identified a lower frequency of cell cycle in the differentiated/later states of T cells with the 141 

exception of the IFN-gamma subtype, Figure 1d. Additional marker plots are given in the 142 

Supplementary Figure 2b. Regulatory CD4+ T cells (FOXP3, IL2RA and CTLA4) represents a minor 143 

population in the glioblastoma microenvironment, Figure 1c and Supplementary Figure 1i-j. 144 

 145 

Dysfunctional State of T cells is Driven by IL-10 Signaling 146 

To gain insights into the regulatory mechanism of immune cells, we reconstructed fate decisions made 147 

during T cell exhaustion using pseudotime trajectories along the estimated velocity streams, Figure 1e. 148 

Using RNA-velocity, we estimated cells with high probability of initial and terminal states which resulted 149 

in 3 major branches with unique cell fate drivers, Figure 1e. In order to determine the dynamic 150 

adaptation across all branches (Velo trajectory 1-3), we computed pseudotime vectors using various 151 

models. Only two trajectories confirmed the predicted ascending pseudotime inference across multiple 152 

models (HAVCR2(+)-T cells and hypoxia-induced T cells), Figure 1f. We assume that terminal states 153 

without significant pseudotime connection do not inevitably arise from the determined initial state, which 154 

suggests that the lineage of IFN-gamma driven T cells coexists and most likely originated from an earlier 155 

lineage branch Figure 1g.  156 

Along our trajectory from effector to HAVCR2(+)T cells, we showed a latent time-dependent increase of 157 

the response to anti-inflammatory signaling such as IL-10 and TGF-beta signaling Figure 1h. Next, we 158 

mapped the gene expression of defined exhausted and effector signatures along our differentiation 159 

trajectory, revealing an enrichment of exhausted genes within the destination cluster. Thus, our data 160 

suggests that this response to IL-10 contributes to the dysfunctional state of T cells and affects fate 161 

decisions Figure 1i. To gain further insights into accurate downstream signaling of IL-10, IFN-gamma, 162 

and IL2, we created a library of the 50 most highly up- and downregulated genes, Supplementary 163 

Figure 3a-b. We then extracted signatures observed within the different T cell clusters and compared 164 

them with stimulated T cells. As expected, genes upregulated by IL2 stimulation were significantly 165 

enriched in cluster 1, while signature genes from IFN-gamma stimulation was enriched in cluster 12. 166 

Signature genes from IL-10 stimulation showed a significant enrichment in the dysfunctional cluster 167 

(Cluster 9), Supplementary Figure 3c. Furthermore, we mapped our signatures along our defined 168 

velocity trajectory 1 which confirmed our predicted pathway inference, Figure 1j-k and Supplementary 169 

Figure 3d.  170 

 171 

T cell Activation and Exhaustion Reveals Spatial Heterogeneity and Association with 172 

Glioblastoma Subtypes 173 

Glioblastomas present a high degree of heterogeneity due to regional metabolic differences and varying 174 

composition of the tumor microenvironment. Mapping of spatially resolved gene expression is a novel 175 

technique which will help overcome the limitations of scRNA-seq, where spatial information is lost. We 176 

performed spatial transcriptomic RNA sequencing (stRNA-seq) of 3 primary IDH1/2 wildtype 177 

glioblastoma, containing a total number of 2,352 spots, Figure 2a. We observed a median of 8 cells per 178 

spot (range: 4 to 22 cells per spot), which allows the spatial mapping of gene expression, but not at 179 

single cell resolution. However, when we compared our dataset to the latest classification of 180 

glioblastoma19, consistent results were obtained in accordance with the diversity of subtype expression, 181 
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Figure 2b. In particular, Neftel and colleagues raised evidence that the mesenchymal gene expression 182 

is more likely associated with immune response and cellular interaction to myeloid cells19. In order to 183 

investigate the spatial distribution of the mesenchymal subgroup, we performed gene set enrichment 184 

analysis at spatial resolution which revealed spot-wise enrichments within all samples, Figure 2c-d. In 185 

a next step, we used a seeded non-negative matrix factorization (NMF) regression20 to estimate the 186 

probability of individual T cell clusters at spatial resolution, Figure 2e. We computed the spatial overlap 187 

of T cell clusters and glioblastoma states, using a Bayesian approach, which revealed a high estimated 188 

correlation of the mesenchymal and T cell cluster 3 (T HAVCR2), cluster 5-7 (T Hypoxia), Figure 2f. 189 

Further analysis confirming the strong overlap of dysfunctional/exhausted marker (LAG3 and HAVCR2) 190 

exclusively with the mesenchymal gene expression signature, Figure 2g, suggesting that our data 191 

support the findings from Neftel and colleagues. 192 

 193 

A Subset of Microglia and Macrophages Drive IL-10 Stimulation 194 

In our recent investigation21, the crosstalk between microglia cells and reactive astrocytes in the tumor 195 

microenvironment was found to be responsible for upregulating IL10 release. This is mediated by 196 

microglia/macrophages stimulated with IFN gamma, leading to JAK/STAT activation in tumor-197 

associated astrocytes. In this study we introduce the <nearest functionally connected neighbor= algorithm 198 

(NFCN), an in-silico model to identify the most likely related cell pairs through divergent down- and up-199 

stream signal activity, Figure 3a. In our model, we assume that cellular interaction with distinct mutual 200 

activation implies two fundamental prerequisites. On the one hand, the ligand needs to be expressed 201 

and released, or otherwise exposed on the cell surface. To avoid the chances of randomly elevated 202 

expression or technical artifacts, we also looked at the simultaneous occurrence of ligand induction 203 

(upstream pathway signaling). On the other hand, the receptor needs to be expressed and, additionally, 204 

downstream signaling has to be activated as well. This allows us to predict the functional status of the 205 

receiver cell (Explanation of the model can be found in the Methods section, with an overview in 206 

Supplementary Figure 4). We used our in-silico model to screen for potential cells responsible for IL-207 

10 activation of T cells. The algorithm identified pairs of lymphoid (T cell clusters) and myeloid cells 208 

(macrophages and microglia cluster) and estimated the likelihood of mutual activation Figure 3b,c. By 209 

extraction of the nearest connected cells (top 1% ranked cells), we identified a subset of myeloid cells 210 

characterized by remarkably high IL10 expression. Most of the receiver cells in the connected cells (top 211 

1% ranked cells) originated from the T cell cluster Figure 3d. Our predicted IL10 interactions were also 212 

supported by another computational approach (Supplementary Figure 5). In order to validate our 213 

computational model, we used SPOTlight20, an algorithm to predict the spatial position of cells from 214 

scRNA-seq data, and were able to confirm a significant overlap. In order to explore the difference 215 

between connected and non-connected cells, we extracted both connected and non-connected cells, 216 

defined by the highest and lowest interaction-scores (quantile 97.5%) Using differential gene expression 217 

analysis, we observed multiple genes which confirmed the non-inflammatory polarization status of highly 218 

connected cells.  219 

These findings are not surprising, since one of the essential markers of non-inflammatory myeloid cells 220 

is IL10, Figure 3e. We showed that the subset of most highly connected cells were marked by CD163 
221 

and heme oxygenase 1 (HMOX1) expression. In a multilayer representation, we illustrated the estimated 222 
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cellular connections with respect to their most likely spatial coordinates, Figure 3f. HMOX1 is activated 223 

during inflammation and oxidative injuries and is regulated through the Nrf2/Bach1-axis, as well as 224 

through the IL10/HMOX1-axis. This gene is also well known to be upregulated in the alternative 225 

activated macrophage subtype22.  Another immunosuppressive signaling marker closely related to the 226 

alternative activation of macrophages/microglia is the release of TGF-ß23, which was also found to be 227 

up-regulated in highly connected cells, Figure 3g. Consistent with our findings, most downstream 228 

signals of the IL10/HMOX1-axis such as STAT3 and p38 MAPK were found to be upregulated in a gene 229 

set enrichment analysis, Figure 3d,h. In a recent investigation, the role of doublets in the detection of 230 

cell-cell interactions was described24. In our dataset the score of potential cell-cell connections was 231 

similar to HMOX1 marked macrophages, within the doublet dominated cluster. We computed the marker 232 

genes of our predicted connected myeloid and lymphoid genes and found each of the marker sets to be 233 

highly expressed in the doublet cluster, which further validated the results from our computational model, 234 

Figure 3i.  235 

 236 

Loss of Myeloid Cells Increases Antitumor Immunity 237 

To provide additional evidence for our findings from the presented computational approach, we made 238 

use of the recently described human neocortical GBM model, where the cellular architecture of the CNS 239 

is well preserved 21,25. We cultured non-infiltrated neocortical slices (defined in a recent report21,25) 240 

coupled with autografted T cells along with myeloid cell depletion, to understand the communication 241 

between myeloid cells in the tumor microenvironment along with lymphoid cells. Three days after 242 

chemical depletion of the myeloid cells, we injected a primary cell line (BTSC#233, GFP-tagged, 243 

previously characterized by RNA-seq profiling as mesenchymal)26. After 4 days of culture, peripheral T 244 

cells (same donors), tagged using CellTrace# Far Red (CTFR) were additionally inoculated and the 245 

sections were further cultured for another 48h, Figure 4a. Immunostainings showed that myeloid cell 246 

depletion reduces the number of IBA1+HMOX1+ cells, Figure 4b. Using an enzyme-linked 247 

immunosorbent assay (ELISA) we found a significant reduction in IL10 when the myeloid cells were 248 

depleted, regardless of the presence of tumor cells. The strongest difference in IL10 release was 249 

observed in myeloid cell depleted sections in the presence of tumor cells, Figure 4c. Furthermore, we 250 

stained for Granzyme B (GZMB+) T cells and quantified IL2 release to examine the amount of effector 251 

T cells in both the depleted and non-depleted sections. We found an increased number of GZMB+ T 252 

cells in sections with myeloid cell depletion, Figure 4d, along with a significant increase in IL2 and no 253 

differences in IFN gamma release were observed, Figure 4e-f. We also stained for the exhaustion 254 

marker TIM3 (Gen: HAVCR2), which was found to be enriched in T cells in the presence of myeloid cell 255 

Figure 4g, suggesting that myeloid derived IL10 release (by HMOX1+ cells) leads to T cell exhaustion, 256 

which is in agreement with the computational model.  257 

 258 

In order to prove that the IL10 signaling is responsible for the induction of the expression of exhausted 259 

T cell markers, we preincubated T cells using an IL10 neutralizing inhibitory antibody Figure 4h. This 260 

resulted in a strong increase of GZMB+ T cells, followed by a significant increase of IL2, suggesting that 261 

IL10 inhibition drives T cell activity, Figure 4i-j.  262 
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From our recent study, we found that a JAK/STAT inhibition causing a significant reduction of IL10 within 263 

the tumor microenvironment21. Based on this investigation, we pre-treated tissue sections with 264 

Ruxolitinib, an FDA-approved JAK-inhibitor, before inoculating the sections with patient-derived T cells. 265 

We were able to confirm that JAK inhibition caused a significant decrease of IL10 and increased levels 266 

of the inflammatory marker IL2, Figure 4k-l.  267 

Based on our above findings, we treated a first patient with a recurrent glioblastoma in a neoadjuvant 268 

setting with Ruxolitinib for 4 weeks. After resection, we sorted CD45+ cells and performed scRNA-269 

sequencing Figure 4m. Immunostainings of the tumor revealed a relative increase of CD8+ and CD4+ 270 

T cells whereas CD68+ myeloid cells remained stable, Figure 4n-o. scRNA sequencing revealed a large 271 

number of T cells, most of which express markers for T cell activation and a few cells showing a naive 272 

signature, Figure 4p. When compared with T cells from our initial dataset, an enrichment of the T cells 273 

from the JAK treated patient was seen within cluster 1 (activated T cells) and cluster 12 (B cells), 274 

suggesting that JAK-inhibition could be a potential treatment option to boost T cell activation by reducing 275 

immunosuppressive programs in both myeloid and glial cells, Figure 4q-r.  276 

 277 

  278 
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Discussion: 279 

Although single-cell RNA-sequencing accurately maps the cellular architecture and reflects the diversity 280 

of cellular states17,19,27,28, there is a lack of spatial information. Here, we combine single cell RNA 281 

sequencing of the immune compartment along with spatial transcriptomic RNA-sequencing (stRNA-seq) 282 

to gain better insights into the complex crosstalk, cellular states and cellular plasticity leading to the 283 

immunosuppressive environment found in glioblastoma (GBM).  284 

Recent studies have reported different subtypes of microglia and macrophages occupying glial 285 

tumors1,4,19,27,28. However, detailed information about lymphoid infiltration cells is lacking. There is 286 

intense interest in T cells and their varied states due to their importance in the development of targeted 287 

therapies and to further the understanding of the immunosuppressive environment of glioblastoma. T 288 

cell states, particularly in disease, are somehow difficult to accurately classify, leading to numerous 289 

definitions and markers in recent years2,7,29331. Some authors use the terms "dysfunctional" and 290 

"exhausted" synonymously32, whereas others differentiate between the dysfunctional and the exhausted 291 

states of T cells29,31. In this study we use the definition of cellular states proposed by Singer et al., 20168. 292 

On the basis of these gene sets, our data showed that only cells which remained activated along the 293 

pseudotime-trajectory were able to enter a state of dysfunction, and later exhaustion. The dysfunction 294 

appears to be a transient state, associated with increased proliferation, despite immunosuppressive 295 

stimulation from the tumor environment. This imbalance between pro- and anti-inflammatory signaling, 296 

dominated by IL10 secretion, leads to final exhaustion of the T cells, which is in agreement with the 297 

current literature2,33. In order to find a consensus with regard to marker genes we further validated our 298 

findings on a set of exhausted marker genes recently published in an overview study34. We and others 299 

have shown that the GBM microenvironment aids in the evolution of immune suppression. In this 300 

process, astrocytes and myeloid cells, both driven by STAT-3 signaling, orchestrate the 301 

immunosuppressive environment4,21,35,36. Based on the knowledge that IL10 interaction plays a crucial 302 

role in the shift from activated to exhausted T cells, we built an in-silico model that identified potential 303 

connected cells driving T cell exhaustion.  304 

Using this model, we identified a subset of myeloid cells marked by high expression of HMOX1+, a gene 305 

which is induced by oxidative stress and metabolic imbalance37,38. HMOX1 is linked to the STAT-3 306 

pathway and induces IL10 production via MAPK activation, and all of these markers were also found to 307 

be upregulated in our connected cells, as reported above. Furthermore, we used spatial transcriptomics 308 

to confirm the spatial overlap of cells that we  identified as highly connected. We were able to show that 309 

the HMOX1+-myeloid cells were spatially correlated with exhaustion and the mesenchymal state of 310 

glioblastoma. These findings are in accord with published reports, revealing that the mesenchymal cells 311 

are the component of GBM responsible for the immune crosstalk19. HMOX1 expression in GBM and 312 

IDH-WT astrocytoma was found to be increased in recurrent GBM and negatively associated with overall 313 

survival, Supplementary Figure 6a,b. In addition, we made use of a human neocortical GBM model 314 

coupled with patient derived T cells in addition to depletion of myeloid cells. This model helped us to 315 

simulate the function of the myeloid cells with regard to IL10 release and T cell stimulation. Fitting with 316 

our computational model, we confirmed that HMOX1+ myeloid cells cause a reduction of effector T cells, 317 

with a respective reduction in IL2 release and increased expression of our identified exhaustion marker 318 

TIM3. Following our recent investigations in which we demonstrated that JAK-inhibition is able to reduce 319 
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the level of IL10 in human brain tumors21, we demonstrated that in a single patient that inhibition of the 320 

JAK-STAT axis was able to partially rescue the immunosuppressive environment. The treated subject 321 

is still alive but showed permanent disruption of the blood-brain barrier with repetitive increase of 322 

contrast enhancing lesions. Each radiologically confirmed progress was sampled without evidence of a 323 

tumor recurrence, suggesting that manipulation of the glia/myeloid environment simultaneously caused 324 

exaggerated inflammation and pseudo progression. Our single-cell RNA-seq confirmed a pronounced 325 

enrichment of activated T cells, while the number of myeloid cells remained relatively stable. In this 326 

sample, we also detected the strongest contamination with glial cells. We assumed that potential 327 

doublets or strong cell-cell connections led to glial cells being detected as CD45+, resulting in a false 328 

positive sorting.  329 

In conclusion, this work provides the first knowledge regarding lymphocyte population in the 330 

glioblastoma microenvironment where we showed that the functional interaction between myeloid and 331 

lymphoid cells, leads to a dysfunctional state of T cells. Using human neocortical GBM model and single 332 

patient subject we showed that the IL-10 driven T cell exhaustion can be rescued by JAK/STAT 333 

inhibition. Thus, the results from this work can be the steppingstone towards successful 334 

immunotherapeutic approaches for GBM. 335 

  336 
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Methods: 337 

Ethical Approval 338 

The local ethics committee of the University of Freiburg approved the data evaluation, imaging 339 

procedures and experimental design (protocol 100020/09 and 472/15_160880). The methods were 340 

carried out in accordance with the approved guidelines, with written informed consent obtained from all 341 

subjects. The studies were approved by an institutional review board. Further information and requests 342 

for resources, raw data and reagents should be directed and will be fulfilled by the Contact: D. H. 343 

Heiland, dieter.henrik.heiland@uniklinik-freiburg.de. A complete table of all materials used is given in 344 

the supplementary information. 345 

 346 

T cell isolation and stimulation 347 

Blood was drawn from a healthy human individual into an EDTA (ethylenediaminetetraacetic acid) 348 

cannula. T cells were extracted in a negative selection manner using a MACSxpress® Whole Blood Pan 349 

T Cell Isolation Kit (Miltenyi Biotech). T cells were then transferred in Advanced RPMI 1640 Medium 350 

(ThermoFisher Scientific, Pinneberg, Germany) and split for cytokine treatment: Three technical 351 

replicates were used for each T cell-treatment condition. Interleukin 2 (IL-2, Abcam, Cambridge, UK) 352 

was used at a final concentration of 1 ng/ml, Interleukin 10 (IL-10, Abcam) at 5 ng/ml, Interferon gamma 353 

(IFN-³, Abcam) at 1 ng/ml and Osteopontin (SPP-1, Abcam) at 3 µg/ml. Cytokine treatment was 354 

performed in Advanced RPMI 1640 Medium and T cells were incubated at 37°C and 5% CO2 for 24h. 355 

 356 

RNA sequencing of stimulated T Cells 357 

The purification of mRNA from total RNA samples was achieved using the Dynabeads mRNA 358 

Purification Kit (Thermo Fisher Scientific, Carlsbad, USA). The subsequent reverse transcription 359 

reaction was performed using SuperScript IV reverse transcriptase (Thermo Fisher Scientific, Carlsbad, 360 

USA). For preparation of RNA sequencing, the Low Input by PCR Barcoding Kit and the cDNA-PCR 361 

Sequencing Kit (Oxford Nanopore Technologies, Oxford, United Kingdom) were used as recommended 362 

by the manufacturer. RNA sequencing was performed using the MinION Sequencing Device, the 363 

SpotON Flow Cell and MinKNOW software (Oxford Nanopore Technologies, Oxford, United Kingdom) 364 

according to the manufacturer9s instructions. Samples were sequenced for 48h on two flow-cells. 365 

Basecalling was performed by Albacore implemented in the nanopore software. Only D2-Reads with a 366 

quality Score above 8 were used for further alignment.  367 

 368 

Sequence trimming and Alignment  369 

In the framework of this study, we developed an automated pipeline for nanopore cDNA-seq data, which 370 

is available at github (https://github.com/heilandd/NanoPoreSeq). First the pipeline set up a new class 371 

termed <Poreseq= by a distinct sample description file. The analysis starts by rearranging the reads from 372 

the fastq output from the nanopore sequencer containing all of the D2-Reads. All fastq files need to be 373 

combined into one file. Multiplexed samples were separated according to their barcode and trimmed by 374 

Porechop (https://github.com/rrwick/Porechop). Alignment was performed with minimap2 375 

(https://github.com/lh3-/minimap2) and processed with sam-tools.  376 

 377 
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Posthoc Analysis of Bulk-RNA-seq 378 

A matrix of counted genes was further prepared by the RawToVis.R 379 

(github.com/heilandd/VRSD_Lab_v1.5) script, containing normalization of Mapped reads by DESeq, 380 

batch effect removal (ComBat package) and fitting for differential gene expression. Gene set enrichment 381 

analysis was performed by transformation of the log2 fold-change of DE into a ranked z-scored matrix, 382 

which was used as the input. The expression matrix was analysed with AutoPipe 383 

(https://github.com/heilandd/AutoPipe) by a supervised machine-learning algorithm and visualized with 384 

a heatmap. Full analysis was visualized with the Visualization of RNA-Seq Data (VRSD_Lab software, 385 

github.com/heilandd/VRSD_Lab_v1.5) as a dashboard app based on shiny R-software. We extracted 386 

the 50 top up/down regulated genes respectively of each stimulation with respect to control condition to 387 

construct a stimulation library. 388 

 389 

Single-Cell Suspension for scRNA-sequencing 390 

Tumor tissue was obtained from glioma surgery immediately after resection and was transported in 391 

phosphate-buffered saline (PBS) within approximately 5 minutes into our cell culture laboratory. Tumor 392 

tissue was processed under a laminar flow cabinet. Tissue was reduced to small pieces using two 393 

scalpels and the tissue was processed with the Neural Tissue Dissociation Kit (T) using C-Tubes 394 

(Miltenyi Biotech, Bergisch-Gladbach, Germany) according to the manufacturer´s instructions. The 395 

Debris Removal Kit from Miltenyi was used according to the manufacturer´s instructions to remove 396 

remaining myelin and extracellular debris. In order to remove the remaining erythrocytes, we 397 

resuspended the pellet in 3,5 ml ACK lysis buffer (ThermoFisher Scientific, Pinneberg, Germany) and 398 

incubated the suspension for 5 minutes followed by a centrifugation step (350g, 10 min, RT). Cell 399 

quantification with a hematocytometer was performed after discarding the supernatant and 400 

resuspending the pellet in PBS. Cell suspensions were centrifuged again (350g, 10 min, RT) and 401 

resuspended in freezing medium containing 10% DMSO (Sigma-Aldrich, Schnelldorf, Germany) in FCS 402 

(PAN-Biotech, Aidenbach, Germany). Cell suspensions were immediately placed in a freezing box 403 

containing isopropanol and stored in a -80°C freezer for not more than 4 weeks. 404 

 405 

Cell sorting by Magnetic Beads 406 

Four frozen single-cell suspensions, originating from one patient with an IDH-mutated glioma and three 407 

patients with an IDH-wildtype glioblastoma (GBM), were thawed and the dead cells magnetically labeled 408 

and eliminated using a Dead Cell Removal Kit (Miltenyi Biotech). The tumor immune environment in 409 

general and T cells in particular were positively selected by using CD3+-MACS (Miltenyi Biotech). Cells 410 

were stained with trypan blue, counted using a hematocytometer and prepared at a concentration of 411 

700 cells/µL. 412 

 413 

Droplet scRNA-sequencing 414 

At least 16000 cells per sample were loaded on the Chromium Controller (10x Genomics, Pleasanton, 415 

CA, USA) for one reaction of the Chromium Next GEM Single Cell 3´v3.1 protocol (10x Genomics), 416 

based on a droplet scRNA-sequencing approach. Library construction and sample indexing was 417 

performed according to the manufacturer´s instructions. scRNA-libraries were sequenced on a NextSeq 418 
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500/550 High Output Flow Cell v2.5 (150 Cycles) on an Illumina NextSeq 550 (Illumina, San Diego, CA, 419 

USA). The bcl2fastq function and the cell ranger (v3.0) was used for quality control.  420 

 421 

Postprocessing scRNA-sequencing 422 

We used cell ranger to detect low-quality read pairs of single-cell RNA sequencing (scRNA-seq) data. 423 

We filtered out reads which did not reach the following criteria: (1) bases with quality < 10, (2) no 424 

homopolymers (3) 8N9 bases accounting for g10% of the read length. Filtered reads were mapped by 425 

STAR aligner and the resulting filtered count matrix further processed by Seurat v3.0 (R-package). We 426 

normalized gene expression values by dividing each estimated cell by the total number of transcripts 427 

and multiplied by 10,000, followed by natural-log transformation. Next, we removed batch effects and 428 

scaled data by a regression model including sample batch and percentage of ribosomal and 429 

mitochondrial gene expression. For further analysis we used the 2000 most variable expressed genes 430 

and decomposed eigenvalue frequencies of the first 100 principal components and determined the 431 

number of non-trivial components by comparison to randomized expression values. The obtained non-432 

trivial components were used for SNN clustering followed by dimensional reduction using the UMAP 433 

algorithm. Differently expressed genes (DE) of each cluster were obtained using a hurdle model tailored 434 

to scRNA-seq data which is part of the MAST package. Cell types were identified by 3 different methods; 435 

Classical expression of signature markers of immune cells; SingleR an automated annotation tool for 436 

single-cell RNA sequencing data obtaining signatures from the Human Primary Cell Atlas, SCINA, a 437 

semi-supervised cell type identification tool using cell-type signatures as well as a Gene-Set Variation 438 

Analysis (GSVA). Results were combined and clusters were assigned to the cell type with the highest 439 

enrichment within all models. In order to individually analyze T cells, we used the assigned cluster and 440 

filter for the following criteria. For further analysis T cells were defined by: CD3+CD8+ / CD4+CD14-LYZ-
441 

GFAP-CD163-IBA-.  442 

 443 

Spatial Transcriptomics  444 

The spatial transcriptomics experiments were done using the 10X Spatial transcriptomics kit 445 

(https://spatialtranscriptomics.com/). All the instructions for Tissue Optimization and Library preparation 446 

were followed according to the manufacturer9s protocol. Here, we briefly describe the methods followed 447 

using the library preparation protocol. 448 

 449 

Tissue collection and RNA quality control: 450 

Tissue samples from three patients, diagnosed with WHO IV glioblastoma multiforme (GBM), were 451 

included in this study. Fresh tissue collected immediately post resection was quickly embedded in 452 

optimal cutting temperature compound (OCT, Sakura) and snap frozen in liquid N2. The embedded 453 

tissue was stored at -80°C until further processing. A total of 10 sections (10µm each) per sample were 454 

lysed using TriZOl (Invitrogen, 15596026) and used to determine RNA integrity. Total RNA was 455 

extracted using PicoPure RNA Isolation Kit (Thermo Fisher, KIT0204) according to the manufacturer9s 456 

protocol. RIN values were determined using a 2100 Bioanalyzer (RNA 6000 Pico Kit, Agilent) according 457 

to the manufacturer9s protocol. It is recommended to only use samples with an RNA integrity value >7.  458 

 459 
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 460 

Tissue staining and Imaging: 461 

Sections were mounted onto spatially barcoded glass slides with poly-T reverse transcription primers, 462 

with one section per array. These slides can be stored at -80°C until use. The slides were then warmed 463 

to 37°C, after which the sections were fixed for 10 minutes using 4% formaldehyde solution (Carl Roth, 464 

P087.1), which was then washed off using PBS. The fixed sections were covered with propan-2-ol 465 

(VWR, 20842312). Following evaporation for 40 seconds, sections were incubated in Mayer9s 466 

Hematoxylin (VWR, 1092490500) for 7 min, bluing buffer (Dako, CS70230-2) for 90 seconds and finally 467 

in Eosin Y (Sigma, E4382) for 1 min. The glass slides were then washed using RNase/DNase free water 468 

and incubated at 37°C for 5 min or until dry. Before imaging, the glass slides were mounted with 87% 469 

glycerol (AppliChem, A3739) and covered with coverslips (R. Langenbrinck, 01-2450/1). Brightfield 470 

imaging was performed at 10x magnification with a Zeiss Axio Imager 2 Microscope, and post-471 

processing was performed using ImageJ software. 472 

The coverslips and glycerol were removed by washing the glass slides in RNase/DNase free water until 473 

the coverslips came off, after which the slides were washed using 80% ethanol to remove any remaining 474 

glycerol. 475 

 476 

Permeabilization, cDNA synthesis and tissue removal: 477 

For each capture array, 70µL of pre-permeabilization buffer, containing 50U/µL Collagenase along with 478 

0.1% Pepsin in HCl was added, followed by an incubation for 20 minutes at 37°C. Each array well was 479 

then carefully washed using 100µL 0.1x SSC buffer. 70µL of Pepsin was then added and incubated for 480 

11 minutes at 37°C. Each well was washed as previously described and 75µL of cDNA synthesis master 481 

mix containing: 96µL of 5X First strand buffer, 24 µL 0.1M DTT, 255.2µL of DNase/RNase free water, 482 

4.8µL Actinomycin, 4.5µL of 20mg/mL BSA, 24µL of 10mM dNTP, 48µL of SuperscriptÒ and 24µL of 483 

RNAseOUTÔ was added to each well and incubated for 20 hours at 42°C without shaking. Cyanine 3-484 

dCTP was used to aid in the determination of the footprint of the tissue section used.  485 

Since glioblastoma tissue is a fatty tissue, degradation and tissue removal was carried out using 486 

Proteinase K treatment for which 420µL Proteinase K and PKD buffer (1:7), were added to each well 487 

and then incubated at 56°C for 1hr with intermittent agitation (15 seconds / 3 minutes). After incubation, 488 

the glass slides were washed three times with 100mL of 50°C SSC/SDS buffer with agitation for 10 489 

minutes, 1 minute and finally for 1 minute at 300 rpm. The glass slides were then air-dried at room 490 

temperature. Tissue cleavage was carried out by the addition of 70µL of cleavage buffer (320µL 491 

RNase/DNase free water, 104µL Second strand buffer, 4.2µL of 10mM dNTP , 4.8µL of 20 mg/mL BSA 492 

and 48µL of USERÔ Enzyme) to each well and incubation at 37°C  for 2 hours with intermittent agitation. 493 

 494 

Spot Hybridization: 495 

In order to determine the exact location and quality of each of the 1007 spots, fluorescent Cyanine-3 A 496 

is hybridized to the 59 ends of the surface probes. 75µL of the hybridization solution (20µL of 10µM 497 

Cynaine-3A probe and 20µL of 10µM Cyanine-3 Frame probe in 960µL of 1X PBS) was added to each 498 

well and incubated for 10min at room temperature. The slides were then washed three times with 100ml 499 
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of SSC/SDS buffer preheated to 50°C for 10min, 1min and 1min at room temperature with agitation. 500 

The slides were then air-dried and imaged after applying Slowfadeâ Gold Antifade medium and a 501 

coverslip.  502 

 503 

Library Preparation: 504 

1. Second Strand Synthesis 505 

5µL second strand synthesis mix containing 20µL of 5X First Strand Buffer, 14µL of DNA polymerase I 506 

(10U/µL) and 3.5µL Ribonuclease H (2U/µL) were added to the cleaved sample and incubated at 16°C 507 

for 2 hours. Eppendorf tubes were placed on ice and 5µL of T4 DNA polymerase (3U/µL) were added 508 

to each strand and incubated for 20 minutes at 16°C. 25µL of 80mM EDTA (mix 30µL of 500mM EDTA 509 

with 158µL DNase/RNase free water) was added to each sample and the samples were kept cool on 510 

ice. 511 

2. cDNA purification 512 

cDNA from the previous step was purified using Agencourt RNAclean XP beads and DynaMagÔ- 2 513 

magnetic rack, incubated at room temperature for 5 min. Further cleansing was performed by the 514 

addition of 80% Ethanol to the sample tubes, while the samples were still placed in the magnetic rack. 515 

Sample elution was then carried out using 13µL of NTP/water mix. 516 

3. In Vitro Transcription and Purification 517 

cDNA transcription to aRNA was carried out by adding 4µL of reaction mix containing: 10x Reaction 518 

Buffer, T7 Enzyme mix and SUPERaseInÔ RNase Inhibitor (20 U/µL) to 12µL of the eluted cDNA 519 

sample and incubated at 37°C, for 14 hours. The samples were purified using RNA clean XP beads 520 

according to the manufacturer9s protocol and further eluted into 10µL DNase/RNase free water. The 521 

amount and average fragment length of amplified RNA was determined using the RNA 6000 Pico Kit 522 

(Agilent, 5067-1513) with a 2100 Bioanalyzer according to the manufacturer9s protocol. 523 

4. Adapter Ligation 524 

Next, 2.5µL Ligation adapter (IDT) was added to the sample and was heated for 2 min at 70°C and then 525 

placed on ice. A total of 4.5µL ligation mix containing 11.3µL of 10X T4 RNA Ligase, T4 RNA truncated 526 

Ligase 2 and 11.3µL of murine RNase inhibitor was then added to the sample. Samples were then 527 

incubated at 25°C for 1 hour. The samples were then purified using RNAClean XP beads according to 528 

the manufacturer9s protocol.  529 

5. Second cDNA synthesis 530 

Purified samples were mixed with 1µL cDNA primer (IDT), 1µL dNTP mix up to a total volume of 12µL 531 

and incubated at 65°C for 5 min and then directly placed on ice. A 1.5ml Eppendorf tube 8µL of the 532 

sample was mixed with 30µL of First Strand Buffer(5X), ), 7.5µL of DTT(0.1M), 7.5µL of DNase/RNase 533 

free water, 7.5µL of SuperScriptÒ III Reverse transcriptase and 7.5µL of RNaseOUTÔ Recombinant 534 

ribonuclease Inhibitor and incubated at 50°C for 1 hour followed by cDNA purification using Agencourt 535 

RNAClean XP beads according to the manufacturer9s protocol. Samples were then stored at -20°C. 536 

6. PCR amplification 537 

Prior to PCR amplification, we determined that 20 cycles were required for appropriate amplification. A 538 

total reaction volume of 25µL containing 2x KAPA mix, 0.04µM PCRInPE2 (IDT), 0.4µM PCR InPE1.0 539 
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(IDT), 0.5µM PCR Index (IDT) and 5µL of purified cDNA were amplified using the following protocol: 540 

98°C for 3 min followed by 20 cycles at 98°C for 20 seconds, 60°C for 30 seconds , 72°C for 30 seconds 541 

followed by 72°C for 5 minutes. The libraries were purified according to the manufacturer9s protocol and 542 

eluted in 20µL EB (elution buffer). The samples were then stored at -20°C until used. 543 

7. Quality control of Libraries 544 

The average length of the prepared libraries was quantified using an Agilent DNA 1000 high sensitivity 545 

kit with a 2100 Bioanalyzer. The concentration of the libraries was determined using a Qubit dsDNA HS 546 

kit. The libraries were diluted to 4nM, pooled and denatured before sequencing on the Illumina NextSeq 547 

platform using paired-end sequencing. We used 30 cycles for read 1 and 270 cycles for read 2 during 548 

sequencing. 549 

 Sequence 

Ligation Adapter /5rApp/AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC/3d- dC/  

cDNA primer GTGACTGGAGTTCAGACGTGTGCTCTTCCGA  

PCR primer INPE1 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTT-CCGATCT  

PCR primer INPE2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT  

PCR index primer CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTC  

 550 

Postprocessing Spatial Transcriptomics  551 

First, we aligned the H&E staining by the use of the st-pipeline (github.com/SpatialTranscriptomics-552 

Research/st_pipeline). The pipeline contains the following steps: Quality trimming and removing of low 553 

quality bases (bases with quality < 10), sanity check (reads same length, reads order, etc..), remove 554 

homopolymers, normalize for AT and GC content, mapping the read2 with STAR, demultiplexing based 555 

on read1, sort for reads (read1) with valid barcodes, annotate the reads with htseq-count, group 556 

annotated reads by barcode (spot position), gene and genomic location (with an offset) to get a read 557 

count (github.com/SpatialTranscriptomics-Research/st_pipeline). The pipeline resulted in a gene count 558 

matrix and a spatial information file containing the x and y position and the H&E image. We used the 559 

Seurat v3.0 package to normalize gene expression values by dividing each estimated cell by the total 560 

number of transcripts and multiplied by 10,000, followed by natural-log transformation. As described for 561 

sc-RNA sequencing, we removed batch effects and scaled data by a regression model including sample 562 

batch and percentage of ribosomal and mitochondrial gene expression. For further analysis we used 563 

the 2000 most variable expressed genes and decomposed eigenvalue frequencies of the first 100 564 

principal components and determined the number of non-trivial components by comparison to 565 

randomized expression values. The obtained non-trivial components were used for SNN clustering 566 

followed by dimensional reduction using the UMAP algorithm. Differently expressed genes (DE) of each 567 

cluster were obtained using a hurdle model tailored to scRNA-seq data which is part of the MAST 568 

package. We further build a user-friendly viewer for spatial transcriptomic data and provide tutorials on 569 

analysis of data: https://themilolab.github.io/SPATA/index.html. 570 

 571 

Spatial gene expression 572 
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For spatial expression plots, we used either normalized and scaled gene expression values (to plot 573 

single genes) or scores of a set of genes, using the 0.5 quantile of a probability distribution fitting. The 574 

x-axis and y-axis coordinates are given by the input file based on the localization at the H&E staining. 575 

We computed a matrix based on the maximum and minimum extension of the spots used (32x33) 576 

containing the gene expression or computed scores. Spots without tissue covering were set to zero. 577 

Next, we transformed the matrix, using the squared distance between two points divided by a given 578 

threshold, implemented in the fields package (R-software) and adapted the input values by increasing 579 

the contrast between uncovered spots. The data are illustrated either as surface plots (plotly package 580 

R-software) or as images (graphics package R-software). 581 

 582 

Representation of Cellular States 583 

We aligned cells/spots to variable states with regard to gene sets (GS) that were selected GS(1,2,..n). 584 

First, we separated cells into GS(1+2) versus GS(2+4), using the following equation: 585 

�! =' ��(!), ��($) '%2' ��(&), ��(') '% 586 

A1 defines the y-axis of the two-dimensional representation. In a next step, we calculated the x-axis 587 

separately for spots A1<0 and A1>0: 588 

A1 > 0:	�$ = log 2 (��(!)4444444 2 5	��($)4444444 + 1	7) 589 

A1 < 0:	�$ = log 2 (��(&)4444444 2 5	��(')4444444	7) 590 

For further visualization of the enrichment of subsets of cells according to gene set enrichment across 591 

the two-dimensional representation, we transformed the distribution to representative colors using a 592 

probability distribution fitting. This representation is an adapted method published by Neftel and colleges 593 

recently19,28. 594 

 595 

Spatial correlation analysis 596 

The spatial correlation was performed by integrating a deep autoencoder for background noise reduction 597 

and a Bayesian correlation model. In a first step, we performed noise reduction through an autoencoder 598 

similar to recent described for single-cell RNA-sequencing studies39. The autoencoder consist of an 599 

encoder and decoder part which can be defined as transitions: 600 

(1)			�������:		�:� ³ 1	�������:		�: 1 ³ � 601 

(2)			�, � = ���.���6� 2 (�,�)�6$ 602 

The encoder stage of an autoencoder takes the input �	 * =( = 	�	and maps it to �	 * =) = 	1 at the 603 

layer position	� :  604 

(3)	� = �*+,	; 	�* = ����(�* × �*-! + �*) 605 

�* is also referred to as latent representation, here presented as �!, �$, & , �*+.	in which � describes 606 

the number of hidden layers. W is the weight matrix and b	represent the dropout or bias vector. Our 607 

network architecture contained 32 hidden layers, as recommended39. In the decoder weights and biases 608 

are reconstructed through backpropagation (�:1 ³ �) and z is mapped to �2 = �,2 in the shape as �2. 609 

(4)			�*-!2 = �2(�*2 × �* + �*2) 610 

In this context, �/, �/, �2 from the decoder are unrelated to �,�	, � from the encoder. We used a loss 611 

function to train the network in order to minimize reconstruction errors. 612 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2021. ; https://doi.org/10.1101/2020.06.01.121467doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.01.121467
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

(5)			3(�, �2) = a� 2 �2(�/b�(�� + �)c + �/)a
$
 613 

In the second step, we used the predicted gene expression matrix (�2) and fitted and Bayesian 614 

correlation model (Bayesian First Aid, https://github.com/rasmusab/bayesian_first_aid). An illustration 615 

of the spatial correlation is given in the supplementary figure 7 616 

 617 

sc-RNA-sequencing integration into spatial context 618 

In order to integrate determined cluster into the spatial context of the spatial transcriptomic data. We 619 

used the recent published spotlighted algorithm and integrated the output into our SPATA objects for 620 

visualization20.  621 

 622 

RNA-velocity and Pseudotime trajectory analysis 623 

In order to determine dynamic gene expression changes, we extracted spliced and unspliced genes 624 

from the bam output created by cell ranger using the velocyto.py tool40 . The resulting *.loom files were 625 

merged and transformed into .h5ad format for further processing by scVelo41 and CellRank42. The 626 

pipeline is integrated into the SPATA toolbox43. Single-cell data are reformatted into an SPATA S4 object 627 

using the UMAP coordinates as spatial coordinates. Outputs of the scVelo script (implemented in the 628 

development branch of the SPATA toolbox) are imported into the SPATA S4 object (slot:@fdata) and 629 

available for visualization. RNA-velocity streams are converted into trajectories and imported to the 630 

SPATA S4 object (slot:@trajectories). Dynamic gene expression changes along trajectories are 631 

performed by the assessTrajectoryTrends() function.  632 

 633 

Gene set enrichment analysis 634 

Gene sets were obtained from the database MSigDB v7 and internally created gene sets are available 635 

at githunb.com/heilandd. For enrichment analysis of single clusters, the normalized and centered 636 

expression data were used and further transformed to z-scores ranging from 1 to 0. Genes were ranked 637 

in accordance to the obtained differential expression values and used as the input for GSEA. 638 

 639 

Identification of cycling cells  640 

We used the set of genes published by Neftel and colleagues to calculate proliferation scores based on 641 

the GSVA package implemented in R-software. The analysis based on a non-parametric unsupervised 642 

approach, which transformed a classic gene matrix (gene-by-sample) into a gene set by sample matrix 643 

resulted in an enrichment score for each sample and pathway. From the output enrichment scores we 644 

set a threshold based on distribution fitting to define cycling cells.  645 

 646 

Nearest Functionally Connected Neighbor (NFCN) 647 

To identify connected cells that interact by defined activation or inhibition of down-stream signals in the 648 

responder cell, we created a novel model. Therefore, we assumed that a cell-cell interaction is given 649 

only if a receptor/ligand pair induce correspondent down-stream signaling within the responder cell (cell 650 

with expressed receptor). Furthermore, we take into account that the importance of an activator cell (cell 651 

with expressed ligand) can be ranked according to their enriched signaling, which is responsible for 652 

inducing ligand expression. Based on these assumptions we defined an algorithm to map cells along an 653 
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interaction-trajectory. The algorithm was designed to identify potential activators from a defined subset 654 

of cells. 655 

As input for the analysis we used a normalized and scaled gene expression matrix, a string containing 656 

the subset of target cells, a list of genes defining ligand induction on the one side and receptor signaling 657 

on the other side. These genes were chosen either by the MSigDB v7 database or our stimulation library 658 

explained above. Next, we down-scaled the data to 3000 representative cells including all myeloid cell 659 

types and calculated the enrichment of induction and activation of the receptor/ligand pair. Enrichment 660 

scores were calculated by singular value decomposition (SVD) over the genes in the gene set and the 661 

coefficients of the first right-singular vector defined the enrichment of induction/activation profile. Both 662 

expression values and enrichment scores were fitted by a probability distribution model and cells outside 663 

the 95% quantile were removed. Next, we fitted a model using a non-parametric kernel estimation 664 

(Gaussian or Cauchy-Kernel), on the basis of receptor/ligand expression (Aexp) and up/downstream 665 

signaling (Aeff) of each cell (i={1,..n}). Both input vectors were normalized and z-scored: 666 

 667 

(1)	�012 3 =
4!"# $-53.(4%&')

567(4%&')-53.(4%&')
	   (2)		�8i b�012 3c =

!

.
3 �8(�97) 2 �012 3)
.
3+!  668 

 669 

K is the kernel and 0.7 > h > 0.3 is used to adjust the estimator. The model resulted in a trajectory which 670 

was defined as Ligand(-)-Induction(-) to cells of the target subset with Receptor(-)-Activation(-).Further 671 

cells were aligned along the <interaction-trajectory=. We defined connected cells by reaching the upper 672 

70% CI in receptor/ligand expression as well as sores of induction/activation. The process of 673 

representation is illustrated schematically in Supplementary Figure 4. Additionally we determined 674 

receptor-ligand interaction by the NicheNet software as recommended by the authors44. 675 

 676 

CNV estimation: 677 

Copy-number Variations (CNVs) were estimated by aligning genes to their chromosomal location and 678 

applying a moving average to the relative expression values, with a sliding window of 100 genes within 679 

each chromosome, as described recently17. First, we arranged genes in accordance to their respective 680 

genomic localization using the CONICSmat package (R-software). As a reference set of non-malignant 681 

cells, we in-silico extracted 400 CD8 positive cells (unlikely to be expressed on tumor cells). To avoid 682 

the considerable impact of any particular gene on the moving average we limited the relative expression 683 

values [-2.6,2.6] by replacing all values above/below exp(i)=|2.6|, by using the infercnv package (R-684 

software).	This was performed only in the context of CNV estimation as previous reported11.  685 

 686 

Flow cytometry: 687 

Single-Cell suspensions were obtained after Dead-Cell Removal and CD3 MACS-enrichment. Cells 688 

were incubated with VivaFixÔ 398/550 (BioRad Laboratories, CA, USA) according to the 689 

manufacturer´s instructions. Cells were fixed in 4% paraformaldehyde (PFA) for 10 minutes. After 690 

centrifugation (350 g; 4°C; 5 min) and removal of the supernatant, the cell pellet was suspended in 0.5 691 

ml 4°C cold FACS buffer. Cell suspensions were washed and centrifuged at 350xg for 5 mins, followed 692 

by resuspension in FACS buffer. The washing step was repeated twice. Finally, cells were resuspended 693 

in at least 0.5 to 1 mL of FACS buffer depending on the number of cells.  We used a Sony SP6800 694 
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spectral analyzer in standardization mode with PMT voltage set to maximum to reach a saturation rate 695 

below 0.1 %. Gating was performed by FCS Express 7 plus at the Lighthouse Core Facility, University 696 

of Freiburg. 697 

 698 

Immunofluorescence 699 

The same protocol was followed for human neocortical slices with or without microglia and tumor cell 700 

injection. The media was removed and exchanged for 1 mL of 4% paraformaldehyde (PFA) for 1 h and 701 

further incubated in 20% methanol in PBS for 5 minutes. Slices were then permeabilized by incubating 702 

in PBS supplemented with 1 % Triton (TX-100) overnight at 4°C and further blocked using 20% BSA for 703 

4 hours. The permeabilized and blocked slices were then incubated by primary antibodies in 5% BSA-704 

PBS incubated overnight at 4°C. After washing in PBS, slices were labelled with secondary antibodies 705 

conjugated with Alexa 405, 488, 555, or 568 for 3 hours at room temperature. Finally, slices were 706 

mounted on glass slides using DAPI fluoromount (Southern Biotech, Cat. No. 0100-20), as recently 707 

described21. 708 

 709 

Human Organotypic Slice Culture 710 

Human neocortical slices were prepared as recently described21,25. Capillaries and damaged tissue were 711 

dissected away from the tissue block in the preparation medium containing Hibernate medium 712 

supplemented with 13 mM D+ Glucose and 30 mM NMDG. Coronal slices of 300 µm thickness were 713 

sectioned using a vibratome (VT1200, Leica Germany) and incubated in preparation medium for 10 714 

minutes before plating to avoid any variability due to tissue trauma. Three to four slices were gathered 715 

per insert. The transfer of the slices was facilitated by a polished wide mouth glass pipette. Slices were 716 

maintained in growth medium containing Neurobasal (L- Glutamine) supplemented with 2% serum free 717 

B-27, 2% Anti- Anti, 10 mM D+ Glucose, 1 mM MgSO4, and 1 mM Glutamax at 5% CO2 and 37 °C. The 718 

entire medium was replaced with fresh culture medium 24 hours post plating, and every 48 hours 719 

thereafter.  720 

 721 

Chemical depletion of Microglia from slice cultures 722 

Selective depletion of the myeloid cell compartment in human neocortical slices was performed by 723 

supplementing the growth medium with 11 µmol of Clodronate (Sigma, D4434) for 72h at 37ºC. 724 

Subsequently, the slices were carefully rinsed with growth medium to wash away any debris.  725 

 726 

Tumor/T cell injection onto tissue cultures 727 

ZsGreen tagged BTSC#233 cell lines cultured and prepared as described in the cell culture section. 728 

Post trypsinization, a centrifugation step was performed, following which the cells were harvested and 729 

suspended in MEM media at 20,000 cells/µl. Cells were used immediately for injection onto tissue slices. 730 

A 10 µL Hamilton syringe was used to manually inject 1 µL into the white matter portion of the slice 731 

culture. Slices with injected cells were incubated at 37°C, 5% CO2 for 7 days and fresh culture medium 732 

was added every 2 days. Blood samples from the same donors from whom we obtained the healthy 733 

cortex for our organotypic slice cultures was drawn into an EDTA-cannula. Peripheral T cells were 734 
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isolated using the same MACSxpress® Whole Blood Pan T Cell Isolation Kit (Miltenyi Biotech) and 735 

erythrocytes were eliminated from the suspension using ACK-lysis buffer (Thermo Fisher Scientific).  736 

 T cells were tagged using the Cell Trace Far Red dye (ThermoFisher Scientific) prior to injection into 737 

the slices. To block endogenous IL-10 receptor, the neutralizing antibody anti-IL10 hAB (R&D systems) 738 

were added to the cells at the concentration of 5 µg/ml. 739 

 740 

Enzyme linked Immunosorbent Assay  741 

An enzyme linked immunosorbent assay (ELISA) was performed in order to measure cytokine 742 

concentrations of IL-2, IL-10, IL-13 and IFN-gamma in the cell culture medium 48h after T cell injection. 743 

The Multi-Analyte ELISArray Kit (Qiagen, Venlo, Netherlands; MEH-003A) was used according to the 744 

manufacturer´s instructions. Absorbance was measured using the Tecan Infinite® 200 (Tecan, 745 

Männedorf, Switzerland). 746 

 747 

Treatment of patient with JAK-inhibitor 748 

A patient with a recurrent glioblastoma was treated with a daily dose of 40mg Ruxolitinib for 4 weeks. 749 

Before treatment, we confirmed the progress by a biopsy. The treatment was performed as a 750 

neoadjuvant therapy. After 4 weeks, the patient underwent a gross-total surgery and adjuvant 751 

Temozolomide therapy.  752 
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Figure Legends 861 

 862 

Figure 1: a) Illustration of the workflow, tissue specimens were obtained from 11 glioblastoma patients. 863 

Samples from 8 patients were used for scRNA-seq and 3 for spatial transcriptomics. b) Dimensional 864 

reduction using UMAP, cell type was determined by SingleR (github.com/dviraran/SingleR). c) 865 

Dimensional reduction (UMAP) of CD3+/CD8+ cells. SNN-clustering reveal 13 different clusters. RNA-866 

velocity based pseudotime is presented by streams obtained from dynamic modeling in scvelo. Marker 867 

expression in different subpopulations ranked by grade of activity. d) Dimensional reduction plots of 868 

estimated gene-set enrichment (left), of cell proliferation (middle) and regulatory marker genes (right). 869 

e,f) Detailed presentation of 3 major trajectories and its changes of estimated pseudotime across 870 

different models.  Velocity trajectory 2 reveals almost no temporal changes, but is marked by increasing 871 

IFNg signaling along the trajectory. g) Line plot of IFNg signalling gene expression along the velocity 872 

trajectory 2 (left) and dimensional reduction (right). h) Inferring dynamic alterations along the trajectory 873 

revealed up-regulation of IL-10 and TGF-ß signaling, presented as a line plot (top). (i) Gene set 874 

enrichment analysis of the IL10 signaling enrichment in defined start and destination region of the 875 

trajectory (bottom). j) Mapping of gene expression along the pseudotime trajectory. Bars at the bottom 876 

indicate the enrichment of each cell to enrich effector or exhausted signatures. Line plots on the top, 877 

showed enrichment for the T cell state signatures8. 878 

 879 

Figure 2: a) Workflow of spatial transcriptomics b) 2D representation of heterogeneous states in 880 

glioblastoma by Neftel, colors indicate the expression of cycling cells (quantile). c) H&E stainings and 881 

(d) gene expression enrichment maps of the mesenchymal state defined by Neftel19. e) Enrichment 882 

maps of T cell clusters by spotlight algorithm20 in different samples. Maps are colored by a normalized 883 

spotlight score. f) Correlation heatmap of a Bayesian correlation model of T cell clusters and 884 

glioblastoma transcriptional subtypes. (g) Scatter plots of spot-wise correlation of HAVCR2 and LAG3 885 

expression and T cells (left side), mesenchymal-like gene expression (middle) and NPC-like gene 886 

expression (right side), Rho correlation and CI95% are given at the top. 887 

 888 

Figure 3: a) Workflow exploring cell-cell interactions using two approaches: 1. Predict functional 889 

neighbors based on defined ligand-receptor interaction. 2. Validation in spatial transcriptomic datasets. 890 

b) Cell-cell interaction plot as explained in supplementary figure 4. Cells with an interaction-score above 891 

0.95 are mapped to the UMAP. C) Volcano plot of differential gene expression between highly connected 892 

cells (CI>97.5%, left side) vs non-connected cells (CI<2.5%, right side), adjusted -log(p-vale) (FDR) was 893 

used at the y-axis. Red cells are defined by fold-change above 2 and FDR < 0.05. d) Spatial surface 894 

plots of gene expression and pathway enrichment. e) Multilayer representation of cellular interaction. At 895 

the top layer, a UMAP is shown colored by expression levels of HMOX1. Each red line represents a cell 896 

(upper CI>99% NFCNA-Score) and its most likely position within the spatial dataset. The second layer 897 

is a spatial transcriptomic dataset, colored by the predicted NFCNA-score. At the bottom, the third layer 898 

represents a UMAP colored accordingly to CD3 expression. Green lines showed the upper CI>99% of 899 

receiver cells. f) Violin plots of the mean NFCNA score in each cluster. g) Violin plots of gene expression 900 

between connected cells (CI>97.5%, left side) vs non-connected cells (CI<2.5%, right side). Wilcoxon 901 
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Rank Sum test and FDR adjustment was used for statistical testing. h) Gene Set enrichment analysis 902 

of four different gene sets. i) Heatmap of differently expressed genes or connected myeloid (right) and 903 

lymphoid (middle) cells and the cluster of doublets. At the top, scatterplot of total UMIs per cell in each 904 

group. 905 

Figure 4: a) Experimental workflow of the neocortical GBM model autografted with patient derived T 906 

cells and with/without myeloid cell depletion. b) Immunostainings of IBA1 (Macrophages and Microglia) 907 

in magenta and HMOX1 in cyan, tumor cells are depicted in grey. In the upper panel, the control set 908 

with no myeloid cell depletion (M+) is shown, the bottom panel contains the myeloid cell depleted 909 

sections. c) ELISA measurements of IL10 d) Immunostainings of T cells (CSFE-Tagged, in red) and 910 

GZMB, a marker of T cell activation (green). ). e, f) ELISA measurements of IL2 and IFNg g) 911 

Immunostainings of TIM3 (gene: HAVCR2) in yellow, which was identified in the scRNA-seq, and T cell 912 

in red. h) Illustration of the workflow. i) Immunostainings of tumor cells (grey), T cells (CSFE-Tagged, in 913 

red) and GZMB a marker of T cell activation (green) with pre-treatment in anti-IL-10R antibodies. j) 914 

ELISA measurements of IL2 in ctr and IL10R inhibition. k) Immunostainings of tumor cells (grey), T cells 915 

(CSFE-Tagged, in red) and GZMB a marker of T cell activation (green) treated with JAK-inhibitor 916 

Ruxolitinib. l) Heatmap of interleukin intensities different environment. Information regarding the 917 

presence of myeloid cells are given at the bottom. m) Illustration of the workflow of JAK inhibition in a 918 

recurrent GBM patient. n-o) Immunohistochemistry of immune marker and its quantification, white: pre 919 

therapy, gray: post therapy p) Dimensional reduction of single-cell RNA-sequencing of the Ruxolitinib 920 

treated patient revealed a large percentage of T cells (right side). q) Comparison of T cells from the 921 

Ruxolitinib treated patient and the non-treated cohort. r) A barplot that indicates the cluster specific 922 

enrichment of JAK treated T cells. P-values are determined by one-way ANOVA (c,e,f,j) adjusted by 923 

Benjamini-Hochberger (c,e,f,j) for multiple testing. Data is given as mean ± standard deviation. 924 
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Supplementary Figures: 926 

 927 

Supplementary Figure1: a) Workflow and representative FACS images. b) UMAP representation of all 928 

detected cell types. c-e) Distribution of patients across all clusters and cell types. d) UMAP 929 

representation of all determined clusters (SNN) e) The graph representing the percentage of each 930 

patient in different clusters f) Signature genes of each cluster g-i) UMAP representation of Isolated T 931 

cells spitted into CD4+ and CD8+ cells and the total number of clusters (13). j) Heatmap of signature 932 

genes 933 

Supplementary Figure2: a) Copy-number alterations based on single cell data. Only a small subset of 934 

tumor cells was found in the OPC cluster. b) Gene expression maps of common marker genes. 935 

Supplementary Figure3: a) Workflow to build a library of stimulated T-cells b) T cell stimulation in order 936 

to build a library for cytokine effects, illustrated is a heatmap of the 10 most significant marker genes of 937 

each stimulation state, based on PAMR algorithm implemented in the AutoPipe. c) Dimensional 938 

reduction (UMAP) of gene expression of the different simulation experiments. d) Z-scored expression 939 

of each stimulation signature along the velocity trajectory 1 (Figure 1).  940 

Supplementary Figure 4: a) Workflow and concept of the NFCN Analysis 941 

Supplementary Figure 5: a) Results from the Nichnet algorithm, left: The receptor-target interaction, 942 

right: the receptor-ligand network.  943 

Supplementary Figure 6: a) Kaplan-Meier survival estimation of HMOX1 high/low expression GBM. b-944 

c) Expression of HMOX1 in different regions of the tumor (b) and in de-novo and recurrent stage (c). 945 

Supplementary Figure 7: a) Illustration of the workflow to determine the spatial correlation using a 946 

deep autoencoder for denoising followed by a Bayesian correlation model. b) Examples of the predicted 947 

overlap of T cells and CD163/HMOX1(+) myeloid cells. C) Distribution of the predicted correlation. 948 
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