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Abstract  

Background: Tumor response to therapy is affected by both the cell types and the cell states 

present in the tumor microenvironment. This is true for many cancer treatments, including 

notably immune checkpoint inhibitors (ICIs). While it is well-established that ICIs promote T cell 

activation, their broader impact on other intratumoral immune cells is unclear; this information is 

needed to identify new mechanisms of action and improve ICI efficacy. Many preclinical studies 

have begun to use single cell analysis to delineate therapeutic responses in individual immune 

cell types within tumors. One major limitation to this approach is that therapeutic mechanisms 

identified in preclinical models have failed to fully translate to human disease, restraining efforts 

to improve ICI efficacy in bench to bedside research.  

Method: We previously developed a computational transfer learning approach to identify shared 

biology between independent high-throughput single-cell RNA sequencing (scRNA-seq) 

datasets. In the present study, we test this framework’s ability to identify conserved and 

clinically relevant transcriptional changes in complex tumor scRNA-seq data and further expand 

its application beyond comparison of scRNA-seq datasets into comparison of scRNA-seq 

datasets with additional data types such as bulk RNA-seq and mass cytometry. 

Results: We found a conserved signature of NK cell activation in anti-CTLA-4 responsive mice 

and human tumors. In human melanoma, we found that the NK cell activation signature 

correlates with longer overall survival and is predictive of anti-CTLA-4 (ipilimumab) response. 

Additional molecular approaches to confirm the computational findings demonstrated that 

human NK cells express CTLA-4 and bind anti-CTLA-4 independent of the antibody binding 

receptor (FcR), and that similar to T cells, CTLA-4 expression by NK cells is modified by 

cytokine-mediated and target cell-mediated NK cell activation.  

Conclusions: These data demonstrate the ability of our transfer learning approach to identify 

cell state transitions conserved in preclinical models and human tumors. This approach can be 

adapted to explore many immuno-oncology questions, enhancing bench to bedside research 

and enabling better understanding and treatment of disease.  
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1. Introduction 

 

Single-cell RNA-sequencing (scRNA-seq) provides an unprecedented opportunity to unravel the 

cellular complexity and diversity of immune cell populations in the tumor microenvironment[1]. 

When used in the context of immunotherapy, scRNA-seq can provide a more comprehensive 

understanding of the molecular and cellular pathways that drive therapeutic response and 

resistance. While studies often use preclinical mouse models as a convenient and useful tool for 

studying therapeutic response mechanisms, they are limited in their ability to infer biology 

relevant to therapeutic responses in humans. To improve the clinical efficacy of 

immunotherapies such as immune checkpoint inhibitors (ICIs), we need a deeper understanding 

of the fundamental mechanisms that underlie the anti-tumor activity of ICIs in humans.  

 

Many aspects of the immune system are conserved between mice and humans, but there are 

significant species-specific differences[2]. These differences may contribute to the frequent 

failure of therapies that are effective in mouse models from showing similar efficacy in 

humans[3]. Discrepancies between ICI mechanisms observed in mice and humans may be 

further complicated by species-specific differences that mask detection of conserved alterations 

in responding immune cells. A deeper understanding of human and mouse immune responses 

to immunotherapy could generate new insights into properties that define therapeutic sensitivity.  

 

Emerging scRNA-seq studies that have begun to characterize changes in gene expression after 

immunotherapy treatment[4–6] are ideally suited to begin learning these mechanisms. In order 

to accomplish this, computational tools that identify conserved cell state transitions across 

species are needed to compensate for species-specific immune system differences in 

transcriptional data. As scRNA-seq becomes increasingly popular in immuno-oncology, such 

tools will be essential to validate preclinical computational findings in terms of both robustness 

and clinical relevance. 

 

Recently, we developed a computational framework that uses matrix factorization and transfer 

learning to integrate transcriptional datasets from different species[7]. This has led to the 

identification of both species-specific and conserved biological processes in the developing 

retina of mice and humans[8,9]. In the context of cancer, this framework has the potential to 

identify complex cellular alterations within the tumor microenvironment induced by therapy. In 

this study, we use this framework’s ability to identify conserved and clinically relevant 
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transcriptional changes in scRNA-seq data of immune cells from ICI treated tumors. We further 

compare biological features across additional data types such as bulk RNA-seq and mass 

cytometry. We demonstrate the ability of our framework to identify shared tumor immune biology 

present across independent datasets derived from different tumor types, treatment groups, 

sequencing platforms, and species. We detect a robust signature of NK cell activation that is 

associated with positive clinical outcomes in response to anti-CTLA-4 and overall survival in 

treatment-naive tumors. We confirm the relevance of our computational findings by using 

molecular techniques to begin elucidating how NK cells are activated in response to anti-CTLA-

4 treatment. These analyses yield novel insights into the role of NK cells in anti-CTLA-4 efficacy 

and provide computational tools that can be applied to other therapeutic datasets to enable 

translational cancer immunotherapy research. 

 

2. Results 
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Figure 1. CoGAPS identifies gene signatures related to immune cell lineage and 

treatment response in mouse intratumoral immune cell scRNA-seq data. 

A. We apply CoGAPS, a non-negative matrix factorization algorithm, to publicly available 

scRNA-seq data of ICI-treated mouse tumors. Matrix factorization algorithms are unsupervised 

learning methods that can distinguish the molecular dynamics of therapeutic responses without 
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prior knowledge of gene regulation or cell type classification. Using the transfer learning method 

projectR, the transcriptional signatures (or patterns) identified by CoGAPS are then projected 

into an independent dataset of human tumors treated with ICIs. These signatures can then be 

computationally assessed for relationships to clinical outcomes and molecularly validated in 

human cell lines.  

B. UMAP-dimension reduction of droplet-based scRNA-seq of intratumoral immune cells from 

ICI treated mouse sarcomas[4]. Samples are colored by annotated cell types (left) and by 

treatment (right). 

C. Hierarchical clustered heatmap of 21 CoGAPS patterns demonstrating segregation by 

immune cell lineage. Rows are individual cells, with column annotations designating cell type. 

Columns represent different CoGAPS patterns.  

D. UMAP-dimension reduction colored by CoGAPS pattern 13 weights illustrates a cell type 

specific signature within the macrophages/monocytes. 

E. Boxplot of pattern 13 weights in individual macrophage/monocyte cells, faceted by treatment 

group. Pattern 13 is associated with cells treated with control monoclonal antibody. 

F. UMAP-dimension reduction colored by CoGAPS pattern 12 weights illustrates a cell type 

specific signature within the macrophages/monocytes. 

G. Boxplot of pattern 12 weights in individual macrophage/monocyte cells, faceted by treatment 

group. Pattern 12 is associated with cells treated with anti-PD-1. 

 

CoGAPS identifies known molecular alterations in response to immunotherapy from 

scRNA-seq data 

 

To detect transcriptional signatures (also called “patterns”) that represent biological features 

across intratumoral immune cells during immunotherapy response, we used our non-negative 

matrix factorization (NMF) technique, CoGAPS (Fig 1A)[10]. CoGAPS is an established 

approach to dissect transcriptional signatures that dictate cell type identity (i.e., NK vs. Treg) 

and cell state (i.e., activated vs. resting), aiding the evaluation of complex molecular alterations 

within the tumor immune microenvironment[11,12]. By combining CoGAPS with projectR, a 

transfer learning approach, we can then quickly query for shared features across independent 

datasets (Fig. 1A)[7,10]. 

 

To identify transcriptional responses induced by ICIs in mouse tumors, we applied CoGAPS to a 

publicly available scRNA-seq dataset including more than 15,000 immune cells isolated from 
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mouse sarcomas[4]. These tumors were treated with a control monoclonal antibody, anti-PD-1, 

anti-CTLA-4, or combination anti-PD-1 and anti-CTLA-4 antibodies (Fig. 1B). A critical challenge 

in matrix factorization algorithms such as CoGAPS is the selection of an appropriate 

dimensionality (i.e., number of patterns) to resolve biological features from the data[13]. 

Consistent with previous studies, running CoGAPS across multiple-dimensionalities revealed 

that different levels of biological complexity were captured at different dimensionalities[14]. For 

example, at low dimensionality (3 patterns) CoGAPS separated immune cells into myeloid and 

lymphoid lineages (Supplemental Fig. 1A). When dimensionality was increased to 21 patterns, 

the myeloid versus lymphoid lineage distinction was preserved and additional transcriptional 

signatures reflecting immune cell type and state were captured (Fig. 1C). To identify specific 

attributes captured by each pattern, we performed gene set analysis using the gene weights for 

each pattern as input. We used the hallmark gene sets from the Molecular Signatures Database 

(MSigB)[15] and the PanCancer Immune Profiling gene panel from Nanostring Technologies to 

assess enrichment of gene sets controlling well-defined biological processes. Gene set statistics 

for all patterns are provided in supplemental Table 1. 

 

We found that several transcriptional signatures identified by CoGAPS were consistent with ICI-

mediated changes previously described in the literature. For example, pattern 13 was enriched 

in macrophages/monocytes from progressing tumors treated with control monoclonal antibody 

(Fig. 1D and E) while pattern 12 was prevalent in macrophages/monocytes from tumors treated 

with anti-PD-1 (Fig. 1F and G). Macrophages are commonly divided into two subsets, pro-

inflammatory anti-tumor M1 subtype and anti-inflammatory pro-tumor M2 subtype[16]. 

Consistent with this, pattern 13, which was enriched in control-treated tumors, reflected M2 

macrophage polarization, which promotes tumor growth and metastasis. In contrast, pattern 12, 

which was enriched in anti-PD-1 treated tumors, reflected M1 macrophage polarization and 

interferon responses. This finding agrees with a recent study, which showed that anti-PD-1 

treatment leads to a functional transition within the macrophage compartment towards an 

immunostimulatory M1 phenotype[17].  
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Figure 2. CoGAPS and pseudotime analysis reveals a dynamic state change in NK cells 

during ICI exposure in mouse scRNA-seq data. 

A. UMAP dimension reduction colored by CoGAPS pattern 7 weights across all cells (left) and 

magnified view (right) showing that pattern 7 marks a population of NK cells delineated in Fig. 

1A.  

B. Boxplot of pattern 7 weights across each immune cell type. Cells with high pattern 7 weights 

are observed only in NK cells. 
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C. Boxplot of pattern 7 weights in individual NK cells faceted by treatment group. Anti-CTLA-4 

treated NK cells have increased pattern 7 weights compared to NK cells treated with other 

immunotherapies. 

D. Pseudotemporal trajectory of anti-CTLA-4 treated NK cells colored by CoGAPS pattern 7 

weight suggesting that anti-CTLA-4 treatment results in NK cell activation. 

E. Heatmap of gene expression for 148 pattern markers that are differentially expressed across 

pseudotime. Columns are individual cells, and column annotation designates pattern 7 weight in 

each cell. Rows are differentially expressed pattern markers. 

F. Gene expression of selected NK cell activation genes differentially upregulated across 

pseudotime. Each dot represents a different cell and is colored by CoGAPS pattern 7 weight.  

 

CoGAPS analysis identifies a subset of activated NK cells in mouse tumors treated with 

anti-CTLA-4 

 

In addition to the known transcriptional changes shown in Figure 1, CoGAPS also identified a 

transcriptional signature that reflected a subset of activated NK cells—pattern 7 (Fig. 2A and B).  

While tumors from each treatment group contained NK cells with elevated levels of pattern 7, 

there was a significant enrichment in NK cells from tumors that were treated with anti-CTLA-4 

(Fig. 2C). To identify genes strongly associated with this pattern, we used the CoGAPS 

PatternMarker statistic[18]. PatternMarker analysis identified 3,195 genes associated with 

pattern 7. Gene set enrichment analysis of these genes revealed an upregulation of interferon-

gamma and IL2-STAT5 gene sets, which are key pathways that govern cytotoxicity and 

maturation in NK cells (Supplemental Table 1)[19]. 

 

We hypothesized that pattern 7 was identifying NK cells undergoing a cell state change in 

response to ICI. To explore this possibility we performed pseudotime analysis on NK cells from 

tumors treated with anti-CTLA-4[20]. Pseudotime analysis enables a quantitative estimation of 

cellular progression through dynamic biological processes. The pseudotemporal ordering 

showed a sequential progression in cellular trajectory during anti-CTLA-4 treatment (Figure 2D). 

This pseudotemporal trajectory was highly correlated with the pattern 7 weight identified in each 

cell (0.71 spearman correlation). Notably, the trajectory revealed a single transition state in NK 

cells as a result of anti-CTLA-4 treatment, with individual cells having transcriptional profiles that 

reflect various points along the trajectory. Differential expression analysis across pseudotime 

identified 1,968 genes with significant changes (q value < 0.01) in gene expression during 
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exposure to anti-CTLA-4 (Supplemental Table 2). We then looked for differentially expressed 

genes over pseudotime that were strongly associated with pattern 7 as determined by 

patternMarker analysis (Fig. 2E). The 148 differentially expressed patternMarker genes included 

markers of NK cell activation, including as perforin, granzymes, and Ly6a[21], that significantly 

increased in expression along the pseudotime trajectory as a result of anti-CTLA-4 treatment 

(Fig. 2F). These data support recent findings that NK cells within mouse tumors can be 

functionally modulated by ICI treatment[22,23]. 

 

In their original study, Gubin et al. used CyTOF, a mass spectrometry-based flow cytometry 

method to measure protein expression, in parallel with their scRNA-seq. By CyTOF they found 

that anti-CTLA-4 induced Granzyme B in a population of KLRG1+ NK cells. While these 

KLRG1+ NK cells resembled a population of NK cells detected by scRNA-seq, the relationship 

between anti-CTLA-4 and NK cell activation was unclear. We hypothesized that the KLRG1+ 

NK cells identified by CyTOF would contain the transcriptional NK cell activation signature we 

detected by scRNA-seq. To test this hypothesis, we used our transfer learning method, projectR 

[24], to assess the CyTOF data for the 21 patterns identified by CoGAPS from scRNA-seq. Just 

as with the scRNA-seq data, pattern 7 was highest in lymphocytes from anti-CTLA-4 treated 

tumors in the CyTOF data (Supplemental Fig. 1B). This demonstrates that: 1) CoGAPS is able 

to identify transcriptional changes in response to immunotherapy, which are preserved at the 

protein and mRNA level and across technological platforms and 2) CoGAPS identified an NK 

cell activation signature in the scRNA-seq data that was missed by the traditional scRNA-seq 

analysis methods used in the original study and 3) ProjectR is capable of identifying gene 

expression signatures present in scRNA-seq and CyTOF data. 

 

Preclinical NK cell activation signature is associated with overall in metastatic melanoma 

patients 

 

To evaluate the clinical relevance of the NK cell activation signature (pattern 7) and the ability of 

ProjectR to identify conserved biological processes in mouse and human tumors, we projected 

bulk RNA-seq data from 9,553 untreated human tumors representing 32 cancer types onto the 

21 mouse patterns[25]. This enabled a pan-cancer investigation of the relationship between the 

mouse tumor immune cell signatures identified by CoGAPS and clinical outcomes in human 

disease. We fit a multiple linear regression model to estimate the association between the 

projected weight of each pattern and overall survival. When including cancer type as a covariate 
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in the model given its significant effect on survival, we found that the NK cell activation signature 

was the most significantly associated with overall survival, as compared to the other patterns 

(Fig. 3A, p < 6 x 10-5). Pattern 15, which was similarly associated with mouse NK cells, was also 

significantly associated with overall survival (Supplemental Fig. 2A, Fig. 2B, p < 5.9 x 10-4). 

When including age as a covariate in the linear model, the NK cell activation signature remains 

the most significantly associated with overall survival (Supplemental Fig. 2B, p < 1.6 x 10-4). 

Interestingly, the NK cell activation signature was the only pattern to show a significant negative 

correlation with age (Supplemental Fig. 2C, p < 6.7 x 10-3). Several studies have reported age-

related alterations in NK cell function, including a decreased ability to proliferate and kill target 

cells in older individuals[26,27]. The NK cell activation signature appears to decrease as 

individuals age, which may have implications for cancer incidence in elderly individuals.  

 

When fitting separate regression models by cancer type, we found that melanoma (SKCM) had 

the strongest and most significant association between the NK cell activation signature and 

longer overall survival (Fig. 3B, Supplemental Fig. 2D, p < 0.005). Notably, this association was 

driven entirely by the metastatic melanoma samples (Supplemental Fig. 2E, F), which is 

consistent with the role of NK cells controlling cancer progression and metastasis[28]. 

Melanoma patients with tumors that had elevated NK cell activation signature (top 5%) had 

significantly longer overall survival (Fig. 3C). Prostate cancer (PRAD) and breast cancer 

(BRCA) also showed a positive correlation between increased NK cell activation signature and 

longer overall survival (Fig. 3B). These results demonstrate we can computationally identify 

transcriptional signatures relevant to clinical outcomes from preclinical mouse datasets and 

confirm that NK cell activation is associated with overall survival in metastatic melanoma[29]. 
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Figure 3. Preclinical NK activation signature is associated with overall survival in human 

melanoma. 

A. The output from a multiple linear regression model that predicts overall tumor survival from 

the CoGAPS transcriptional signatures, while also adjusting for cancer type as a covariate. 
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Standardized coefficients (i.e. data was scaled and centered) representing the strength and 

direction of association for each pattern are shown on the x-axis, with error bars representing 

coefficient +- 1.96 * standard error, and point size scaled to the coefficient’s p-value. Patterns 7 

and 15 are most strongly associated with longer overall survival, with pattern 7 being most 

significantly positively associated (p < 1.2 x 10-4). 

B. The output from a multiple linear regression model that predicts overall tumor survival from 

the CoGAPS transcriptional signatures, while also adjusting for patient age as a covariate. 

Pattern 7 is the most significantly positively associated with overall survival in SKCM (p < 5 x 10-

3). 

C. Kaplan-Meier plot of overall survival for 368 metastatic melanoma patients with the top 5% 

and bottom 95% of pattern 7 scores. 

D. Boxplot of CIBERSORT scores estimating the abundance of resting and activated NK cells 

from TCGA RNA-seq data by tumor subtype in TCGA.  

E. Bar plot of Spearman correlation coefficients between CTLA-4 and CIBERSORT cell type 

score for immunogenic cancers. CTLA-4 expression is positively correlated with estimation of 

activated NK cells from TCGA RNA-seq data. Significant correlations for NK scores and CTLA-4 

expression are indicated by asterisks where p-values < 0.05 = *, < 0.01 = **, and p-values < 

0.001 = ***. 

 

CTLA-4 expression is positively correlated with the infiltration of active NK cells in 

immunogenic human tumors  

 

Given that the NK cell activation signature was enriched in anti-CTLA-4 treated mouse tumors, 

we hypothesized that there may be a correlation between CTLA-4 expression and intratumoral 

NK cell content. To explore this hypothesis, we used bulk-RNA-seq data from TCGA then 

applied CIBERSORT, a computational approach that infers immune cell content from bulk RNA-

seq data. For this analysis, we assessed 6 immunogenic solid tumor types: skin cutaneous 

melanoma (SKCM), kidney renal clear cell carcinoma (KIRC), cervical kidney renal papillary cell 

carcinoma (KIRP), squamous cell carcinoma of the lung (LUSC), lung adenocarcinoma (LUAD), 

and bladder carcinoma (BLCA). When running CIBERSORT, we used the LM22 signature 

matrix designed by Newman et al[30] to estimate the relative fraction of 22 immune cell types 

within input mixture samples, which include an estimation of resting and activated NK cell 

proportions (Fig. 3D). Correlation analysis between CTLA-4 expression and CIBERSORT cell 

type estimation revealed that the direction of correlation in NK cells was dependent upon the 
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activation state (Fig. 3E, Supplemental table 3). Across several tumor types, the proportion of 

activated NK cells was positively correlated with CTLA-4 expression while the proportion of 

resting NK cells was negatively correlated. CTLA-4 expression was negatively correlated with 

estimated proportions of resting NK cells in SKCM (p < 1 x 10-4), BLCA (p < 1 x 10-3), LUSC (p <

1 x 10-2), KIRP (p < 1 x 10-2), and KIRC (p < 1 x 10-9). On the other hand, estimated proportions 

of activated NK cells were positively correlated with CTLA-4 expression in SKCM (p < 1 x 10-6), 

BLCA (p < 1 x 10-2), LUSC (p < 0.05), KIRP (p < 0.05), and KIRC (p < 1 x 10-2). As expected, 

CTLA-4 expression was also positively correlated with the estimated proportions of regulatory T 

cells (Tregs) in each tumor type (Supplemental Table 3).  

 

 

Figure 4. ProjectR recovers conserved immunotherapy response in intratumoral NK cells 

from independent human melanoma scRNA-seq datasets. 

 < 

T 
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A. Box plot of projected pattern 7 weights across intratumoral NK cells from metastatic 

melanoma patients prior to ICI treatment [5]. Cells are colored by therapy and separated by 

patient response. Increased pattern 7 is significantly associated with NK cells from patients 

responsive to anti-CTLA-4 or combined anti-CTLA-4 and anti-PD-1. Significant differences in 

mean pattern 7 weight between treatment groups are indicated by asterisks where p-values < 

0.05 = *, < 0.01 = **, and p-values < 0.001 = ***. 

B. Box plot of projected pattern 7 weights across intratumoral NK cells from metastatic 

melanoma patients after treatment with ICI. Cells are colored by therapy and separated by 

patient response. Increased pattern 7 is associated with NK cells from patients responsive to 

combination anti-CTLA-4 + anti-PD-1. Significant differences in mean pattern 7 weight between 

treatment groups are indicated by asterisks where p-values < 0.05 = *, < 0.01 = **, and p-values 

< 0.001 = ***. 

C. ROC curve for the performance of pattern 7 weights in predicting response to anti-CTLA-4 

prior to the administration of treatment.  

D. Box plot of projected pattern 7 weights across flow-sorted intratumoral NK cells from 

metastatic melanoma tumors that were unresponsive ICI (intrinsic resistance) or developed 

acquired resistance after a period of initial response[6]. The dashed line indicates the average 

maximum value for pattern 7 across treatment groups. NK cells with elevated pattern 7 weights 

are seen in patients that had an initial response to ICI, with the highest observed weights from a 

patient that responded to anti-CTLA-4. 

E. Box plot of projected pattern 7 weights across NK cells isolated from peripheral blood of 

metastatic melanoma patients that had no response to ICI (intrinsic resistance) or developed 

acquired resistance after a period of initial response. The dashed line indicates the average 

maximum value for pattern 7 from intratumoral NK cells across treatment groups. Elevated 

pattern 7 weights are not detected in circulating NK cells, regardless of response. 

 

Preclinical NK cell activation signature is associated with ipilimumab response in 

metastatic melanoma 

 

While informative, bulk RNA-seq cannot resolve cell type-specific changes in gene expression. 

Therefore, to further investigate the relevance of the NK cell activation signature (pattern 7) to 

immunotherapy responses, we used our transfer learning method (projectR), to project two 

independent scRNA-seq datasets of ICI-treated metastatic melanoma patients[5,6] onto the 21 

mouse patterns identified by CoGAPS. First, we analyzed a scRNA-seq dataset of ~16,000 
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immune cells isolated from melanoma metastases. Patients in this study were treated with anti-

PD-1, anti-CTLA-4, or combination anti-PD-1 and anti-CTLA-4 antibodies, and the biopsies 

were taken either prior to or during treatment[5]. Using the projected weights of each signature 

and treatment outcomes, we evaluated the association of each pattern with therapeutic 

response in humans. In pre-treatment biopsies, the NK cell activation signature was significantly 

higher in anti-CTLA-4 responsive tumors compared to non-responsive tumors (p < 1 x 10-15, 

Supplemental Fig. 3A). This is consistent with our initial finding that NK cell activation was 

enriched in mouse tumors treated with anti-CTLA-4. 

 

To further examine this relationship, we tested for enrichment of the NK cell activation signature 

specifically in the NK cells in this dataset. While NK cells were not annotated in the study that 

produced this data[5], we observed that cells expressing key NK marker genes were intermixed 

with T cells in the lymphocyte cluster (Supplemental Fig. 3B). This is consistent with previous 

scRNA-seq studies that have identified subpopulations of T cells that express transcripts linked 

to the cytotoxic function of NK cells, such as NKT cells[31,32]. Thus, to eliminate T and NKT 

cells from the analysis, we performed a gene expression gating strategy that required the 

expression of several transcripts related to NK cell function (NCR1, NKG7, and FCGR3A) and a 

lack of the T cell transcripts (CD4, CD3D, and CD3G). Gating for NK cells confirmed that the NK 

cell activation signature was enriched in intratumoral NK cells isolated from anti-CTLA-4 

responsive tumors (Fig. 4A, p < 1 x 10-8). Because cells were obtained from tumor biopsies prior 

to the administration of anti-CTLA-4 treatment, this finding suggests that cytotoxic NK cell 

infiltration could be predictive of anti-CTLA-4 response. In patients treated with anti-PD-1, there 

was no significant difference in the NK cell activation signature between responders and non-

responders regardless of whether biopsies were taken before (Fig. 4A, p > 0.05) or during (Fig. 

4B, p > 0.05) treatment. In contrast, the NK cell activation signature was significantly enriched in 

tumors responsive to combination anti-CTLA-4 and anti-PD-1 taken before (Fig. 4A, p < 0.05) 

and during (Fig. 4B, p < 0.01) treatment. Using receiver operating characteristic curve (ROC) 

analysis, we found that the NK cell activation signature had a moderate ability to classify anti-

CTLA-4 response (Fig. 4C, AUC = 0.748), suggesting that the NK activation signature has the 

potential utility to predict responsiveness to anti-CTLA-4 from pre-treatment tumor biopsies. 

These findings indicate that the presence of active NK cells within tumors is important to the 

clinical usage and success of anti-CTLA-4 therapies.  
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Although ICI therapy can lead to durable responses in patients with metastatic melanoma, 

intrinsic and acquired resistance remain major causes of mortality[33]. To examine the 

relationship between NK cell activation and mechanisms of therapeutic resistance, we next 

projected the transcriptional patterns into a dataset of NK cells isolated from melanoma 

metastases and matched blood samples of patients that had progressed after 

immunotherapy[6]. This dataset included two patients that had an initial response to ICI 

(acquired resistance), two patients that failed to respond to ICI (intrinsic resistance), and one 

patient that was not given ICI (untreated). We found high levels of the NK cell activation 

signature in a subset of intratumoral NK cells from the two patients who had an initial response 

to ICI (Fig. 4D). Consistent with our results which indicate that the NK cell activation signature is 

enriched in anti-CTLA-4 responsive tumors, the highest levels of the NK cell activation signature 

were found in NK cells from the patient responsive to anti-CTLA-4 (ipilimumab). Elevated NK 

cell activation signature was also found in the patient responsive to combination treatment with 

anti-PD-1 and oncolytic virus (pembrolizumab + TVEC). Notably, these observations were 

specific to intratumoral NK cells, as the NK cell activation signature was detected only at very 

low levels in NK cells isolated from matched peripheral blood samples (Fig. 4E). This result 

indicates that anti-CTLA-4 treatment leads to NK cell activation specifically within the tumor 

microenvironment in humans, which is consistent with observations in mice[23]. 
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Figure 5. CTLA-4 is expressed by both human NK cell lines and healthy human donor-

derived NK cells. 
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A. UMAP dimension reduction with cells colored by single-cell gene expression for CTLA-4 and 

representative immune activation genes in mouse (left) and human (right) intratumoral NK cells. 

The pattern of CTLA-4 expression is consistent with the reduced ability of scRNA-seq to capture 

low to moderately expressed genes. 

B. Western blot demonstrating CTLA-4 expression in human NK cell lines. 

C. Quantitative real-time PCR (qRT-PCR) analysis of total CTLA-4 expression (both isoforms) in 

a CTLA-4 null line (PANC-1), T cell lines (Jurkat, CEM, HuT78), NK cell lines.  

D. qrt-PCR demonstrating CTLA-4 expression in CD56+ selected ex vivo unstimulated NK cells 

derived from healthy human donors. 

E. Western blot of CTLA-4 expression in CD56+ selected ex vivo unstimulated NK cells derived 

from healthy human donors.  

F. Western blot of total protein (T) and intracellular (IC) protein isolated from human NK cell line 

NK-92 and unstimulated primary human NK cells using cell surface protein biotinylation for 

exclusion of surface proteins demonstrating surface expression of CTLA-4 dimers and 

intracellular expression of CTLA-4 monomers. 

G. Flow cytometry demonstrating NK-92 does not express antibody receptor CD16. Positive 

control was the NK-92 line that had been transfected with a CD16 expressing plasmid, NK-92-

CD16v.  

H. Immunofluorescent images of NK-92 cells stained with Dylight550-labelled ipilimumab 

demonstrating that ipilimumab binds to NK cell surface. Blue staining indicates DAPI. Shown 

are representative images of a single field of view taken via confocal microscopy (magnification, 

63X, zoom, 3X). 

 

Human NK cells express CTLA-4, which is bound by ipilimumab  

 

CTLA-4 is a major regulator of T cells and there is growing evidence suggesting that CTLA-4 

regulates other human immune cell types, including B cells[34,35], monocytes[36], and dendritic 

cells[37]. The role of CTLA-4 in NK cells, however, remains controversial, and the majority of 

the literature suggests human NK cells do not express CTLA-4[23,38–40]. However, the robust 

activation of intratumoral NK cells in response to anti-CTLA-4 treatment suggests that CTLA-4 

may function as an NK cell immune checkpoint—similar to its role in T cells. To investigate this 

possibility, we first assessed the expression of CTLA-4 transcripts in NK cells from scRNA-seq 

data. Indeed, some intratumoral NK cells in mice and humans express CTLA-4 (Fig. 5A). 

Importantly, if the expression of CTLA-4 is low to moderate in these NK cells, the transcripts 
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could suffer from poor capture efficiency during scRNA-seq[41]. These technical limitations 

could result in the observed detection in only a handful of NK cells and require the use of in vitro 

techniques to confirm. To further investigate and validate the NK activation transcriptional 

signature we observed computationally, we turned to molecular biology   

 

In T cells, CTLA-4 competes with co-stimulatory receptor CD28 for B7 ligands. When CTLA-4 

outcompetes CD28 for B7 binding, it prevents CD28 co-stimulatory signaling and instead 

provides inhibitory signaling. Anti-CTLA-4 treatment results in T cell activation by inhibiting the 

inhibitor; by blocking CTLA-4-B7 interactions and promoting CD28-B7 interactions. To 

determine if CTLA-4 could be functioning similarly in NK cells, we tested NK cells for CD28 and 

CD28H expression. Consistent with previous reports, we found that some NK cell lines and 

donor NK cells expressed CD28 and CD28H[42] by flow cytometry and qRT-PCR (Supp. Fig. 

5). Thus, human NK cells appear to express both CTLA-4 and CD28, supporting a parallel role 

for these receptors in T cells and NK cells. 

 

Ipilimumab binds to CTLA-4 expressed on the NK cell surface independent of CD16.  

 

We next wanted to determine if the anti-CTLA-4 antibody, ipilimumab, was capable of binding to 

CTLA-4 expressed on the NK cell surface. To do so, we fluorescently labelled anti-CTLA-4 

(Ipilimumab) to probe for ipilimumab binding to the NK cell surface by immunofluorescence 

microscopy . One potential complication is nonspecific binding of ipilimumab to NK cells. Human 

NK cells express antibody receptors (e.g., Fc receptor CD16) which can bind to the constant 

region of an antibody regardless of the antibody’s specificity. [43]. To exclude the possibility of 

nonspecific ipilimumab-NK cell interactions, we used the human NK cell line NK-92, which lacks 

generic antibody receptors (i.e., CD16) (Fig. 5G). Immunofluorescence imaging demonstrated 

that fluorescently labeled anti-CTLA-4, but not the IgG control, was capable of binding to NK-92 

through recognition of CTLA-4 on the cell surface (Fig. 5H). The specificity of the stain was 

confirmed using the CTLA-4 null line PANC-1 (Supplemental Fig. 4E. We saw abundant surface 

expression of CTLA-4 by immunofluorescence confirming the results shown in Figure 5F.  To 

the best of our knowledge, this is the first demonstration that anti-CTLA-4 (ipilimumab) can 

directly interact with human NK cells via a CD16-independent mechanism. 
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Figure 6. NK cell activation regulates CTLA-4 expression. 
A. Effect of 24 hour stimulation with IL-2, IL-12, IL-15 and IL-18 on NK cell CTLA-4 
expression as determined by qRT-PCR.  
B. Effect of target cell exposure (K562-4-1BB-mbIL-21) on NK cell CTLA-4 expression as 
determined by qRT-PCR.  

 
NK cell activation regulates CTLA-4 expression 

  

CTLA-4 expression is modulated in response to T cell activation via CD28 and T cell receptor 

signaling[44]. To investigate if in vitro NK cell activation would similarly modify CTLA-4 

expression in NK cells, we exposed NK cells to a variety of cytokines (IL-2, IL-12, IL-15, L-18) 

that activate NK cells and alter NK cell expression of other immune checkpoints (i.e. PD-

1)[45][46] ( Fig. 6A). Human NK cells, with the exception of NK cell line NK-92, had a drastic 

reduction in CTLA-4 after 24-hour exposure to IL-2. IL-15 also caused a reduction in CTLA-4 

expression in all NK cells tested except NKL. Alternatively, IL-12 and IL-18 increased CTLA-4 

expression in a subset of NK cell lines, including primary donor NK cells. 
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Target cell recognition is another means to activate NK cells. Since cytokine-activated and 

target-cell activated NK cells have distinct transcriptional phenotypes[47] we also investigated 

target cell-mediated NK cell activation on NK cell CTLA-4 expression by exposing NK cells to 

engineered target cells (K562-4-1BB-mbIL-21 cells)  (Fig. 6B). Although we saw divergent 

responses in the primary NK cells from two donors, target cell exposure clearly modulated 

CTLA-4 expression. These data demonstrate that although responses are variable, human NK 

cell activation, via cytokine and target-cell stimulation, alters NK cell expression of CTLA-4. 

Combined with the observation that anti-CTLA-4 antibodies bind human NK cells, these results 

suggest CTLA-4 may be an NK cell checkpoint and drive the computationally identified 

signature of NK cell activation in anti-CTLA-4 responsive tumors. Taken together, these results 

confirm the utility of CoGAPS and projectR to identify conserved biological processes between 

preclinical models and human patients that contribute to clinical outcomes.  

 

3. Discussion  

 

Using a combination of state-of-the-art computational algorithms and molecular biology 

approaches we demonstrate that transfer learning can be used to elucidate complex tumor 

immune responses to immunotherapy that are conserved between species. Specifically, in this 

study we demonstrate that the Bayesian non-negative matrix factorization approach CoGAPS 

associates intratumoral NK cell activation and anti-CTLA-4 response. These findings extend 

work done by Gubin et al.[4], which used scRNA-seq and CyTOF to profile changes in immune 

cells from mouse sarcomas following immunotherapy treatment. Using standard scRNA-seq 

analysis methods, Gubin et. al. did not detect NK cell activation from the scRNA-seq data in 

anti-CTLA-4 treated tumors, however their subsequent CyTOF analysis revealed prominent 

upregulation of NK cell granzyme expression specific to anti-CTLA-4 treatment[4]. To bridge 

these datasets, we used our transfer learning method, projectR, to demonstrate that the scRNA-

seq signature of NK cell activation in response to anti-CTLA-4 therapy was preserved at the 

protein level in the paired CyTOF data (Supplemental Figure 1B). Using several additional 

clinical datasets, we determine a robust association with this signature and anti-CTLA-4 activity 

in human tumors.  

 

The likely source of difference in the features identified in our study and Gubin et al.[4] is the 

analysis method for cell state identification. Notably, Gubin et al.[4] employed clustering for their 
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analysis, which is a central step in standard scRNA-seq pipelines to group discrete cell 

populations that share similar transcriptional profiles. In addition to cell type specific activities, 

transcriptional profiles simultaneously include cellular processes such as activation, exhaustion, 

and cell signaling, which are not necessarily captured by clustering approaches. These 

processes are particularly important in the context of immune cells within the tumor 

microenvironment, where cells may undergo stimulation or dysregulation. In contrast to 

clustering, matrix factorization methods can distinguish the molecular dynamics present in a 

dataset in an unsupervised manner. Our matrix factorization method, CoGAPS, was able to 

identify NK cell activation in response to treatment directly—without the need for clustering, 

differential expression analyses, or additional technologies— highlighting the advantage of our 

approach compared to standard analysis methods. Therefore, CoGAPS is able to identify 

immunotherapy induced cellular changes that may be missed by alternative methods.   

 

Cross-species analysis is complicated by biological and technical factors, including batch effects 

due to experimental platforms and species-specific differences. Attempts to integrate single-cell 

data from mice and humans often rely on batch correction methods, which adjust the expression 

levels of genes within cells from each species to resemble each other[48,49]. In contrast, 

transfer learning takes low-dimensional gene expression signatures learned from latent space 

techniques (e.g, CoGAPS) on one dataset and maps them to another—without the need for 

batch correction. Previous transfer learning studies have demonstrated the ability to transfer 

immune cell type labels between datasets[50] and in cross-species analysis of developmental 

processes[7,9]. Here, we sought to further test the ability of transfer learning to elucidate 

complex tumor immune responses to immunotherapy that are preserved between preclinical 

models and human tumors. Thus, after identifying NK cell activation in mouse tumors treated 

with anti-CTLA-4, we used projectR to probe human datasets for an association with clinical 

outcomes. Despite known differences between mice and human NK cell surface receptors[51], 

our approach was able to analyze homologous genes and confirmed that the NK cell activation 

signature we observed in anti-CTLA-4 treated mice was conserved between species and cancer 

types. In addition to being a conserved response to anti-CTLA-4, we found that elevated levels 

of the NK cell activation signature was associated with better clinical response to anti-CTLA-4 

treatment. This supports the continued observation that key biological roles of NK cells are 

shared between species[51]. Computationally, this supports that NK cell state transitions 

learned with CoGAPS are also preserved across species and between datasets from across 

technical batches. While we focus this study on CoGAPS analysis, we note that the transfer 
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learning approach can be combined with other latent space techniques to identify gene 

expression signatures from single-cell data (eg. PCA, clustering, and other forms of linear matrix 

factorization) to identify the preservation of additional features learned from alternative 

approaches[7,24]. Future extensions to this approach are needed to enable transfer learning 

from emerging non-linear methods for inference of more complex cell state transitions and gene 

regulatory networks. 

 

In this study, we have concentrated our cross-species transfer learning analysis analysis and 

experimental validation on the NK cell activation signature identified by CoGAPS (pattern 7). We 

chose pattern 7 as an interesting case of computationally identified biology for several reasons: 

(1) pattern 7 was the most clearly associated with a specific cell type and treatment; (2) 

increased expression of NK cell activation markers had been noted in anti-CTLA-4 treated mice 

from the original CyTOF analysis[4]; (3) there is growing evidence that CTLA-4 is expressed by 

non-T cell human immune cell types[34–37]; and (4) recent work found that human NK cells 

express PD-1 and are modulated by anti-PD-1 therapy[52,53]. Therefore, we hypothesized that 

CTLA-4 was similarly expressed by human NK cells and activated by anti-CTLA-4 antibodies. In 

agreement with our findings, several reports highlight an interesting relationship between NK 

cells and anti-CTLA-4 response in humans. In melanoma patients treated with anti-CTLA-4, a 

higher percentage of circulating mature NK cells is correlated with improved overall survival, 

and NK cells isolated from responsive patients have increased cytolytic activity compared to NK 

cells isolated from non-responders[54]. In B16 melanoma models, NK cells and CD8+ T cells 

synergistically clear tumors in response to anti-CTLA-4 and IL-2 treatment[55]. Furthermore, 

anti-CTLA-4 has been shown to increase transcriptional markers of NK cell cytotoxic activity in 

CT26 colon carcinoma tumors[23]. While future mechanistic studies are needed to fully 

elucidate the specific function(s) of CTLA-4 in NK cell biology, these findings support the 

computational approaches employed in this study.  

 

We leverage our computational findings to guide molecular experiments, through which we 

provide a rationale for NK cell activation in response to anti-CTLA-4 by demonstrating that NK 

cells constitutively express CTLA-4 on their cell surfaces and bind anti-CTLA-4 antibodies. A 

number of immune checkpoints are expressed by both T cells and NK cells. For example, 

recent studies have found that NK cells within several human and mouse tumor types express 

PD-1, and that ligands for these checkpoint receptors negatively regulate NK cell activity[53,56]. 

Consistent with this, blocking PD-1 receptors with anti-PD-1 therapy enhances NK cell-mediated 
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anti-tumor responses[22], and NK cell infiltration correlates with clinical responsiveness to anti-

PD-1 therapy[57]. Despite growing evidence for the role of checkpoint receptors in NK mediated 

anti-tumor responses, the expression of CTLA-4 by NK cells has been disputed in the literature. 

While mouse NK cells inducibly express CTLA-4 in response to IL-2[45], a recent study was 

unable to detect CTLA-4 on the surface of intratumoral murine NK cells[23]. An earlier study in 

humans also reported that NK cells from healthy donors do not express CTLA-4 [38]. Contrary 

to these earlier reports, our results demonstrate CTLA-4 is constitutively expressed by 

circulating healthy human donor NK cells and human NK cell lines. One possible explanation for 

why previous studies have failed to identify the expression of CTLA-4 by human NK cells is the 

reliance on flow cytometry in these studies. Flow cytometry can be limited by challenges related 

to the generation of antibodies and further complicated by the rapid surface expression 

dynamics of CTLA-4[58]. In support of this explanation, we too fail to detect intracellular or 

surface CTLA-4 expression when using flow cytometry (Supplemental Fig 4A and B)), even 

though we are able to unequivocally demonstrate CTLA-4 expression at the RNA and protein 

level by qRT-PCR and western blot in ex vivo unstimulated healthy donor NK cells (Fig. 5B-E), 

as well as surface expression using immunofluorescence and biotinylation (Fig. 5G).  Consistent 

with previous studies[59,60], we show that human NK cells express CD28 and CD28H 

(Supplemental Fig. 5), a co-stimulatory receptor that competes with CTLA-4 for the binding of 

B7 ligands. The expression of B7 on tumor cells also enhances NK recognition and lysis of 

tumors through CD28-B7 interactions[59–65]. In addition, we show that CTLA-4 expression by 

human NK cells cultured in vitro is modulated in response to NK cell activation (Figure 6). These 

findings suggest that CTLA-4 may have similar functions in NK cells and effector T cells[44].  

 

In addition to informing molecular experiments, transfer learning to human cohorts with clinical 

outcomes can facilitate translational research in developing mechanistic biomarkers from 

preclinical models. In this study, our transfer learning analysis demonstrates that the NK cell 

activation signature we learned in the preclinical scRNA-seq data is conserved in anti-CTLA-4 

responsive human tumors prior to anti-CTLA-4 treatment. Moreover, the amount of this NK cell 

activation pattern prior to treatment correlates with the clinical response to anti-CTLA-4 in 

metastatic melanoma. This indicates that NK cells must already be activated within tumors in 

order to have improved tumor clearance by the addition of anti-CTLA-4. Future transfer learning 

analyses on large cohort studies of anti-CTLA-4 treated tumors with genomics data could further 

delineate its role as a potential predictive biomarker. However, these datasets are currently 

lacking in the literature, which limits our ability for such computationally-driven biomarker 
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analysis. Still, our present study found that the NK cell activation signature was observed in 

tumors responsive to anti-CTLA-4 alone or in combination with anti-PD-1, suggesting that this 

signature is a specific response to therapies that include anti-CTLA-4. In vivo, it is possible that 

the on-target interaction of anti-CTLA-4 antibodies and CTLA-4, as well as Fc receptor 

engagement on NK cells contribute to anti-tumor activity.  

 

In the context of therapeutic resistance, we detected NK cells with high expression of the NK 

cell activation signature in patients that developed acquired, but not primary, resistance to 

immunotherapy. This indicates that intratumoral NK cell activation is able to identify patients that 

have an initial response to therapy. Consistent with a relationship between NK cells and anti-

CTLA-4 response, we observed the highest levels of NK cell activation in intratumoral NK cells 

isolated from a patient that had an initial response to anti-CTLA-4. This enrichment was absent 

in patients that were unresponsive to anti-PD-1, either alone or in combination with anti-CTLA-4. 

Surprisingly, the NK cell activation signature was also elevated in a patient that initially 

responded to combination anti-PD-1 and oncolytic virus. This could be due to the fact that 

infection of tumors with oncolytic viruses can activate NK cells and stimulate NK-mediated anti-

tumor immunity[66]. Furthermore, since this observation was specific to intratumoral NK cells 

and not circulating NK cells, approaches to transcriptionally profile patients using peripheral 

blood may be limited in identifying signatures related to clinical outcomes. It will be important for 

future studies to determine the role of NK cells in anti-CTLA-4 response and resistance. 

 

As scRNA-seq atlases become increasingly prevalent in cancer research, computational tools to 

generalize findings across species are necessary. This work describes a useful computational 

approach for studying cancer immunotherapy that is able to identify cellular responses 

preserved across different data modalities, species, and patients. This provides a powerful 

method for extrapolating relevant information while avoiding the unique biases of individual 

technologies (i.e., dropout in scRNA-seq, biased selection of genes in CyTOF, or aggregate 

transcriptional profiles in bulk RNA-seq). In addition, it allows the comparison of different 

treatment conditions, disease states, and tumor types. Therefore, we provide a framework for 

cross-species data analysis, with the feasibility to integrate preclinical and clinical genomics 

datasets. Following the integration of larger clinical cohort single-cell studies, we anticipate that 

these methods will aid in the prediction of patient prognosis and therapeutic response. Due to 

the flexibility of our approach, these algorithms can be used to study the treatment of disease in 

a variety of contexts. The ability to rapidly identify conserved responses to therapy between 
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mice and humans will help bridge basic science and clinical research and advance our ability to 

understand and treat disease.  

 

 

 

4. Methods  

 

Data collection 

In this study, we used three public scRNA-seq datasets generated by different groups using 

droplet-based profiling technologies. Read counts for each scRNA-seq dataset were obtained 

from NCBI’s Gene Expression Omnibus.  

 

For CoGAPS analysis on preclinical immunotherapy samples, we used a scRNA-seq dataset 

containing ~15,000 flow-sorted CD45+ intratumoral cells from mouse sarcomas that were 

collected during treatment with either control monoclonal antibody, anti-CTLA-4, anti-PD-1, or 

combination anti-CTLA-4 and anti-PD-1[4]. This data was acquired with the 10x Genomics 

Chromium platform, using v1 chemistry. The accession number for this dataset is GSE119352.  

The scRNA-seq data was complemented by paired mass cytometry data stored in the FLOW 

Repository under FR-FCM-ZYPM. Data of 5 replicates per treatment were processed using the 

R package cytofkit version 0.99.0 and used for transfer learning analysis.   

 

For transfer learning to human samples, we used two scRNA-seq datasets of intratumoral 

immune cells from metastatic melanoma patients. To first test the relationship between our 

preclinical CoGAPS patterns and clinical outcome, we used a scRNA-seq dataset containing 

~16,000 flow-sorted CD45+ intratumoral cells obtained from 48 human melanoma tumor 

biopsies from 32 patients at baseline or after treatment with either anti-CTLA-4 , anti-PD-1, or 

combination anti-CTLA-4 and anti-PD-1[5]. This data was acquired with Smart-seq2. The 

accession number for this dataset is GSE120575.  

 

Next, to confirm the observed relationship between our preclinical NK activation signature and 

response to anti-CTLA-4, we used a scRNA-seq dataset containing ~40,000 flow-sorted NK 

cells from matched blood and tumor samples obtained from 5 patients with melanoma 

metastases[6]. Two patients had an initial response to treatment with anti-CTLA-4 or anti-PD-1 

with oncolytic virus. Two patients failed to respond to combination anti-CTLA-4 and anti-PD-1 or 
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anti-PD-1. One patient was not treated with immunotherapy. This data was acquired with the 

10x Genomics Chromium platform, using v2 chemistry. The accession number for this dataset is 

GSE139249. 

 

In addition, bulk RNA-seq was downloaded from The Cancer Genome Atlas[25]. In this case, 

level 3 RSEM normalized across 33 tumor types were accessed from the Broad Institute TCGA 

GDAC Firehose (http://gdac.broadinstitute.org/runs/stddata__2016_01_28/data/) and log2-

transformed. CIBERSORT scores for this data were obtained from Thorsson et al.[67]. 

 

These datasets were used for pattern discovery and transfer learning as described below.  

 

Dimensionality reduction and cell type identification 

Cell type inference analyses were performed for the Gubin et al. dataset with the standard 

Monocle3 workflow using package version 0.2.0. Dimensionality reduction and visualization for 

scRNA-seq data were performed using Uniform Manifold Approximation and Projection 

(UMAP)[68]. Briefly, the first 15 principal components were used as input into the 

reduce_dimension function. Canonical cell type marker genes as described in Gubin et al. were 

used to annotate cells[4].  

 

Mouse pattern discovery and gene set analysis using CoGAPS 

CoGAPS analysis was performed using the R/Bioconductor package CoGAPS version 3.5.8 to 

analyze the mouse sarcoma dataset from Gubin et al.[4]. Genes with a standard deviation of 

zero were removed prior to analysis. The log2 transformed count matrix of remaining genes 

across all samples was used as input to the CoGAPS function. Default parameters were used, 

except nIterations = 50,000, sparseOptimization = True, nSets = 12. The input parameters for 

nPatterns was determined empirically, by testing over a range of dimensions. When the 

nPatterns input was set to 3 we obtained results that identified immune cell lineage. We 

reasoned that additional patterns could further identify biological processes in the data related to 

treatment. We initially tested 50 patterns, however, many of the patterns highlighted few cells, 

indicating an over-dimensionalization of the data. We obtained stable results when nPatterns 

was set to 25, with the final CoGAPS dataset stabilized at 21 patterns. Genes highly associated 

with each pattern were identified by calculating the PatternMarker statistic[18]. The 

CalcCoGAPSStat function was used to identify pathways significantly enriched in each pattern 
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for the MSigDB hallmark gene sets[15] and PanCancer Immune Profiling panel from NanoString 

Technologies.  

 

Pseudotime analysis 

To perform pseudotemporal ordering, the dataset was subset to relevant cell types and 

treatments based on the desired analysis. Due to the association between pattern 7 and 

activation state markers, we chose the most active terminus of the trajectory as the end state. 

Thus, the root node of the trajectory was assigned by identifying the region in the UMAP 

dimensional reduction with low CoGAPS pattern 7 weights. Pseudotime values were assigned 

to cells using the order_cells function from Monocle3 version 0.2.0. Genes with significant 

expression changes as a function of pseudotime were identified using the graph_test function, 

using a multiple-testing corrected q-value cutoff of 0.01. 

 

Linear modeling 

TCGA expression and metadata were aggregated using the R/Bioconductor package 

TCGAbiolinks version 2.14.1[69], and was used as input for transfer learning as described 

below. Samples were restricted to those that were labeled as “Primary solid tumor” (n=9113), 

“Recurrent solid tumor” (n=46), and “Metastatic” (n=394) in the “definition” column of the TCGA 

metadata, which resulted in 9,553 total samples. Measures of overall survival and age at 

diagnosis for TCGA samples were taken from those aggregated by Liu et al.[70]. After scaling 

and centering the data, linear models were run according to the following equation: 

 

OS ~ C + Pi … Pn + A 

 

Where OS equals overall survival, C represents cancer type as a categorical variable, P_i…P_n 

represent each transcriptional signature, or pattern, as separate continuous covariates, and A 

equals age at diagnosis. Linear models fit per cancer type were run on samples belonging to 

each respective cancer, and did not include the cancer type covariate C from the equation 

above. Models looking at the relationship between age and patterns replaced OS in the 

equation above with A.  

 

Survival analysis  

Kaplan Meyer plots were generated in R using the survfit function from the survival package 

version 3.1-12, and the ggsurvplot function from the survminer package version 0.4.6. Samples 
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were split into those in the top 5% of pattern 7 scores, and those in the bottom 95% (i.e. all 

other samples).  

 

Correlation analysis 

To compare the expression of CTLA-4 and CIBERSORT scores for various immune cell types 

across immunogenic solid tumors from TCGA, we calculated the Spearman correlation 

coefficients using the cor.test function in R.  

 

Transfer learning 

To examine whether the mouse patterns corresponded to similar immunotherapy responses in 

human data, we used The R/Bioconductor package projectR[24] version 1.0.0 to project the 

expression matrix from several datasets into the CoGAPS pattern amplitude matrix[7]. The 

CoGAPS result object and the expression matrix from a human dataset is used as input to the 

projectR function. This algorithm returns a new pattern matrix, which estimates the role of each 

pattern in each cell of the human dataset. This comparison of pattern across species usage 

enabled us to determine how each pattern defines features present in the human dataset (i.e. 

cell types and immune cell activation). Homologous genes present in the mouse and human 

data were retained for projection. Genes without homologs in the human data were removed.  

 

Pattern performance of predicting anti-CTLA-4 response 

The projected pattern weight is a continuous range of values, instead of a binary outcome. 

Using the individual projected pattern weight for each cell and a binary response outcome to 

anti-CTLA-4, we performed ROC curve analysis using the ROCR package, version 1.0-7 to 

determine the true-positive rates versus false-positive rates of pattern 7 weights to classify 

response. The area under the ROC curve was used as the quality metric to determine the 

prediction performance. 

 

Cell lines and materials 

All human NK cell lines (NK-92, NK-92-CD16v, NKL, YT and KHYG-1) were kindly provided by 

Dr. Kerry S. Campbell (Fox Chase Cancer Center, Philadelphia, PA). The NK-92-CD16v 

expressed GFP due to transduction with pBMN-IRES-EGFP containing the Fc�RIIIA construct. 

All NK cell lines were cultured as previously described[71]. Fresh healthy donor NK cells were 

purchased from AllCells (PB012-P). These NK cells were positively selected from donor 

peripheral blood using CD56 positivity. Donor NK cell purity was 98-99%. Donor 3 and Donor 4 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2020.05.31.125625doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.125625
http://creativecommons.org/licenses/by-nd/4.0/


 
 

were expanded using engineered antigen presenting cells (K562-4-1BB-mbIL-21) according to 

the protocol[72]. CTLA-4 overexpressing Jurkat cell line was generated using lentiviral 

transduction purchased from G&P BIosciences (Product ID: LYV-CTLA4, SKU#: LTV0710) 

which contained full length human CTLA-4 gene subcloned into lentiviral expression vector 

pLTC with an upstream CMV promoter with puromycin selection marker. Jurkat cells were 

transduced using millipore sigma’s spinoculation protocol. In brief, lentiviral particle solution was 

added to 2 X 106 Jurkat cells at a final multiplicity of infection of 1, 5 and 10. Cells were 

centrifuged at 800 xg for 30 minutes at 32°C then resuspended in complete growth medium for 

3 days. After three days, cells were resuspended in complete medium containing 5 ug/mL 

puromycin overnight for selection. Selection was performed twice.  

 

qRT-PCR 

RNA was isolated using the PureLink RNA Mini Kit (Ambion). The RNA concentration was 

measured using NanoDrop 8000 (Thermo Fisher Scientific). cDNA was generated from 20-100 

ng of RNA using the GoTaq 2-step RT-qPCR System (Promega). qPCR was performed with 

SYBR Green on a StepOnePlus real-time PCR system (Applied Biosystems). Gene expression 

was normalized to HPRT and analyzed using 1/DCt method with triplicates. RNA was isolated 

using the PureLink RNA Mini Kit (Ambion). The RNA concentration was measured using 

NanoDrop 8000 (Thermo Fisher Scientific). cDNA was generated from 20-100 ng of RNA using 

the GoTaq 2-step RT-qPCR System (Promega). qPCR was performed with SYBR Green on a 

StepOnePlus real-time PCR system (Applied Biosystems). Gene expression was normalized to 

HPRT and analyzed using 1/DCt method with triplicates. 

Primers used were: 

CTLA-4: (F: CATGATGGGGAATGAGTTGACC; R: TCAGTCCTTGGATAGTGAGGTTC) 

CD28: (F: CTATTTCCCGGACCTTCTAAGCC; R: GCGGGGAGTCATGTTCATGTA) 

CD28H: (F:CCCTGCAAGAAGCCTCAAG; R: CCTTTGTCCACTTAACACGGAG) 

HPRT: (F: GATTAGCGATGATGAACCAGGTT; R: CCTCCCATCTCCTTCATGACA) 

 

Western Blot 

Cells were lysed in boiling buffer with EDTA (Boston BioProducts) supplemented with 1X 

protease and 1% phosphatase inhibitor prepared following the manufacturer's protocols (Sigma-

aldrich, Cat.No. 11697498001 and P5726). Cleared lysate concentrations were obtained by a 

DC Protein Assay (BioRad). Lysates 30-50 ug were run on SDS-PAGE gels and transferred to 

nitrocellulose membranes (GE Healthcare). Western blots were conducted using anti-CTLA-
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4/CD152 (LS�C193047, LSbio) at concentrations of 1:1000 diluted in 5% milk in PBST. 

Secondary antibody was anti-rabbit IgG, HRP linked (Cell Signaling) used at 1:1000. 

Chemiluminescent substrate (Pierce) was used for visualization.  

 

Flow Cytometry 

All cells were aliquoted into Eppendorf tubes, spun at 5000 rpm for 1 minute at 4°C, washed 

twice with HBSS (Fisher Scientific Cat. No. SH3058801), and resuspended in 50 µL of FACS 

buffer (PBS plus 1% BSA) and blocked with µL 1 human Fc block (BD Biosciences, 564219) for 

20 minutes at 4°C. Labeled antibodies were then added at the manufacturer’s recommended 

concentrations and incubated at 4° C for 30 minutes, with vortexing at 15 minutes. Cells were 

then washed with FACS buffer twice and resuspended in FACS buffer or fixative (1% PFA in 

PBS). Flow antibodies included anti-human CD152 (CTLA-4) (BD Bioscience 555853), CD28 

(Biolegend 302907), and CD28H (R&D Systems, cat#MAB83162). The CD152 antibody has 

previously been shown to adequately detect CTLA-4 expression on both human T and B cells 

(29). Samples were run in the Georgetown Lombardi Comprehensive Cancer Center Flow 

Cytometry & Cell Sorting Shared Resource using BD LSRFortessa. Analyses were performed 

using FlowJo (v10.4.1). 

 

Immunofluorescence  

Ipilimumab was acquired from the Medstar Georgetown University Hospital. Ipilimumab was 

labelled with Dylight550 fluorophore using the Dylight550 Conjugation Kit (Fast)- Lightning-Link 

(abcam, ab201800). In short, Ipilimumab was diluted from 5 mg/mL to 2 mg/mL using sterile 

PBS. Human IgG (Jackson ImmunoResearch, 009-000-003) was diluted from 11mg/mL to 2 

mg/mL using sterile PBS. 1 uL of modifying reagent was added to 10 uL diluted ipilimumab and 

10 uL diluted human IgG. 10 uL antibody was then added to the conjugation mix and incubated 

at room temperature in the dark for approximately 6 hours. 1 uL of quencher reagent was added 

to the labeled ipilimumab and the antibody was stored in the dark at 4°C. NK-92 and PANC-1 

cells were collected and washed with cold PBS and brought to a final concentration of 1 X 106 

cells/mL in staining buffer (1% BSA in PBS) in 50 uL. 50 uL of labelled ipilimumab or human IgG 

was added to cells to yield a final concentration of 1 ug/mL antibody. Cells were incubated in the 

dark at 4°C for 1 hour. After incubation, cells were pelleted and washed three times with cold 

PBS. Cells were brought to a final concentration of 0.5 X 106 cells/mL and 100 uL was 

immobilized on slides using cytospin (Cytospin 2, Shandon) for 5 mins at 1000 rpm. Following 

immobilization cells were fixed with 4% PFA for 10 minutes at room temperature then washed 
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three times with cold PBS. Coverslips were mounted using VectraSheild mounting media with 

DAPI and sealed using clear nailpolish and allowed to dry overnight in the dark. Analyses were 

performed with the Leica SP8 AOBS laser scanning confocal microscope. 

Cell Surface Biotinylation 

Cell surface biotinylation of NK92, NKL, YT and KHYG-1 cells was performed with the Pierce Cell 

Surface Protein Isolation kit (Thermo Scientific, cat#89881) according to the manufacturer's protocol. 

In brief, 4x108 cells were pelleted and washed with cold PBS then incubated with EZ-LINK Sulfo-

NHS-SS-biotin for 30 min at 4°C followed by the addition of a quenching solution. Another 1X106 

cells were collected and saved for total cell western blotting. Cells were lysed with lysis buffer (500 

µL) containing the cOmplete protease inhibitor cocktail (Roche, cat#11697498001). The biotinylated 

surface proteins were excluded with NeutrAvidin agarose gel (Pierce, 39001). Samples were diluted 

50 ug in ultrapure water supplemented with 50 mM DTT.  Lysates were subjected to Western 

blotting with the anti-CTLA-4 antibody described above. 

NK cell stimulation 

Cell lines or expanded primary NK cells were stimulated with 100 U/mL IL-2 (NCI preclinical 

repository), 5 ng/mL IL-12 (R&D Systems, cat#219-IL-005), 10 ng/mL IL-15 (NCI preclinical 

repository), 50 ng/mL IL-18 (Invitrogen, cat#rcyec-hil18) or 500 U/mL IFNg (Sigma Aldrich, 

cat#I3265) for 24 hours. Cell pellets were collected and processed for rt-qPCR as described above. 

Cell lines or expanded primary NK cells were stimulated with 3 ug/mL CD28 activating antibody 

(Biolegend, cat#302933) for 24 hours. 

 

Data availability 

Resource Source Identifier 

Mouse sarcoma ICI therapy 
CD45+ scRNA-seq 

Gubin et al.  GSE119352 

Mouse sarcoma ICI therapy 
CyTOF 

Gubin et al. FR-FCM-ZYPM 

Treatment-naive biopsies 
from 33 tumor types bulk 
RNA-seq  

TCGA  

Human metastatic melanoma 
CD45+ cells taken pre- and 
post-ICI scRNA-seq 

Sade-Feldman et al. GSE120575 
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Human metastatic melanoma 
with resistance post-ICI 
therapy flow sorted NK cells 
scRNA-seq 

de Andrade et al. GSE139249 

 

Code availability 

All code used for the analysis is available at: https://github.com/edavis71/projectR_ICI 
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Supplemental Figure 1: CoGAPS patterns identify immune cell lineage and transfer 

across data modalities 

A. Heatmap of transcriptional signatures (patterns) identified with CoGAPS. When CoGAPS is 

performed at low dimensionality, here being 3 patterns, the identified transcriptional signatures 

segregate cells by immune cell lineage. Pattern 3 is relatively flat across all cells, while patterns 

1 and 2 define myeloid and lymphoid lineage cells, respectively. 

B. Boxplot of the projected NK cell activation signature (pattern 7) weights in tumor infiltrates 

from mouse tumors analyzed by mass cytometry on day 11 after treatment. Each point 

represents a replicate sample. For each replicate, the mean protein expression of 37 genes was

used as input for projectR. The NK cell activation signature is highest in lymphocyte samples 

treated with anti-CTLA-4, either alone or in combination with anti-PD-1.  
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Supplemental Figure 2: Effect sizes of pattern associations with TCGA tumor survival.  

A. Boxplot of pattern 15 weights across each immune cell type from mouse sarcomas. Cells 

with the highest pattern 15 weights are observed in NK cells and Mki67hi proliferative 

lymphocytes. 

B. The output is shown from a multiple linear regression model that predicts overall tumor 

survival from the CoGAPS transcriptional patterns, while also adjusting for cancer type and 

patient age as covariates. Standardized coefficients (i.e. data was scaled and centered) 

representing the strength and direction of association for each pattern are shown on the x-axis, 

with error bars representing coefficient +- 1.96 * standard error, and point size scaled to the 

coefficient’s p-value. Patterns 7 and 15 are most strongly positively associated with overall 

survival, with pattern 7 being most significantly positively associated (p < 2.7 x 10-4). 

C. The output is shown from a multiple linear regression model that predicts age of diagnosis 

from the CoGAPS transcriptional patterns, while also adjusting for cancer type as a covariate. (p 

< 0.017) 

D. The output is shown from a multiple linear regression model that predicts overall tumor 

survival in SKCM from the CoGAPS transcriptional patterns, while also adjusting for patient age 

as a covariate. Pattern 7 is the most significantly positively associated with overall survival in 

SKCM (p < 0.005). 

E. The output is shown from a multiple linear regression model that predicts overall tumor 

survival in SKCM primary tumors from the CoGAPS transcriptional patterns, while also adjusting 

for patient age as a covariate. Pattern 7 is not associated with overall survival in primary SKCM 

(p > 0.05). 

F. The output is shown from a multiple linear regression model that predicts overall tumor 

survival in SKCM metastases from the CoGAPS transcriptional patterns, while also adjusting for 

patient age as a covariate. Pattern 7 is the most significantly positively associated with overall 

survival in SKCM metastases (p < 0.016). 
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Supplemental Figure 3: NK cell activation signature is associated with anti-CTLA-4 

response. 

A. Box plot of projected pattern 7 weights across intratumoral immune cells from metastatic 

melanoma patients prior to ICI treatment [5]. Cells are colored by therapy and separated by 

patient response. Increased pattern 7 is associated with immune cells from patients responsive 

to anti-CTLA-4. 

B. UMAP dimension reduction with cells colored by single-cell gene expression for 

representative NK and T cell marker genes.  

C. UMAP dimension reduction with cells colored by single-cell gene expression for PD-1 in 

mouse (left) and human (right) intratumoral NK cells. Activated NK cells are known to express 

PD-1, demonstrating that the observed pattern of PD-1 expression is consistent with the 

reduced ability of scRNA-seq to capture low to moderate expressed genes. 
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Supplemental Figure 4. Human NK cell express CTLA-4 

A. Flow cytometry for surface expression of CTLA-4 in positive control (Jurkat-CTLA4) and 

NK cell lines (NK-92, NKL, YT, KHYG-1). 

B. Flow cytometry for surface expression of CTLA-4 on CD56+ selected ex vivo 

unstimulated NK cells derived from healthy human donors 

C. Quantitative qRT-PCR analysis of transmembrane (tmCTLA-4) and soluble (sCTLA-4) 

isoforms in human NK cell lines.  

D. Western blot of total protein (T) and intracellular (IC) protein isolated from human NK cell

lines NK-92, NKL, YT and KHYG-1 using cell surface protein biotinylation for exclusion 

of surface proteins demonstrating surface expression of CTLA-4 dimers and intracellular 

expression of CTLA-4 monomers.  

E. Immunofluorescent images of PANC-1 cells stained with Dylight550-labelled ipilimumab. 

Blue staining indicates DAPI. Shown are representative images of a single field of view 

taken via confocal microscopy (magnification, 63X). 

ell 

ar 

b. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2020.05.31.125625doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.125625
http://creativecommons.org/licenses/by-nd/4.0/


 
 

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2021. ; https://doi.org/10.1101/2020.05.31.125625doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.125625
http://creativecommons.org/licenses/by-nd/4.0/


 
 

 

Supplemental Figure 5. CD28 and CD28H expression on human NK cells.  

A. qRT-PCR assessment of CD28 and CD28H expression in human NK cell lines and 

primary donor NK cells.  

B. Flow cytometry assessment of CD28 and CD28H surface expression by human NK cell 

lines 
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C. Flow cytometry assessment of CD28 surface expression by primary donor NK cells.  

D. Flow cytometry assessment of CD28H surface expression by primary donor NK cells.  

 

 

Supplemental table 1: Gene set statistics for all 21 CoGAPS patterns  
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