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Abstract

Pharmacogenetics (PGx) studies the influence of genetic variation on drug response. Clinically
actionable associations inform guidelines created by the Clinical Pharmacogenetics
Implementation Consortium (CPIC), but the broad impact of genetic variation on entire
populations is not well-understood. We analyzed PGx allele and phenotype frequencies for
487,409 participants in the U.K. Biobank, the largest PGx study to date. For fourteen CPIC
pharmacogenes known to influence human drug response, we find that 99.5% of individuals
may have an atypical response to at least one drug; on average they may have an atypical
response to 12 drugs. Non-European populations carry a greater frequency of variants that are
predicted to be functionally deleterious; many of these are not captured by current PGx allele
definitions. Strategies for detecting and interpreting rare variation will be critical for enabling

broad application of pharmacogenetics.

Introduction

Drug-based interventions play a primary role in medical treatment; more than 72% of visits to
clinics and hospitals in the United States result in drug therapy®. An individual’s genetic makeup
can have a profound impact on how they respond to many drugs. Therefore, the field of

pharmacogenetics (PGXx), is vital to improving modern medicine and prescribing practices?.

The practical value of PGx testing has increased as the field has discovered and characterized
high impact haplotypes. These haplotypes are catalogued and named by PharmVar

(www.pharmvar.org) using a nomenclature system typically based on “star alleles™>. Generally,

the relationship between drug response and pharmacogenes is investigated through targeted
studies on small groups of human subjects. The findings of these studies are aggregated

through curation efforts such as PharmGKB (www.pharmgkb.org)®. The Clinical
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Pharmacogenetics Implementation Consortium (CPIC; cpicpgx.org) and other organizations
assign a clinical function to star alleles based on published experimental research and create
peer-reviewed and evidence-based clinical practice guidelines’®. The clinical utility of PGx
testing was recently recognized by UnitedHealthcare's decision to extend coverage to PGx

testing in the case of antidepressants and antipsychotic medications®.

PGx testing efforts are not yet capable of robustly handling rare genetic variation. Rare variants
can be high impact, but are unlikely to be identified by a genotyping array or included in an
established haplotype definition'®. Most PGx testing in the US is currently implemented using
genotyping arrays As a result, test results may be based on incomplete or partial allele
definitions or proxy variants to assign PGx haplotypes, which may not represent the actual
haplotype (as would be revealed by full and error-free sequencing) in the subject***2.
Developing more robust methods for assigning function to PGx haplotypes is an active area of

research®®. Unfortunately, the extent to which existing haplotypes definitions capture all

important genetic variation within pharmacogenes is not well characterized'*****,

We used nearly 500,000 genotypes and 50,000 exome sequence samples in the UK Biobank to
analyze pharmacogenetic variation at a population scale. To this end, we developed PGxPOP,
a PGx matching engine, that is based on PharmCAT" and uses its associated PGx allele
definitions, to characterize pharmacogenetic allele and phenotype frequencies at scale.
PGxPOP extends the capabilities of PharmCAT by generating diplotypes from population scale
datasets™. Additionally, PGxPOP is built as a research tool; unlike PharmCAT, it does not
create output for clinical implementation including patient-level reports containing genotype-
based drug dosing recommendations. This study represents the largest study of
pharmacogenetic allele and phenotype frequencies to date and investigates both the power and
limitations of current star allele definitions. Our findings demonstrate the great value of

characterizing allele frequencies in large populations, but highlights the need for more PGx
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research on historically under-studied populations, and the importance of using sequencing

platforms that are capable of capturing rare genetic variation.

Methods

Data

This analysis focused on subjects enrolled in the UK Biobank, a prospective study of more than
500,000 individuals in the United Kingdom for whom detailed personal information, clinical data,
and genetic data have been collected®. We use two sources of genomic data from the UK
Biobank, genotype data imputed from sites collected on the Axiom Biobank Array (dataset
release version 2), and exome sequencing data from the SPB pipeline (2/12/2020 rerelease of
corrected data)?**°. We implemented several quality control measures to ensure high quality
genetic data; we removed individuals from the analysis that were outliers based on
heterozygosity and missing rates in the genetic data. These values are reported by the UK
Biobank in the file “ukb_sqc_v2.txt”. Additionally, using VCFtools®, we excluded any loci that
had a Hardy-Weinberg equilibrium p-value less than 1x10™*® or was missing in more than 10% of
individuals. The imputed data was aligned to hg19 and the exome data was aligned to GRCh38.
Each dataset was processed using the corresponding reference genomes. All data was phased

using Eagle v2.4.1 (Fig. 1)*%.

We created an “integrated call set” by combining sequencing data of coding regions from the

exome data and non-coding regions from the imputed genotype data. We used liftOver to map
the variants in the imputed data to GRCh38%. Variants within the capture region on the exome
array were extracted from the exomes and merged with intronic variants, and variants from 20
kilobases upstream and downstream of the transcription start and end sites (respectively). The

newly merged variants were then phased with Eagle v2*.
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We confirmed the ethnic population assignments using principal component analysis (PCA). We
first group the self-reported ethnicity according to a standardized biogeographical system into
African, European, East Asian, and South Asian®®. Then, we calculated the mean and standard
deviation of the first three principal components from a PCA of the genotype array data for each
biogeographical group. Any sample whose reported ethnicity did not fall within three standard

deviations of the mean for their reported ethnicity is referred to as “Other”.

Cross-platform analysis

We analyzed the ability to call pharmacogenetic haplotypes and phenotypes for all fourteen
genes (CFTR, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A5, CYP4F2, DPYD, IFNL3,
NUDT15, SLCO1B1, TPMT, UGT1A1 and VKORC1) across the three call sets: imputed,
exome, and integrated. We limited the analysis to the 49,702 samples shared across all three
platforms that pass quality control measures as described above. We calculated the diplotype
and phenotype concordance between each platform and the integrated call set for each

individual population and across all populations.

Haplotype and phenotype calling

We developed PGxPOP, a tool that makes use of haplotype and phenotype definitions created
by the PharmCAT effort'®. We used the allele definition files in the PharmCAT GitHub repository

(https://github.com/PharmGKB/PharmCAT), which are derived from allele definitions in

PharmGKB®. PGxPOP reports exact matches to alleles as defined in PharmCAT's allele
definitions. In the case where one allele is completely subsumed within another (i.e. the defining
variations for the allele are a proper subset of those for another allele), the allele with the
maximum number of matching positions is reported. Importantly within this research setting,
PGxPOP also reports partial matches or novel combinations of existing pharmacogenetic alleles

(i.e. two distinct haplotypes on the same phased genotypes). In cases where there is a
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complete match to multiple haplotype definitions on the same strand, both haplotypes are
reported in the program output with “+” notation when they are non-overlapping and “or”
notation if there is overlap. For instance, if for CYP2D6 both *2 and *9 alleles were found on the
same strand, PGxPOP would report this as a *2+*9 call, since the alleles for these two
definitions are mutually exclusive. If instead, variants matching the *35 and *41 alleles were
found on the same allele, where there is overlap at two positions, but there are also variants
distinct to each, PGxPOP would report “*35+hg38:chr22.9.42127803C>T or
*41+hg38.chr22.9.42130761C>T", in order to represent all possible combinations of the alleles
found at those positions. Found haplotypes are then mapped to predicted phenotypes based on
published guidelines from PharmGKB and CPIC. PGxPOP was created as a research tool and

is not intended for clinical use.

To enable analyses on large sample populations, we needed PGxPOP to process 100,000s of
samples in several hours. We facilitated allele definition matching using matrix operations;
PGxPOP computes the dot product of a reference allele matrix and the observed variant
matrices (one for each phased haplotype in the VCF) and identifies matching haplotypes as
those with a complete match to the haplotype definition across the largest number of positions
(i.e. the sum of the dot product). In addition, we use tabix, a standard VCF indexing tool, to

rapidly retrieve genomic data from compressed VCF files®.

We generated population specific haplotype, diplotype, and phenotype frequencies for the
ethnic populations reported by UK Biobank. Haplotype and variant calls were generated across
all samples for fourteen genes. We mapped sample diplotypes to phenotypes for all genes
using CPIC guidelines, except VKORC1 and CYP4F2 because the CPIC guidelines do not
provide that information for these genes. For phenotype prediction, the haplotypes were
assigned the CPIC-associated function or activity values in cases of exact star allele matches.

Phenotype was then determined based on the combination of the two alleles in the diplotype.
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For star allele combinations of alleles that included additional positions the allele function and

phenotype was assigned as “not available”.

We use the star allele definitions when available for these genes with minor modifications. (1)
We needed to make several assumptions about the ultimate phenotype of combination alleles
and alleles carrying additional variants in order to assess the distribution of likely response
phenotypes across the population. In these cases, we assume that if one of these alleles is non-
functional, then the new combination of variants will not recover the function®®. Thus, the alleles
that include star alleles that result in no function are also assigned no function instead of ‘not
available’. For example, if we identified a CYP2D6 haplotype combination that includes
CYP2D6*4 and CYP2D6*74 on the same strand (CYP2D6*4+*74), this haplotype would be
determined to be “no function” even though function of CYP2D6*74 is unknown. We do not
extend this logic to alleles with decreased or increased function, except for SLCO1B1 and
UGT1AL1 where a haplotype carrying variants for a decreased function star allele is deemed to
be decreased function. Additionally, any cystic fibrosis patient carrying a CFTR ivacaftor
responsive allele is said to be ivacaftor responsive. (2) We modified the SLCO1B1 allele
definitions to exclude synonymous variants. We evaluated the ability to call star alleles in
SLCO1B1 with and without the three synonymous variants included in the existing star allele
definitions. (3) For all INDELs we performed a search for identical INDELSs in the sequencing
data that may have been aligned differently. This was done by screening 50bp upstream and

downstream of each INDEL in the definitions.

Importantly, structural variants were not called for CYP2D6 or any other gene. Thus, we are not
able to call star alleles with whole gene deletions (CYP2D6*5), duplications (e.g. CYP2D6*1x2),
CYP2D7-2D6 hybrids (CYP2D6*13) or CYP2D6-2D7 hybrids including CYP2D6*36. This limits

the assignment of CYP2D6 function and phenotypes since we are not able to determine
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CYP2D6 increased function alleles and therefore ultrarapid metabolizer and potentially miss no

function alleles e.g. CYP2D6*5, *13 or *36.

We calculated the burden of non-typical response phenotypes for each individual by counting
the number of diplotypes with predicted non-typical response phenotypes across all twelve
genes with phenotypes. Gene phenotypes were classified as “typical response” if they did not
have any guidance away from a drug or its standard dosage based on all CPIC guidelines for
that gene. Gene phenotypes were determined to have a non-typical response if any CPIC
guidance recommended an alternate dosage or drug for that phenotype. Details of this heuristic
can be found in Supplementary Table 1. We then determined the CPIC dosage
recommendations for each subject for all 41 drugs with guidelines for any of the 14 genes in this
study. This was done with PGxPOP using an encoding of the CPIC guidelines. For each drug,
we determined the percent of the population that has been prescribed the drug by analyzing the
general practice prescription data provided by the UK Biobank for more than 222,000 subjects.
We considered any record of each drug (or a brand name version of the drug) being prescribed.
We then calculated the percent of the population who had any record of being prescribed the

drug.

Deleterious variant analysis

In order to estimate the burden of deleterious variants in pharmacogenes we identified variants
predicted to be deleterious in the exome data. We used a two-fold approach to predict if variants
are deleterious. Any variant with a high IMPACT rating, such as frameshift indels, stop loss
variants, was determined to be deleterious®’. We then applied an ADME-optimized framework
for predicting deleteriousness in pharmacogenes, which is an ensemble of deleteriousness

prediction methods®. This approach enabled the prediction of the impact of missense variants
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as well as high impact variants. Variant IMPACT classes were determined using VEP**. All

other annotations were generated using Annovar®.

Finally, we identified variants that were predicted to be deleterious that were not contained
within existing star allele definitions. We calculated the aggregate deleterious variant allele
frequency of all unaccounted-for deleterious variants by taking the sum of all allele counts for

each deleterious variant not in an existing definition divided by the total number of samples.

Results

Platform concordance

We evaluated the concordance between three genomic call sets (imputed, exome, and
integrated) for both diplotype and phenotype calling across twelve genes (Table 1). IFNL3 and
VKORC1 were excluded from this analysis because the allele definition file for each gene
consists of a single non-coding variant. For five genes where the majority of the variants of
interest are in exons, we find very high (>96%) correlation between the integrated call set and
both the imputed and exome call sets when calling both diplotypes and phenotypes (CFTR,
CYP2C9, TPMT, CYP4F2, and DPYD). We observe a variety of concordance patterns for the
other seven genes. For CYP2C19, which has a common non-coding variant upstream, the
exome data is highly discordant with the integrated call set. Several genes have a mix of coding
and non-coding variants, for these both platforms have low concordance with the integrated call
set (UGT1A1, CYP2D6, SLCO1B1). For three genes, the exome data performs well, and the
imputed data has lower concordance (CYP2B6, CYP3A5, and NUDT15). The imputed data for
NUDT15 has extremely low concordance with the integrated data; a variant that is rare in the
population (rs746071566) was imputed for nearly all samples. Alluvial diagrams showing the
change in haplotypes and phenotypes between the imputed and integrated call sets can be

seen in Supplementary Figure 2.
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We assessed the population-aware diplotype concordance between the imputed data and the
integrated data in order to evaluate the population-specific accuracy of imputation. We find
several genes for which there is a substantial decrease in imputation accuracy for some
populations (Fig. 2). This gap is most extreme in CYP3A5, where subjects of European descent
have a diplotype concordance of 86.8%, and subjects of African descent have a diplotype
concordance of 14.7%. In total, four genes have a decrease of 10% diplotype concordance or
more from the best performing ethnicity to the worst: CYP3A5, CYP2B6, CYP2D6, and

UGT1ALl.

Haplotype and phenotype calling

We analyzed haplotype and phenotype allele frequencies in clinically important pharmacogenes
among individuals belonging to four global populations in the UK Biobank using a rapid
haplotype matching engine. PGxPOP takes approximately six hours to call the diplotypes in all
fourteen genes for the nearly 500,000 subjects. This analysis included 486,518 subjects with
imputed data from genotyping arrays, 49,790 with exome sequencing data, and 49,790 subjects
for whom an integrated call set was created by integrating the exome and non-coding regions
from the imputed data. This study population includes subjects from four global populations (as
well as 23,357 subjects who do not fall into a single population), verified using self-reported
ethnicity and genetic ancestry (Table 2, Supplementary Figure 1). Haplotype and phenotype
frequencies from the exome and integrated call sets for six cytochrome P450 genes included in
our analysis are shown in Figure 3, and eight non-cytochrome genes in Figure 4. A full list of all
haplotype, diplotype, and phenotype frequencies can be found for each call set in

Supplementary file 1.

We find that on average subjects carry 3.7 non-typical response diplotypes for the fourteen

pharmacogenes analyzed in the UK Biobank integrated call set, with 99.5% of subjects carrying
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at least one non-typical drug response diplotype (Fig. 5a). Subjects, on average, carry
pharmacogene alleles that lead to atypical dosage guidance by CPIC for 12.2 drugs. We find for
several frequently used drugs, a high number of people receive atypical dosage guidance,
either recommended a different dose, different drug, or have a different recommended dosing
procedure (Fig 5b). For example, simvastatin has been prescribed to 25% of the population, and
22.9 percent of all subjects carry either the rs4149056 C allele or SLCO1B1 star alleles
assigned possible decreased function (*6, *9, *23, *31), which indicates that a lower dose might

be recommended due to increased risk of muscle toxicity™®.

Star alleles with unknown or uncertain function, leading to an indeterminate phenotype, were
found in nine genes. These are diplotypes where both haplotypes exactly match an existing star
allele definition, but at least one of those haplotypes has unknown function. We find that 5.0% of
subjects carry unknown or uncertain function star alleles in SLCO1B1, 4.2% in CYP2B6, and

1.7% in CYP2D6.

We find that for some genes, many novel combinations of alleles and allelic variants from
existing allele definitions occur on a single haplotype in the integrated call set. These allele
combinations can be a complete star allele or haplotype definition along with any number of
additional variants from another previously defined allele. For example, 29.0% of the study
population carries haplotypes that contain both the CYP4F2*2 and CYP4F2*3 variants on a
single strand. Large numbers of novel allele combinations are also found in CYP2D6 (159
uniqgue combinations in 6.1% of subjects), SLCO1B1 (34 in 2.9%), and CYP2B6 (37 in 0.9%). At
least one such allele combination was identified in twelve genes, the median number of allele
combinations was eight, 288 were identified in total. DPYD and CFTR variation are represented
by individual variants rather than star alleles, but combinations of variants were identified on a
single strand for both genes. For analysis purposes, we assign function to these star allele and

variant combinations by assuming that any no function star allele or variant will not be recovered
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by the addition of other variants in the same allele. The full details of the assumptions are
described in the Methods. With these assumptions, predicted haplotype functions can be
assigned to 102 of the variant combinations. The remaining 186 allele combinations cannot

reliably be mapped to a function and are designated as ‘not available’ phenotype.

Individuals carrying a star allele with unknown or uncertain function or a star allele combination
haplotype cannot be confidently mapped to a phenotype, and thus no CPIC drug dosing
guidelines apply. Genes most impacted by this limitation are CYP4F2 (30.2% of subjects),
SLCO1B1 (12.2%), CYP2B6 (5.1%), and CYP2D6 (3.4%). These counts exclude combination

alleles for which we estimated function based on the rules defined in the previous paragraph.

We modified the SLCO1BL1 star allele definitions to exclude the three synonymous coding
variants for the PGxPOP caller (chrl12.9.21176827G>A, chr12.9.21178665T>C, and
chrl2.9.21178691C>T). These three variants appear in many combinations with the other core
star allele variants and the star alleles that include these variants *18, *19, *20, *21 are
assigned uncertain function. Including these three synonymous variants, 315 unique haplotypes
were identified. The number of haplotypes decreased to 55 when those variants were removed.
We find that when synonymous variants are included in the allele definition 77.9% of SLCO1B1
haplotypes do not perfectly match one of the defined alleles and contain some combination of
star allele variants and one or more variants from other definitions. This value drops to 2.9%

when synonymous variants are excluded from the SLCO1B1 definitions.

Deleterious variant analysis

We estimated the burden of deleterious variants that are not currently included in allele
definitions for eight of the fourteen genes in our study, CYP2B6, CYP2C9, CYP2C19, CYP2D6,
CYP3A5, NUDT15, SLCO1B1, and TPMT. We predicted the deleteriousness of each variant

found in the exome data and filtered out variants that were included in any existing allele

11
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definition, resulting in 478 deleterious variants across all eight genes (Fig. 6). Of the 478
deleterious variants identified, 244 have not been observed previously in gnomAD (Fig. 6c). All
identified deleterious variants are rare (minor allele frequency < 1%). However, we find that
6.1% of all subjects carry at least one unaccounted for deleterious variant in one of these eight
genes studied. To identify which populations are most underserved by current definitions we
calculated the total frequency of all out-of-definitions deleterious variants in a population-specific
manner (Fig. 6b). We find that across most genes, non-European populations carry the highest
level of out-of-definition deleterious variants. For example, out-of-definition deleterious variants
in CYP2B6 have an allele frequency of 0.023 in the East Asian population. A full list of all

identified deleterious variants can be found in Supplementary Table 3.

Discussion

Here we present a pharmacogenetic analysis of 487,409 participants in the UK Biobank, the
largest study of its kind by an order of magnitude. The study cohort comprises mostly those of
White British descent (n=442,615), however the minority populations in this study still represent
the largest cohorts for those populations to date. Quantifying haplotype and phenotype
frequencies at this scale enables a better understanding of the overall population risk of an
adverse event when prescribing drugs related to these pharmacogenes, the coverage and
accuracy of different genetic platforms, as well as the limitations of current pharmacogenetic

allele definitions.

This analysis includes nearly 50,000 subjects with genetic data from both genotype array and
exome data, providing an opportunity to assess the accuracy of each platform at a large scale.
We find that for most genes there is high concordance between genomic data imputed from a
genotyping array and sequencing data, for both haplotype and phenotype calls. Additionally, we

show that the creation of an integrated call set, merging coding regions from exome data and
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non-coding regions from imputed data, leads to greater ability to identify haplotypes in genes

that have functionally important non-coding variants (e.g. CYP2C19).

We find that several very important pharmacogenes are highly discordant between the imputed,
exome, and integrated call sets, and some genes that have differences in imputation accuracy
between populations--suggesting the need for great care when choosing a platform for
pharmacogenetic analysis with regard to the gene and population of interest. For genes with
splicing and other non-coding variants, exome data may not be sufficient (e.g. CYP2C19). While
for highly polymorphic genes, imputed data may not be sufficient (e.g. CYP2D6). This highlights
the potential clinical importance of having data from genome sequencing or a targeted capture
array that includes coding and non-coding regions, such as PGRNseq'’. Having genome
sequencing would allow for the analysis of another crucial factor not captured by this study, the
role of structural variants. For CYP2D6 analysis, copy humber variants and other structural
aberrations are common and must be considered to make an accurate assessment of
phenotype. Lack of structural variant analysis is a major limitation of this study's ability to
determine population level phenotype predictions of CYP2D6. However, we believe establishing

star allele frequencies for star alleles identified from the variant data may still be useful.

Across all genes with haplotypes described by a star allele nomenclature, we find that there are
haplotypes which are combinations of star allele variants that are currently not found together in
any existing star allele definition. We also found combinations of individual variants in DPYD
and CFTR on the same chromosome. Using array data can lead to the detection of only one of
these alleles or variants, or the assumption that the alleles/variants are on different
chromosomes. Either case can lead to the incorrect diplotype and phenotype assignment which
could in turn result in an incorrect prescribing recommendation. We provide the star allele and
variant combinations found in the UK Biobank population in the supplemental material to

highlight the possibility and the frequency with which these occur.
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The problem of accounting for rare variants is particularly challenging because numerous
deleterious variants have not yet been submitted to PharmVar®*, a resource devoted to
cataloguing, defining and naming pharmacogene allele variation, so these deleterious variants
do not contribute to current allele definitions. Individually, these variants are very rare; none
have a minor allele frequency greater than 1%, and many of them are observed for the first time
in this dataset. However, taken as a whole 17% of the population carries at least one
deleterious variant in one of the fourteen genes analyzed that is not captured by the existing
allele definitions. Deleterious variants within pharmacogenes are likely to have a strong effect
on an individual's PGx phenotype, indicating that 17% of the population in this study could
benefit from a PGx guideline if one were to exist for their rare variation'*. Non-European
populations are the greatest affected, likely due to the European bias with which genetic studies
have been conducted'®*®. A greater effort to study pharmacogenetics in broader populations is

necessary to make pharmacogenetics more accessible to the global community.

To date, SLCO1B1 has not been included in PharmVar. Instead, SLCO1B1 alleles *1a-*36 have
been defined in 5 publications'®*>%. We find that the 37 star alleles for SLCO1B1 are not
commonly found as the only allelic variation for that gene. Only 22.1% of the SLCO1BL1 alleles
from the UK Biobank exactly match the star allele definitions from these publications. Three
synonymous coding variants (chr12.9.21176827G>A, chr12.9.21178665T>C, and
chrl2.9.21178691C>T) were the most commonly found with other star allele variants and
removing them from the star allele definitions increased the allele matches to 97.1%. Further
studies of the SLCO1B1 haplotypes to confirm these findings in other populations would help

inform if the current star allele definitions should be altered to exclude these three variants.

Our observation of individuals carrying combinations of PGx haplotypes and the rare nature of
deleterious variants indicates that the current allele-based system would benefit from additional

population-scale studies of PGx variation. Novel variation could then be incorporated into

14


https://doi.org/10.1101/2020.05.30.125583
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.30.125583; this version posted June 4, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

existing or new PGx allele definitions. However, our analysis demonstrates the limitations of the
current PGx allele definitions; it is important that the community identify causal variants (and
their mechanisms) so that reliance on specific LD structures can be reduced—a particularly
important consideration in admixed populations, which are a virtually infinite source of haplotype
diversity. An alternative to defining individual haplotypes and/or driving mutations, is to take a
top down approach, in which regions of the gene or genes themselves are deemed essential,
and any deleterious variant within essential components can be assigned an inferred
phenotype. Recent work on the development of data-driven PGx phenotyping methods indicates
that given enough data, it might be possible to move away from variant level rule-based
systems and towards data-driven machine-learning models capable of robustly handling
unobserved genetic variation***?, The challenges posed by rare variation is likely to be a
consistent issue for the current PGx system and will likely grow over time as genotyping gives
way to genome sequencing and more populations are studied in detail revealing rarer and/or

private mutations harbored by individuals.

We find that many individuals whose genotype does not match with an existing PGx definition
are from populations that are underrepresented in PGx studies. So, there is a need to perform
broad sequencing of global populations in order to enhance known pharmacogenetic variants
across underrepresented populations. Underrepresented populations historically have low
engagement in genetic medicine, in part due to fear of discrimination or lack of trust, among
other barriers®. The genomic medicine community needs to continue to work to overcome
these barriers and encourage population diversity in studies, submitting discovered

pharmacogenetic variants and impact to PharmVar to better represent global populations.

One major limitation of this study is that we do not consider the effects of structural variants.
Copy number variation and structural variation are well known to be functionally important in

CYP2D6 and relatively frequent phenomena. We attempted to perform copy number analysis of
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the exome data, but the existing tools for calling CNVs from exome data were found to be poorly
maintained. We attempted to use tools built specifically to call CYP2D6 structural variants but
were because they were either not able to use exome data as input®’, or require the reads to be
aligned to hg19, which was computationally intractable®. Other studies have called CNVs from
genotyping array intensities in the UK Biobank, but the observed frequencies of CNVs from
array data are significantly different from those observed in genome sequencing data, calling
the accuracy of these methods into question. Once the UK Biobank releases genome
sequencing data, an analysis of structural variation in CYP2D6 and other pharmacogenes will

be a valuable contribution.

Availability

PGxPORP is freely available and can be downloaded from

https://github.com/PharmGKB/PGxPOP. All data used in the study can be obtained by applying

to the UK Biobank for access.
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Figure 1. Analysis workflow. Our analysis comprises three data types, data imputed from
genotype arrays, exome sequencing data, and an integrated call set that combines both. We
phase all datasets using statistical phasing with EAGLE v2. We then generate pharmacogenetic
alleles for all samples using PGxPOP and generate a report of the matching star allele, the
variants contributing to that call, and the resulting phenotype.
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Table 1. Platform concordance with integrated data is variable. We calculated the diplotype and
phenotype concordance between the integrated call set and both contributing call sets, exome
and imputed. For each gene we show the percent concordance (the percent of diplotypes or
phenotypes that exactly match). Haplotypes for IFNL3 and VKORCL1 contain only single variants
that are in the non-coding regions, so the concordance is not listed for the exome data.
SLCO1BL1 star alleles are determined excluding synonymous variants.

Diplotype concordance w/ Integrated Phenotype concordance w/ Integrated
Gene Imputed Exome Imputed Exome
NUDT15 0.01% 99.63% 0.04% 99.67%
UGT1A1 9.32% 29.26% 77.14% 48.92%
CYP2D6 34.23% 84.50% 64.86% 86.64%
CYP2B6 43.23% 99.83% 95.16% 99.89%
SLCO1B1 68.41% 89.73% 76.64% 92.64%
CYP3A5 85.48% 100.00% 85.69% 100.00%
CFTR 96.43% 99.95% 96.47% 99.95%
TPMT 97.76% 99.93% 99.17% 99.93%
CYP2C19 97.85% 61.77% 99.44% 68.64%
CYP2C9 98.23% 99.85% 98.36% 99.86%
CYP4F2 99.44% 99.91% 99.49% 99.91%
DPYD 99.60% 95.67% 99.61% 95.68%
IFNL3 1.00 - 1.00 -
VKORC1 1.00 - 1.00 -
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Table 2. Counts for each population analyzed and genetic data source. Subpopulations were
grouped into global populations for broader analysis.

Population Subpopulation Imputed count Exome count Integrated count
European British 422,678 42,560 42,560
European Irish 12,619 1,481 1,481
European Any other white background 11,153 1,247 1,247
European White 486 34 34
European Total 446,936 45,322 45,322
African Caribbean 4,110 632 632
African African 3,089 329 329
African Any other Black background 94 8 8
African Black or Black British 22 3 3
African Total 7,315 972 972
South Asian Indian 5,533 682 682
South Asian Pakistani 1,709 138 138
South Asian Bangladeshi 212 16 16
South Asian Total 7,454 836 836
East Asian Chinese 1,456 170 170
Other Total 23,357 2,490 2,490
Total 486,518 49,790 49,790
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Figure 2. Concordance between diplotypes called from imputed data and integrated call set
reveal inefficiencies in data imputed from genotype. The concordance is the proportion of
diplotypes that exactly matched between the two call sets. We calculated population-specific
concordance between the imputed data and integrated call sets. This comparison highlights the
differences in the coding regions only, as the non-coding regions in the integrated call set are
derived from the imputed data. Difference colors represent different global populations.
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Figure 3. Star allele and phenotype frequencies for cytochrome P450 genes. Frequencies
shown here are generated from the integrated call set which comprises nearly 50,000 subjects.
The star allele frequency plots show all star alleles occurring with a frequency of 3% or greater.
Any haplotypes with under 3% allele frequency in all populations are grouped into “Other”.
Combination alleles, alleles that contain either partial or full matches of more than one star allele
on the same strand occurring with less than 3% allele frequency are grouped in “Other combos”.
The number of alleles in “Other” and “Other combos” is shown in the legend for each gene. Note
that allele and phenotype frequencies for CYP2D6 do not include structural variants.
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Figure 4. Star aIIeIe and phenotype frequencies for non- cytochrome P450 genes. Frequenmes
shown here are generated from the integrated call set which comprises nearly 50,000 subjects.
The star allele frequency plots show all star alleles occurring with a frequency of 3% or greater.
Any haplotypes with under 3% allele frequency in all populations are grouped into “Other”.
Combination alleles, alleles that contain either partial or full matches of more than one star allele
on the same strand occurring with less than 3% allele frequency are grouped in “Other combos”.
The number of alleles in “Other” and “Other combos” is shown in the legend for each gene.
SLCO1BL1 star alleles are determined excluding synonymous variants.
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Figure 5. Frequency of pharmacogenes with a predicted non-typical response across the study
population derived from the integrated call set and CPIC guideline recommendations for 41
drugs. a) The distribution of non-typical response alleles across each of the populations
included in this study. Frequency of non-typical response pharmacogene alleles per subject
range from 0 to 10, with a mean of 3.7. b) CPIC dosage guidance for 41 drugs that include
recommendations based on any of the fourteen genes included in this study. We show the
percent of the population that has ever been prescribed the drug, the drug name, the genes
from this study that contribute to the recommendation, and the distribution of CPIC
recommendations.
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Figure 6. Analysis of deleterious variants not contained within existing star allele definitions. We
identified presumptive deleterious variants in the exome sequencing data for eight genes by
identifying probable loss of function variants as well as predicted deleterious missense variants.
(a) shows the allele frequency of each probable deleterious variant in gnoMAD. Variants with an
allele frequency of 0 were not identified in gnoMAD. (b) shows the number of deleterious
variants identified as well as the frequency of each type of variant. (c) shows the total frequency
of any deleterious variant in each population in the exome data. Concretely, the frequency
represents the sum of allele frequencies for all deleterious variants not found within existing star
allele definitions for each population.
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