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SUMMARY 

The emergence of the COVID-19 pandemic has spurred a global rush to uncover basic 

biological mechanisms, to inform effective vaccine and drug development. Despite viral 

novelty, global sequencing efforts have already identified genomic variation across 

isolates. To enable easy exploration and spatial visualization of the potential 

implications of SARS-CoV-2 mutations on infection, host immunity and drug 

development we have developed COVID-3D (http://biosig.unimelb.edu.au/covid3d/).   

 
MAIN MANUSCRIPT 

Declared a global pandemic on March 11th 20201, COVID-19 has become the most recent 
modern-day global health challenge, infecting almost 5 million people and claiming over 
300,000 lives to date2. Consequently, the scale of its humanitarian and economic impact has 
driven academic and pharmaceutical efforts to develop vaccines and antiviral treatments. 
Current efforts include 118 active vaccine candidates3, and numerous more endeavours to 
identify biologics and small molecule treatments. 
 
One further challenge in controlling COVID-19 is the accumulation of variation across genes. 
Sources indicate that SARS-CoV-2 is mutating at about 2 variants/month4, but the potential 
implications of these on molecular diagnostics and the development of candidate vaccines 
and treatments remain poorly explored. Fortunately, the continuous exponential increase in 
the amount of SARS-CoV-2 genome sequence data and structural information available 
provides the opportunity to analyse both data sources concomitantly. This provides a unique 
opportunity to not only understand how variants might affect patient outcomes, but also 
anticipate and minimise their potential role in viral escape through early incorporation within 
the development pipeline. 
 
To facilitate this, we have developed a comprehensive online resource, COVID-3D, to enable 
analysis and interpretation of variants detected in over 45,000 SARS-COV-2 genomic 
sequences5 (Figure S1). We have mapped these circulating variants to their respective protein 
sequences and structures of the SARS-COV-2 proteins derived from available experimental 
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information, permitting a direct comparison of variant clustering between the two 
representations. Our interactive 3-D viewer enables fast and intuitive spatial visualisation of 
SARS-CoV-2 variants, highlighting their potential impacts on protein structure and 
interactions6-12 (Figure S2-S5). This is particularly useful for analysing sites being currently 
targeted by potential therapeutics. To further enhance therapeutic discovery efforts, we have 
included drug binding potential13,14 and predicted antigenicity maps15,16 of the structures, which 
permit rational selection of target sites and compound design specifically avoiding already 
circulating variants (Figure S3). Finally, combining this structural information with evolutionary 
and population variation analysis can further help identify sites less likely to accommodate 
mutations in the future. To illustrate this, COVID-3D was used to provide insights into the two 
main therapeutic targets- the Spike protein and Main Proteinase. 
 
The SARS-CoV-2 spike protein binds to human Angiotensin-converting enzyme 2 (ACE2) 
mediating cell entry. Subsequently, the ACE2 receptor binding domain has been the main 
target of most vaccine programs. Measures of selective pressure suggest that the spike 
protein is one of the viral proteins most tolerant to the introduction of mutations17,18 (Table S1). 
Upon closer inspection (http://biosig.unimelb.edu.au/covid3d/protein/QHD43416/CLOSED), it 
is evident that despite SARS-CoV-2 only being discovered 6 months ago, we can already see 
significant variation across the protein surface, including in predicted epitope regions in the 
receptor binding domain (Figure 1B). Of these variants, the D614G mutation is present in two-
thirds of the sequenced strains, although its actual significance remains unclear despite initial 
suggestions at increasing transmissibility19. The residue is located far from the ACE2 interface 
(73 Å), and was predicted to have a mildly stabilising (DUET8 0.5 kcal/mol; SDM7 2.3 kcal/mol) 
effect on protein stability, and hence a minimal fitness cost20. It was, however, predicted to 
alter protein dynamics and the interactions between the subunits (4.4 Å from the interface. 
mCSM-PPI211 -0.5 Kcal/mol for the closed form versus -0.35 Kcal/mol for the open form), 
which could affect the equilibrium between open and closed states. 
 
Interestingly, when we look at population specific variants across ACE2, we see a number of 
ethnic group specific variants across the interface recognised by Spike (Figure 1A). Evaluation 
of their consequences using mCSM-PPI211, which has been experimentally validated on this 
protein system21, reveals potential significant effects on the binding affinity of Spike, opening 
up further work to explore how this influences the severity and progression of COVID-19. 
 
Apart from Spike, the Main Proteinase 
(http://biosig.unimelb.edu.au/covid3d/protein/QHD43415_5/APO) has also attracted a lot of 
therapeutic development efforts, as a target for small molecule development. The Main 
Proteinase, however, is not particularly intolerant to missense variants (Table S1), which may 
promote the emergence of resistant variants. The structures show that there are already a 
number of circulating variants present in the drug binding site that could have implications on 
efficacy (Figure 2A). Using COVID-3D, we have leveraged the wealth of SARS-CoV-2 
genomic sequences to calculate measures of mutational tolerance, which revealed a number 
of proteins under strong purifying selection (Table S1). This includes the Helicase, NSP7, 
NSP8, NSP9 and ExoN, which may make novel attractive drug targets with few circulating 
variants seen near the druggable pockets (Figure 2B). 
 
COVID-3D provides an easy to use bridge between genomic information and structural insight 
to better guide our biological understanding and treatment efforts. As new structural and 
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sequence data becomes available, COVID-3D will be periodically updated to enable their 
integration into ongoing efforts to understand and combat SARS-CoV-2. 
 
 
METHODS 

 
Mapping genetic variants 

 
High quality SARS-CoV-2 genomic sequences were obtained from GSAID5 and the COG-UK 
Consortium. Sequences were aligned using blastn to the reference genome (NC_045512.2), 
and synonymous and missense variants for each mature protein curated. 
 
Human ACE2 and B0AT1 population variants were obtained from gnomAD22, UK10K project23, 
KRGDB24, 4.7KJPN Tohoku Medical Megabank Project25, and the UK BioBank26. Population 
specific variants were jointly called using PLINK and BCFTools, and all variants were 
converted to GRCh38/Hg38 genomic coordinate positions. Ensembl’s VEP (version 97) was 
used to identify missense and synonymous variants. 
 
 
Gene-level Essentiality Scores for SARS-CoV-2 proteins 

 

A per-gene MTR score17 was calculated for each of the 25 SARS-CoV-2 CDS sequences (15 
mature peptides derived from the polyprotein and 10 additional proteins). Observed variation 
was collapsed to unique missense and synonymous observations. The proportion of missense 
variants was compared with the expected proportion under neutrality from all possible variants 
from the NCBI reference CDS sequence. 
 
Another metric, RVIS, was used to provide an alternate report of the essentiality of each 
gene18. Common functional variants (with Minor Allele Frequency of 0.01% or greater) were 
tallied for each gene. The number of common functional variants within each gene were 
regressed onto the number of all variants observed in that gene regardless of frequency using 
simple linear regression. The studentized residuals were extracted to calculate the RVIS 
score.  
 
 
Structural modelling 

 
All protein fasta sequences within the SARS-CoV-2 genome were obtained from GenBank 
(MN908947.3) and blast against the RCSB protein data bank27 to identify experimental 
crystallographic SARS-CoV-2 structures or suitable templates for homology modelling. 
Experimental crystal structures were saved as biological assemblies, and optimized in 
Maestro (Schrodinger suite, v. 2017-4). Homology models were generated using Modeller28 
and I-TASSER29 and optimized using Maestro. Structures were validated using Meastro 
Protein Preparation Wizard and Molprobity. 
 
 
Structural characterisation 
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Potential linear and structural epitopes predicted using DiscoTope 2.015 and ElliPro16 
respectively, pockets detected using GHECOM14, and fragment-binding hot-spot potentials 
using CCDC13. Surface electrostatics partial charges were generated using CHARMM30. 
Normal Mode Analysis was performed for each protein using DynaMut10 and Molecular 
Dynamic simulations using Discovery Studio. All intra- and inter-molecular interactions of 
missense variants were calculated using Arpeggio6. The molecular consequences of variants 
on protein stability were assessed using mCSM-Stability9, SDM7 and DUET8,  and on protein-
protein interactions using mCSM-PPI211. Changes in interaction affinities to ligands and 
nucleic acids were calculated using mCSM-lig12 and mCSM-DNA9 where applicable. The MTR 
score17 for ACE2 and BOAT1 was calculated for each protein position with a sliding window 
of 41-codon for every ethnic population MTR scores and mapped onto the ACE2-B0AT1-Spike 
structure 
 
 
COVID-3D web interface 

 
We have implemented COVID-3D as a user-friendly and freely available web server 
(http://biosig.unimelb.edu.au/covid3d/). The Materializecss framework version 1.0.0 was used 
to develop the server front end, while the back-end was built in Python using the Flask 
framework version 1.0.2. The server is hosted on a Linux server running Apache 2. 
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Figures 

 
Figure 1. Population variation across the Spike-ACE2 complex. a) Lollipop plots of 
circulating missense variants in the SARS-CoV2 Spike protein and ethnically unique missense 
variants in human ACE2 illustrate the broad spread of changes across the proteins. b) When 
they are visualised spatially, there are a number of variants seen at the ACE2-Spike interface 
that are predicted to impact on the binding affinity. One of the most prevalent circulating SARS-
CoV2 Spike variants, D614G, is located far from the ACE2 interface, but close to the Spike 
trimer interface and is predicted to lead to structural perturbations.  
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Figure 2. Visualisation of circulating variants relative to druggable pockets. a) The Main 
Proteinase is neutral to the introduction of missense variants. Circulating variants (red sticks) 
have already been seen in close proximity to known inhibitors, and are likely to affect binding. 
This suggests that resistant mutations could be selected for with widespread use. b) The 
Helicase is one of the genes most intolerant to missense variation. Mapping the fragment 
binding potential reveals pockets with apolar (yellow), hydrogen bond donor (blue), and 
hydrogen bond acceptor (red) potential. While some variation has been observed close by, 
optimisation of interactions to avoid these sites could reduce the potential for future resistance. 
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