

What is an adaptive pattern of brain network coupling for a child? It depends on their environment

Monica E. Ellwood-Lowe^{1*}, Susan Whitfield-Gabrieli², and Silvia A. Bunge^{1,3}

¹ Department of Psychology, University of California, Berkeley

² Department of Psychology, Northeastern University

³ Helen Wills Neuroscience Institute, University of California, Berkeley

Key words: brain development | cognitive | brain networks | functional connectivity | adaptation | resilience | environment | poverty | socioeconomic status

Acknowledgements: This study would not be possible without the massive efforts of the large team of ABCD leaders and organizers, staff and data curators, and families and children who participated. Research reported in this publication also benefited from the ABCD Workshop on Brain Development and Mental Health, supported by the National Institute of Mental Health of the National Institutes of Health under Award Number R25MH120869. We are grateful to Mahesh Srinivasan for thoughtful comments on a previous draft of this manuscript, and to the members of the Building Blocks of Cognition Lab and the Language and Cognitive Development Lab for their feedback along the way. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. MEL was supported by NSF GRFP DGE 1752814. SAB was supported by a Jacobs Foundation Advanced Career Research Fellowship.

***Correspondence:** mellwoodlowe@berkeley.edu

1 **Abstract.**

2 Prior research indicates that lower resting-state functional coupling between two brain
3 networks, lateral frontoparietal network (LFPN) and default mode network (DMN),
4 relates to better cognitive test performance. However, most study samples skew
5 towards wealthier individuals—and what is adaptive for one population may not be for
6 another. In a pre-registered study, we analyzed resting-state fMRI from 6839 children
7 ages 9-10 years. For children above poverty, we replicated the prior finding: better
8 cognitive performance correlated with weaker LFPN-DMN coupling. For children in
9 poverty, the slope of the relation was instead positive. This significant interaction related
10 to several features of a child's environment. Future research should investigate the
11 possibility that leveraging internally guided cognition is a mechanism of resilience for
12 children in poverty. In sum, “optimal” brain function depends in part on the external
13 pressures children face, highlighting the need for more diverse samples in research on
14 the human brain and behavior.

15

16

17 **Introduction**

18
19 In the United States, one fifth of children are estimated to live below the poverty line
20 (Semega et al., 2019). Relative to children living just above poverty, these children are
21 least likely to have access to the federal social safety net, and they are at heightened
22 risk for poor health and educational outcomes (Hoynes & Schanzenbach, 2018;
23 Reardon, 2016). Compared to their peers whose families earn more money, children
24 living in poverty tend to perform worse on tests of cognitive functioning (for a review,
25 see Farah, 2017), itself a risk factor for later outcomes (e.g., Spengler et al., 2015).
26 However, such broad comparisons obscure substantial variability *within* the group of
27 children living in poverty, a large segment of whom score on par with their higher-
28 income peers. Here, we seek to understand this form of resilience—high cognitive test
29 performance in the face of structural barriers to success. One way to begin to address
30 this question is to identify sets of experiences that may be protective for children in
31 poverty, given the wide range of experiences they have (DeJoseph et al., 2020;
32 Gonzalez et al., 2019). Another way is to probe differences in brain function, to gain
33 insight into the mechanisms underlying resilience. In this study, we examine the neural
34 and environmental correlates of resilience in a sample of over 1,000 children across the
35 United States likely to be living in poverty.

36 In one of the most influential theories of development, Waddington proposed that
37 ontogenetic trajectories are variable across individuals and not inherently fixed at birth
38 (Johnson & de Haan, 2015; Waddington, 1957). Instead, both biological and
39 environmental influences interact across development to constrain the ultimate
40 expression of cells in our bodies. This means that in some cases, environmental
41 pressures, especially early in life, may cause two individuals with the same biological
42 constraints to develop different phenotypes. In other cases, two individuals may take
43 distinct developmental trajectories, but ultimately still develop the same phenotype
44 (Edelman & Gally, 2001). Extending this metaphor to the current study, it is possible
45 that two children who display the same level of performance on a cognitive test might
46 achieve this through different developmental trajectories, if they grow up under different

47 external pressures. The optimal developmental trajectory for a child, therefore, may be
48 influenced by the child's environment.

49 Accumulating evidence suggests that the brain adapts to the affordances and
50 constraints of an individual's environment, especially in early life. Indeed, a growing
51 number of studies have complicated the notion of an "ideal" environment by suggesting
52 that different environments promote the development of distinct, adaptive cognitive skills
53 (Frankenhuis et al., 2019; Mittal et al., 2015; Young et al., 2018) The result of this
54 adaptability may be that higher-level cognitive skills such as executive functions and
55 reasoning, which build on lower-level skills that may be more environmentally sensitive,
56 develop in context-sensitive ways. Children living in poverty can have vastly different
57 experiences than those who are typically studied in developmental cognitive
58 neuroscience, including varying levels of threat exposure and resource deprivation
59 (Humphreys & Zeanah, 2015; McLaughlin et al., 2014). Understanding the ways in
60 which their brains may have been tuned by their respective environments can provide
61 insight into mechanisms of adaptation, and, ultimately, how best to support each child
62 within the specific constraints of their lives.

63 Strikingly, while much research has characterized the trajectories of brain
64 development that support cognitive test performance for upper-middle class children—
65 most of whom who tend to be living in urban places close to universities in the United
66 States—only in the last decade has research begun to focus on children from lower
67 socioeconomic status (SES) backgrounds. This new thrust of research has begun to
68 uncover neural differences between higher- and lower-SES children in brain structure
69 and function from an early age (e.g., Hair et al., 2015; Hanson et al., 2013; S. B.
70 Johnson et al., 2016; Leonard et al., 2019; Mackey et al., 2015; Noble et al., 2015;
71 Noble et al., 2006). However, even in this literature, children living below the poverty
72 line tend to be under-represented. In addition, many studies compare higher and lower
73 SES children, obscuring variability within the lower SES group. Thus, characterizing
74 optimal brain development for children living below poverty could help shift our
75 questions away from how these children differ from children above poverty, and toward
76 understanding mechanisms supporting neurocognitive functioning in an understudied

77 population. Ultimately, this brings us toward a fuller understanding of brain development
78 across the full spectrum of life experiences.

79 In line with the hypothesis that children may achieve the same behavior or
80 phenotype through different developmental routes, studies examining brain function
81 during higher-level cognitive tasks often find qualitatively different brain-behavior
82 relations as a function of children's family income. Differences in brain activation appear
83 particularly in lateral prefrontal cortex (PFC) and parietal regions—two regions that are
84 involved in higher cognitive function, show protracted development (Casey et al., 2000),
85 and are sensitive to environmental input (Farah, 2017; Mackey et al., 2013; Merz,
86 Maskus, et al., 2019).

87 Collectively, these and other studies suggest that children with lower versus
88 higher family incomes may differentially engage higher-order brain areas such as lateral
89 prefrontal and parietal regions to complete tasks that tax working memory, rule learning,
90 and attention (Finn et al., 2017; Sheridan et al., 2012; see Merz, Wiltshire, & Noble,
91 2019 for a review). These differences in brain function are typically thought to reflect
92 differences in either the cognitive mechanisms by which children approach the task or
93 efficiency of neural processing. However, differences in tasks and task demands make
94 it difficult to generalize across studies showing divergent prefrontal and parietal
95 activation as a function of SES. Interpretation of differences in brain function during
96 performance of a specific task is constrained by task demands. For example, there may
97 be unseen verbal demands that differentially affect some children's approach to the task
98 more than others'; additionally, the tasks are not representative of real-world
99 experiences, limiting validity.

100 Another way to investigate SES differences in brain function is to measure slow-
101 wave fluctuations in neural activity over time while participants lie awake in an MRI
102 scanner, in the absence of specific task demands. This approach, called resting-state
103 fMRI, has revealed temporal coupling among anatomically distal brain regions that form
104 large-scale brain networks (Uddin et al., 2019). In general, cognitive networks become
105 more cohesive and segregated from one another across development (Grayson & Fair,
106 2017; Power et al., 2010). Patterns of temporal coupling within and across resting-state
107 networks reflect regions' prior history of co-activation, offering insight into individuals'

108 recent thought pattern (Guerra-Carrillo et al., 2014). Thus, resting-state fMRI can be
109 leveraged to assess how everyday experience shapes brain networks. With regard to
110 SES, there is evidence that children and adolescents living in disadvantaged
111 neighborhoods show differences in resting-state connectivity patterns, some of which
112 correlate with anxiety symptomatology (Marshall et al., 2018). Further, changes in family
113 income in adolescence have been associated with changes in connectivity in frontal and
114 parietal regions associated primarily with the default mode network (Weissman et al.,
115 2018). It is important to understand both how these differences arise and the ways in
116 which they are behaviorally relevant.

117 Several large-scale brain networks have been linked to higher-level cognition
118 (Barber et al., 2013; Hampson et al., 2010; Keller et al., 2015; Kelly et al., 2008). In
119 particular, the lateral frontoparietal network (LFPN) is consistently activated in higher-
120 level cognitive tasks, such as those taxing executive functions or reasoning. Regions in
121 the LFPN are more active during performance of cognitively demanding tasks than
122 during rest periods (Vincent et al., 2008). In contrast, regions in the default mode
123 network (DMN), including regions in the medial frontal and medial parietal areas, are
124 consistently de-activated during focused task performance. These regions have been
125 implicated in unconstrained, internally directed thought (Raichle et al., 2001), as well as
126 during performance of tasks that require introspection, mentalizing about others, or
127 other mentation outside of the here-and-now (Spreng, 2012). In fact, elevated DMN
128 activation during performance of tasks that require focused attention has been
129 associated with lower task accuracy and response times, and higher response
130 variability (Kelly et al., 2008; Satterthwaite et al., 2013; D. H. Weissman et al., 2006).

131 Thus, the LFPN and DMN have often been characterized as opponent networks.
132 Indeed, a number of studies of young adults have linked weaker resting-state
133 connectivity between the LFPN and DMN, and stronger connectivity among LFPN
134 regions, to better cognitive performance (Barber et al., 2013; Hampson et al., 2010;
135 Keller et al., 2015; Kelly et al., 2008). These findings suggest that, in order to complete
136 a cognitively demanding task, individuals must focus narrowly on the task at hand while
137 inhibiting internally-directed or self-referential thoughts (Raichle et al., 2001; Simpson et
138 al., 2001a, 2001b; D. H. Weissman et al., 2006).

139 This conclusion has been bolstered by fMRI research in typically developing
140 children, both in terms of age-related changes and individual differences. First, there is
141 evidence that the LFPN and DMN functionally segregate during childhood. Specifically,
142 key nodes in the LFPN and DMN have been shown to be positively correlated in middle
143 childhood, anti-correlated in adolescence, and more strongly anti-correlated during
144 young adulthood (Chai et al., 2014b). Further, as with adults, children ages 10-13 who
145 showed less coupling than their same-age peers tended to have higher cognitive task
146 scores (Sherman et al., 2014). Tighter coupling between key nodes in these networks at
147 age 7 has even been shown to predict increased attentional problems over the
148 subsequent four years (Whitfield-Gabrieli et al., 2020). The conclusion drawn from these
149 studies is that it is adaptive for LFPN and DMN to become decoupled—or even
150 negatively coupled—during performance of a cognitively challenging task, and that the
151 development of this dissociation may promote stronger focus on externally directed
152 tasks.

153 Despite this coherent body of findings regarding these networks and their
154 interactions, several points bear mentioning. First, there is evidence that LFPN and
155 DMN interact during performance of tasks that benefit from internally directed cognition,
156 or mentation outside of the here-and-now (Buckner & Carroll, 2007; Christoff et al.,
157 2009; Kam et al., 2019; Spreng, 2012). Second, the vast majority of fMRI studies
158 involve relatively high SES samples; thus, we do not know whether the reported brain-
159 behavior relations are universal. Here, we sought to test the relation between
160 connectivity of these two networks and cognitive task performance in a new sample:
161 children living in poverty.

162 Drawing from a large behavioral and brain imaging dataset including over 10,000
163 children across the United States (ABCD Study; Casey et al., 2018), we asked whether
164 the patterns of connectivity that are adaptive among higher-SES children also help to
165 explain why some children living in poverty perform as well on cognitive tasks as their
166 higher-income peers. Specifically, in a set of pre-registered analyses, we tested whether
167 characteristics of LFPN and DMN connectivity were associated with cognitive test
168 performance for over 1,000 children from this larger dataset who were estimated to be
169 living in poverty. We sought to capture children's performance on higher-level cognitive

170 tasks that did not task verbal skills, given well-established SES differences in verbal
171 performance. Thus, we combined measures of children's abstract reasoning (Matrix
172 reasoning task), inhibitory control (Flanker task), and cognitive flexibility (Dimensional
173 Change Card Sort task).

174 Given prior evidence from higher-SES children and adults, we predicted that
175 weaker LFPN-DMN between-network connectivity (decreased LFPN-DMN temporal
176 coupling) and stronger within-network LFPN connectivity (LFPN-LFPN coupling) would
177 be related to higher cognitive test performance even for children living in poverty.
178 Alternatively, however, children in poverty might develop different brain-behavior links in
179 order to contend with different barriers. In line with theories that children could achieve
180 the same phenotype through alternate developmental trajectories, one might expect that
181 higher cognitive test scores would be associated with different patterns of network
182 connectivity among children in poverty. To preview our findings, our analyses revealed
183 a different pattern in children in poverty than had been observed in prior studies of
184 higher SES children. As a result, we conducted follow-up analyses involving the higher-
185 income children in this sample to test whether their data would replicate prior findings,
186 and confirmed that it did.

187 In a second set of pre-registered analyses, we probed demographic variables to
188 better understand features of children's environments which might explain variability
189 both in their cognitive test performance, and in the relation between LFPN-DMN
190 connectivity and cognitive test performance. We looked at a set of 29 variables that
191 span home, school, and neighborhood contexts to see whether they could predict
192 variability in children in poverty's test performance. We also included interactions
193 between LFPN-DMN connectivity and each of these variables, to see if patterns of
194 brain-behavior relations could be explained by any particular set of experiences.

195 This study examines brain development in a large sample of children living below
196 the poverty line. These children had a total family income below \$35,000 (below
197 \$25,000 for children in families of 4 or less), a departure from the sample composition of
198 most prior studies. Moreover, the tight age range in this dataset—all children were
199 between 9 and 10 years old—complements prior studies of SES differences in brain
200 development that have considered children across a much wider age range. Ultimately,

201 examining relations between patterns of brain activity and cognitive test performance
202 could help to elucidate the mechanisms through which high-performing children in
203 poverty are able to contend with structural barriers in their environments.

204

205

206 **Results**

207 We identified 1,034 children between ages 9 and 10 with usable data on
208 cognitive test performance, resting state fMRI, and demographic characteristics, who
209 were likely to be living below the poverty line at the time the data were collected (2016-
210 2018). We identified an additional 5,805 children from the same study sites who had
211 usable data on the same measures and were likely to be living *above* the poverty line.
212 Participant information is displayed in Tables 1 and 2.

213 Children's scores on the three cognitive tests (Matrix reasoning, Flanker task,
214 and Dimensional Change Card Sort task) were moderately correlated with each other, r
215 = 0.23 – 0.43 in the whole sample, r = 0.25 – 0.39 for children living in poverty alone.
216 We created summary cognitive test scores by summing children's standardized scores
217 on all three tests, as pre-registered. We first tested whether there was an association
218 between income and cognitive test scores, using a linear mixed effects model with a
219 random intercept for study site. For the purposes of comparison to prior studies, income
220 was operationalized (for this analysis only) as a pseudo continuous variable, using the
221 median income level in each income bracket. Results replicated prior studies (e.g.,
222 Duncan & Magnuson, 2012; Farah, 2018; Noble et al., 2015): on average, children
223 whose families had higher incomes tended to perform better on cognitive tests, B =
224 0.008, SE = 0.0004, p < 0.001, r = 0.24, a moderate effect size, though it accounts for
225 only 6% of the variance in children's cognitive test scores. As shown in Figure 1,
226 however, there was large individual variability in cognitive test scores within each
227 income bracket. It is this individual variability we sought to explore further.

228 **LFPN-DMN connectivity.** LFPN-DMN connectivity was defined as the average
229 correlation of pairs of each ROI in LFPN with each ROI in DMN (each z-transformed;
230 see Methods). Working from our pre-registered analysis plan
231 (<https://aspredicted.org/blind.php?x=3d7ry9>), we tested the relation between LFPN-

232 DMN connectivity and nonverbal cognitive test performance in our sample of children in
233 poverty. We used linear mixed effects models to test the association between cognitive
234 test performance and LFPN-DMN connectivity, controlling for children's age and
235 scanner head motion, with a random intercept for study site (see Methods). Contrary to
236 previously published results, we did not find a negative association between LFPN-DMN
237 connectivity and test performance. In fact, the estimated direction of the effect was
238 positive, though this was not statistically significant, $B = 2.11$, $SE = 1.12$, $t(1028) =$
239 1.88 ; $\chi^2(1) = 3.52$, $p = 0.060$. This numerically positive association was still observed
240 when using a robust linear mixed effects model, which detects and accounts for outliers
241 or other sources of contamination in the data that may affect model validity, $B = 1.78$,
242 $SE = 1.09$, $t = 1.64$. Thus, this unexpected pattern was not driven by outliers. This effect
243 was most pronounced for Matrix Reasoning and least evident for Flanker, but the
244 estimate was positive for all three tests (see Supplement S2). It was also observed for
245 the NIH Toolbox Fluid Cognition composite score (see Supplement S2).

246 Given this unexpected result, we next explored whether the expected association
247 between LFPN-DMN connectivity and test performance was present in higher-income
248 children in the larger dataset. To this end, we analyzed the 5,805 children from the
249 same study sites who were likely to be living *above* the poverty line. Consistent with
250 prior studies (Satterthwaite et al., 2013; Sherman et al., 2014; Whitfield-Gabrieli et al.,
251 2020), these children showed a negative association between LFPN-DMN connectivity
252 and cognitive test performance, $B = -1.41$, $SE = 0.45$, $t(5794) = -3.14$; $\chi^2(1) = 9.85$, $p =$
253 0.002. A direct comparison between the samples confirmed that the association
254 between LFPN-DMN connectivity and test performance differed as a function of whether
255 or not children were living in poverty, $\chi^2(1) = 8.99$, $p = 0.003$ (Figure 2). For children
256 living above poverty, having higher LFPN-DMN connectivity appeared to be risk factor
257 for low cognitive test performance, while for children living below poverty, this tended to
258 be more protective. Several follow-up tests confirmed the reliability of this dissociation
259 (see Supplement S4-S7). These included a bootstrapping procedure, permutation
260 testing, and tests to ensure that results were not driven by differences in head motion,
261 age, or the specific cognitive measures selected.

262 **LFPN-LFPN connectivity.** LFPN-LFPN connectivity was defined as the average
263 correlation of each ROI pair within LFPN (each z-transformed; see Methods). Following
264 our pre-registration, using linear mixed effects models, we next tested whether children
265 in poverty would show the positive correlation between LFPN *within-network*
266 connectivity and cognitive test performance that has previously been documented in
267 higher-SES children. The relation between LFPN-LFPN connectivity and test scores
268 was not significant for children in poverty, $B = 0.24$, $SE = 0.87$, $t(1028) = 0.28$; $\chi^2(1) =$
269 0.08, $p = 0.783$, or for the higher income children in the larger study, $B = 0.34$, $SE =$
270 0.36, $t(5797) = 0.94$; $\chi^2(1) = 0.89$, $p = 0.346$. Thus, strength of resting state functional
271 connectivity within the LFPN network was not a predictor of cognitive performance in
272 this large sample of 9 to 10-year-olds.

273 **Environmental variables.** To further explore the dissociation observed for
274 LFPN-DMN connectivity, we next asked whether features of children's environments
275 might explain why the brain-behavior link differed as a function of poverty status. Even
276 among children living in poverty, different children are exposed to very different
277 experiences in their homes, neighborhoods, and schools. Under what environmental
278 constraints might it be optimal (with respect to cognitive test performance) for the LFPN
279 to work more closely with the DMN? To answer this question, we considered 29
280 demographic variables chosen to reflect features of children's home, school, and
281 neighborhood environments (Table 2; see Appendix). To test whether any of these
282 variables could explain the observed group interaction, we performed Ridge regression.
283 Specifically, we used nested cross-validation to predict cognitive test performance from
284 an interaction between LFPN-DMN connectivity and these demographic variables, in
285 addition to main effects of each of these variables. Briefly, Ridge regression is a
286 regularization technique that penalizes variables that do not contribute to model fit, thus
287 giving more weight to the most important variables. This approach allows for the
288 inclusion of many variables in a model while reducing the chances of overfitting, and
289 deals with issues of multicollinearity. We pre-registered this second step of analyses
290 prior to examining the data further (<https://aspredicted.org/blind.php?x=tg4tg9>), given
291 the substantial analytic flexibility possible with such a large set of variables.

292 We trained our model in a training set of two-thirds ($N = 670$, after removing
293 missing data) of the children in poverty, using 5-fold cross-validation. Next, we tested
294 whether these demographic and neural model parameters could be used to predict
295 cognitive test scores in the held-out test set: the remaining one-third ($N = 329$) of
296 children in poverty. Indeed, we found that our model performed above chance (cross-
297 validated $R^2_{cv} > 0$; see Supplement S8), explaining 4% of the variance in children's
298 cognitive test scores in this held-out sample. While 4 percent is small, it is on par with
299 the effect of family income on test scores across the full sample (6%). Additionally, it is
300 a pure indicator, unlike the R^2 of models that have been fit to the data themselves and
301 are thus likely to be inflated. Most importantly, this prediction is based on a
302 socioeconomically restricted sample of children: those with a total family income below
303 \$35,000 (below \$25,000 for children in families of 4 or less).

304 As shown in Table 3, individual, home, neighborhood, and school variables
305 helped to predict cognitive test scores among children living in poverty. Critically, we
306 found that several characteristics of children's experiences interacted with LFPN-DMN
307 connectivity to predict these test scores. Specifically, variables related to school type,
308 neighborhood safety, child's race/ethnicity, and parents' highest level of education
309 contributed to model fit (see Table 3). To better understand these results, we plotted the
310 effects for the factors showing significant interaction effects (Figure 3). Visualizing the
311 interaction for neighborhood safety revealed that children living in safer neighborhoods
312 showed a negative relation between LFPN-DMN connectivity and test performance,
313 whereas those who lived in particularly dangerous neighborhoods showed a positive
314 relation. With regard to schooling, the relation between LFPN-DMN connectivity was
315 more positive for children attending public schools than those attending other types of
316 schools (predominantly charter, $N = 79$, and private, $N = 40$). Thus, the brain-behavior
317 relation for those children in poverty living in safer neighborhoods, or attending non-
318 public schools, more closely resembled that of the higher-income sample. Similar
319 results were obtained for levels of parental education and race, such that subsets of
320 children whose parents were more highly educated and children who were white
321 showed a more similar pattern of brain-behavior relations to children living above
322 poverty.

323 Finally, we conducted a confirmatory factor analysis to test whether the
324 demographic variables could be split into individual and home, neighborhood, and
325 school factors based on our *a priori* categorization. This categorization did not meet our
326 pre-registered criteria for a good model fit (our CFI, 0.11, was considerably lower than
327 0.9); as a result, we did not continue with this portion of the analysis. Thus, our data-
328 driven approach provided insights that would have been missed by simply categorizing
329 variables based on our prior assumptions about classes of life experiences.

330 **Exploratory network associations.** Given the differential relation between
331 network connectivity and test performance as a function of poverty status, we sought to
332 ascertain whether this effect was specific to the LFPN-DMN, or whether there was a
333 more general difference regarding connectivity between networks. Further, we sought to
334 better understand the phenomenon at a conceptual level by assessing the plausibility of
335 several accounts regarding what might constitute adaptive thought patterns for children
336 contending with extremely challenging circumstances. Therefore, we ran several
337 exploratory analyses involving two additional brain networks, selected for reasons
338 discussed below. Due to the exploratory nature of these analyses, we focus on the
339 general patterns of effects as potentially valuable for guiding future research.

340 The first additional network in which we tested for effects of poverty status was
341 the cingulo-opercular network (CON), which is thought to play a role in coordinating the
342 engagement of the LFPN and DMN networks (Menon & Uddin, 2010; Sridharan et al.,
343 2008). Therefore, we sought to test for differential effects of coordination between the
344 CON and these networks as a function of poverty. We found that weaker LFPN-CON
345 connectivity was associated with better test performance for both groups, with little
346 evidence of an interaction (Figure 4A). Thus, a dissociation between these networks
347 appears to be generally adaptive at this age. By contrast, DMN-CON connectivity had
348 no main effect on cognitive test performance, but it showed a possible interaction with
349 poverty status (Figure 4B). Specifically, *weaker* DMN-CON connectivity was
350 directionally associated with better test performance for children in poverty, while
351 *stronger* DMN-CON connectivity appeared more adaptive for children above poverty.
352 Thus, the cognitively adaptive pattern for children in poverty—at least, at this age (9-
353 10)—is for DMN to be more tightly linked to LFPN and, perhaps, less tightly linked to

354 CON. However, it seems unlikely that a DMN-CON interaction is the key driver of the
355 LFPN-DMN interaction we have uncovered, as the latter effect was stronger.
356 Nonetheless, further research in this population relating these three brain networks to a
357 broader set of cognitive measures is warranted.

358 The other network we investigated was the retrosplenial temporal network (RTN),
359 which is critical for long-term declarative memory (Ghetti & Bunge, 2012; Vincent et al.,
360 2006). Regions in the RTN interact with the LFPN during performance of episodic
361 memory tasks involving externally-presented stimuli (Badre & Wagner, 2007;
362 Blumenfeld & Ranganath, 2007), but with the DMN during autobiographical memory
363 retrieval (Andrews-Hanna et al., 2014; Buckner & Carroll, 2007; Kaboodvand et al.,
364 2018) and at rest (Chai et al., 2014a), that is, during internally directed thought. We
365 reasoned that if cognitively resilient children in poverty rely more on their
366 autobiographical memory than do others when facing cognitive challenges, LFPN-RTN
367 connectivity might be positively related to test performance in this sample. Contrary to
368 this prediction, however, we found that *weaker* LFPN-RTN connectivity and DMN-RTN
369 connectivity were associated with better test performance in both the below- and above-
370 poverty samples (Figure 4C and 4D). Thus, these exploratory analyses involving the
371 CON and RTN networks reveal specificity in the observed LFPN-DMN interaction effect.
372

373 **Discussion**

374

375 Prior research in both adults and children suggests that, in order to perform well
376 on cognitively demanding tasks, the LFPN must operate independently from the DMN
377 (Chai et al., 2014b; Sherman et al., 2014; Whitfield-Gabrieli et al., 2020). Given that the
378 LFPN and DMN have been linked to externally and internally focused attention,
379 respectively, these findings are generally taken to suggest that it is optimal for
380 individuals engaged in a cognitively demanding task involving externally presented
381 stimuli to focus narrowly on the task at hand while inhibiting internally-directed or self-
382 referential thoughts (Raichle et al., 2001; Simpson et al., 2001a, 2001b; D. H.
383 Weissman et al., 2006). However, the majority of the research that led to this conclusion
384 has been conducted with non-representative samples of individuals from higher-income

385 backgrounds. Given the large heterogeneity of experiences and outcomes for children
386 living in poverty, we focused on this relatively under-studied population.

387 In this study, we tested the relation between patterns of brain connectivity and
388 nonverbal cognitive test performance for over 1,000 American children estimated to be
389 living in poverty. Although children in poverty scored lower on average than their higher-
390 income peers from the same study sites, there was large variability. Indeed, many of the
391 children in poverty scored on par with children whose family incomes were considerably
392 higher. In contrast to research with higher SES samples, we did not find that higher
393 cognitive test scores were associated with stronger anti-correlations between the LFPN
394 and DMN within this group; in fact, these children showed a non-significant positive
395 relation between cognitive performance and functional connectivity between these
396 networks. By contrast, for the children in the sample living above poverty, we replicated
397 the negative relation observed in prior studies (e.g., Sherman et al., 2014). Thus, for
398 children living above poverty, having higher LFPN-DMN connectivity could be a risk
399 factor for lower cognitive test performance, while for children living below poverty, it
400 could be protective.

401 Further confirming the reliability of this dissociation, both a bootstrapping analysis
402 and permutation testing showed that models trained on the data from the children living
403 above poverty did a poor job of predicting test performance for the children below
404 poverty. It is important to note that the fact that we see statistically trending but
405 numerically small group differences in overall LFPN-DMN functional connectivity, as
406 well as no evidence of group differences in LFPN-LFPN connectivity. As such, the most
407 salient difference between children below and above poverty in our analyses was not
408 overall brain connectivity, but rather the relation between connectivity and cognitive
409 performance.

410 This pattern of results is also in line with prior structural and task-based brain
411 imaging studies showing interactions between SES and neural variables in relation to
412 test performance (Leonard et al., 2019; Merz, Wiltshire, et al., 2019). For example,
413 several studies have found SES differences in lateral prefrontal and parietal activation
414 during cognitive tasks, core nodes of the LFPN (e.g., Finn et al., 2017; Sheridan et al.,
415 2012). Together, these findings support the idea that which patterns of brain function

RUNNING HEAD: Adaptive patterns of brain connectivity

416 are adaptive with respect to cognitive test performance depends on the environments
417 that children must contend with.

418 One interpretation of this unexpected interaction is that the relation between
419 LFPN-DMN connectivity and test performance depends in part on the demands of
420 children's daily experiences. It may be optimal under some circumstances to engage in
421 thought patterns that more frequently co-activate the LFPN and DMN (e.g., Christoff et
422 al., 2009; Fornito et al., 2012; Prado & Weissman, 2011). For example, while the DMN
423 is generally thought to be suppressed during goal-directed tasks, it is in fact active
424 during a variety of goal-directed tasks that require internal mentation, or projection
425 outside of the here-and-now (Buckner & Carroll, 2007; Spreng, 2012). We return to this
426 point later in the Discussion.

427 In contrast to our findings with LFPN-DMN connectivity, we found no significant
428 association between within-network LFPN connectivity and test performance—either in
429 the children living below or above poverty. These results were unexpected, given prior
430 studies reporting that connectivity within the LFPN is positively related to cognitive test
431 performance in both adults and children (Langeslag et al., 2013; Li & Tian, 2014;
432 Sherman et al., 2014; Song et al., 2008). For example, Sherman and colleagues found
433 that for 10-year-olds, higher IQ was correlated with higher connectivity between the
434 dorsolateral prefrontal cortex and the posterior parietal cortex, two hub regions of the
435 LFPN. One reason for the non-significant effect in our study may be that we examined
436 connectivity within the LFPN as a whole, rather than looking at particular regions or
437 subnetworks within LFPN. Thus, the entire network might not be developed enough by
438 ages 9 to 10 to see this relation on a global scale.

439 To better characterize the positive relation between LFPN-DMN and test
440 performance among the children living in poverty, we examined a number of
441 demographic variables. While poverty status tends to be associated with a higher
442 likelihood of particular experiences, such as racial or ethnic discrimination, more
443 crowding in the home and financial strain, unsafe neighborhoods, and underfunded
444 public schools, there is large variation in the experiences of children who live in poverty
445 (DeJoseph et al., 2020). Moreover, experiences that are on average associated with
446 worse cognitive outcomes (such as being deprived of caregiver support in early life)

447 can, under some circumstances, produce *better* cognitive outcomes (Nweze et al.,
448 2020), suggesting there may be different routes to achieving high cognitive performance
449 in these cases. Thus, we predicted that differences in environmental influences *among*
450 children in poverty would explain whether strong LFPN-DMN connectivity was adaptive
451 or maladaptive for cognitive test performance.

452 Our analyses suggested that demographic variables could not be well fit to a pre-
453 determined factor structure based on variables relating to the individual, home,
454 neighborhood, and school; therefore, we took a data-driven approach to examine the
455 effects of environmental variables. Because many of these variables are correlated with
456 each other, we adopted an analytic approach—Ridge regression—that allows for
457 collinearity. The results of this analysis suggested that, even within the population of
458 children in poverty alone—children who are often conceptualized as a homogenous
459 group—variation in their environments was predictive of their cognitive test
460 performance. We note, however, that this was far from deterministic; a model trained on
461 two-thirds of the children in poverty explained 4% of the variance in the held-out third,
462 suggesting these variables accounted for a small amount of variance overall.

463 The most predictive variables in the model were main effects of children's
464 race/ethnicity, their parents' highest level of education, and neighborhood-level
465 characteristics such as the percent of people in their census tract who were
466 unemployed, had not completed their high school degree by age 25, and were living in
467 poverty. All of these variables reflect structural barriers that families may face, including
468 access to resources and institutions, such as high-quality schools, jobs, and healthcare,
469 stable housing in safe neighborhoods, and experiences of racism within these systems
470 (Alexander, 2012; Chetty et al., 2018; Desmond & Kimbro, 2015; Kraus et al., 2019;
471 Shedd, 2015). Thus, the strongest predictors of low-income children's cognitive
472 performance reflect structural constraints on children's lives. However, our data also
473 suggest that being raised by parents with strong ethnic identification may provide a
474 psychological buffer against these and other threats, in line with other research
475 (Cardoso & Thompson, 2010; Chen et al., 2015; Costigan et al., 2010; Simons et al.,
476 2002; Varner et al., 2018).

477 Notably, we found—in addition to these main effects of demographic variables—
478 several interactions between these variables and LFPN-DMN connectivity that predicted
479 cognitive performance. While Ridge regression precludes us from drawing strong
480 conclusions about the importance of specific variables, we highlight those that
481 contributed significantly to model fit. For example, children in poverty who attended
482 public schools, lived in subjectively more dangerous neighborhoods, and were Black
483 (the next best represented racial group after white race in our sample below poverty)
484 were more likely to show a positive relation between LFPN-DMN connectivity and test
485 performance.

486 We considered several possible accounts of the current findings. One possibility
487 is that in order to contend with structural barriers, children experiencing tremendous
488 adversity in the form of poverty need to monitor their environments (vigilance), as well
489 as their own behavior or performance (self-monitoring), to a greater degree than do
490 other children. This hypothesis stems from research showing that individuals living in
491 poverty are more likely to experience threat in the physical domain (safety; Friedson &
492 Sharkey, 2015) or in the social domain (racism; Nuru-Jeter et al., 2009; Shedd, 2015);
493 they are also likely to receive less direct feedback or instruction in crowded or
494 underfunded public schools (Orfield & Lee, 2005; Reardon & Owens, 2014) and at
495 home (McLoyd, 1998). Additionally or alternatively, children in poverty may benefit from
496 thinking more about the past or the future—that is, drawing more on autobiographical
497 memory and future-oriented thinking and planning (Buckner and Carroll, 2007)—or the
498 type of productive mind-wandering that fuels creative insights (Christoff et al., 2009;
499 Dixon et al., 2014; Seli et al., 2015). These hypotheses could be explored in the future
500 by assessing whether children in poverty with stronger LFPN-DMN connectivity also
501 show heightened self-monitoring, vigilance, autobiographical memory, and/or creative
502 problem-solving.

503 Based on the available dataset, we explored the plausibility of these hypotheses
504 by focusing on brain networks that have been associated with monitoring or declarative
505 memory. Specifically, we explored associations of test performance with DMN/LFPN
506 and (1) the cingulo-opercular (so-called “salience”) network (CON), to probe whether
507 differences in monitoring and vigilance are likely to play a role; and (2) retrosplenial

508 temporal network (RTN), to assess the plausibility of an account involving
509 autobiographical memory or planning.

510 While relations with RTN and test performance did not distinguish the children
511 above and below poverty, we observed a potential interaction between DMN-CON
512 connectivity and poverty status in its association with test performance. Weaker DMN-
513 CON appeared to be directionally associated with better test performance for children in
514 poverty, and worse for children above poverty. Although it seems unlikely that this
515 trend-level group interaction involving the CON is the key driver of the LFPN-DMN
516 interaction we have uncovered, it does lend credence to the possibility that monitoring
517 oneself and one's social environment may be one mechanism through which children in
518 poverty ultimately score highly on cognitive tests. It is also in line with work suggesting
519 that CON plays a critical role in switching between LFPN and DMN activation (Sridharan
520 et al., 2008), that connectivity between the three networks changes across age (Uddin
521 et al., 2010), and that some social cognitive processes rely on all three networks
522 (Schurz et al., 2020).

523 While our study benefited from the ABCD dataset's rich objective measures of a
524 child's environment, there are other potential environmental and individual level
525 variables that should be considered in future research (Bates et al., 2018; Merz,
526 Wiltshire, et al., 2019; Pollak & Wolfe, 2020). Future research could also benefit from a
527 more sensitive measure of poverty. Because the publicly available dataset did not
528 specify which of the 19 study sites corresponded to which American city, as this was
529 treated as protected information, we determined a cut-off for our poverty threshold
530 based on cost-of-living across study sites. Because cities across the United States vary
531 substantially in cost-of-living, we selected a stringent cutoff for the poverty line. Thus,
532 there are almost certainly families in the above-poverty group that belong in the below-
533 poverty group. If anything, therefore, the use of a more sensitive measure would likely
534 magnify the group difference that we report. In addition, it is important to note that
535 children's performance on cognitive tests can fluctuate from day to day for a variety of
536 reasons (Dirk & Schmiedek, 2016; Könen et al., 2015), including motivation (Somerville
537 & Casey, 2010), which is a likely source of noise in our models.

538 Further, while we focused on three tests of non-verbal cognitive test
539 performance, future studies should examine a broader range of cognitive systems, as
540 these may be differentially affected by the environment (Rosen, Meltzoff, et al., 2019).
541 For example, experiences of threat and deprivation have distinct effects on medial and
542 lateral prefrontal cortex development, respectively (McLaughlin et al., 2019); these
543 effects may be mediated in part by lower-level visual and attentional processes (Rosen,
544 Amso, et al., 2019). Clearly, there is a need for research which investigates the precise
545 mechanisms through which the environment affects specific neural and cognitive
546 systems, particularly given that much of this environmental variation is still within a
547 species-typical range of experiences (Humphreys & Salo, 2020). Overall, these results
548 suggest that different patterns of brain activation for children living in poverty do not
549 necessarily imply a deficit (Ellwood-Lowe et al., 2016). However, an important next step
550 will be to follow these children longitudinally to see how LFPN-DMN connectivity and its
551 relation with cognitive test performance changes across adolescence.

552 Another important area of research is to look beyond the canonical cognitive
553 tasks used in the present study to identify assessments or testing contexts for which
554 children living in poverty might be particularly adapted to excel (Frankenhuis et al.,
555 2020). Doing so might reveal that some children who underperformed on the cognitive
556 measures in the current study have strengths in other domains as a result of adaptation
557 to their environments.

558 This study opens several questions about the neural underpinnings of these
559 findings that should be further examined. Given individual variability in network
560 topography (Seitzman et al., 2019), future studies should examine whether this
561 variability contributes to our findings. In addition, LFPN and DMN are both summary
562 network measures; there could be qualitative differences in node-to-node connectivity,
563 or smaller interactions between sub-networks, that we are not capturing in the current
564 study (Buckner & DiNicola, 2019; Dixon et al., 2018; Fornito et al., 2012; Lopez et al.,
565 2020). Moreover, it would be helpful to look at children's task-based activation and
566 functional connectivity to examine whether children in poverty are more likely to activate
567 DMN during neutral, externally driven cognitive tasks outside of their daily

568 environments. Finally, given that these metrics only explain a small amount of variance,
569 it is important to look at the contribution of other neural indices.

570 Given that the structures that govern success have been largely created around
571 the needs of middle- and upper-middle class families, understanding the strengths of
572 families in poverty—and how children may thrive in spite of these structural barriers—is
573 critical. Altogether, these results highlight the substantial variability of experiences of
574 children living in poverty, who are often conceptualized as a single, homogenous group
575 and compared to higher-SES children. Moreover, they suggest that our field's
576 assumptions about generalizability of brain-behavior relations are not necessarily
577 correct. Looking beyond convenience samples of children will ultimately lend more
578 insight into the neural underpinnings of cognition, and may show that there is not a
579 general guiding principle about what is optimal in the ways we have thus far assumed.
580 Not only would this advance benefit developmental cognitive neuroscience as a field,
581 but it may ultimately allow us to better serve disadvantaged youth.

582

583

584 **Methods**

585

586 Analysis plans were pre-registered prior to data access
587 (<https://aspredicted.org/blind.php?x=3d7ry9>, <https://aspredicted.org/blind.php?x=tg4tg9>)
588 and analysis scripts are openly available on the Open Science Framework
589 (https://osf.io/hs7cg/?view_only=d2acb721549d4f22b5eeeea4ce51195c7). The original
590 data are available with permissions on the NIMH Data Archive
591 (<https://nda.nih.gov/abcd>). All deviations from the initial analysis plan are fully described
592 in the Supplement S9.

593 **Participants.** Participants were selected from the larger, ongoing Adolescent
594 Brain Cognitive Development (ABCD) study, which was designed to recruit a cohort of
595 children who closely represented the United States population (<http://abcdstudy.org>; see
596 Garavan et al., 2018). This study was approved by the Institutional Review Board at
597 each study site, with centralized IRB approval from the University of California, San
598 Diego. Informed consent and assent was obtained from all parents and children,

599 respectively. We planned to restrict our primary analyses to children who fell below the
600 poverty line on the supplemental poverty measure, which takes into account regional
601 differences in cost-of-living (Fox, 2017). For example, while the federal poverty level in
602 2018 was \$25,465 for a family of four, the supplemental poverty level in Menlo Park,
603 CA—one of the ABCD study sites—was estimated to be over \$37,000 around the same
604 time period. However, upon reviewing the data after our pre-registration, we found that
605 study site in the ABCD data was de-identified for privacy reasons, and as a result we
606 could not use study site-specific poverty cut-offs. Instead, we estimated each child's
607 poverty status based on their combined family income bracket, the number of people in
608 their home, and the average supplemental poverty level for the study sites included in
609 the sample.

610 Based on these factors, we considered children to be in poverty if they were part
611 of a family of 4 with a total income of less than \$25,000, or a family of 5 or more with a
612 total income of less than \$35,000. We made this determination by comparing children's
613 combined household income to the Supplemental Poverty Level for 2015-2017
614 averaged across study sites (Fox, 2017). We excluded children who did not provide
615 information about family income and complete data on all three cognitive tests, and/or if
616 their MRI data did not meet ABCD's usability criteria (see below). In addition, due to a
617 scanner error, we excluded post-hoc all children who were scanned on Philips
618 scanners. This left us with 1034 children identified as likely to be living below poverty
619 (6839 across the whole sample). Table 1 provides a breakdown of sample
620 demographics.

621 **Cognitive test performance.** Children's performance was measured on three
622 non-verbal cognitive tests. Specifically, children completed two tests from the NIH
623 Toolbox (<http://www.nihtoolbox.org>): Flanker, a measure of inhibitory control (Eriksen &
624 Eriksen, 1974), and Dimensional Change Card Sort (DCCS), a measure of shifting
625 (Zelazo et al., 2013); and the Matrix Reasoning Task from the Wechsler Intelligence
626 Test for Children-V (WISC-V), a measure of abstract reasoning (Wechsler, 2014). More
627 details on each of these tests and their administration in the current study is described
628 elsewhere (Luciana et al., 2018). These tests were chosen because they all tax higher-
629 level cognitive skills while having relatively low verbal task demands. We created a

630 composite measure of performance across these three domains by creating z-scores of
631 the raw scores on each of these tests and summing them, as pre-registered; the tests
632 were moderately correlated, $0.23 < r < 0.43$, in the whole sample.

633 **MRI Scan Procedure.** Scans were typically completed on the same day as the
634 cognitive battery, but could also be completed at a second testing session. After
635 completing motion compliance training in a simulated scanning environment,
636 participants first completed a structural T1-weighted scan. Next, they completed three to
637 four five-minute resting state scans, in which they were instructed to lay with their eyes
638 open while viewing a crosshair on the screen. The first two resting state scans were
639 completed immediately following the T1-weighted scan; children then completed two
640 other structural scans, followed by one or two more resting state scans, depending on
641 the protocol at each specific study site. All scans were collected on one of three 3T
642 scanner platforms with an adult-size head coil. Structural and functional images
643 underwent automated quality control procedures (including detecting excessive
644 movement and poor signal-to-noise ratios) and visual inspection and rating (for
645 structural scans) of images for artifacts or other irregularities (described in Hagler et al.,
646 2019); participants were excluded if they did not meet quality control criteria, including
647 at least 12.5 minutes of data with low head motion (framewise displacement < 0.2 mm).

648 **Scan parameters.** Scan parameters were optimized to be compatible across
649 scanner platforms, allowing for maximal comparability across the 19 study sites. All T1-
650 weighted scans were collected in the axial position, with 1mm^3 voxel resolution, 256 x
651 256 matrix, 8 degree flip angle, and 2x parallel imaging. Other scan parameters varied
652 by scanner platform (Siemens: 176 slices, 256 x 256 FOV, 2500 ms TR, 2.88 ms TE,
653 1060 ms TI; Philips: 225 slices, 256 x 240 FOV, 6.31 ms TR, 2.9 ms TE, 1060 ms TI;
654 GE: 208 slices, 256 x 256 FOV, 2500 ms TR, 2 ms TE, 1060 ms TI). All fMRI scans
655 were collected in the axial position, with 2.4mm^3 voxel resolution, 60 slices, 90 x 90
656 matrix, 216 x 216 FOV, 800ms TR, 30 ms TE, 52 degree flip angle, and 6 factor
657 MultiBand Acceleration. Motion was monitored during scan acquisition using real-time
658 procedures to adjust scanning procedures as necessary (see Casey et al., 2018); this
659 prospective motion correction procedure significantly reduces scan artifacts due to head
660 motion (Hagler et al., 2019).

661 **Resting state fMRI processing.** Data processing was carried out using the
662 ABCD pipeline and carried out by the ABCD Data Analysis and Informatics Core; more
663 details are reported by Hagler et al. (2019). Briefly, T1-weighted images were corrected
664 for gradient nonlinearity distortion and intensity inhomogeneity, and rigidly registered to
665 a custom atlas. They were run through FreeSurfer's automated brain segmentation to
666 derive white matter, ventricle, and whole brain ROIs. Resting state images were first
667 corrected for head motion, displacement estimated from field map scans, B_0 distortions,
668 and gradient nonlinearity distortions, and registered to the structural images using
669 mutual information. Initial scan volumes were removed, and each voxel was normalized
670 and demeaned. Signal from estimated motion time courses (including six motion
671 parameters, their derivatives, and their squares), quadratic trends, and mean time
672 courses of white matter, gray matter, and whole brain, plus first derivatives, were
673 regressed out, and frames with greater than 0.2mm displacement were excluded. While
674 the removal of whole brain signal (global signal reduction) is controversial in the context
675 of interpreting anti-correlations (Chai et al., 2012; Murphy & Fox, 2017), we note that we
676 are able to replicate prior studies showing that a more negative link between our
677 networks of interest is related to test performance in our higher-income sample (see
678 Results), lending credence to the inclusion of this step in the analysis pipeline for our
679 purposes.

680 The data underwent temporal bandpass filtering (0.009 – 0.08 Hz). Next,
681 standard ROI-based analyses were adapted to allow for analysis in surface space
682 (Hagler et al., 2019). Specifically, time courses were projected onto FreeSurfer's cortical
683 surface, upon which 13 functionally-defined networks (Gordon et al., 2016) were
684 mapped and time courses for FreeSurfer's standard cortical and subcortical ROIs
685 extracted (Desikan et al., 2006; Fischl et al., 2002). Correlations for each pair of ROIs
686 both within and across each of the 13 networks were calculated. These were z-
687 transformed and averaged to calculate within-network connectivity for each network (the
688 average correlation of each ROI pair within the network) and between-network
689 connectivity across all networks (the average correlation of pairs of each ROI in one
690 network with each ROI in another network). Here, we examined only within-network
691 connectivity for LFPN and between-network LFPN-DMN connectivity.

692 Altogether, the process for curbing potential contamination from head motion was
693 three-fold. First there was real-time head motion monitoring and correction, as
694 described above, and a thorough and systematic check of scan quality in collaboration
695 with ABCD's Data Analysis and Informatics Center. Second, signal from motion time
696 courses was regressed out during preprocessing, and frames with greater than 0.2mm
697 of framewise displacement were excluded from calculations altogether, as were time
698 periods with less than five contiguous low-motion frames. Third, a final censoring
699 procedure was employed to identify potential lingering effects of motion by excluding
700 any frames with outliers in spatial variation across the brain (Hagler et al., 2019). In
701 combination, these procedures reduce motion artifacts to the extent possible (Power et
702 al., 2014).

703 **Analysis.** Analyses were performed using R version 3.6.0 (R Core Team, 2017).
704 We performed two separate linear mixed effects models using the *lme4* package (D.
705 Bates et al., 2015) to test the relation between cognitive test scores and (1) LFPN-DMN
706 connectivity, and (2) LFPN within-network connectivity. In our initial pre-registration, we
707 did not consider the nested structure of the data or potential confounds. To determine
708 whether to include these in our model in a data-driven fashion, we tested whether each
709 of the following variables contributed significantly to model fit: (1) nesting within study
710 site, (2) nesting within families, (3) child age, and (4) mean levels of motion in resting
711 state scan. All except (2) contributed to model fit at a level of $p < 0.01$ and were thus
712 retained in final models. We note that our reported results are similar when we perform
713 simple linear regression with no covariates, exactly as pre-registered. In addition,
714 results are similar when including all of the covariates in the ABCD study's default LMM
715 package (<https://deap.nimhda.org/>) – specifically, when adding fixed effects of
716 race/ethnicity, sex, and parent marital status to the same model above. To determine
717 the significance of our neural connectivity metrics, we tested whether these contributed
718 to model fit. In all cases, we compared models without the inclusion of the variable of
719 interest to models with this variable included, and calculated whether the variable of
720 interest contributed significantly to model fit, using the *anova* function for likelihood ratio
721 test model comparison.

722 In our second set of analyses, we sought to explore the unexpected results from
723 our first set of analyses by asking whether certain environmental variables determine
724 whether LFPN-DMN connectivity is positively or negatively associated with cognitive
725 test performance across individuals. To do this, we gathered 31 environmental variables
726 of interest, spanning home, neighborhood, and school contexts. Upon examining the
727 data, we learned that three of these were not collected at the baseline visit and thus
728 could not be included. Moreover, we made the decision to include ethnicity separate
729 from race, as it was collected, to retain maximal information. The final 29 environmental
730 variables are listed in Table 2. In preparation for our subsequent analyses, we mean-
731 centered and standardized these variables in the larger dataset to allow for potential
732 comparisons across the high- and low-income children. Levels of each factor variables
733 were broken down into separate dummy-coded variables for inclusion in factor and
734 ridge analyses. When data were missing, they were interpolated using the *mice*
735 package in R (van Buuren & Groothuis-Oudshoorn, 2011).

736 We first performed a confirmatory factor analysis using the *lavaan* package in R
737 (Rosseel, 2012) to see whether individual and home, neighborhood, and school
738 variables can be separated into distinct factors. If this achieved adequate fit
739 (significantly better fit than a single factor model and CFI>9), we planned to perform a
740 linear mixed effects model to test the association of cognitive test performance with an
741 interaction between LFPN-DMN connectivity and each factor score.

742 We next performed a ridge regression using the *glmnet* package in R (Friedman
743 et al., 2010). This analysis technique penalizes variables in a model that have little
744 predictive power, shrinking their coefficient closer to zero, thus allowing for the inclusion
745 of many potential predictors while reducing model complexity. These models also
746 include a bias term, reducing the chances of overfitting to peculiarities of the data, a
747 common pitfall of ordinary least squares regression. Finally, ridge regression also deals
748 well with multi-collinearity in independent variables; in contrast to alternatives such as
749 Lasso, if two variables are highly correlated and both predictive of the dependent
750 variable, coefficients of both will be weighted more heavily in ridge.

751 We fit ridge regressions predicting cognitive test score residuals, which partialled
752 out the covariates included in our basic linear mixed effects models (random intercept

753 for study site, fixed effects for age and motion), from an interaction between LFPN-DMN
754 connectivity and each environmental variable of interest. This analysis used nested
755 cross-validation. Specifically, we first split the data into a training (2/3) and testing (1/3)
756 set. We created test score residuals in the training and testing sets separately to avoid
757 data leakage (Scheinost et al., 2019), after rescaling the testing data by the training
758 data. We then tuned parameters of the ridge regression on the training set using 5-fold
759 cross-validation. Ultimately, we used the best-performing model to predict cognitive test
760 scores in the held-out testing set and assessed model fit using R^2 cross-validated. An
761 R^2_{cv} above 0 indicates that the model performed above chance; otherwise, it will be
762 below 0. We evaluated the significance of specific variables in our model by plugging in
763 the lambda parameter from the best-performing model to the linearRidge function in the
764 *ridge* package in R (Cule & Moritz, 2019), on the whole sample of children in poverty.

765 **Robustness analyses.** We did several additional analyses to test the
766 robustness of our results. First, we repeated our primary analyses as robust linear
767 mixed effects models, using the *robustlmm* package in R (Koller, 2016). These models
768 detect outliers or other sources of contamination in the data that may affect model
769 validity, and perform a de-weighting procedure based on the extent of contamination
770 introduced. Next, we performed a bootstrapping procedure intended to probe how
771 frequently the parameter estimate observed in the children in poverty alone would be
772 expected to be observed in a larger population of children living above poverty
773 (Supplement S4). We also performed a permutation procedure to examine the extent to
774 which the model parameters from the higher-income children alone could explain the
775 data in the children in poverty (Supplement S5). Finally, given that children living in
776 poverty had significantly more motion than children living above poverty, we repeated
777 our primary analyses with only those children who met an extremely stringent motion
778 threshold of 0.2mm (Supplement S6).

779 Additional R packages used for data cleaning, analysis, and visualization include:
780 *dplyr* (Wickham et al., 2019); *ggplot2* (Wickham, 2016); *car* (J. Fox & Weisberg, 2011);
781 *corrplot* (Wei & Simko, 2017); *MuMIn* (Bartoń, 2019); *tidyR* (Wickham & Henry, 2019);
782 *summarytools* (Comtois, 2019); *finalfit* (Harrison et al., 2019); *fastDummies* (Kaplan,
783 2019); *caret* (from Jed Wing et al., 2019); *scales* (Wickham, 2018); *foreign* (R Core

784 Team, 2018); *MASS* (Venables & Ripley, 2002); *sjPlot* (Lüdecke, 2019); *tableone*
785 (Yoshida, 2019); *gtools* (Warnes et al., 2018).

786

787 **Data availability**

788

789 All raw and processed data used for these analyses are available with
790 institutional permission on the NIMH Data Archive (<https://nda.nih.gov/abcd>).

791

792 **Code availability**

793

794 All analysis scripts used for the current study are publicly available on the Open
795 Science Framework
796 (https://osf.io/hs7cg/?view_only=d2acb721549d4f22b5eeeea4ce51195c7).

797

798 **References**

799

800 Alexander, M. (2012). *The new Jim Crow: Mass incarceration in the age of
801 colorblindness*. The New Press.

802 Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and
803 self-generated thought: component processes, dynamic control, and clinical
804 relevance. *Annals of New York Academy of Science*, 1316(1), 29–52.
805 <https://doi.org/10.1111/nyas.12360>

806 Badre, D., & Wagner, A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive
807 control of memory. In *Neuropsychologia*.
808 <https://doi.org/10.1016/j.neuropsychologia.2007.06.015>

809 Barber, A. D., Caffo, B. S., Pekar, J. J., & Mostofsky, S. H. (2013). Developmental
810 changes in within- and between-network connectivity between late childhood and
811 adulthood. *Neuropsychologia*.
812 <https://doi.org/10.1016/j.neuropsychologia.2012.11.011>

813 Bartoń, K. (2019). *MuMIn: Multi-Model Inference*. <https://cran.r-project.org/package=MuMIn>

814

815 Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects
816 Models Using `{lme4}`. *Journal of Statistical Software*, 67(1), 1–48.
817 <https://doi.org/10.18637/jss.v067.i01>

818 Bates, T. C., Maher, B. S., Medland, S. E., McAloney, K., Wright, M. J., Hansell, N. K.,
819 Kendler, K. S., Martin, N. G., & Gillespie, N. A. (2018). The Nature of Nurture:
820 Using a Virtual-Parent Design to Test Parenting Effects on Children's Educational
821 Attainment in Genotyped Families. *Twin Research and Human Genetics*, 21(2),
822 73–83. <https://doi.org/10.1017/thg.2018.11>

823 Blumenfeld, R. S., & Ranganath, C. (2007). Prefrontal cortex and long-term memory
824 encoding: An integrative review of findings from neuropsychology and
825 neuroimaging. In *Neuroscientist*. <https://doi.org/10.1177/1073858407299290>

826 Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. *Trends in
827 Cognitive Sciences*. <https://doi.org/10.1016/j.tics.2006.11.004>

828 Buckner, R. L., & DiNicola, L. M. (2019). The brain's default network: updated anatomy,

829 physiology and evolving insights. In *Nature reviews. Neuroscience* (Vol. 20, Issue
830 10, pp. 593–608). NLM (Medline). <https://doi.org/10.1038/s41583-019-0212-7>

831 Cardoso, J. B., & Thompson, S. J. (2010). Common themes of resilience among latino
832 immigrant families: A systematic review of the literature. *Families in Society*.
833 <https://doi.org/10.1606/1044-3894.4003>

834 Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M.,
835 Soules, M. E., Teslovich, T., Dellarco, D. V., Garavan, H., Orr, C. A., Wager, T. D.,
836 Banich, M. T., Speer, N. K., Sutherland, M. T., Riedel, M. C., Dick, A. S., Bjork, J.
837 M., Thomas, K. M., ... Dale, A. M. (2018). The Adolescent Brain Cognitive
838 Development (ABCD) study: Imaging acquisition across 21 sites. *Developmental
839 Cognitive Neuroscience*, 32(January), 43–54.
840 <https://doi.org/10.1016/j.dcn.2018.03.001>

841 Casey, B. J., Giedd, J. N., & Thomas, K. M. (2000). Structural and functional brain
842 development and its relation to cognitive development. *Biological Psychology*.
843 [https://doi.org/10.1016/S0301-0511\(00\)00058-2](https://doi.org/10.1016/S0301-0511(00)00058-2)

844 Chai, X. J., Castañán, A. N., Öngür, D., & Whitfield-Gabrieli, S. (2012). Anticorrelations
845 in resting state networks without global signal regression. *NeuroImage*.
846 <https://doi.org/10.1016/j.neuroimage.2011.08.048>

847 Chai, X. J., Ofen, N., Gabrieli, J. D. E., & Whitfield-Gabrieli, S. (2014a). Development of
848 deactivation of the default-mode network during episodic memory formation.
849 *NeuroImage*, 84, 932–938. <https://doi.org/10.1016/j.neuroimage.2013.09.032>

850 Chai, X. J., Ofen, N., Gabrieli, J. D. E., & Whitfield-Gabrieli, S. (2014b). Selective
851 development of anticorrelated networks in the intrinsic functional organization of the
852 human brain. *Journal of Cognitive Neuroscience*.
853 https://doi.org/10.1162/jocn_a_00517

854 Chen, S. H., Main, A., Zhou, Q., Bunge, S. A., Lau, N., & Chu, K. (2015). Effortful
855 control and early academic achievement of Chinese American children in immigrant
856 families. *Early Childhood Research Quarterly*.
857 <https://doi.org/10.1016/j.ecresq.2014.08.004>

858 Chetty, R., Hendren, N., Jones, M., & Porter, S. (2018). Race and Economic
859 Opportunity in the United States: An Intergenerational Perspective. *National Bureau*

860 *of Economic Research Working Paper Series*. <https://doi.org/10.3386/w24441>

861 Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., & Schooler, J. W. (2009).

862 Experience sampling during fMRI reveals default network and executive system

863 contributions to mind wandering. *Proceedings of the National Academy of Sciences*

864 *of the United States of America*, 106(21), 8719–8724.

865 <https://doi.org/10.1073/pnas.0900234106>

866 Comtois, D. (2019). *summarytools: Tools to Quickly and Neatly Summarize Data*.

867 <https://cran.r-project.org/package=summarytools>

868 Costigan, C. L., Koryzma, C. M., Hua, J. M., & Chance, L. J. (2010). Ethnic Identity,

869 Achievement, and Psychological Adjustment: Examining Risk and Resilience

870 Among Youth From Immigrant Chinese Families in Canada. *Cultural Diversity and*

871 *Ethnic Minority Psychology*. <https://doi.org/10.1037/a0017275>

872 Cule, E., & Moritz, S. (2019). *ridge: Ridge Regression with Automatic Selection of the*

873 *Penalty Parameter*. <https://cran.r-project.org/package=ridge>

874 DeJoseph, M. L., Sifre, R. D., Raver, C. C., Blair, C. B., & Berry, D. (2020). Capturing

875 dimensions of material deprivation, sociocognitive stimulation, and emotional threat

876 in the context of poverty: A moderated nonlinear factor model in a population-based

877 sample of low-income children measured across infancy through early adolescence. In

878 *PsyArXiv: Vol. Jan 21*. <https://doi.org/https://doi.org/10.31234/osf.io/tw3fg>

879 Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D.,

880 Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany,

881 R. J. (2006). An automated labeling system for subdividing the human cerebral

882 cortex on MRI scans into gyral based regions of interest. In *NeuroImage*.

883 Desmond, M. (2016). *Evicted: Poverty and profit in the American city*. Broadway Books.

884 Desmond, M., & Kimbro, R. T. (2015). Eviction's fallout: Housing, hardship, and health.

885 *Social Forces*. <https://doi.org/10.1093/sf/sov044>

886 Dirk, J., & Schmiedek, F. (2016). Fluctuations in elementary school children's working

887 memory performance in the school context. *Journal of Educational Psychology*,

888 108(5), 722–739. <https://doi.org/10.1037/edu0000076>

889 Dixon, M. L., De La Vega, A., Mills, C., Andrews-Hanna, J., Spreng, R. N., Cole, M. W.,

890 & Christoff, K. (2018). Heterogeneity within the frontoparietal control network and

891 its relationship to the default and dorsal attention networks. *Proceedings of the*
892 *National Academy of Sciences of the United States of America*, 115(13), E3068.
893 <https://doi.org/10.1073/pnas.1803276115>

894 Dixon, M. L., Fox, K. C. R., & Christoff, K. (2014). A framework for understanding the
895 relationship between externally and internally directed cognition. *Neuropsychologia*,
896 62, 321–330. <https://doi.org/10.1016/j.neuropsychologia.2014.05.024>

897 Duncan, G. J., & Magnuson, K. (2012). Socioeconomic status and cognitive functioning:
898 Moving from correlation to causation. *Wiley Interdisciplinary Reviews: Cognitive*
899 *Science*, 3(3), 377–386. <https://doi.org/10.1002/wcs.1176>

900 Edelman, G. M., & Gally, J. A. (2001). Degeneracy and complexity in biological
901 systems. *Proceedings of the National Academy of Sciences of the United States of*
902 *America*. <https://doi.org/10.1073/pnas.231499798>

903 Ellwood-Lowe, M. E., Sacchet, M. D., & Gotlib, I. H. (2016). The application of
904 neuroimaging to social inequity and language disparity: A cautionary examination.
905 *Developmental Cognitive Neuroscience*, 22, 1–8.
906 <https://doi.org/10.1016/j.dcn.2016.10.001>

907 Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of
908 a target letter in a nonsearch task. *Perception & Psychophysics*.
909 <https://doi.org/10.3758/BF03203267>

910 Farah, M. J. (2017). The Neuroscience of Socioeconomic Status: Correlates, Causes,
911 and Consequences. *Neuron*, 96(1), 56–71.
912 <https://doi.org/10.1016/j.neuron.2017.08.034>

913 Farah, M. J. (2018). Socioeconomic status and the brain: Prospects for neuroscience-
914 informed policy. *Nature Reviews Neuroscience*, 19(7), 428–438.
915 <https://doi.org/10.1038/s41583-018-0023-2>

916 Finn, A. S., Minas, J. E., Leonard, J. A., Mackey, A. P., Salvatore, J., Goetz, C., West,
917 M. R., Gabrieli, C. F. O., & Gabrieli, J. D. E. (2017). Functional brain organization of
918 working memory in adolescents varies in relation to family income and academic
919 achievement. *Developmental Science*, 20(5). <https://doi.org/10.1111/desc.12450>

920 Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., Van Der
921 Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen,

922 B., & Dale, A. M. (2002). Whole brain segmentation: Automated labeling of
923 neuroanatomical structures in the human brain. *Neuron*, 33(3), 341–355.
924 [https://doi.org/10.1016/S0896-6273\(02\)00569-X](https://doi.org/10.1016/S0896-6273(02)00569-X)

925 Fornito, A., Harrison, B. J., Zalesky, A., & Simons, J. S. (2012). Competitive and
926 cooperative dynamics of large-scale brain functional networks supporting
927 recollection. *Proceedings of the National Academy of Sciences of the United States
928 of America*, 109(31), 12788–12793. <https://doi.org/10.1073/pnas.1204185109>

929 Fox, J., & Weisberg, S. (2011). *An {R} Companion to Applied Regression, Second
930 Edition*. Sage. <http://socserv.socsci.mcmaster.ca/jfox/Books/Companion>

931 Fox, L. (2017). The Supplemental Poverty Measure: 2016. In *Current Population
932 Reports*.

933 Frankenhuis, W. E., Vries, S. A. De, Bianchi, J., & Ellis, B. J. (2019). *Hidden talents in
934 harsh conditions ? A preregistered study of memory and reasoning about social
935 dominance*. January, 1–14. <https://doi.org/10.1111/desc.12835>

936 Frankenhuis, W. E., Young, E. S., & Ellis, B. J. (2020). The Hidden Talents Approach:
937 Theoretical and Methodological Challenges. *Trends in Cognitive Sciences*, 1–13.
938 <https://doi.org/10.1016/j.tics.2020.03.007>

939 Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized
940 Linear Models via Coordinate Descent. *Journal of Statistical Software*, 33(1), 1–22.
941 <http://www.jstatsoft.org/v33/i01/>

942 Friedson, M., & Sharkey, P. (2015). Violence and Neighborhood Disadvantage after the
943 Crime Decline. *Annals of the American Academy of Political and Social Science*.
944 <https://doi.org/10.1177/0002716215579825>

945 from Jed Wing, M. K. C., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper,
946 T., Mayer, Z., Kenkel, B., the R Core Team, Benesty, M., Lescarbeau, R., Ziem, A.,
947 Scrucca, L., Tang, Y., Candan, C., & Hunt., T. (2019). *caret: Classification and
948 Regression Training*. <https://cran.r-project.org/package=caret>

949 Garavan, H., Bartsch, H., Conway, K., Decastro, A., Goldstein, R. Z., Heeringa, S.,
950 Jernigan, T., Potter, A., Thompson, W., & Zahs, D. (2018). Recruiting the ABCD
951 sample: Design considerations and procedures. *Developmental Cognitive
952 Neuroscience*, 32(April), 16–22. <https://doi.org/10.1016/j.dcn.2018.04.004>

953 Ghetti, S., & Bunge, S. A. (2012). Neural changes underlying the development of
954 episodic memory during middle childhood. *Developmental Cognitive Neuroscience*,
955 2(4), 381–395. <https://doi.org/10.1016/j.dcn.2012.05.002>

956 Gonzalez, M. R., Palmer, C. E., Uban, K. A., Jernigan, T. L., Thompson, W. K., &
957 Sowell, E. R. (2019). Economic, social, and physiological resilience predict brain
958 structure and cognitive performance in 9 - 10-year-old children. *BioRxiv*, Nov 25.
959 <https://doi.org/10.1101/852988>

960 Gordon, E. M., Laumann, T. O., Adeyemo, B., Huckins, J. F., Kelley, W. M., & Petersen,
961 S. E. (2016). Generation and Evaluation of a Cortical Area Parcellation from
962 Resting-State Correlations. *Cerebral Cortex*, 26(1), 288–303.
963 <https://doi.org/10.1093/cercor/bhu239>

964 Grayson, D. S., & Fair, D. A. (2017). Development of large-scale functional networks
965 from birth to adulthood: a guide to neuroimaging literature. *NeuroImage*.
966 <https://doi.org/10.1016/j.neuroimage.2017.01.079>

967 Guerra-Carrillo, B., Mackey, A. P., & Bunge, S. A. (2014). Resting-state fMRI: A window
968 into human brain plasticity. In *Neuroscientist* (Vol. 20, Issue 5, pp. 522–533).
969 <https://doi.org/10.1177/1073858414524442>

970 Hagler, D. J., Hatton, S. N., Cornejo, M. D., Makowski, C., Fair, D. A., Dick, A. S.,
971 Sutherland, M. T., Casey, B. J., Barch, D. M., Harms, M. P., Watts, R., Bjork, J. M.,
972 Garavan, H. P., Hilmer, L., Pung, C. J., Sicat, C. S., Kuperman, J., Bartsch, H.,
973 Xue, F., ... Dale, A. M. (2019). Image processing and analysis methods for the
974 Adolescent Brain Cognitive Development Study. *NeuroImage*.
975 <https://doi.org/10.1016/j.neuroimage.2019.116091>

976 Hair, N. L., Hanson, J. L., Wolfe, B. L., & Pollak, S. D. (2015). Association of Child
977 Poverty, Brain Development, and Academic Achievement. *JAMA Pediatrics*,
978 153706(9), 1–8. <https://doi.org/10.1001/jamapediatrics.2015.1475>

979 Hampson, M., Driesen, N., Roth, J. K., Gore, J. C., & Constable, R. T. (2010).
980 Functional connectivity between task-positive and task-negative brain areas and its
981 relation to working memory performance. *Magnetic Resonance Imaging*, 28(8),
982 1051–1057. <https://doi.org/10.1016/j.mri.2010.03.021>

983 Hanson, J. L., Hair, N., Shen, D. G., Shi, F., Gilmore, J. H., Wolfe, B. L., & Pollak, S. D.

984 (2013). Family poverty affects the rate of human infant brain growth. *PLoS ONE*,
985 8(12). <https://doi.org/10.1371/journal.pone.0080954>

986 Harrison, E., Drake, T., & Ots, R. (2019). *finalfit: Quickly Create Elegant Regression*
987 *Results Tables and Plots when Modelling*. <https://cran.r-project.org/package=finalfit>

988 Hoynes, H. W., & Schanzenbach, D. W. (2018). Safety net investments in children.
989 *Brookings Papers on Economic Activity, Spring*, 89–150.
990 <https://doi.org/10.1353/eca.2018.0001>

991 Humphreys, K. L., & Salo, V. C. (2020). Expectable environments in early life. *Current*
992 *Opinion in Behavioral Sciences*, 36, 115–119.
993 <https://doi.org/10.1016/j.cobeha.2020.09.004>

994 Humphreys, K. L., & Zeanah, C. H. (2015). Deviations from the Expectable Environment
995 in Early Childhood and Emerging Psychopathology. *Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology*,
996 40(April), 1–59. <https://doi.org/10.1038/npp.2014.165>

997 Johnson, M. H., & de Haan, M. (2015). The Biology of Change. In *Developmental*
998 *Cognitive Neuroscience: An Introduction* (pp. 1–16). John Wiley and Sons, Ltd.
999 <https://doi.org/10.1145/2505515.2507827>

1000 Johnson, S. B., Riis, J. L., & Noble, K. G. (2016). State of the Art Review: Poverty and
1001 the Developing Brain. *Pediatrics*, 137(4), 1–17. <https://doi.org/10.1542/peds.2015-3075>

1002 Kaboodvand, N., Bäckman, L., Nyberg, L., & Salami, A. (2018). The retrosplenial cortex:
1003 A memory gateway between the cortical default mode network and the medial
1004 temporal lobe. *Human Brain Mapping*. <https://doi.org/10.1002/hbm.23983>

1005 Kam, J. W. Y., Lin, J. J., Solbakk, A. K., Endestad, T., Larsson, P. G., & Knight, R. T.
1006 (2019). Default network and frontoparietal control network theta connectivity
1007 supports internal attention. *Nature Human Behaviour*, 3(12), 1263–1270.
1008 <https://doi.org/10.1038/s41562-019-0717-0>

1009 Kaplan, J. (2019). *fastDummies: Fast Creation of Dummy (Binary) Columns and Rows*
1010 *from Categorical Variables*. <https://cran.r-project.org/package=fastDummies>

1011 Keller, J. B., Hedden, T., Thompson, T. W., Anteraper, S. A., Gabrieli, J. D. E., &
1012 Whitfield-Gabrieli, S. (2015). Resting-state anticorrelations between medial and

1015 lateral prefrontal cortex: Association with working memory, aging, and individual
1016 differences. *Cortex*. <https://doi.org/10.1016/j.cortex.2014.12.001>

1017 Kelly, A. M. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008).
1018 Competition between functional brain networks mediates behavioral variability.
1019 *NeuroImage*, 39(1), 527–537. <https://doi.org/10.1016/j.neuroimage.2007.08.008>

1020 Koller, M. (2016). {robustlmm}: An {R} Package for Robust Estimation of Linear Mixed-
1021 Effects Models. *Journal of Statistical Software*, 75(6), 1–24.
1022 <https://doi.org/10.18637/jss.v075.i06>

1023 Könen, T., Dirk, J., & Schmiedek, F. (2015). Cognitive benefits of last night's sleep:
1024 Daily variations in children's sleep behavior are related to working memory
1025 fluctuations. *Journal of Child Psychology and Psychiatry and Allied Disciplines*,
1026 56(2), 171–182. <https://doi.org/10.1111/jcpp.12296>

1027 Kraus, M. W., Onyeador, I. N., Daumeyer, N. M., Rucker, J. M., & Richeson, J. A.
1028 (2019). The Misperception of Racial Economic Inequality. *Perspectives on*
1029 *Psychological Science*. <https://doi.org/10.1177/1745691619863049>

1030 Langeslag, S. J. E., Schmidt, M., Ghassabian, A., Jaddoe, V. W., Hofman, A., van der
1031 Lught, A., Verhulst, F. C., Tiemeier, H., & White, T. J. H. (2013). Functional
1032 connectivity between parietal and frontal brain regions and intelligence in young
1033 children: The Generation R study. *Human Brain Mapping*, 34(12), 3299–3307.
1034 <https://doi.org/10.1002/hbm.22143>

1035 Leonard, J. A., Romeo, R. R., Park, A. T., Takada, M. E., Robinson, S. T., Grotzinger,
1036 H., Last, B. S., Finn, A. S., Gabrieli, J. D. E., & Mackey, A. P. (2019). Associations
1037 between cortical thickness and reasoning differ by socioeconomic status in
1038 development. *Developmental Cognitive Neuroscience*, 36(March 2018), 100641.
1039 <https://doi.org/10.1016/j.dcn.2019.100641>

1040 Li, C., & Tian, L. (2014). Association between resting-state coactivation in the parieto-
1041 frontal network and intelligence during late childhood and adolescence. *American*
1042 *Journal of Neuroradiology*, 35(6), 1150–1156. <https://doi.org/10.3174/ajnr.A3850>

1043 Lopez, K. C., Kandala, S., Marek, S., & Barch, D. M. (2020). Development of Network
1044 Topology and Functional Connectivity of the Prefrontal Cortex. *Cerebral Cortex*,
1045 30(4), 2489–2505. <https://doi.org/10.1093/cercor/bhz255>

1046 Luciana, M., Bjork, J. M., Nagel, B. J., Barch, D. M., Gonzalez, R., Nixon, S. J., &
1047 Banich, M. T. (2018). Adolescent neurocognitive development and impacts of
1048 substance use: Overview of the adolescent brain cognitive development (ABCD)
1049 baseline neurocognition battery. *Developmental Cognitive Neuroscience*,
1050 32(February), 67–79. <https://doi.org/10.1016/j.dcn.2018.02.006>

1051 Lüdecke, D. (2019). *sjPlot: Data Visualization for Statistics in Social Science*.
1052 <https://doi.org/10.5281/zenodo.1308157>

1053 Mackey, A. P., Finn, A. S., Leonard, J. A., Jacoby-Senghor, D. S., West, M. R., Gabrieli,
1054 C. F. O., & Gabrieli, J. D. E. (2015). Neuroanatomical Correlates of the Income-
1055 Achievement Gap. *Psychological Science*, 26(6), 925–933.
1056 <https://doi.org/10.1177/0956797615572233>

1057 Mackey, A. P., Raizada, R. D. S., & Bunge, S. A. (2013). Environmental influences on
1058 prefrontal development. *Principles of Frontal Lobe Function, September 2016*, 145–
1059 163. <https://doi.org/10.1093/med/9780199837755.003.0013>

1060 Marshall, N. A., Marusak, H. A., Sala-Hamrick, K. J., Crespo, L. M., Rabinak, C. A., &
1061 Thomason, M. E. (2018). Socioeconomic disadvantage and altered corticostriatal
1062 circuitry in urban youth. *Human Brain Mapping*, 39(5), 1982–1994.
1063 <https://doi.org/10.1002/hbm.23978> LK -
1064 <http://sfx.library.uu.nl/utrecht?sid=EMBASE&issn=10970193&id=doi:10.1002%2Fhb>
1065 [bm.23978&atitle=Socioeconomic+disadvantage+and+altered+corticostriatal+circuit](http://sfx.library.uu.nl/utrecht?sid=EMBASE&issn=10970193&id=doi:10.1002%2Fhb)
1066 [ry+in+urban+youth&stitle=Hum.+Brain+Mapp.&title=Human+Brain+Mapping&volu">ry+in+urban+youth&stitle=Hum.+Brain+Mapp.&title=Human+Brain+Mapping&volu](http://sfx.library.uu.nl/utrecht?sid=EMBASE&issn=10970193&id=doi:10.1002%2Fhb)
1067 [me=39&issue=5&spage=1982&epage=1994&aulast=Marshall&aufirst=Narcis+A.&a">me=39&issue=5&spage=1982&epage=1994&aulast=Marshall&aufirst=Narcis+A.&a](http://sfx.library.uu.nl/utrecht?sid=EMBASE&issn=10970193&id=doi:10.1002%2Fhb)
1068 [uinit=N.A.&aufull=Marshall+N.A.&coden=HBMAE&isbn=&pages=1982-](http://sfx.library.uu.nl/utrecht?sid=EMBASE&issn=10970193&id=doi:10.1002%2Fhb)
1069 [1994&date=2018&auinit1=N&auinitm=A.](http://sfx.library.uu.nl/utrecht?sid=EMBASE&issn=10970193&id=doi:10.1002%2Fhb)

1070 McLaughlin, K. A., Sheridan, M. A., & Lambert, H. K. (2014). Childhood adversity and
1071 neural development: Deprivation and threat as distinct dimensions of early
1072 experience. *Neuroscience and Biobehavioral Reviews*, 47, 578–591.
1073 <https://doi.org/10.1016/j.neubiorev.2014.10.012>

1074 McLaughlin, K. A., Weissman, D., & Bitrán, D. (2019). Childhood Adversity and Neural
1075 Development: A Systematic Review. *Annual Review of Developmental Psychology*,
1076 1(1), 277–312. <https://doi.org/10.1146/annurev-devpsych-121318-084950>

1077 McLoyd, V. C. (1998). Socioeconomic disadvantage and child development. *American
1078 Psychologist*, 53(2), 185–204.

1079 Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: a network
1080 model of insula function. *Brain Structure & Function*, 214(5–6), 655–667.
1081 <https://doi.org/10.1007/s00429-010-0262-0>

1082 Merz, E. C., Maskus, E. A., Melvin, S. A., & Noble, K. G. (2019). Socioeconomic
1083 Disparities in Language Input Are Associated With Children's Language-Related
1084 Brain Structure and Reading Skills. *Child Development*.
1085 <https://doi.org/10.1111/cdev.13239>

1086 Merz, E. C., Wiltshire, C. A., & Noble, K. G. (2019). Socioeconomic Inequality and the
1087 Developing Brain: Spotlight on Language and Executive Function. *Child
1088 Development Perspectives*, 13(1), 15–20. <https://doi.org/10.1111/cdep.12305>

1089 Mittal, C., Griskevicius, V., Simpson, J. A., Sung, S., & Young, E. S. (2015). Cognitive
1090 adaptations to stressful environments: When childhood adversity enhances adult
1091 executive function. *Journal of Personality and Social Psychology*, 109(4), 604–621.
1092 <https://doi.org/10.1037/pspi0000028>

1093 Murphy, K., & Fox, M. D. (2017). Towards a consensus regarding global signal
1094 regression for resting state functional connectivity MRI. *NeuroImage*, 154, 169–
1095 173. <https://doi.org/10.1016/j.neuroimage.2016.11.052>

1096 Noble, K G, Houston, S. M., Brito, N. H., Bartsch, H., Kan, E., Kuperman, J. M.,
1097 Akshoomoff, N., Amaral, D. G., Bloss, C. S., Libiger, O., Schork, N. J., Murray, S.
1098 S., Casey, B. J., Chang, L. D., Ernst, T. M., Frazier, J. A., Gruen, J. R., Kennedy,
1099 D. N., Van Zijl, P., ... Sowell, E. R. (2015). Family income, parental education and
1100 brain structure in children and adolescents. *Nature Neuroscience*, 18(5), 773.
1101 <https://doi.org/10.1038/nn.3983>

1102 Noble, Kimberly G., Wolmetz, M. E., Ochs, L. G., Farah, M. J., & McCandliss, B. D.
1103 (2006). Brain-behavior relationships in reading acquisition are modulated by
1104 socioeconomic factors. *Developmental Science*, 9(6), 642–654.
1105 <https://doi.org/10.1111/j.1467-7687.2006.00542.x>

1106 Nuru-Jeter, A., Dominguez, T. P., Hammond, W. P., Leu, J., Skaff, M., Egerter, S.,
1107 Jones, C. P., & Braveman, P. (2009). "It's the skin you're in": African-American

1108 women talk about their experiences of racism. An exploratory study to develop
1109 measures of racism for birth outcome studies. *Maternal and Child Health Journal*,
1110 13(1), 29–39. <https://doi.org/10.1007/s10995-008-0357-x>

1111 Nweze, T., Nwoke, M. B., Nwifo, J. I., Aniekwu, R. I., & Lange, F. (2020). Working for
1112 the future: parentally deprived Nigerian Children have enhanced working memory
1113 ability. *Journal of Child Psychology and Psychiatry and Allied Disciplines*.
1114 <https://doi.org/10.1111/jcpp.13241>

1115 Orfield, G., & Lee, C. (2005). Why segregation matters: Poverty and educational
1116 inequality. *The Civil Rights Project*.

1117 Pollak, S. D., & Wolfe, B. L. (2020). Maximizing research on the adverse effects of child
1118 poverty through consensus measures. In *Developmental Science*.
1119 <https://doi.org/10.1111/desc.12946>

1120 Power, J. D., Fair, D. A., Schlaggar, B. L., & Petersen, S. E. (2010). The Development
1121 of Human Functional Brain Networks. *Neuron*, 67(5), 735–748.
1122 <https://doi.org/10.1016/j.neuron.2010.08.017>

1123 Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S.
1124 E. (2014). Methods to detect, characterize, and remove motion artifact in resting
1125 state fMRI. *NeuroImage*. <https://doi.org/10.1016/j.neuroimage.2013.08.048>

1126 Prado, J., & Weissman, D. H. (2011). Heightened interactions between a key default-
1127 mode region and a key task-positive region are linked to suboptimal current
1128 performance but to enhanced future performance. *NeuroImage*, 56(4), 2276–2282.
1129 <https://doi.org/10.1016/j.neuroimage.2011.03.048>

1130 R Core Team. (2017). *R: A language and environment for statistical computing*. R
1131 Foundation for Statistical Computing. <https://www.r-project.org/>

1132 R Core Team. (2018). *foreign: Read Data Stored by “Minitab”, “S”, “SAS”, “SPSS”,*
1133 *“Stata”, “Systat”, “Weka”, “dBase”, ...* <https://cran.r-project.org/package=foreign>

1134 Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., &
1135 Shulman, G. L. (2001). A default mode of brain function. *Proceedings of the*
1136 *National Academy of Sciences of the United States of America*, 98(2), 676–682.
1137 <https://doi.org/10.1073/pnas.98.2.676>

1138 Reardon, S. F. (2016). School segregation and racial academic achievement gaps.

1139 *RSF: The Russell Sage Foundation Journal of the Social Sciences*, 2(5), 34–57.
1140 <https://doi.org/10.7758/rsf.2016.2.5.03>

1141 Reardon, S. F., & Owens, A. (2014). 60 Years After Brown: Trends and Consequences
1142 of School Segregation. *Annual Review of Sociology*, 40(1), 199–218.
1143 <https://doi.org/10.1146/annurev-soc-071913-043152>

1144 Rosen, M. L., Amso, D., & McLaughlin, K. A. (2019). The role of the visual association
1145 cortex in scaffolding prefrontal cortex development: A novel mechanism linking
1146 socioeconomic status and executive function. *Developmental Cognitive
1147 Neuroscience*, 39(July), 100699. <https://doi.org/10.1016/j.dcn.2019.100699>

1148 Rosen, M. L., Meltzoff, A. N., Sheridan, M. A., & McLaughlin, K. A. (2019). Distinct
1149 aspects of the early environment contribute to associative memory, cued attention,
1150 and memory-guided attention: Implications for academic achievement.
1151 *Developmental Cognitive Neuroscience*, 40, 100731.
1152 <https://doi.org/10.1016/j.dcn.2019.100731>

1153 Rosseel, Y. (2012). {lavaan}: An {R} Package for Structural Equation Modeling. *Journal
1154 of Statistical Software*, 48(2), 1–36. <http://www.jstatsoft.org/v48/i02/>

1155 Satterthwaite, T. D., Wolf, D. H., Erus, G., Ruparel, K., Elliott, M. A., Gennatas, E. D.,
1156 Hopson, R., Jackson, C., Prabhakaran, K., Bilker, W. B., Calkins, M. E., Loughead,
1157 J., Smith, A., Roalf, D. R., Hakonarson, H., Verma, R., Davatzikos, C., Gur, R. C., &
1158 Gur, R. E. (2013). Functional maturation of the executive system during
1159 adolescence. *Journal of Neuroscience*, 33(41), 16249–16261.
1160 <https://doi.org/10.1523/JNEUROSCI.2345-13.2013>

1161 Scheinost, D., Noble, S., Horien, C., Greene, A. S., Lake, E. M., Salehi, M., Gao, S.,
1162 Shen, X., O'Connor, D., Barron, D. S., Yip, S. W., Rosenberg, M. D., & Constable,
1163 R. T. (2019). Ten simple rules for predictive modeling of individual differences in
1164 neuroimaging. *NeuroImage*, 193(November 2018), 35–45.
1165 <https://doi.org/10.1016/j.neuroimage.2019.02.057>

1166 Schurz, M., Radua, J., Tholen, M. G., Maliske, L., Margulies, D. S., Mars, R. B., Sallet,
1167 J., & Kanske, P. (2020). Toward a hierarchical model of social cognition: A
1168 neuroimaging meta-analysis and integrative review of empathy and theory of mind.
1169 *Psychological Bulletin*, No Pagination Specified-No Pagination Specified.

1170 Seitzman, B. A., Gratton, C., Laumann, T. O., Gordon, E. M., Adeyemo, B., Dworetzky,
1171 A., Kraus, B. T., Gilmore, A. W., Berg, J. J., Ortega, M., Nguyen, A., Greene, D. J.,
1172 McDermott, K. B., Nelson, S. M., Lessov-Schlaggar, C. N., Schlaggar, B. L.,
1173 Dosenbach, N. U. F., & Petersen, S. E. (2019). Trait-like variants in human
1174 functional brain networks. *Proceedings of the National Academy of Sciences of the*
1175 *United States of America*, 116(45), 22851–22861.
1176 <https://doi.org/10.1073/pnas.1902932116>

1177 Seli, P., Carriere, J. S. A., & Smilek, D. (2015). Not all mind wandering is created equal:
1178 dissociating deliberate from spontaneous mind wandering. *Psychological*
1179 *Research*, 79(5), 750–758. <https://doi.org/10.1007/s00426-014-0617-x>

1180 Semega, J., Kollar, M., Creamer, J., & Mohanty, A. (2019). Income and Poverty in the
1181 United States: 2018. Report P60-266. In *Current Population Reports* (Issue
1182 September).
1183 <https://www.census.gov/content/dam/Census/library/publications/2019/demo/p60-266.pdf>

1185 Shedd, C. (2015). *Unequal city: Race, schools, and perceptions of injustice*. Russell
1186 Sage Foundation.

1187 Sheridan, M. A., Sarsour, K., Jutte, D., D'Esposito, M., & Boyce, W. T. (2012). The
1188 impact of social disparity on prefrontal function in childhood. *PLoS ONE*, 7(4).
1189 <https://doi.org/10.1371/journal.pone.0035744>

1190 Sherman, L. E., Rudie, J. D., Pfeifer, J. H., Masten, C. L., McNealy, K., & Dapretto, M.
1191 (2014). Development of the Default Mode and Central Executive Networks across
1192 early adolescence: A longitudinal study. *Developmental Cognitive Neuroscience*.
1193 <https://doi.org/10.1016/j.dcn.2014.08.002>

1194 Simons, R. L., Murry, V., McLoyd, V., Lin, K.-H., Cutrona, C., & Conger, R. D. (2002).
1195 Discrimination, crime, ethnic identity, and parenting as correlates of depressive
1196 symptoms among African American children: A multilevel analysis. *Development*
1197 *and Psychopathology*, 14(2), 371–393.
1198 <https://doi.org/10.1017/s0954579402002109>

1199 Simpson, J. R., Snyder, A. Z., Gusnard, D. A., & Raichle, M. E. (2001a). Emotion-
1200 induced changes in human medial prefrontal cortex: I. During cognitive task

1201 performance. *Proceedings of the National Academy of Sciences of the United*
1202 *States of America*, 98(2), 683–687. <https://doi.org/10.1073/pnas.98.2.683>

1203 Simpson, J. R., Snyder, A. Z., Gusnard, D. A., & Raichle, M. E. (2001b). Emotion-
1204 induced changes in human medial prefrontal cortex: II. During anticipatory anxiety.
1205 *Proceedings of the National Academy of Sciences of the United States of America*,
1206 98(2), 688–693.

1207 Somerville, L. H., & Casey, B. J. (2010). Developmental neurobiology of cognitive
1208 control and motivational systems. In *Current Opinion in Neurobiology*.
1209 <https://doi.org/10.1016/j.conb.2010.01.006>

1210 Song, M., Zhou, Y., Li, J., Liu, Y., Tian, L., Yu, C., & Jiang, T. (2008). Brain
1211 spontaneous functional connectivity and intelligence. *NeuroImage*.
1212 <https://doi.org/10.1016/j.neuroimage.2008.02.036>

1213 Spengler, M., Brunner, M., Damian, R. I., Lüdtke, O., Martin, R., & Roberts, B. W.
1214 (2015). Student characteristics and behaviors at age 12 predict occupational
1215 success 40 years later over and above childhood IQ and parental socioeconomic
1216 status. *Developmental Psychology*. <https://doi.org/10.1037/dev0000025>

1217 Spreng, R. N. (2012). The fallacy of a “task-negative” network. *Frontiers in Psychology*,
1218 3(MAY), 1–5. <https://doi.org/10.3389/fpsyg.2012.00145>

1219 Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular
1220 cortex in switching between central-executive and default-mode networks.
1221 *Proceedings of the National Academy of Sciences of the United States of America*,
1222 105(34), 12569–12574. <https://doi.org/10.1073/pnas.0800005105>

1223 Uddin, L. Q., Supekar, K., & Menon, V. (2010). Typical and atypical development of
1224 functional human brain networks: Insights from resting-state fMRI. In *Frontiers in*
1225 *Systems Neuroscience*. <https://doi.org/10.3389/fnsys.2010.00021>

1226 Uddin, L. Q., Yeo, B. T. T., & Spreng, R. N. (2019). Towards a Universal Taxonomy of
1227 Macro-scale Functional Human Brain Networks. *Brain Topography*, 32(6), 926–
1228 942. <https://doi.org/10.1007/s10548-019-00744-6>

1229 van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by
1230 Chained Equations in R. *Journal of Statistical Software*, 45(3).

1231 Varner, F. A., Hou, Y., Hodzic, T., Hurd, N. M., Butler-Barnes, S. T., & Rowley, S. J.

1232 (2018). Racial discrimination experiences and African American youth adjustment:
1233 The role of parenting profiles based on racial socialization and involved-vigilant
1234 parenting. *Cultural Diversity and Ethnic Minority Psychology*, 24(2), 173–186.
1235 <https://doi.org/10.1037/cdp0000180>

1236 Venables, W. N., & Ripley, B. D. (2002). *Modern Applied Statistics with S* (Fourth).
1237 Springer. <http://www.stats.ox.ac.uk/pub/MASS4>

1238 Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence
1239 for a frontoparietal control system revealed by intrinsic functional connectivity.
1240 *Journal of Neurophysiology*, 100(6), 3328–3342.
1241 <https://doi.org/10.1152/jn.90355.2008>

1242 Vincent, J. L., Snyder, A. Z., Fox, M. D., Shannon, B. J., Andrews, J. R., Raichle, M. E.,
1243 & Buckner, R. L. (2006). Coherent spontaneous activity identifies a hippocampal-
1244 parietal memory network. *Journal of Neurophysiology*, 96(6), 3517–3531.
1245 <https://doi.org/10.1152/jn.00048.2006>

1246 Waddington, C. H. (1957). The strategy of the genes: A discussion of some aspects of
1247 theoretical biology. In *The Strategy of the Genes: A Discussion of Some Aspects of*
1248 *Theoretical Biology*. <https://doi.org/10.4324/9781315765471>

1249 Warnes, G. R., Bolker, B., & Lumley, T. (2018). *gtools: Various R Programming Tools*.
1250 <https://cran.r-project.org/package=gtools>

1251 Wechsler, D. (2014). *Wechsler intelligence scale for children, 5th edition*. Pearson.

1252 Wei, T., & Simko, V. (2017). *R package “corrplot”: Visualization of a Correlation Matrix*.
1253 <https://github.com/taiyun/corrplot>

1254 Weissman, D. G., Conger, R. D., Robins, R. W., Hastings, P. D., & Guyer, A. E. (2018).
1255 Income change alters default mode network connectivity for adolescents in poverty.
1256 *Developmental Cognitive Neuroscience*, 30(December 2017), 93–99.
1257 <https://doi.org/10.1016/j.dcn.2018.01.008>

1258 Weissman, D. H., Roberts, K. C., Visscher, K. M., & Woldorff, M. G. (2006). The neural
1259 bases of momentary lapses in attention. *Nature Neuroscience*, 9(7), 971–978.
1260 <https://doi.org/10.1038/nn1727>

1261 Whitfield-Gabrieli, S., Wendelken, C., Nieto-Castañón, A., Bailey, S. K., Anteraper, S.
1262 A., Lee, Y. J., Chai, X. Q., Hirshfeld-Becker, D. R., Biederman, J., Cutting, L. E., &

1263 Bunge, S. A. (2020). Association of Intrinsic Brain Architecture with Changes in
1264 Attentional and Mood Symptoms during Development. *JAMA Psychiatry*, 77(4),
1265 378–386. <https://doi.org/10.1001/jamapsychiatry.2019.4208>

1266 Wickham, H. (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New
1267 York. <https://ggplot2.tidyverse.org>

1268 Wickham, H. (2018). *scales: Scale Functions for Visualization*. <https://cran.r-project.org/package=scales>

1269 Wickham, H., François, R., Henry, L., & Müller, K. (2019). *dplyr: A Grammar of Data
1270 Manipulation*. <https://cran.r-project.org/package=dplyr>

1271 Wickham, H., & Henry, L. (2019). *tidyverse: Tidy Messy Data*. <https://cran.r-project.org/package=tidyverse>

1272 Yoshida, K. (2019). *tableone: Create “Table 1” to Describe Baseline Characteristics*.
1273 <https://cran.r-project.org/package=tableone>

1274 Young, E. S., Griskevicius, V., Simpson, J. A., & Waters, T. E. A. (2018). *Can an
1275 Unpredictable Childhood Environment Enhance Working Memory? Testing the
1276 Sensitized-Specialization Hypothesis*. 114(6), 891–908.

1277 Zelazo, P. D., Anderson, J. E., Richler, J., Wallner-Allen, K., Beaumont, J. L., &
1278 Weintraub, S. (2013). II. NIH Toolbox Cognition Battery (CB): measuring executive
1279 function and attention. *Monographs of the Society for Research in Child
1280 Development*. <https://doi.org/10.1111/mono.12032> LK -
1281 <http://rug.on.worldcat.org/atoztitles/link/?sid=EMBASE&issn=15405834&id=doi:10.1111%2Fmono.12032&atitle=II.+NIH+Toolbox+Cognition+Battery+%28CB%29%3A+measuring+executive+function+and+attention&stitle=Monogr+Soc+Res+Child+Dev&title=Monographs+of+the+Society+for+Research+in+Child+Development&volume=78&issue=4&spage=16&epage=33&aulast=Zelazo&aufirst=Philip+D.avid&auinit=P.D.&aufull=Zelazo+P.D.&coden=&isbn=&pages=16-33&date=2013&auinit1=P&auinitm=D>

1282

1283

1284

1285

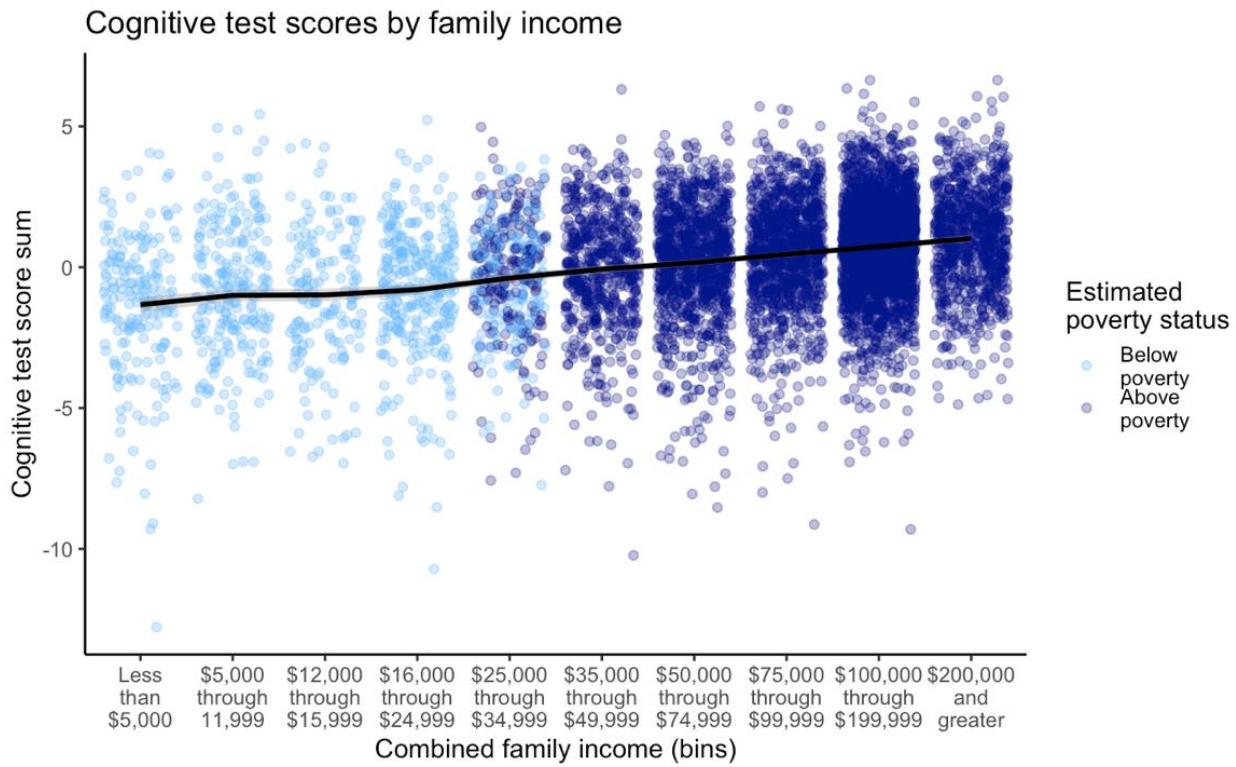
1286

1287

1288

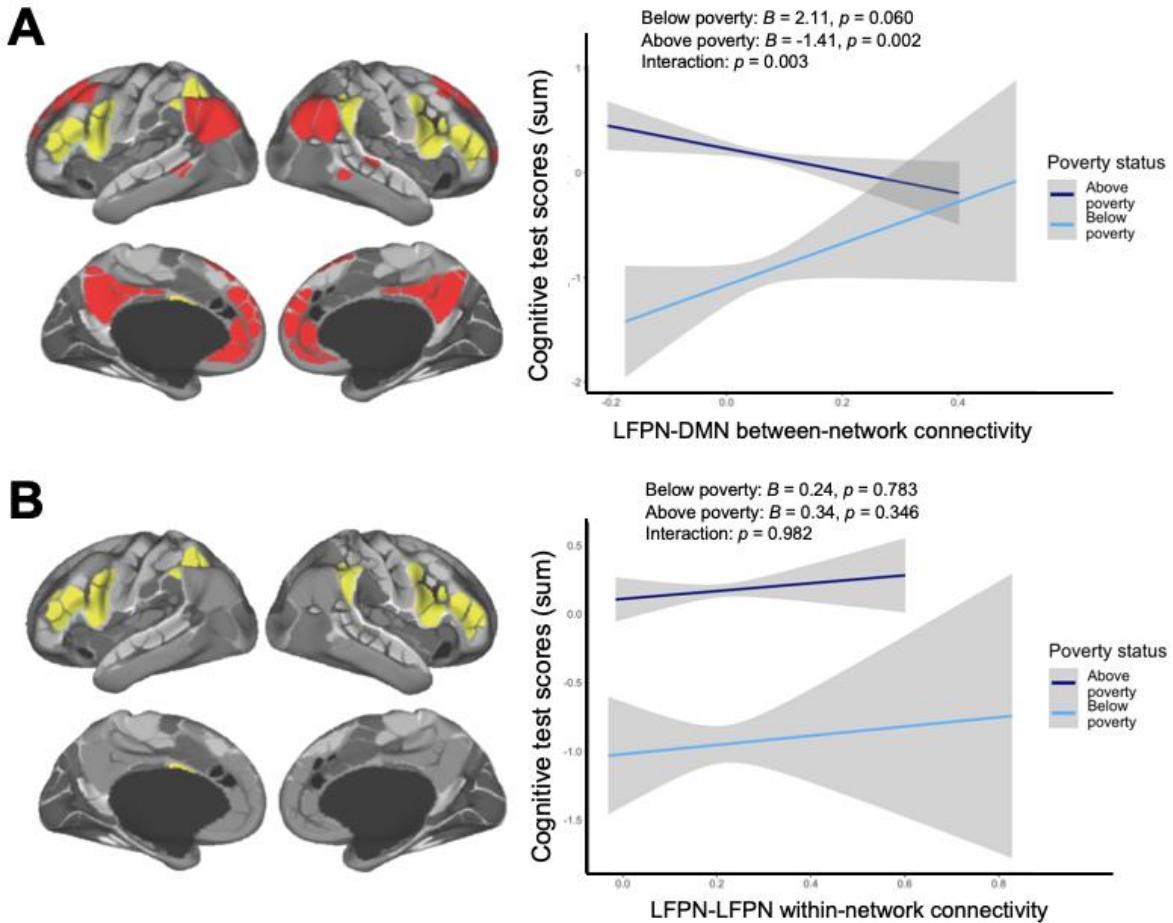
1289

1290



1291

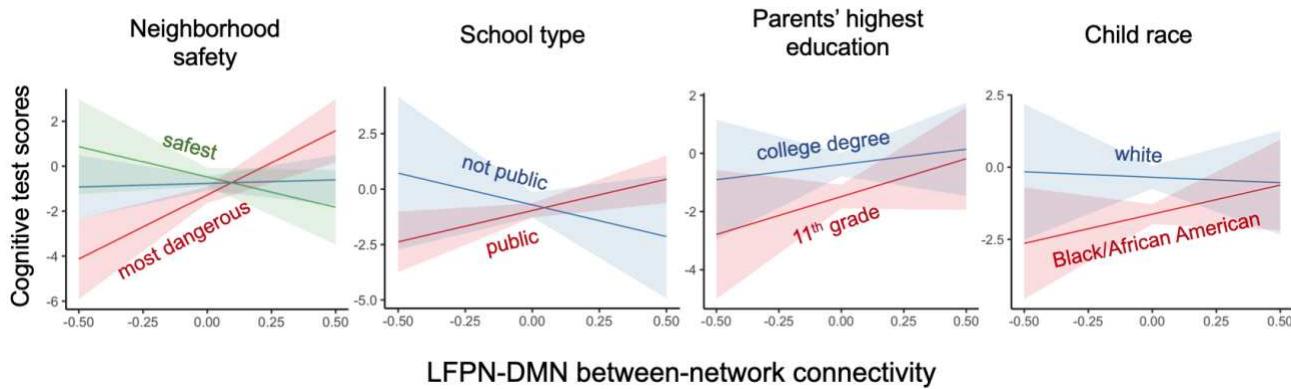
1292 **Figure 1.** Illustration of the variability of cognitive test performance within every level of
1293 family income in the sample (N = 6839). Colors indicate whether children were classified as
1294 living in poverty, based on a combination of their family income and number of people in
1295 the home. Replicating prior studies, higher income is associated with higher cognitive test
1296 performance ($R = 0.24$); however, it is important to acknowledge this substantial variability
1297 within and overlap between children at each level of family income.
1298



1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312

Figure 2. Relations between resting state network metrics and cognitive test score residuals, for children living above poverty (dark blue) and below poverty (light blue). Models include fixed effects for age and motion and a random effect for study site. 95% confidence intervals for a linear model calculated and displayed using the *geom_smooth* function in *ggplot*. Panel A: Children living above poverty show an expected, negative, relation between LFPN-DMN connectivity and test performance, $B = -1.41$, $SE = 0.45$; $p = 0.002$, while children living below poverty show the opposite pattern, $B = 2.11$, $SE = 1.12$; $p = 0.060$, interaction: $\chi^2 (1) = 8.99$, $p = 0.003$. Panel B: Children across the sample show a non-significant positive relation between LFPN-LFPN within-network connectivity and test performance, above poverty: $B = 0.34$, $SE = 0.36$; $p = 0.346$; below poverty: $B = 0.24$, $SE = 0.87$; $p = 0.783$; interaction: $\chi^2 (1) = 0.0005$, $p = 0.982$. Networks functionally defined using the Gordon parcellation scheme; on left, LFPN is shown in yellow and DMN shown in red, figures adapted from (Gordon et al., 2016).

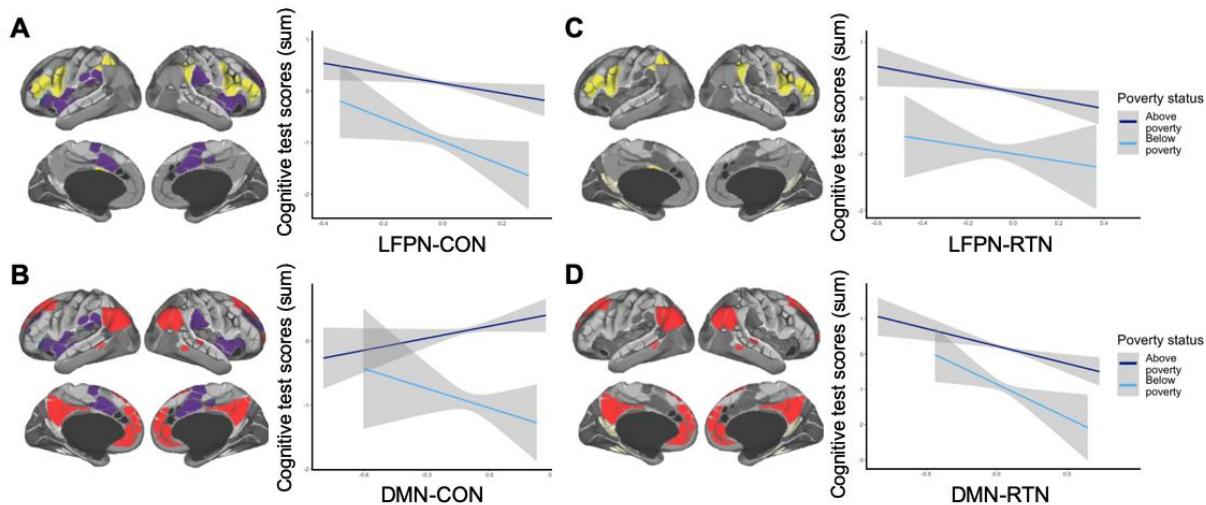
1313



1314
1315
1316
1317
1318
1319
1320
1321

Figure 3. Interactions between demographic variables and LFPN-DMN connectivity in predicting cognitive test scores, for children below poverty. The majority of non-public schools were charter and private schools. In addition, only white and Black/African American race are displayed as these were the most represented in the current sample, though there were also suggestive interactive effects for children of mixed race and Hispanic ethnicity. 89% level confidence intervals for predicted effects calculated and displayed using the *sjPlot* package in R (Lüdecke, 2019).

1322



1323
1324 **Figure 4. Exploratory analyses with cingulo-opercular network (CON, panels A-B) and**
1325 **retrosplenial temporal network (RTN, panels C-D). Panel A:** weaker LFPN-CON connectivity
1326 **was associated with better test performance for both groups, with little evidence of an**
1327 **interaction (main effect: $B = -1.14$, $SE = 0.45$, $t(6824) = -2.53$; $X^2(1) = 11.76$, $p = 0.001$;**
1328 **interaction: $B = -1.42$, $SE = 1.03$, $t(6824) = -1.37$; $X^2(1) = 1.87$, $p = 0.171$). Panel B:** DMN-CON
1329 **connectivity was not consistently associated with test performance, though it was directionally**
1330 **positive for children above poverty and negative for children below poverty (main effect: $B =$**
1331 **0.47 , $SE = 0.38$, $t(6823) = 1.24$; $X^2(1) = 0.27$, $p = 0.601$; interaction: $B = -1.66$, $SE = 0.88$, t**
1332 **$(6823) = -1.88$; $X^2(1) = 3.53$, $p = 0.060$). Panels C and D:** weaker LFPN-RTN connectivity and
1333 **weaker DMN-RTN connectivity were both associated with better test performance, with little**
1334 **evidence of an interaction (Panel C: LFPN-RTN main effect: $B = -0.90$, $SE = 0.36$, $t(6829) = -$**
1335 **2.54 ; $X^2(1) = 7.13$, $p = 0.008$; LFPN-RTN interaction: $B = 0.23$, $SE = 0.84$, $t(6829) = 0.27$; X^2**
1336 **$(1) = 0.08$, $p = 0.784$; Panel D: DMN-RTN main effect: $B = -0.99$, $SE = 0.32$, $t(6826) = -3.14$; X^2**
1337 **$(1) = 16.24$, $p < 0.001$; DMN-RTN interaction: $B = -0.95$, $SE = 0.75$, $t(6826) = -1.27$; $X^2(1) =$**
1338 **1.61 , $p = 0.205$). As in Figure 2, plots show relations between resting state network metrics and**
1339 **cognitive test score residuals, for children living above poverty (dark blue) and below poverty**
1340 **(light blue). Models include fixed effects for age and motion and a random effect for study site.**
1341 **95% confidence intervals for a linear model calculated and displayed using the geom_smooth**
1342 **function in ggplot.**

1343 **Table 1.** Participant characteristics. Demographic information in plain text; brain and cognitive
1344 variables italicized.

	Above poverty (n = 5805)	Below poverty (n = 1034)	p-test
Age in months (mean (SD))	119.44 (7.54)	118.89 (7.50)	0.032
Sex at birth (%)			0.055
Other/did not disclose	0 (0.0)	1 (0.1)	
Female	2913 (50.2)	511 (49.4)	
Male	2892 (49.8)	522 (50.5)	
Primary caregiver in study (%)			<0.001
Biological mother	4904 (84.5)	920 (89.0)	
Biological father	645 (11.1)	54 (5.2)	
Adoptive parent	137 (2.4)	18 (1.7)	
Custodial parent	43 (0.7)	23 (2.2)	
Other	76 (1.3)	19 (1.8)	
Site (de-identified) (%)			<0.001
site02	429 (7.4)	19 (1.8)	
site03	285 (4.9)	130 (12.6)	
site04	369 (6.4)	122 (11.8)	
site05	203 (3.5)	42 (4.1)	
site06	395 (6.8)	16 (1.5)	
site07	170 (2.9)	42 (4.1)	
site08	177 (3.0)	14 (1.4)	
site09	250 (4.3)	24 (2.3)	
site10	297 (5.1)	101 (9.8)	
site11	224 (3.9)	67 (6.5)	
site12	298 (5.1)	73 (7.1)	
site13	361 (6.2)	61 (5.9)	
site14	434 (7.5)	15 (1.5)	
site15	127 (2.2)	85 (8.2)	
site16	820 (14.1)	70 (6.8)	
site18	208 (3.6)	19 (1.8)	
site20	422 (7.3)	76 (7.4)	
site21	314 (5.4)	54 (5.2)	
site22	22 (0.4)	4 (0.4)	
<i>RSfMRI mean framewise displacement (mean (SD))</i>	0.19 (0.15)	0.23 (0.18)	<0.001
<i>LFPN-DMN connectivity (mean (SD))</i>	0.058 (0.06)	0.061 (0.06)	0.061
<i>LFPN-LFPN connectivity (mean (SD))</i>	0.21 (0.07)	0.21 (0.08)	0.286
<i>Matrix reasoning raw score (mean (SD))</i>	18.67 (3.51)	16.35 (3.89)	<0.001
<i>Flanker raw score (mean (SD))</i>	95.34 (8.03)	91.92 (10.24)	<0.001
<i>Card sort raw score (mean (SD))</i>	94.09 (8.58)	89.83 (9.79)	<0.001

1345
1346

1347
1348 **Table 2.** Wider environmental information. Variables included in the ridge regression predicting
1349 cognitive test scores. All except income were used in primary models; additional tests confirmed
that income did not add predictive power above and beyond these variables.

	Above poverty (n = 5805)	Below poverty (n = 1034)	p-test
Combined family income (%)			<0.001
Less than \$5,000	0 (0.0)	187 (18.1)	
\$5,000 through 11,999	0 (0.0)	219 (21.2)	
\$12,000 through \$15,999	0 (0.0)	154 (14.9)	
\$16,000 through \$24,999	0 (0.0)	280 (27.1)	
\$25,000 through \$34,999	215 (3.7)	194 (18.8)	
\$35,000 through \$49,999	579 (10.0)	0 (0.0)	
\$50,000 through \$74,999	972 (16.7)	0 (0.0)	
\$75,000 through \$99,999	1050 (18.1)	0 (0.0)	
\$100,000 through \$199,999	2157 (37.2)	0 (0.0)	
\$200,000 and greater	832 (14.3)	0 (0.0)	
Parents' highest level of education (n, %)			<0.001
3rd grade	1 (0.0)	0 (0.0)	
4th grade	0 (0.0)	1 (0.1)	
5th grade	0 (0.0)	1 (0.1)	
6th grade	4 (0.1)	13 (1.3)	
7th grade	1 (0.0)	2 (0.2)	
8th grade	1 (0.0)	8 (0.8)	
9th grade	6 (0.1)	24 (2.3)	
10th grade	10 (0.2)	26 (2.5)	
11th grade	12 (0.2)	34 (3.3)	
12th grade	13 (0.2)	47 (4.5)	
High school graduate	167 (2.9)	169 (16.3)	
GED or equivalent	66 (1.1)	91 (8.8)	
Some college	590 (10.2)	297 (28.7)	
Associate degree: occupational	374 (6.4)	135 (13.1)	
Associate degree: academic	297 (5.1)	63 (6.1)	
Bachelor's degree	1818 (31.3)	86 (8.3)	
Master's degree	1677 (28.9)	32 (3.1)	
Professional school degree	364 (6.3)	4 (0.4)	
Doctoral degree	403 (6.9)	1 (0.1)	
People living in home (mean (SD))	4.76 (1.64)	4.97 (2.89)	0.001
Any siblings (yes, %)	1905 (32.8)	269 (26.0)	<0.001
Hours/week spent at another household (mean (SD))	5.34 (19.45)	5.45 (21.63)	0.869
Financial stress (0-7; mean (SD))	0.28 (0.85)	1.32 (1.61)	<0.001
Race (%)			<0.001

RUNNING HEAD: Adaptive patterns of brain connectivity

Native American/Alaska Native	17 (0.3)	14 (1.4)	
Asian	126 (2.2)	8 (0.8)	
Black/African American	495 (8.5)	377 (36.5)	
Pacific Islander	8 (0.1)	1 (0.1)	
Other	159 (2.7)	74 (7.2)	
White	4263 (73.4)	386 (37.3)	
Mixed	696 (12.0)	141 (13.6)	
Refuse to answer	41 (0.7)	33 (3.2)	
Hispanic/Latino ethnicity (no, %)	4776 (83.1)	682 (67.3)	<0.001
Parent marital status (%)			<0.001
Married	4621 (79.7)	302 (29.6)	
Widowed	33 (0.6)	22 (2.2)	
Separated/divorced	600 (10.4)	232 (22.7)	
Never married	319 (5.5)	369 (36.1)	
Living with partner	223 (3.8)	96 (9.4)	
Generational status (%)			<0.001
Parent born outside U.S.	708 (12.2)	201 (19.5)	
Grandparent born outside U.S.	933 (16.1)	90 (8.7)	
Child born outside U.S.	118 (2.0)	32 (3.1)	
Parents and grandparents born in U.S.	4043 (69.7)	709 (68.7)	
School setting (%)			<0.001
Not in school	19 (0.3)	6 (0.6)	
Regular public school	4836 (83.3)	891 (86.2)	
Regular private school	346 (6.0)	40 (3.9)	
Charter school	412 (7.1)	79 (7.6)	
Vocational/tech school	2 (0.0)	1 (0.1)	
Cyber school	7 (0.1)	2 (0.2)	
Home school	112 (1.9)	2 (0.2)	
School for behavioral/emotional problems	7 (0.1)	3 (0.3)	
Other	63 (1.1)	10 (1.0)	
Youth-reported supportive school environment (6-24; mean (SD))	19.95 (2.63)	19.96 (3.22)	0.949
Youth-reported school involvement (4-16; mean (SD))	13.11 (2.25)	13.22 (2.44)	0.162
Youth-reported school disengagement (2-8; mean (SD))	3.66 (1.39)	3.79 (1.57)	0.006
Census: % of people over age 25 with at least a high school diploma (mean (SD))	91.13 (8.76)	81.30 (12.11)	<0.001
Census: income disparity (mean (SD))	1.81 (1.17)	3.13 (1.34)	<0.001
Census: % of occupied units without complete plumbing (mean (SD))	0.28 (0.64)	0.44 (0.83)	<0.001
Census: % of families below the poverty level (mean (SD))	8.35 (8.68)	20.93 (14.61)	<0.001

RUNNING HEAD: Adaptive patterns of brain connectivity

Census: % of labor force aged >=16 y unemployed (mean (SD))	7.69 (4.52)	13.15 (7.49)	<0.001
Census: uniform crime reports (mean (SD))	43774.47 (69634.30)	43204.49 (57108.32)	0.81
Census: adult violent crime reports (mean (SD))	2660.87 (6271.58)	2642.93 (5030.45)	0.933
Census: estimated lead risk (1-10; mean (SD))	4.40 (2.98)	6.77 (2.89)	<0.001
Parent-reported neighborhood safety (1-5; mean (SD))	4.05 (0.85)	3.34 (1.11)	<0.001
Parent self-reported aggressive behavior (0-30; mean (SD))	3.14 (3.27)	4.47 (4.58)	<0.001
Parent self-reported intrusive behavior (0-12; mean (SD))	1.01 (1.43)	1.08 (1.43)	0.198
Parent self-reported withdrawn behavior (0-18; mean (SD))	1.35 (1.85)	2.46 (2.83)	<0.001
Parent ethnic identification (1-5; mean (SD))	2.71 (0.86)	2.58 (0.94)	<0.001
Youth-reported family conflict (0-9; mean (SD))	1.93 (1.92)	2.45 (2.04)	<0.001
Youth-reported parental monitoring (1-5; mean (SD))	4.43 (0.46)	4.31 (0.59)	<0.001
Youth-reported parental acceptance (1-3; mean (SD))	2.80 (0.29)	2.76 (0.33)	<0.001

1350
1351

1352 **Table 3.** Estimated coefficients from Ridge regression predicting children's cognitive test
 1353 scores, when controlling for fixed effects of age and motion and random effects of study site, for
 1354 all children below the poverty line. Interactions with and main effect of LFPN-DMN connectivity
 1355 italicized.

	Estimate	scaled estimate	std. Error (scaled)	t value (scaled)	Pr(> t)
(Intercept)	0.12	NA	NA	NA	NA
Black race	-0.10	-1.46	0.28	5.29	0.000
Parents' highest level of education (years)	0.05	1.53	0.32	4.76	0.000
Census: % of people over age 25 with >= high school diploma	0.03	1.06	0.29	3.69	0.000
White race	0.06	0.98	0.29	3.42	0.001
Asian race	0.37	1.06	0.33	3.23	0.001
Census: % of labor force aged >=16 y unemployed	-0.02	-0.77	0.28	2.75	0.006
Census: % of families below the poverty level	-0.02	-0.70	0.26	2.71	0.007
Parent ethnic identification	0.03	0.87	0.33	2.68	0.007
Youth-reported school disengagement	-0.02	-0.81	0.31	2.61	0.009
Census: income disparity	-0.02	-0.67	0.26	2.57	0.010
<i>LFPN-DMN x Public school</i>	0.27	0.53	0.22	2.41	0.016
<i>LFPN-DMN x Parent-reported neighborhood safety</i>	-0.19	-0.67	0.29	2.35	0.019
Census: estimated lead risk	-0.02	-0.60	0.28	2.17	0.030
<i>LFPN-DMN x Mixed race</i>	0.74	0.65	0.31	2.07	0.038
Third generation American	-0.04	-0.52	0.25	2.04	0.042
<i>LFPN-DMN x Parents' highest level of education</i>	0.15	0.52	0.27	1.90	0.057
<i>LFPN-DMN</i>	0.18	0.34	0.20	1.72	0.085
<i>LFPN-DMN x Black race</i>	-0.28	-0.43	0.25	1.70	0.089
<i>LFPN-DMN x non-Hispanic</i>	0.20	0.38	0.22	1.67	0.094
Mixed race	0.05	0.52	0.31	1.66	0.096
<i>LFPN-DMN x White race</i>	0.31	0.46	0.28	1.61	0.107
<i>LFPN-DMN x Not in school</i>	-3.15	-0.48	0.31	1.54	0.123
<i>LFPN-DMN x Census: % of occupied units without complete plumbing</i>	0.16	0.49	0.32	1.54	0.124
Parent never married	-0.03	-0.44	0.29	1.53	0.125
First generation American	0.03	0.38	0.27	1.40	0.160
<i>LFPN-DMN x Hours/week spent at another household</i>	-0.14	-0.46	0.33	1.39	0.165
Second generation American	0.04	0.40	0.31	1.29	0.197
<i>LFPN-DMN x Parent self-reported intrusive behavior</i>	0.15	0.39	0.31	1.27	0.206
Parent-reported neighborhood safety	0.01	0.37	0.31	1.18	0.238
<i>LFPN-DMN x First-generation American</i>	0.26	0.32	0.27	1.17	0.243
<i>LFPN-DMN x Parent ethnic identification</i>	0.12	0.37	0.32	1.15	0.250
Native American/Alaska Native	0.10	0.36	0.32	1.12	0.261

RUNNING HEAD: Adaptive patterns of brain connectivity

Parent married	0.02	0.33	0.30	1.11	0.266
<i>LFPN-DMN x Census: % of people over age 25 with >= a high school diploma</i>	0.08	0.29	0.26	1.11	0.269
<i>LFPN-DMN x Youth born outside U.S.</i>	0.83	0.36	0.33	1.09	0.274
<i>LFPN-DMN x Private school</i>	-0.70	-0.35	0.32	1.09	0.278
Other race	-0.04	-0.33	0.31	1.07	0.286
<i>LFPN-DMN x Parent separated/divorced</i>	0.25	0.31	0.29	1.06	0.288
<i>LFPN-DMN x Youth-reported school involvement</i>	0.10	0.30	0.29	1.05	0.294
<i>LFPN-DMN x Second-generation American</i>	-0.44	-0.32	0.31	1.02	0.308
Youth-reported parental acceptance	-0.01	-0.30	0.31	0.97	0.333
Any siblings	-0.02	-0.30	0.33	0.90	0.366
Other school setting	0.08	0.29	0.32	0.89	0.372
<i>LFPN-DMN x People living in home</i>	-0.06	-0.27	0.31	0.87	0.387
<i>LFPN-DMN x Third-generation American</i>	0.10	0.19	0.23	0.86	0.392
<i>LFPN-DMN x Youth-reported school disengagement</i>	-0.09	-0.26	0.31	0.85	0.397
Parent widowed	-0.06	-0.27	0.33	0.81	0.418
Not in school	-0.11	-0.25	0.31	0.80	0.425
Home school	-0.16	-0.22	0.30	0.73	0.463
<i>LFPN-DMN x Financial stress</i>	-0.05	-0.22	0.31	0.73	0.468
Parent separated/divorced	0.02	0.22	0.31	0.72	0.471
Census: adult violent crime reports	0.01	0.20	0.27	0.72	0.472
<i>LFPN-DMN x home school</i>	-2.82	-0.21	0.30	0.71	0.478
Youth-reported supportive school environment	-0.01	-0.21	0.30	0.70	0.483
<i>LFPN-DMN x Asian race</i>	0.44	0.21	0.31	0.70	0.487
<i>LFPN-DMN x Census: income disparity</i>	0.05	0.16	0.23	0.70	0.487
Census: uniform crime reports	0.01	0.19	0.28	0.68	0.498
<i>LFPN-DMN x Youth-reported parental monitoring</i>	-0.06	-0.21	0.31	0.67	0.503
<i>LFPN-DMN x Any siblings</i>	0.15	0.20	0.30	0.65	0.517
Hours/week spent at another household	-0.01	-0.21	0.34	0.63	0.526
<i>LFPN-DMN x Native American/Alaska Native</i>	0.51	0.19	0.32	0.59	0.553
<i>LFPN-DMN x Youth-reported family conflict</i>	0.06	0.18	0.31	0.58	0.565
<i>LFPN-DMN x School for behavioral/emotional problems</i>	-2.37	-0.20	0.35	0.57	0.566
<i>LFPN-DMN x Youth-reported supportive school environment</i>	0.05	0.17	0.30	0.56	0.578
<i>LFPN-DMN x Parent married</i>	0.11	0.16	0.28	0.55	0.580
<i>LFPN-DMN x Census: adult violent crime reports</i>	-0.06	-0.15	0.27	0.55	0.581
School for behavioral/emotional problems	0.10	0.18	0.35	0.51	0.612
<i>LFPN-DMN x Census: estimated lead risk</i>	0.04	0.13	0.25	0.50	0.616
Youth-reported school involvement	0.00	-0.14	0.30	0.49	0.625
People living in home	0.00	-0.15	0.31	0.48	0.633
Private school	-0.02	-0.15	0.32	0.48	0.634
Child born outside U.S.	-0.03	-0.15	0.33	0.46	0.648

RUNNING HEAD: Adaptive patterns of brain connectivity

<i>LFPN-DMN x Census: uniform crime reports</i>	-0.05	-0.13	0.28	0.45	0.650
<i>LFPN-DMN x Other race</i>	-0.17	-0.13	0.31	0.44	0.661
Youth-reported parental monitoring	0.00	-0.13	0.32	0.42	0.671
Parent self-reported aggressive behavior	0.00	0.12	0.29	0.42	0.673
Youth-reported family conflict	0.00	-0.12	0.32	0.39	0.695
<i>LFPN-DMN x Charter school</i>	-0.16	-0.11	0.31	0.37	0.710
Financial stress	0.00	0.11	0.33	0.35	0.726
<i>LFPN-DMN x Head motion</i>	0.03	0.09	0.30	0.30	0.763
<i>LFPN-DMN x Parent never married</i>	0.05	0.07	0.27	0.26	0.795
<i>LFPN-DMN x Parent self-reported withdrawn behavior</i>	0.02	0.08	0.30	0.25	0.802
Head motion	0.00	0.07	0.33	0.21	0.835
<i>LFPN-DMN x Parent self-reported aggressive behavior</i>	0.02	0.06	0.29	0.19	0.847
Hispanic ethnicity	0.00	0.05	0.24	0.19	0.849
Non-hispanic ethnicity	0.00	-0.05	0.24	0.19	0.849
Parent self-reported intrusive behavior	0.00	0.06	0.31	0.19	0.852
Age	0.00	0.06	0.33	0.17	0.865
Public school	0.00	0.05	0.29	0.17	0.868
<i>LFPN-DMN x Parent widowed</i>	-0.18	-0.05	0.33	0.17	0.869
<i>LFPN-DMN x Census: % of families below the poverty level</i>	0.01	0.04	0.23	0.16	0.870
Census: % of occupied units without complete plumbing	0.00	0.05	0.33	0.16	0.873
<i>LFPN-DMN x Youth-reported parental acceptance</i>	0.01	0.04	0.30	0.13	0.900
Parent living with partner	0.00	0.03	0.32	0.11	0.914
<i>LFPN-DMN x Parent living with partner</i>	-0.04	-0.03	0.31	0.10	0.919
<i>LFPN-DMN x Hispanic ethnicity</i>	-0.02	-0.03	0.26	0.10	0.920
<i>LFPN-DMN x Age</i>	0.01	0.02	0.32	0.07	0.946
<i>LFPN-DMN x Other school setting</i>	0.03	0.01	0.32	0.03	0.976
<i>LFPN-DMN x Census: % of labor force aged >=16 y unemployed</i>	0.00	-0.01	0.25	0.02	0.981
Charter school	0.00	-0.01	0.30	0.02	0.982
Parent self-reported withdrawn behavior	0.00	0.00	0.30	0.00	0.997