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Abstract.

Prior research indicates that lower resting-state functional coupling between two brain
networks, lateral frontoparietal network (LFPN) and default mode network (DMN),
relates to better cognitive test performance. However, most study samples skew
towards wealthier individuals—and what is adaptive for one population may not be for
another. In a pre-registered study, we analyzed resting-state fMRI from 6839 children
ages 9-10 years. For children above poverty, we replicated the prior finding: better
cognitive performance correlated with weaker LFPN-DMN coupling. For children in
poverty, the slope of the relation was instead positive. This significant interaction related
to several features of a child's environment. Future research should investigate the
possibility that leveraging internally guided cognition is a mechanism of resilience for
children in poverty. In sum, “optimal” brain function depends in part on the external
pressures children face, highlighting the need for more diverse samples in research on
the human brain and behavior.
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Introduction

In the United States, one fifth of children are estimated to live below the poverty line
(Semega et al., 2019). Relative to children living just above poverty, these children are
least likely to have access to the federal social safety net, and they are at heightened
risk for poor health and educational outcomes (Hoynes & Schanzenbach, 2018;
Reardon, 2016). Compared to their peers whose families earn more money, children
living in poverty tend to perform worse on tests of cognitive functioning (for a review,
see Farah, 2017), itself a risk factor for later outcomes (e.g., Spengler et al., 2015).
However, such broad comparisons obscure substantial variability within the group of
children living in poverty, a large segment of whom score on par with their higher-
income peers. Here, we seek to understand this form of resilience—high cognitive test
performance in the face of structural barriers to success. One way to begin to address
this question is to identify sets of experiences that may be protective for children in
poverty, given the wide range of experiences they have (Dedoseph et al., 2020;
Gonzalez et al., 2019). Another way is to probe differences in brain function, to gain
insight into the mechanisms underlying resilience. In this study, we examine the neural
and environmental correlates of resilience in a sample of over 1,000 children across the
United States likely to be living in poverty.

In one of the most influential theories of development, Waddington proposed that
ontogenetic trajectories are variable across individuals and not inherently fixed at birth
(Johnson & de Haan, 2015; Waddington, 1957). Instead, both biological and
environmental influences interact across development to constrain the ultimate
expression of cells in our bodies. This means that in some cases, environmental
pressures, especially early in life, may cause two individuals with the same biological
constraints to develop different phenotypes. In other cases, two individuals may take
distinct developmental trajectories, but ultimately still develop the same phenotype
(Edelman & Gally, 2001). Extending this metaphor to the current study, it is possible
that two children who display the same level of performance on a cognitive test might

achieve this through different developmental trajectories, if they grow up under different
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external pressures. The optimal developmental trajectory for a child, therefore, may be
influenced by the child’s environment.

Accumulating evidence suggests that the brain adapts to the affordances and
constraints of an individual's environment, especially in early life. Indeed, a growing
number of studies have complicated the notion of an “ideal” environment by suggesting
that different environments promote the development of distinct, adaptive cognitive skills
(Frankenhuis et al., 2019; Mittal et al., 2015; Young et al., 2018) The result of this
adaptability may be that higher-level cognitive skills such as executive functions and
reasoning, which build on lower-level skills that may be more environmentally sensitive,
develop in context-sensitive ways. Children living in poverty can have vastly different
experiences than those who are typically studied in developmental cognitive
neuroscience, including varying levels of threat exposure and resource deprivation
(Humphreys & Zeanah, 2015; McLaughlin et al., 2014). Understanding the ways in
which their brains may have been tuned by their respective environments can provide
insight into mechanisms of adaptation, and, ultimately, how best to support each child
within the specific constraints of their lives.

Strikingly, while much research has characterized the trajectories of brain
development that support cognitive test performance for upper-middle class children—
most of whom who tend to be living in urban places close to universities in the United
States—only in the last decade has research begun to focus on children from lower
socioeconomic status (SES) backgrounds. This new thrust of research has begun to
uncover neural differences between higher- and lower-SES children in brain structure
and function from an early age (e.g., Hair et al., 2015; Hanson et al., 2013; S. B.
Johnson et al., 2016; Leonard et al., 2019; Mackey et al., 2015; Noble et al., 2015;
Noble et al., 2006). However, even in this literature, children living below the poverty
line tend to be under-represented. In addition, many studies compare higher and lower
SES children, obscuring variability within the lower SES group. Thus, characterizing
optimal brain development for children living below poverty could help shift our
questions away from how these children differ from children above poverty, and toward

understanding mechanisms supporting neurocognitive functioning in an understudied
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77  population. Ultimately, this brings us toward a fuller understanding of brain development

78  across the full spectrum of life experiences.

79 In line with the hypothesis that children may achieve the same behavior or

80 phenotype through different developmental routes, studies examining brain function

81  during higher-level cognitive tasks often find qualitatively different brain-behavior

82 relations as a function of children’s family income. Differences in brain activation appear

83 particularly in lateral prefrontal cortex (PFC) and parietal regions—two regions that are

84 involved in higher cognitive function, show protracted development (Casey et al., 2000),

85 and are sensitive to environmental input (Farah, 2017; Mackey et al., 2013; Merz,

86 Maskus, et al., 2019).

87 Collectively, these and other studies suggest that children with lower versus

88 higher family incomes may differentially engage higher-order brain areas such as lateral

89 prefrontal and parietal regions to complete tasks that tax working memory, rule learning,

90 and attention (Finn et al., 2017; Sheridan et al., 2012; see Merz, Wiltshire, & Noble,

91 2019 for a review). These differences in brain function are typically thought to reflect

92 differences in either the cognitive mechanisms by which children approach the task or

93 efficiency of neural processing. However, differences in tasks and task demands make

94 it difficult to generalize across studies showing divergent prefrontal and parietal

95 activation as a function of SES. Interpretation of differences in brain function during

96 performance of a specific task is constrained by task demands. For example, there may

97 be unseen verbal demands that differentially affect some children’s approach to the task

98 more than others’; additionally, the tasks are not representative of real-world

99 experiences, limiting validity.
100 Another way to investigate SES differences in brain function is to measure slow-
101  wave fluctuations in neural activity over time while participants lie awake in an MRI
102  scanner, in the absence of specific task demands. This approach, called resting-state
103  fMRI, has revealed temporal coupling among anatomically distal brain regions that form
104 large-scale brain networks (Uddin et al., 2019). In general, cognitive networks become
105 more cohesive and segregated from one another across development (Grayson & Fair,
106 2017; Power et al., 2010). Patterns of temporal coupling within and across resting-state
107 networks reflect regions' prior history of co-activation, offering insight into individuals'


https://doi.org/10.1101/2020.05.29.124297
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.29.124297; this version posted December 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

RUNNING HEAD: Adaptive patterns of brain connectivity

108 recent thought pattern (Guerra-Carrillo et al., 2014). Thus, resting-state fMRI can be
109 leveraged to assess how everyday experience shapes brain networks. With regard to
110 SES, there is evidence that children and adolescents living in disadvantaged

111  neighborhoods show differences in resting-state connectivity patterns, some of which
112 correlate with anxiety symptomatology (Marshall et al., 2018). Further, changes in family
113  income in adolescence have been associated with changes in connectivity in frontal and
114  parietal regions associated primarily with the default mode network (Weissman et al.,
115 2018). It is important to understand both how these differences arise and the ways in
116  which they are behaviorally relevant.

117 Several large-scale brain networks have been linked to higher-level cognition
118 (Barber et al., 2013; Hampson et al., 2010; Keller et al., 2015; Kelly et al., 2008). In

119  particular, the lateral frontoparietal network (LFPN) is consistently activated in higher-
120 level cognitive tasks, such as those taxing executive functions or reasoning. Regions in
121  the LFPN are more active during performance of cognitively demanding tasks than

122 during rest periods (Vincent et al., 2008). In contrast, regions in the default mode

123 network (DMN), including regions in the medial frontal and medial parietal areas, are
124  consistently de-activated during focused task performance. These regions have been
125 implicated in unconstrained, internally directed thought (Raichle et al., 2001), as well as
126  during performance of tasks that require introspection, mentalizing about others, or

127  other mentation outside of the here-and-now (Spreng, 2012). In fact, elevated DMN

128  activation during performance of tasks that require focused attention has been

129  associated with lower task accuracy and response times, and higher response

130 variability (Kelly et al., 2008; Satterthwaite et al., 2013; D. H. Weissman et al., 2006).
131 Thus, the LFPN and DMN have often been characterized as opponent networks.
132 Indeed, a number of studies of young adults have linked weaker resting-state

133 connectivity between the LFPN and DMN, and stronger connectivity among LFPN

134  regions, to better cognitive performance (Barber et al., 2013; Hampson et al., 2010;

135 Keller et al., 2015; Kelly et al., 2008). These findings suggest that, in order to complete
136  a cognitively demanding task, individuals must focus narrowly on the task at hand while
137  inhibiting internally-directed or self-referential thoughts (Raichle et al., 2001; Simpson et
138 al., 2001a, 2001b; D. H. Weissman et al., 2006).
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139 This conclusion has been bolstered by fMRI research in typically developing

140 children, both in terms of age-related changes and individual differences. First, there is
141  evidence that the LFPN and DMN functionally segregate during childhood. Specifically,
142 key nodes in the LFPN and DMN have been shown to be positively correlated in middle
143 childhood, anti-correlated in adolescence, and more strongly anti-correlated during

144  young adulthood (Chai et al., 2014b). Further, as with adults, children ages 10-13 who
145 showed less coupling than their same-age peers tended to have higher cognitive task
146  scores (Sherman et al., 2014). Tighter coupling between key nodes in these networks at
147  age 7 has even been shown to predict increased attentional problems over the

148  subsequent four years (Whitfield-Gabrieli et al., 2020). The conclusion drawn from these
149  studies is that it is adaptive for LFPN and DMN to become decoupled—or even

150 negatively coupled—during performance of a cognitively challenging task, and that the
151  development of this dissociation may promote stronger focus on externally directed

152  tasks.

153 Despite this coherent body of findings regarding these networks and their

154 interactions, several points bear mentioning. First, there is evidence that LFPN and

155 DMN interact during performance of tasks that benefit from internally directed cognition,
156  or mentation outside of the here-and-now (Buckner & Carroll, 2007; Christoff et al.,

157  2009; Kam et al., 2019; Spreng, 2012). Second, the vast majority of fMRI studies

158 involve relatively high SES samples; thus, we do not know whether the reported brain-
159  behavior relations are universal. Here, we sought to test the relation between

160 connectivity of these two networks and cognitive task performance in a new sample:

161  children living in poverty.

162 Drawing from a large behavioral and brain imaging dataset including over 10,000
163  children across the United States (ABCD Study; Casey et al., 2018), we asked whether
164 the patterns of connectivity that are adaptive among higher-SES children also help to
165 explain why some children living in poverty perform as well on cognitive tasks as their
166  higher-income peers. Specifically, in a set of pre-registered analyses, we tested whether
167 characteristics of LFPN and DMN connectivity were associated with cognitive test

168 performance for over 1,000 children from this larger dataset who were estimated to be

169 living in poverty. We sought to capture children’s performance on higher-level cognitive
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170 tasks that did not task verbal skills, given well-established SES differences in verbal

171  performance. Thus, we combined measures of children’s abstract reasoning (Matrix

172 reasoning task), inhibitory control (Flanker task), and cognitive flexibility (Dimensional
173  Change Card Sort task).

174 Given prior evidence from higher-SES children and adults, we predicted that

175 weaker LFPN-DMN between-network connectivity (decreased LFPN-DMN temporal

176  coupling) and stronger within-network LFPN connectivity (LFPN-LFPN coupling) would
177  be related to higher cognitive test performance even for children living in poverty.

178  Alternatively, however, children in poverty might develop different brain-behavior links in
179  order to contend with different barriers. In line with theories that children could achieve
180 the same phenotype through alternate developmental trajectories, one might expect that
181  higher cognitive test scores would be associated with different patterns of network

182  connectivity among children in poverty. To preview our findings, our analyses revealed
183  adifferent pattern in children in poverty than had been observed in prior studies of

184  higher SES children. As a result, we conducted follow-up analyses involving the higher-
185 income children in this sample to test whether their data would replicate prior findings,
186 and confirmed that it did.

187 In a second set of pre-registered analyses, we probed demographic variables to
188  better understand features of children’s environments which might explain variability

189  both in their cognitive test performance, and in the relation between LFPN-DMN

190 connectivity and cognitive test performance. We looked at a set of 29 variables that

191 span home, school, and neighborhood contexts to see whether they could predict

192  variability in children in poverty’s test performance. We also included interactions

193  between LFPN-DMN connectivity and each of these variables, to see if patterns of

194  brain-behavior relations could be explained by any particular set of experiences.

195 This study examines brain development in a large sample of children living below
196 the poverty line. These children had a total family income below $35,000 (below

197  $25,000 for children in families of 4 or less), a departure from the sample composition of
198 most prior studies. Moreover, the tight age range in this dataset—all children were

199 between 9 and 10 years old—complements prior studies of SES differences in brain
200 development that have considered children across a much wider age range. Ultimately,
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201 examining relations between patterns of brain activity and cognitive test performance
202  could help to elucidate the mechanisms through which high-performing children in
203  poverty are able to contend with structural barriers in their environments.

204

205
206 Results
207 We identified 1,034 children between ages 9 and 10 with usable data on

208  cognitive test performance, resting state fMRI, and demographic characteristics, who
209 were likely to be living below the poverty line at the time the data were collected (2016-
210 2018). We identified an additional 5,805 children from the same study sites who had
211  usable data on the same measures and were likely to be living above the poverty line.
212 Participant information is displayed in Tables 1 and 2.

213 Children’s scores on the three cognitive tests (Matrix reasoning, Flanker task,
214 and Dimensional Change Card Sort task) were moderately correlated with each other, r
215 =0.23 -0.43 in the whole sample, r=0.25 — 0.39 for children living in poverty alone.
216  We created summary cognitive test scores by summing children’s standardized scores
217  on all three tests, as pre-registered. We first tested whether there was an association
218 between income and cognitive test scores, using a linear mixed effects model with a
219 random intercept for study site. For the purposes of comparison to prior studies, income
220 was operationalized (for this analysis only) as a pseudo continuous variable, using the
221  median income level in each income bracket. Results replicated prior studies (e.g.,

222 Duncan & Magnuson, 2012; Farah, 2018; Noble et al., 2015): on average, children

223 whose families had higher incomes tended to perform better on cognitive tests, B =
224  0.008, SE = 0.0004, p < 0.001, r=0.24, a moderate effect size, though it accounts for
225 only 6% of the variance in children’s cognitive test scores. As shown in Figure 1,

226 however, there was large individual variability in cognitive test scores within each

227 income bracket. It is this individual variability we sought to explore further.

228 LFPN-DMN connectivity. LFPN-DMN connectivity was defined as the average
229  correlation of pairs of each ROl in LFPN with each ROl in DMN (each z-transformed;
230 see Methods). Working from our pre-registered analysis plan

231  (https://aspredicted.org/blind.php?x=3d7ry9), we tested the relation between LFPN-
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DMN connectivity and nonverbal cognitive test performance in our sample of children in
poverty. We used linear mixed effects models to test the association between cognitive
test performance and LFPN-DMN connectivity, controlling for children’s age and
scanner head motion, with a random intercept for study site (see Methods). Contrary to
previously published results, we did not find a negative association between LFPN-DMN
connectivity and test performance. In fact, the estimated direction of the effect was
positive, though this was not statistically significant, B=2.11, SE =1.12, t (1028) =
1.88; %2 (1) = 3.52, p = 0.060. This numerically positive association was still observed
when using a robust linear mixed effects model, which detects and accounts for outliers
or other sources of contamination in the data that may affect model validity, B=1.78,
SE =1.09, t=1.64. Thus, this unexpected pattern was not driven by outliers. This effect
was most pronounced for Matrix Reasoning and least evident for Flanker, but the
estimate was positive for all three tests (see Supplement S2). It was also observed for
the NIH Toolbox Fluid Cognition composite score (see Supplement S2).

Given this unexpected result, we next explored whether the expected association
between LFPN-DMN connectivity and test performance was present in higher-income
children in the larger dataset. To this end, we analyzed the 5,805 children from the
same study sites who were likely to be living above the poverty line. Consistent with
prior studies (Satterthwaite et al., 2013; Sherman et al., 2014; Whitfield-Gabrieli et al.,
2020), these children showed a negative association between LFPN-DMN connectivity
and cognitive test performance, B=-1.41, SE = 0.45, t(5794) = -3.14; %2 (1) =9.85, p =
0.002. A direct comparison between the samples confirmed that the association
between LFPN-DMN connectivity and test performance differed as a function of whether
or not children were living in poverty, %2 (1) = 8.99, p = 0.003 (Figure 2). For children
living above poverty, having higher LFPN-DMN connectivity appeared to be risk factor
for low cognitive test performance, while for children living below poverty, this tended to
be more protective. Several follow-up tests confirmed the reliability of this dissociation
(see Supplement S4-S7). These included a bootstrapping procedure, permutation
testing, and tests to ensure that results were not driven by differences in head motion,

age, or the specific cognitive measures selected.

10
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262 LFPN-LFPN connectivity. LFPN-LFPN connectivity was defined as the average
263  correlation of each ROI pair within LFPN (each z-transformed; see Methods). Following
264  our pre-registration, using linear mixed effects models, we next tested whether children
265 in poverty would show the positive correlation between LFPN within-network

266  connectivity and cognitive test performance that has previously been documented in
267  higher-SES children. The relation between LFPN-LFPN connectivity and test scores
268  was not significant for children in poverty, B = 0.24, SE = 0.87, t (1028) = 0.28; ¢ (1) =
269 0.08, p=0.783, or for the higher income children in the larger study, B = 0.34, SE =
270  0.36, t(5797) = 0.94; 2 (1) = 0.89, p = 0.346. Thus, strength of resting state functional
271  connectivity within the LFPN network was not a predictor of cognitive performance in
272  this large sample of 9 to 10-year-olds.

273 Environmental variables. To further explore the dissociation observed for

274  LFPN-DMN connectivity, we next asked whether features of children’s environments
275 might explain why the brain-behavior link differed as a function of poverty status. Even
276  among children living in poverty, different children are exposed to very different

277  experiences in their homes, neighborhoods, and schools. Under what environmental
278  constraints might it be optimal (with respect to cognitive test performance) for the LFPN
279  to work more closely with the DMN? To answer this question, we considered 29

280 demographic variables chosen to reflect features of children’s home, school, and

281 neighborhood environments (Table 2; see Appendix). To test whether any of these

282  variables could explain the observed group interaction, we performed Ridge regression.
283  Specifically, we used nested cross-validation to predict cognitive test performance from
284  an interaction between LFPN-DMN connectivity and these demographic variables, in
285 addition to main effects of each of these variables. Briefly, Ridge regression is a

286 regularization technique that penalizes variables that do not contribute to model fit, thus
287  giving more weight to the most important variables. This approach allows for the

288 inclusion of many variables in a model while reducing the chances of overfitting, and
289  deals with issues of multicollinearity. We pre-registered this second step of analyses

290 prior to examining the data further (https://aspredicted.org/blind.php?x=tq4tg9), given

291 the substantial analytic flexibility possible with such a large set of variables.

11
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292 We trained our model in a training set of two-thirds (N = 670, after removing

293  missing data) of the children in poverty, using 5-fold cross-validation. Next, we tested
294  whether these demographic and neural model parameters could be used to predict
295  cognitive test scores in the held-out test set: the remaining one-third (N = 329) of

296 children in poverty. Indeed, we found that our model performed above chance (cross-
297 validated R2cv > 0; see Supplement S8), explaining 4% of the variance in children’s
298  cognitive test scores in this held-out sample. While 4 percent is small, it is on par with
299 the effect of family income on test scores across the full sample (6%). Additionally, it is
300 a pure indicator, unlike the R? of models that have been fit to the data themselves and
301 are thus likely to be inflated. Most importantly, this prediction is based on a

302 socioeconomically restricted sample of children: those with a total family income below
303  $35,000 (below $25,000 for children in families of 4 or less).

304 As shown in Table 3, individual, home, neighborhood, and school variables

305 helped to predict cognitive test scores among children living in poverty. Critically, we
306 found that several characteristics of children’s experiences interacted with LFPN-DMN
307 connectivity to predict these test scores. Specifically, variables related to school type,
308 neighborhood safety, child’s race/ethnicity, and parents’ highest level of education

309 contributed to model fit (see Table 3). To better understand these results, we plotted the
310 effects for the factors showing significant interaction effects (Figure 3). Visualizing the
311 interaction for neighborhood safety revealed that children living in safer neighborhoods
312 showed a negative relation between LFPN-DMN connectivity and test performance,
313  whereas those who lived in particularly dangerous neighborhoods showed a positive
314 relation. With regard to schooling, the relation between LFPN-DMN connectivity was
315 more positive for children attending public schools than those attending other types of
316  schools (predominantly charter, N = 79, and private, N = 40). Thus, the brain-behavior
317 relation for those children in poverty living in safer neighborhoods, or attending non-
318 public schools, more closely resembled that of the higher-income sample. Similar

319 results were obtained for levels of parental education and race, such that subsets of
320 children whose parents were more highly educated and children who were white

321  showed a more similar pattern of brain-behavior relations to children living above

322 poverty.
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323 Finally, we conducted a confirmatory factor analysis to test whether the

324  demographic variables could be split into individual and home, neighborhood, and

325 school factors based on our a priori categorization. This categorization did not meet our
326  pre-registered criteria for a good model fit (our CFl, 0.11, was considerably lower than
327 0.9); as a result, we did not continue with this portion of the analysis. Thus, our data-
328 driven approach provided insights that would have been missed by simply categorizing
329 variables based on our prior assumptions about classes of life experiences.

330 Exploratory network associations. Given the differential relation between

331 network connectivity and test performance as a function of poverty status, we sought to
332  ascertain whether this effect was specific to the LFPN-DMN, or whether there was a
333  more general difference regarding connectivity between networks. Further, we sought to
334  Dbetter understand the phenomenon at a conceptual level by assessing the plausibility of
335 several accounts regarding what might constitute adaptive thought patterns for children
336 contending with extremely challenging circumstances. Therefore, we ran several

337 exploratory analyses involving two additional brain networks, selected for reasons

338 discussed below. Due to the exploratory nature of these analyses, we focus on the

339 general patterns of effects as potentially valuable for guiding future research.

340 The first additional network in which we tested for effects of poverty status was
341 the cingulo-opercular network (CON), which is thought to play a role in coordinating the
342  engagement of the LFPN and DMN networks (Menon & Uddin, 2010; Sridharan et al.,
343  2008). Therefore, we sought to test for differential effects of coordination between the
344  CON and these networks as a function of poverty. We found that weaker LFPN-CON
345  connectivity was associated with better test performance for both groups, with little

346  evidence of an interaction (Figure 4A). Thus, a dissociation between these networks
347 appears to be generally adaptive at this age. By contrast, DMN-CON connectivity had
348 no main effect on cognitive test performance, but it showed a possible interaction with
349  poverty status (Figure 4B). Specifically, weaker DMN-CON connectivity was

350 directionally associated with better test performance for children in poverty, while

351  stronger DMN-CON connectivity appeared more adaptive for children above poverty.
352  Thus, the cognitively adaptive pattern for children in poverty—at least, at this age (9-
353 10)—is for DMN to be more tightly linked to LFPN and, perhaps, less tightly linked to
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354  CON. However, it seems unlikely that a DMN-CON interaction is the key driver of the
355 LFPN-DMN interaction we have uncovered, as the latter effect was stronger.

356  Nonetheless, further research in this population relating these three brain networks to a
357 broader set of cognitive measures is warranted.

358 The other network we investigated was the retrosplenial temporal network (RTN),
359  which is critical for long-term declarative memory (Ghetti & Bunge, 2012; Vincent et al.,
360 2006). Regions in the RTN interact with the LFPN during performance of episodic

361 memory tasks involving externally-presented stimuli (Badre & Wagner, 2007;

362 Blumenfeld & Ranganath, 2007), but with the DMN during autobiographical memory
363 retrieval (Andrews-Hanna et al., 2014; Buckner & Carroll, 2007; Kaboodvand et al.,

364 2018) and at rest (Chai et al., 2014a), that is, during internally directed thought. We

365 reasoned that if cognitively resilient children in poverty rely more on their

366  autobiographical memory than do others when facing cognitive challenges, LFPN-RTN
367 connectivity might be positively related to test performance in this sample. Contrary to
368 this prediction, however, we found that weaker LFPN-RTN connectivity and DMN-RTN
369 connectivity were associated with better test performance in both the below- and above-
370 poverty samples (Figure 4C and 4D). Thus, these exploratory analyses involving the
371 CON and RTN networks reveal specificity in the observed LFPN-DMN interaction effect.
372

373 Discussion

374

375 Prior research in both adults and children suggests that, in order to perform well
376  on cognitively demanding tasks, the LFPN must operate independently from the DMN
377 (Chai et al., 2014b; Sherman et al., 2014; Whitfield-Gabrieli et al., 2020). Given that the
378 LFPN and DMN have been linked to externally and internally focused attention,

379 respectively, these findings are generally taken to suggest that it is optimal for

380 individuals engaged in a cognitively demanding task involving externally presented

381  stimuli to focus narrowly on the task at hand while inhibiting internally-directed or self-
382 referential thoughts (Raichle et al., 2001; Simpson et al., 2001a, 2001b; D. H.

383 Weissman et al., 2006). However, the majority of the research that led to this conclusion

384 has been conducted with non-representative samples of individuals from higher-income
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backgrounds. Given the large heterogeneity of experiences and outcomes for children
living in poverty, we focused on this relatively under-studied population.

In this study, we tested the relation between patterns of brain connectivity and
nonverbal cognitive test performance for over 1,000 American children estimated to be
living in poverty. Although children in poverty scored lower on average than their higher-
income peers from the same study sites, there was large variability. Indeed, many of the
children in poverty scored on par with children whose family incomes were considerably
higher. In contrast to research with higher SES samples, we did not find that higher
cognitive test scores were associated with stronger anti-correlations between the LFPN
and DMN within this group; in fact, these children showed a non-significant positive
relation between cognitive performance and functional connectivity between these
networks. By contrast, for the children in the sample living above poverty, we replicated
the negative relation observed in prior studies (e.g., Sherman et al., 2014). Thus, for
children living above poverty, having higher LFPN-DMN connectivity could be a risk
factor for lower cognitive test performance, while for children living below poverty, it
could be protective.

Further confirming the reliability of this dissociation, both a bootstrapping analysis
and permutation testing showed that models trained on the data from the children living
above poverty did a poor job of predicting test performance for the children below
poverty. It is important to note that the fact that we see statistically trending but
numerically small group differences in overall LFPN-DMN functional connectivity, as
well as no evidence of group differences in LFPN-LFPN connectivity. As such, the most
salient difference between children below and above poverty in our analyses was not
overall brain connectivity, but rather the relation between connectivity and cognitive
performance.

This pattern of results is also in line with prior structural and task-based brain
imaging studies showing interactions between SES and neural variables in relation to
test performance (Leonard et al., 2019; Merz, Wiltshire, et al., 2019). For example,
several studies have found SES differences in lateral prefrontal and parietal activation
during cognitive tasks, core nodes of the LFPN (e.g., Finn et al., 2017; Sheridan et al.,
2012). Together, these findings support the idea that which patterns of brain function
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416  are adaptive with respect to cognitive test performance depends on the environments
417  that children must contend with.

418 One interpretation of this unexpected interaction is that the relation between

419 LFPN-DMN connectivity and test performance depends in part on the demands of

420 children’s daily experiences. It may be optimal under some circumstances to engage in
421  thought patterns that more frequently co-activate the LFPN and DMN (e.g., Christoff et
422  al., 2009; Fornito et al., 2012; Prado & Weissman, 2011). For example, while the DMN
423  is generally thought to be suppressed during goal-directed tasks, it is in fact active

424  during a variety of goal-directed tasks that require internal mentation, or projection

425  outside of the here-and-now (Buckner & Carroll, 2007; Spreng, 2012). We return to this
426  point later in the Discussion.

427 In contrast to our findings with LFPN-DMN connectivity, we found no significant
428  association between within-network LFPN connectivity and test performance—either in
429 the children living below or above poverty. These results were unexpected, given prior
430 studies reporting that connectivity within the LFPN is positively related to cognitive test
431 performance in both adults and children (Langeslag et al., 2013; Li & Tian, 2014;

432  Sherman et al., 2014; Song et al., 2008). For example, Sherman and colleagues found
433  that for 10-year-olds, higher 1Q was correlated with higher connectivity between the
434  dorsolateral prefrontal cortex and the posterior parietal cortex, two hub regions of the
435 LFPN. One reason for the non-significant effect in our study may be that we examined
436  connectivity within the LFPN as a whole, rather than looking at particular regions or
437  subnetworks within LFPN. Thus, the entire network might not be developed enough by
438 ages 9to 10 to see this relation on a global scale.

439 To better characterize the positive relation between LFPN-DMN and test

440 performance among the children living in poverty, we examined a number of

441  demographic variables. While poverty status tends to be associated with a higher

442  likelihood of particular experiences, such as racial or ethnic discrimination, more

443  crowding in the home and financial strain, unsafe neighborhoods, and underfunded
444  public schools, there is large variation in the experiences of children who live in poverty
445  (Dedoseph et al., 2020). Moreover, experiences that are on average associated with
446  worse cognitive outcomes (such as being deprived of caregiver support in early life)
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447  can, under some circumstances, produce better cognitive outcomes (Nweze et al.,

448  2020), suggesting there may be different routes to achieving high cognitive performance
449 in these cases. Thus, we predicted that differences in environmental influences among
450  children in poverty would explain whether strong LFPN-DMN connectivity was adaptive
451  or maladaptive for cognitive test performance.

452 Our analyses suggested that demographic variables could not be well fit to a pre-
453  determined factor structure based on variables relating to the individual, home,

454  neighborhood, and school; therefore, we took a data-driven approach to examine the
455  effects of environmental variables. Because many of these variables are correlated with
456  each other, we adopted an analytic approach—Ridge regression—that allows for

457  collinearity. The results of this analysis suggested that, even within the population of
458  children in poverty alone—children who are often conceptualized as a homogenous

459  group—variation in their environments was predictive of their cognitive test

460 performance. We note, however, that this was far from deterministic; a model trained on
461  two-thirds of the children in poverty explained 4% of the variance in the held-out third,
462  suggesting these variables accounted for a small amount of variance overall.

463 The most predictive variables in the model were main effects of children’s

464  race/ethnicity, their parents’ highest level of education, and neighborhood-level

465 characteristics such as the percent of people in their census tract who were

466  unemployed, had not completed their high school degree by age 25, and were living in
467  poverty. All of these variables reflect structural barriers that families may face, including
468  access to resources and institutions, such as high-quality schools, jobs, and healthcare,
469  stable housing in safe neighborhoods, and experiences of racism within these systems
470  (Alexander, 2012; Chetty et al., 2018; Desmond & Kimbro, 2015; Kraus et al., 2019;
471 Shedd, 2015). Thus, the strongest predictors of low-income children's cognitive

472  performance reflect structural constraints on children’s lives. However, our data also
473  suggest that being raised by parents with strong ethnic identification may provide a

474  psychological buffer against these and other threats, in line with other research

475  (Cardoso & Thompson, 2010; Chen et al., 2015; Costigan et al., 2010; Simons et al.,
476  2002; Varner et al., 2018).

17


https://doi.org/10.1101/2020.05.29.124297
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.29.124297; this version posted December 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

RUNNING HEAD: Adaptive patterns of brain connectivity

477 Notably, we found—in addition to these main effects of demographic variables—
478  several interactions between these variables and LFPN-DMN connectivity that predicted
479  cognitive performance. While Ridge regression precludes us from drawing strong

480 conclusions about the importance of specific variables, we highlight those that

481  contributed significantly to model fit. For example, children in poverty who attended

482  public schools, lived in subjectively more dangerous neighborhoods, and were Black
483  (the next best represented racial group after white race in our sample below poverty)
484  were more likely to show a positive relation between LFPN-DMN connectivity and test
485  performance.

486 We considered several possible accounts of the current findings. One possibility
487 is that in order to contend with structural barriers, children experiencing tremendous
488  adversity in the form of poverty need to monitor their environments (vigilance), as well
489  as their own behavior or performance (self-monitoring), to a greater degree than do
490 other children. This hypothesis stems from research showing that individuals living in
491 poverty are more likely to experience threat in the physical domain (safety; Friedson &
492  Sharkey, 2015) or in the social domain (racism; Nuru-Jeter et al., 2009; Shedd, 2015);
493 they are also likely to receive less direct feedback or instruction in crowded or

494  underfunded public schools (Orfield & Lee, 2005; Reardon & Owens, 2014) and at

495 home (McLoyd, 1998). Additionally or alternatively, children in poverty may benefit from
496 thinking more about the past or the future—that is, drawing more on autobiographical
497 memory and future-oriented thinking and planning (Buckner and Carroll, 2007)—or the
498  type of productive mind-wandering that fuels creative insights (Christoff et al., 2009;
499 Dixon et al., 2014; Seli et al., 2015). These hypotheses could be explored in the future
500 by assessing whether children in poverty with stronger LFPN-DMN connectivity also
501 show heightened self-monitoring, vigilance, autobiographical memory, and/or creative
502 problem-solving.

503 Based on the available dataset, we explored the plausibility of these hypotheses
504 by focusing on brain networks that have been associated with monitoring or declarative
505 memory. Specifically, we explored associations of test performance with DMN/LFPN
506 and (1) the cingulo-opercular (so-called “salience”) network (CON), to probe whether
507 differences in monitoring and vigilance are likely to play a role; and (2) retrosplenial

18


https://doi.org/10.1101/2020.05.29.124297
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.29.124297; this version posted December 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

RUNNING HEAD: Adaptive patterns of brain connectivity

508 temporal network (RTN), to assess the plausibility of an account involving

509 autobiographical memory or planning.

510 While relations with RTN and test performance did not distinguish the children
511 above and below poverty, we observed a potential interaction between DMN-CON

512  connectivity and poverty status in its association with test performance. Weaker DMN-
513 CON appeared to be directionally associated with better test performance for children in
514 poverty, and worse for children above poverty. Although it seems unlikely that this

515 trend-level group interaction involving the CON is the key driver of the LFPN-DMN

516 interaction we have uncovered, it does lend credence to the possibility that monitoring
517 oneself and one's social environment may be one mechanism through which children in
518 poverty ultimately score highly on cognitive tests. It is also in line with work suggesting
519 that CON plays a critical role in switching between LFPN and DMN activation (Sridharan
520 et al., 2008), that connectivity between the three networks changes across age (Uddin
521 etal, 2010), and that some social cognitive processes rely on all three networks

522 (Schurz et al., 2020).

523 While our study benefited from the ABCD dataset’s rich objective measures of a
524  child's environment, there are other potential environmental and individual level

525 variables that should be considered in future research (Bates et al., 2018; Merz,

526  Wiltshire, et al., 2019; Pollak & Wolfe, 2020). Future research could also benefit from a
527 more sensitive measure of poverty. Because the publicly available dataset did not

528  specify which of the 19 study sites corresponded to which American city, as this was
529 treated as protected information, we determined a cut-off for our poverty threshold

530 based on cost-of-living across study sites. Because cities across the United States vary
531 substantially in cost-of-living, we selected a stringent cutoff for the poverty line. Thus,
532 there are almost certainly families in the above-poverty group that belong in the below-
533  poverty group. If anything, therefore, the use of a more sensitive measure would likely
534  magnify the group difference that we report. In addition, it is important to note that

535 children’s performance on cognitive tests can fluctuate from day to day for a variety of
536 reasons (Dirk & Schmiedek, 2016; Kénen et al., 2015), including motivation (Somerville

537 & Casey, 2010), which is a likely source of noise in our models.
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538 Further, while we focused on three tests of non-verbal cognitive test

539 performance, future studies should examine a broader range of cognitive systems, as
540 these may be differentially affected by the environment (Rosen, Meltzoff, et al., 2019).
541  For example, experiences of threat and deprivation have distinct effects on medial and
542 lateral prefrontal cortex development, respectively (McLaughlin et al., 2019); these

543 effects may be mediated in part by lower-level visual and attentional processes (Rosen,
544  Amso, et al., 2019). Clearly, there is a need for research which investigates the precise
545 mechanisms through which the environment affects specific neural and cognitive

546  systems, particularly given that much of this environmental variation is still within a

547  species-typical range of experiences (Humphreys & Salo, 2020). Overall, these results
548  suggest that different patterns of brain activation for children living in poverty do not

549 necessarily imply a deficit (Ellwood-Lowe et al., 2016). However, an important next step
550  will be to follow these children longitudinally to see how LFPN-DMN connectivity and its
551 relation with cognitive test performance changes across adolescence.

552 Another important area of research is to look beyond the canonical cognitive

553 tasks used in the present study to identify assessments or testing contexts for which
554  children living in poverty might be particularly adapted to excel (Frankenhuis et al.,

555  2020). Doing so might reveal that some children who underperformed on the cognitive
556 measures in the current study have strengths in other domains as a result of adaptation
557 to their environments.

558 This study opens several questions about the neural underpinnings of these

559 findings that should be further examined. Given individual variability in network

560 topography (Seitzman et al., 2019), future studies should examine whether this

561  variability contributes to our findings. In addition, LFPN and DMN are both summary
562 network measures; there could be qualitative differences in node-to-node connectivity,
563 or smaller interactions between sub-networks, that we are not capturing in the current
564  study (Buckner & DiNicola, 2019; Dixon et al., 2018; Fornito et al., 2012; Lopez et al.,
565 2020). Moreover, it would be helpful to look at children’s task-based activation and

566 functional connectivity to examine whether children in poverty are more likely to activate

567 DMN during neutral, externally driven cognitive tasks outside of their daily

20


https://doi.org/10.1101/2020.05.29.124297
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.29.124297; this version posted December 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

RUNNING HEAD: Adaptive patterns of brain connectivity

568 environments. Finally, given that these metrics only explain a small amount of variance,
569 itis important to look at the contribution of other neural indices.

570 Given that the structures that govern success have been largely created around
571 the needs of middle- and upper-middle class families, understanding the strengths of
572  families in poverty—and how children may thrive in spite of these structural barriers—is
573 critical. Altogether, these results highlight the substantial variability of experiences of
574  children living in poverty, who are often conceptualized as a single, homogenous group
575 and compared to higher-SES children. Moreover, they suggest that our field’s

576  assumptions about generalizability of brain-behavior relations are not necessarily

577  correct. Looking beyond convenience samples of children will ultimately lend more

578 insight into the neural underpinnings of cognition, and may show that there is not a

579 general guiding principle about what is optimal in the ways we have thus far assumed.
580 Not only would this advance benefit developmental cognitive neuroscience as a field,
581 but it may ultimately allow us to better serve disadvantaged youth.

582

583

584 Methods

585

586 Analysis plans were pre-registered prior to data access

587 (https://aspredicted.org/blind.php?x=3d7ry9, https://aspredicted.org/blind.php?x=tg4tg9)

588 and analysis scripts are openly available on the Open Science Framework
589 (https://osf.io/hs7cq/?view only=d2acb721549d4f22b5eeeadce51195¢7). The original
590 data are available with permissions on the NIMH Data Archive

591 (https:/nda.nih.gov/abcd). All deviations from the initial analysis plan are fully described
592 in the Supplement S9.

593 Participants. Participants were selected from the larger, ongoing Adolescent
594  Brain Cognitive Development (ABCD) study, which was designed to recruit a cohort of
595 children who closely represented the United States population (http://abcdstudy.org; see

596 Garavan et al., 2018). This study was approved by the Institutional Review Board at
597 each study site, with centralized IRB approval from the University of California, San
598 Diego. Informed consent and assent was obtained from all parents and children,
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respectively. We planned to restrict our primary analyses to children who fell below the
poverty line on the supplemental poverty measure, which takes into account regional
differences in cost-of-living (Fox, 2017). For example, while the federal poverty level in
2018 was $25,465 for a family of four, the supplemental poverty level in Menlo Park,
CA—one of the ABCD study sites—was estimated to be over $37,000 around the same
time period. However, upon reviewing the data after our pre-registration, we found that
study site in the ABCD data was de-identified for privacy reasons, and as a result we
could not use study site-specific poverty cut-offs. Instead, we estimated each child’s
poverty status based on their combined family income bracket, the number of people in
their home, and the average supplemental poverty level for the study sites included in
the sample.

Based on these factors, we considered children to be in poverty if they were part
of a family of 4 with a total income of less than $25,000, or a family of 5 or more with a
total income of less than $35,000. We made this determination by comparing children’s
combined household income to the Supplemental Poverty Level for 2015-2017
averaged across study sites (Fox, 2017). We excluded children who did not provide
information about family income and complete data on all three cognitive tests, and/or if
their MRI data did not meet ABCD’s usability criteria (see below). In addition, due to a
scanner error, we excluded post-hoc all children who were scanned on Philips
scanners. This left us with 1034 children identified as likely to be living below poverty
(6839 across the whole sample). Table 1 provides a breakdown of sample
demographics.

Cognitive test performance. Children’s performance was measured on three
non-verbal cognitive tests. Specifically, children completed two tests from the NIH
Toolbox (http://www.nihtoolbox.org): Flanker, a measure of inhibitory control (Eriksen &
Eriksen, 1974), and Dimensional Change Card Sort (DCCS), a measure of shifting
(Zelazo et al., 2013); and the Matrix Reasoning Task from the Wechsler Intelligence
Test for Children-V (WISC-V), a measure of abstract reasoning (Wechsler, 2014). More
details on each of these tests and their administration in the current study is described
elsewhere (Luciana et al., 2018). These tests were chosen because they all tax higher-
level cognitive skills while having relatively low verbal task demands. We created a
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630 composite measure of performance across these three domains by creating z-scores of
631 the raw scores on each of these tests and summing them, as pre-registered; the tests
632  were moderately correlated, 0.23 < r < 0.43, in the whole sample.

633 MRI Scan Procedure. Scans were typically completed on the same day as the
634  cognitive battery, but could also be completed at a second testing session. After

635 completing motion compliance training in a simulated scanning environment,

636  participants first completed a structural T1-weighted scan. Next, they completed three to
637  four five-minute resting state scans, in which they were instructed to lay with their eyes
638 open while viewing a crosshair on the screen. The first two resting state scans were
639 completed immediately following the T1-weighted scan; children then completed two
640 other structural scans, followed by one or two more resting state scans, depending on
641 the protocol at each specific study site. All scans were collected on one of three 3T

642  scanner platforms with an adult-size head coil. Structural and functional images

643 underwent automated quality control procedures (including detecting excessive

644 movement and poor signal-to-noise ratios) and visual inspection and rating (for

645  structural scans) of images for artifacts or other irregularities (described in Hagler et al.,
646  2019); participants were excluded if they did not meet quality control criteria, including
647 atleast 12.5 minutes of data with low head motion (framewise displacement < 0.2 mm).
648 Scan parameters. Scan parameters were optimized to be compatible across
649  scanner platforms, allowing for maximal comparability across the 19 study sites. All T1-
650 weighted scans were collected in the axial position, with 1mm3 voxel resolution, 256 x
651 256 matrix, 8 degree flip angle, and 2x parallel imaging. Other scan parameters varied
652 by scanner platform (Siemens: 176 slices, 256 x 256 FOV, 2500 ms TR, 2.88 ms TE,
653 1060 ms TI; Philips: 225 slices, 256 x 240 FOV, 6.31 ms TR, 2.9 ms TE, 1060 ms TI;
654 GE: 208 slices, 256 x 256 FOV, 2500 ms TR, 2 ms TE, 1060 ms TI). All fMRI scans
655 were collected in the axial position, with 2.4mm? voxel resolution, 60 slices, 90 x 90

656  matrix, 216 x 216 FOV, 800ms TR, 30 ms TE, 52 degree flip angle, and 6 factor

657  MultiBand Acceleration. Motion was monitored during scan acquisition using real-time
658  procedures to adjust scanning procedures as necessary (see Casey et al., 2018); this
659  prospective motion correction procedure significantly reduces scan artifacts due to head
660 motion (Hagler et al., 2019).
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661 Resting state fMRI processing. Data processing was carried out using the

662 ABCD pipeline and carried out by the ABCD Data Analysis and Informatics Core; more
663  details are reported by Hagler et al. (2019). Briefly, T1-weighted images were corrected
664  for gradient nonlinearity distortion and intensity inhomogeneity, and rigidly registered to
665 a custom atlas. They were run through FreeSurfer’'s automated brain segmentation to
666 derive white matter, ventricle, and whole brain ROIs. Resting state images were first
667  corrected for head motion, displacement estimated from field map scans, Bo distortions,
668 and gradient nonlinearity distortions, and registered to the structural images using

669  mutual information. Initial scan volumes were removed, and each voxel was normalized
670 and demeaned. Signal from estimated motion time courses (including six motion

671 parameters, their derivatives, and their squares), quadratic trends, and mean time

672  courses of white matter, gray matter, and whole brain, plus first derivatives, were

673 regressed out, and frames with greater than 0.2mm displacement were excluded. While
674 the removal of whole brain signal (global signal reduction) is controversial in the context
675  of interpreting anti-correlations (Chai et al., 2012; Murphy & Fox, 2017), we note that we
676  are able to replicate prior studies showing that a more negative link between our

677 networks of interest is related to test performance in our higher-income sample (see
678 Results), lending credence to the inclusion of this step in the analysis pipeline for our
679  purposes.

680 The data underwent temporal bandpass filtering (0.009 — 0.08 Hz). Next,

681 standard ROI-based analyses were adapted to allow for analysis in surface space

682 (Hagler et al., 2019). Specifically, time courses were projected onto FreeSurfer’s cortical
683  surface, upon which 13 functionally-defined networks (Gordon et al., 2016) were

684 mapped and time courses for FreeSurfer’s standard cortical and subcortical ROls

685 extracted (Desikan et al., 2006; Fischl et al., 2002). Correlations for each pair of ROls
686  both within and across each of the 13 networks were calculated. These were z-

687 transformed and averaged to calculate within-network connectivity for each network (the
688 average correlation of each ROI pair within the network) and between-network

689  connectivity across all networks (the average correlation of pairs of each ROl in one
690 network with each ROI in another network). Here, we examined only within-network

691  connectivity for LFPN and between-network LFPN-DMN connectivity.
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692 Altogether, the process for curbing potential contamination from head motion was
693 three-fold. First there was real-time head motion monitoring and correction, as

694  described above, and a thorough and systematic check of scan quality in collaboration
695 with ABCD’s Data Analysis and Informatics Center. Second, signal from motion time
696  courses was regressed out during preprocessing, and frames with greater than 0.2mm
697 of framewise displacement were excluded from calculations altogether, as were time
698  periods with less than five contiguous low-motion frames. Third, a final censoring

699 procedure was employed to identify potential lingering effects of motion by excluding
700 any frames with outliers in spatial variation across the brain (Hagler et al., 2019). In

701 combination, these procedures reduce motion artifacts to the extent possible (Power et
702  al., 2014).

703 Analysis. Analyses were performed using R version 3.6.0 (R Core Team, 2017).
704  We performed two separate linear mixed effects models using the Ime4 package (D.
705 Bates et al., 2015) to test the relation between cognitive test scores and (1) LFPN-DMN
706  connectivity, and (2) LFPN within-network connectivity. In our initial pre-registration, we
707  did not consider the nested structure of the data or potential confounds. To determine
708  whether to include these in our model in a data-driven fashion, we tested whether each
709  of the following variables contributed significantly to model fit: (1) nesting within study
710 site, (2) nesting within families, (3) child age, and (4) mean levels of motion in resting
711  state scan. All except (2) contributed to model fit at a level of p < 0.01 and were thus
712  retained in final models. We note that our reported results are similar when we perform
713  simple linear regression with no covariates, exactly as pre-registered. In addition,

714  results are similar when including all of the covariates in the ABCD study’s default LMM
715 package (https://deap.nimhda.org/) — specifically, when adding fixed effects of

716  race/ethnicity, sex, and parent marital status to the same model above. To determine
717  the significance of our neural connectivity metrics, we tested whether these contributed
718 to model fit. In all cases, we compared models without the inclusion of the variable of
719 interest to models with this variable included, and calculated whether the variable of
720 interest contributed significantly to model fit, using the anova function for likelihood ratio

721  test model comparison.
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722 In our second set of analyses, we sought to explore the unexpected results from
723  our first set of analyses by asking whether certain environmental variables determine
724  whether LFPN-DMN connectivity is positively or negatively associated with cognitive
725  test performance across individuals. To do this, we gathered 31 environmental variables
726  of interest, spanning home, neighborhood, and school contexts. Upon examining the
727  data, we learned that three of these were not collected at the baseline visit and thus
728 could not be included. Moreover, we made the decision to include ethnicity separate
729 from race, as it was collected, to retain maximal information. The final 29 environmental
730 variables are listed in Table 2. In preparation for our subsequent analyses, we mean-
731  centered and standardized these variables in the larger dataset to allow for potential
732 comparisons across the high- and low-income children. Levels of each factor variables
733  were broken down into separate dummy-coded variables for inclusion in factor and

734  ridge analyses. When data were missing, they were interpolated using the mice

735 package in R (van Buuren & Groothuis-Oudshoorn, 2011).

736 We first performed a confirmatory factor analysis using the lavaan package in R
737  (Rosseel, 2012) to see whether individual and home, neighborhood, and school

738 variables can be separated into distinct factors. If this achieved adequate fit

739  (significantly better fit than a single factor model and CFI>9), we planned to perform a
740 linear mixed effects model to test the association of cognitive test performance with an
741  interaction between LFPN-DMN connectivity and each factor score.

742 We next performed a ridge regression using the gimnet package in R (Friedman
743 et al., 2010). This analysis technique penalizes variables in a model that have little

744  predictive power, shrinking their coefficient closer to zero, thus allowing for the inclusion
745  of many potential predictors while reducing model complexity. These models also

746  include a bias term, reducing the chances of overfitting to peculiarities of the data, a
747  common pitfall of ordinary least squares regression. Finally, ridge regression also deals
748  well with multi-collinearity in independent variables; in contrast to alternatives such as
749  Lasso, if two variables are highly correlated and both predictive of the dependent

750 variable, coefficients of both will be weighted more heavily in ridge.

751 We fit ridge regressions predicting cognitive test score residuals, which partialled
752  out the covariates included in our basic linear mixed effects models (random intercept
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753  for study site, fixed effects for age and motion), from an interaction between LFPN-DMN
754  connectivity and each environmental variable of interest. This analysis used nested

755  cross-validation. Specifically, we first split the data into a training (2/3) and testing (1/3)
756  set. We created test score residuals in the training and testing sets separately to avoid
757 data leakage (Scheinost et al., 2019), after rescaling the testing data by the training

758 data. We then tuned parameters of the ridge regression on the training set using 5-fold
759  cross-validation. Ultimately, we used the best-performing model to predict cognitive test
760  scores in the held-out testing set and assessed model fit using R? cross-validated. An
761  R2cv above 0 indicates that the model performed above chance; otherwise, it will be
762  below 0. We evaluated the significance of specific variables in our model by plugging in
763  the lambda parameter from the best-performing model to the linearRidge function in the
764  ridge package in R (Cule & Moritz, 2019), on the whole sample of children in poverty.
765 Robustness analyses. We did several additional analyses to test the

766  robustness of our results. First, we repeated our primary analyses as robust linear

767  mixed effects models, using the robustimm package in R (Koller, 2016). These models
768  detect outliers or other sources of contamination in the data that may affect model

769  validity, and perform a de-weighting procedure based on the extent of contamination
770 introduced. Next, we performed a bootstrapping procedure intended to probe how

771  frequently the parameter estimate observed in the children in poverty alone would be
772  expected to be observed in a larger population of children living above poverty

773  (Supplement S4). We also performed a permutation procedure to examine the extent to
774  which the model parameters from the higher-income children alone could explain the
775 data in the children in poverty (Supplement S5). Finally, given that children living in

776  poverty had significantly more motion than children living above poverty, we repeated
777  our primary analyses with only those children who met an extremely stringent motion
778  threshold of 0.2mm (Supplement S6).

779 Additional R packages used for data cleaning, analysis, and visualization include:
780  dplyr (Wickham et al., 2019); ggplot2 (Wickham, 2016); car (J. Fox & Weisberg, 2011);
781  corrplot (Wei & Simko, 2017); MuMIn (Barton, 2019); tidyr (Wickham & Henry, 2019);
782  summarytools (Comtois, 2019); finalfit (Harrison et al., 2019); fastDummies (Kaplan,
783  2019); caret (from Jed Wing et al., 2019); scales (Wickham, 2018); foreign (R Core
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784 Team, 2018); MASS (Venables & Ripley, 2002); sjPlot (Lidecke, 2019); tableone
785  (Yoshida, 2019); gtools (Warnes et al., 2018).

786

787  Data availability

788

789 All raw and processed data used for these analyses are available with

790 institutional permission on the NIMH Data Archive (https://nda.nih.gov/abcd).
791

792  Code availability

793

794 All analysis scripts used for the current study are publicly available on the Open
795  Science Framework

796  (https:/osf.io/hs7cq/?view only=d2acb721549d4{22b5eeeadce51195c7).

797
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Figure 1. lllustration of the variability of cognitive test performance within every level of
family income in the sample (N = 6839). Colors indicate whether children were classified as
living in poverty, based on a combination of their family income and number of people in
the home. Replicating prior studies, higher income is associated with higher cognitive test
performance (R = 0.24); however, it is important to acknowledge this substantial variability

within and overlap between children at each level of family income.
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Figure 2. Relations between resting state network metrics and cognitive test score residuals, for
children living above poverty (dark blue) and below poverty (light blue). Models include fixed
effects for age and motion and a random effect for study site. 95% confidence intervals for a
linear model calculated and displayed using the geom_smooth function in ggplot. Panel A:
Children living above poverty show an expected, negative, relation between LFPN-DMN
connectivity and test performance, B = -1.41, SE = 0.45; p = 0.002, while children living below
poverty show the opposite pattern, B=2.11, SE = 1.12; p = 0.060, interaction: X2 (1) = 8.99, p =
0.003. Panel B: Children across the sample show a non-significant positive relation between
LFPN-LFPN within-network connectivity and test performance, above poverty: B = 0.34, SE =
0.36; p = 0.346; below poverty: B=0.24, SE = 0.87; p = 0.783; interaction: X2 (1) = 0.0005, p =
0.982. Networks functionally defined using the Gordon parcellation scheme; on left, LFPN is
shown in yellow and DMN shown in red, figures adapted from (Gordon et al., 2016).
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Figure 3. Interactions between demographic variables and LFPN-DMN connectivity in
predicting cognitive test scores, for children below poverty. The majority of non-public schools
were charter and private schools. In addition, only white and Black/African American race are
displayed as these were the most represented in the current sample, though there were also
suggestive interactive effects for children of mixed race and Hispanic ethnicity. 89% level
confidence intervals for predicted effects calculated and displayed using the sjPlot package in R

(Lidecke, 2019).
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1323 DMN-CON DMN-RTN

1324  Figure 4. Exploratory analyses with cingulo-opercular network (CON, panels A-B) and

1325  retrosplenial temporal network (RTN, panels C-D). Panel A: weaker LFPN-CON connectivity
1326  was associated with better test performance for both groups, with little evidence of an

1327  interaction (main effect: B = -1.14, SE = 0.45, t (6824) = -2.53; X? (1) = 11.76, p = 0.001;

1328  interaction: B = -1.42, SE = 1.03, t (6824) = -1.37; X*> (1) = 1.87, p = 0.171). Panel B: DMN-CON
1329  connectivity was not consistently associated with test performance, though it was directionally
1330 positive for children above poverty and negative for children below poverty (main effect: B =
1331 0.47, SE=0.38,t(6823) = 1.24; X2 (1) = 0.27, p = 0.601; interaction: B = -1.66, SE = 0.88, t
1332 (6823) =-1.88; X2 (1) = 3.53, p = 0.060). Panels C and D: weaker LFPN-RTN connectivity and
1333  weaker DMN-RTN connectivity were both associated with better test performance, with little
1334  evidence of an interaction (Panel C: LFPN-RTN main effect: B = -0.90, SE = 0.36, t (6829) = -
1335 2.54;X2 (1) = 7.13, p = 0.008; LFPN-RTN interaction: B = 0.23, SE = 0.84, t (6829) = 0.27; X2
1336 (1) =0.08, p = 0.784; Panel D: DMN-RTN main effect: B = -0.99, SE = 0.32, t (6826) = -3.14; X2
1337 (1) =16.24, p < 0.001;, DMN-RTN interaction: B = -0.95, SE = 0.75, t (6826) = -1.27; X? (1) =
1338 1.61, p=0.205). As in Figure 2, plots show relations between resting state network metrics and
1339  cognitive test score residuals, for children living above poverty (dark blue) and below poverty
1340 (light blue). Models include fixed effects for age and motion and a random effect for study site.
1341  95% confidence intervals for a linear model calculated and displayed using the geom_smooth
1342  function in ggplot.

48


https://doi.org/10.1101/2020.05.29.124297
http://creativecommons.org/licenses/by-nc-nd/4.0/

1343
1344

1345
1346

available under aCC-BY-NC-ND 4.0 International license.

RUNNING HEAD: Adaptive patterns of brain connectivity

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.29.124297; this version posted December 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Table 1. Participant characteristics. Demographic information in plain text; brain and cognitive

variables italicized.

Above Below
poverty poverty
(n =5805) (n =1034) p-test
Age in months (mean (SD)) 119.44 (7.54) 118.89 (7.50) 0.032
Sex at birth (%) 0.055
Other/did not disclose 0 (0.0) 1(0.1)
Female 2913 (50.2) 511 (49.4)
Male 2892 (49.8) 522 (50.5)
Primary caregiver in study (%) <0.001
Biological mother 4904 (84.5) 920 (89.0)
Biological father 645 (11.1) 54 (5.2)
Adoptive parent 137 (2.4) 18 (1.7)
Custodial parent 43 (0.7) 23 (2.2)
Other 76 (1.3) 19 (1.8)
Site (de-identified) (%) <0.001
site02 429 (7.4) 19 (1.8)
site03 285 (4.9) 130 (12.6)
site04 369 (6.4) 122 (11.8)
site05 203 (3.5) 42 (4.1)
site06 395 (6.8) 16 (1.5)
site07 170 (2.9) 42 (4.1)
site08 177 (3.0) 14 (1.4)
site09 250 (4.3) 24 (2.3)
site10 297 (5.1) 101 (9.8)
site11 224 (3.9) 67 (6.5)
site12 298 (5.1) 73 (7.1)
site13 361 (6.2) 61 (5.9)
site14 434 (7.5) 15 (1.5)
site15 127 (2.2) 85 (8.2)
site16 820 (14.1) 70 (6.8)
site18 208 (3.6) 19 (1.8)
site20 422 (7.3) 76 (7.4)
site21 314 (5.4) 54 (5.2)
site22 22 (0.4) 4(0.4)
RSfMRI mean framewise displacement (mean (SD)) 0.19(0.15) 0.23(0.18) <0.001
LFPN-DMN connectivity (mean (SD)) 0.058 (0.06) 0.061 (0.06) 0.061
LFPN-LFPN connectivity (mean (SD)) 0.21 (0.07) 0.21 (0.08) 0.286
Matrix reasoning raw score (mean (SD)) 18.67 (3.51) 16.35 (3.89) <0.001
Flanker raw score (mean (SD)) 95.34 (8.03) 91.92 (10.24) <0.001
Card sort raw score (mean (SD)) 94.09 (8.58)  89.83(9.79)  <0.001
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1347  Table 2. Wider environmental information. Variables included in the ridge regression predicting
1348  cognitive test scores. All except income were used in primary models; additional tests confirmed
1349 that income did not add predictive power above and beyond these variables.

Above poverty

Below poverty

(n = 5805) (n =1034) p-test

Combined family income (%) <0.001

Less than $5,000 0 (0.0) 187 (18.1)

$5,000 through 11,999 0 (0.0) 219 (21.2)

$12,000 through $15,999 0 (0.0) 154 (14.9)

$16,000 through $24,999 0 (0.0) 280 (27.1)

$25,000 through $34,999 215 (3.7) 194 (18.8)

$35,000 through $49,999 579 (10.0) 0 (0.0)

$50,000 through $74,999 972 (16.7) 0 (0.0)

$75,000 through $99,999 1050 (18.1) 0 (0.0)

$100,000 through $199,999 2157 (37.2) 0 (0.0)

$200,000 and greater 832 (14.3) 0 (0.0)
Parents' highest level of education (n, %) <0.001

3rd grade 1 (0.0) 0 (0.0)

4th grade 0 (0.0) 1(0.1)

5th grade 0 (0.0) 1(0.1)

6th grade 4 (0.1) 13 (1.3)

7th grade 1(0.0) 2(0.2)

8th grade 1 (0.0) 8(0.8)

9th grade 6 (0.1) 24 (2.3)

10th grade 10 (0.2) 26 (2.5)

11th grade 12 (0.2) 34 (3.3)

12th grade 13 (0.2) 47 (4.5)

High school graduate 167 (2.9) 169 (16.3)

GED or equivalent 66 (1.1) 91 (8.8)

Some college 590 (10.2) 297 (28.7)

Associate degree: occupational 374 (6.4) 135 (13.1)

Associate degree: academic 297 (5.1) 63 (6.1)

Bachelor's degree 1818 (31.3) 86 (8.3)

Master's degree 1677 (28.9) 32 (8.1)

Professional school degree 364 (6.3) 4 (0.4)

Doctoral degree 403 (6.9) 1(0.1)
People living in home (mean (SD)) 4.76 (1.64) 4.97 (2.89) 0.001
Any siblings (yes, %) 1905 (32.8) 269 (26.0) <0.001
Hours/week spent at another household
(mean (SD)) 5.34 (19.45) 5.45 (21.63) 0.869
Financial stress (0-7; mean (SD)) 0.28 (0.85) 1.32 (1.61) <0.001
Race (%) <0.001
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Native American/Alaska Native 17 (0.3) 14 (1.4)
Asian 126 (2.2) 8 (0.8)
Black/African American 495 (8.5) 377 (36.5)
Pacific Islander 8 (0.1) 1(0.1)
Other 159 (2.7) 74 (7.2)
White 4263 (73.4) 386 (37.3)
Mixed 696 (12.0) 141 (13.6)
Refuse to answer 41 (0.7) 33 (8.2)
Hispanic/Latino ethnicity (no, %) 4776 (83.1) 682 (67.3) <0.001
Parent marital status (%) <0.001
Married 4621 (79.7) 302 (29.6)
Widowed 33 (0.6) 22 (2.2)
Separated/divorced 600 (10.4) 232 (22.7)
Never married 319 (5.5) 369 (36.1)
Living with partner 223 (3.8) 96 (9.4)
Generational status (%) <0.001
Parent born outside U.S. 708 (12.2) 201 (19.5)
Grandparent born outside U.S. 933 (16.1) 90 (8.7)
Child born outside U.S. 118 (2.0) 32 (3.1)
Parents and grandparents born in U.S. 4043 (69.7) 709 (68.7)
School setting (%) <0.001
Not in school 19 (0.3) 6 (0.6)
Regular public school 4836 (83.3) 891 (86.2)
Regular private school 346 (6.0) 40 (3.9)
Charter school 412 (7.1) 79 (7.6)
Vocational/tech school 2(0.0) 1(0.1)
Cyber school 7 (0.1) 2(0.2)
Home school 112 (1.9) 2(0.2)
School for behavioral/emotional problems 7 (0.1) 3(0.3)
Other 63 (1.1) 10 (1.0)
Youth-reported supportive school environment
(6-24; mean (SD)) 19.95 (2.63) 19.96 (3.22) 0.949
Youth-reported school involvement
(4-16; mean (SD)) 13.11 (2.25) 13.22 (2.44) 0.162
Youth-reported school disengagement
(2-8; mean (SD)) 3.66 (1.39) 3.79 (1.57) 0.006
Census: % of people over age 25 with at least a
high school diploma (mean (SD)) 91.13 (8.76) 81.30 (12.11) <0.001
Census: income disparity (mean (SD)) 1.81 (1.17) 3.13 (1.34) <0.001
Census: % of occupied units without complete
plumbing (mean (SD)) 0.28 (0.64) 0.44 (0.83) <0.001
Census: % of families below the poverty level
(mean (SD)) 8.35 (8.68) 20.93 (14.61) <0.001
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Census: % of labor force aged >=16 y
unemployed (mean (SD)) 7.69 (4.52) 13.15 (7.49) <0.001

Census: uniform crime reports (mean (SD)) 43774.47 (69634.30) 43204.49 (57108.32)  0.81

Census: adult violent crime reports (mean (SD)) 2660.87 (6271.58) 2642.93 (5030.45) 0.933
Census: estimated lead risk

(1-10; mean (SD)) 4.40 (2.98) 6.77 (2.89) <0.001
Parent-reported neighborhood safety
(1-5; mean (SD)) 4.05 (0.85) 3.34 (1.11) <0.001
Parent self-reported aggressive behavior
(0-30; mean (SD)) 3.14 (3.27) 4.47 (4.58) <0.001
Parent self-reported intrusive behavior
(0-12; mean (SD)) 1.01 (1.43) 1.08 (1.43) 0.198
Parent self-reported withdrawn behavior
(0-18; mean (SD)) 1.35 (1.85) 2.46 (2.83) <0.001
Parent ethnic identification
(1-5; mean (SD)) 2.71 (0.86) 2.58 (0.94) <0.001
Youth-reported family conflict
(0-9; mean (SD)) 1.93 (1.92) 2.45 (2.04) <0.001
Youth-reported parental monitoring
(1-5; mean (SD)) 4.43 (0.46) 4.31 (0.59) <0.001
Youth-reported parental acceptance
(1-3; mean (SD)) 2.80 (0.29) 2.76 (0.33) <0.001
1350
1351
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1352  Table 3. Estimated coefficients from Ridge regression predicting children’s cognitive test

1353  scores, when controlling for fixed effects of age and motion and random effects of study site, for
1354  all children below the poverty line. Interactions with and main effect of LFPN-DMN connectivity
1355 italicized.

o o S~ =

E 3F 4 3% =

%z 87 z§ T8 ¢

wuw wo 0L 2 o
(Intercept) 0.12 NA NA NA NA
Black race -0.10 -1.46 0.28 5.29 0.000
Parents' highest level of education (years) 0.05 1.53 0.32 476 0.000
Census: % of people over age 25 with >= high school diploma 0.03 1.06 0.29 3.69 0.000
White race 0.06 098 029 342 0.001
Asian race 0.37 1.06 0.33 3.23 0.001
Census: % of labor force aged >=16 y unemployed -0.02 -0.77 028 275 0.006
Census: % of families below the poverty level -0.02 -0.70 026 2.71 0.007
Parent ethnic identification 0.03 0.87 033 268 0.007
Youth-reported school disengagement -0.02 -0.81 0.31 261 0.009
Census: income disparity -0.02 -067 0.26 257 0.010
LFPN-DMN x Public school 027 053 022 241 0.016
LFPN-DMN x Parent-reported neighborhood safety -0.19 -0.67 029 235 0.019
Census: estimated lead risk -0.02 -060 0.28 217 0.030
LFPN-DMN x Mixed race 0.74 0.65 031 207 0.038
Third generation American -0.04 -0.52 0.25 2.04 0.042
LFPN-DMN x Parents' highest level of education 0.15 052 027 190 0.057
LFPN-DMN 0.18 034 020 1.72 0.085
LFPN-DMN x Black race -0.28 -043 025 1.70 0.089
LFPN-DMN x non-Hispanic 0.20 038 022 1.67 0.094
Mixed race 0.05 052 0.31 1.66 0.096
LFPN-DMN x White race 0.31 046 028 1.61 0.107
LFPN-DMN x Not in school -3.15 -048 031 154 0.123
ILJZ'I;I\A igg/lN x Census: % of occupied units without complete 0.16 049 032 154 0.124
Parent never married -0.03 -044 029 153 0.125
First generation American 0.03 038 027 140 0.160
LFPN-DMN x Hours/week spent at another household -0.14 -046 033 139 0.165
Second generation American 0.04 040 0.31 1.29 0.197
LFPN-DMN x Parent self-reported intrusive behavior 0.15 039 031 1.27 0.206
Parent-reported neighborhood safety 0.01 0.37 0.31 1.18 0.238
LFPN-DMN x First-generation American 0.26 032 027 117 0243
LFPN-DMN x Parent ethnic identification 0.12 037 032 1.15 0.250
Native American/Alaska Native 0.10 036 032 1.12 0.261

53


https://doi.org/10.1101/2020.05.29.124297
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.29.124297; this version posted December 11, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

RUNNING HEAD: Adaptive patterns of brain connectivity

Parent married 0.02 033 030 1.11 0.266
éffi;ﬁl%% ,);7 éEJensus: % of people over age 25 with >= a high 0.08 029 026 111 0269
LFPN-DMN x Youth born outside U.S. 0.83 036 033 1.09 0.274
LFPN-DMN x Private school -0.70  -0.35 0.32 1.09 0.278
Other race -0.04 -0.33 031 1.07 0.286
LFPN-DMN x Parent separated/divorced 025 031 029 1.06 0.288
LFPN-DMN x Youth-reported school involvement 0.10 030 029 1.05 0.294
LFPN-DMN x Second-generation American -044 -0.32 0.31 1.02 0.308
Youth-reported parental acceptance -0.01  -0.30 031 0.97 0.333
Any siblings -0.02 -0.30 0.33 090 0.366
Other school setting 0.08 029 032 089 0.372
LFPN-DMN x People living in home -0.06 -027 031 087 0.387
LFPN-DMN x Third-generation American 0.10 019 023 086 0.392
LFPN-DMN x Youth-reported school disengagement -0.09 -026 031 085 0.397
Parent widowed -0.06 -0.27 033 0.81 0.418
Not in school -0.11  -025 0.31 0.80 0.425
Home school -0.16 -0.22 030 0.73 0.463
LFPN-DMN x Financial stress -0.05 -022 031 073 0.468
Parent separated/divorced 0.02 022 031 072 0.471
Census: adult violent crime reports 0.01 020 027 0.72 0472
LFPN-DMN x home school -282 -021 030 0.71 0478
Youth-reported supportive school environment -0.01  -0.21 030 0.70 0.483
LFPN-DMN x Asian race 044 021 031 070 0487
LFPN-DMN x Census: income disparity 0.05 0.16 023 0.70 0487
Census: uniform crime reports 0.01 0.19 028 0.68 0.498
LFPN-DMN x Youth-reported parental monitoring -0.06 -021 031 067 0.503
LFPN-DMN x Any siblings 0.15 020 030 0.65 0517
Hours/week spent at another household -0.01  -0.21 034 0.63 0.526
LFPN-DMN x Native American/Alaska Native 0.51 0.19 032 059 0.553
LFPN-DMN x Youth-reported family conflict 0.06 0.18 031 058 0.565
LFPN-DMN x School for behavioral/emotional problems 237 -020 035 057 0.566
LFPN-DMN x Youth-reported supportive school environment 0.05 0.17 030 056 0578
LFPN-DMN x Parent married 0.11 0.16 028 055 0.580
LFPN-DMN x Census: adult violent crime reports -0.06 -0.15 027 055 0.581
School for behavioral/emotional problems 0.10 0.18 035 051 0.612
LFPN-DMN x Census: estimated lead risk 0.04 0.13 025 050 0616
Youth-reported school involvement 0.00 -0.14 030 049 0.625
People living in home 0.00 -0.15 031 0.48 0.633
Private school -0.02 -0.15 0.32 048 0.634
Child born outside U.S. -0.03 -0.15 0.33 0.46 0.648
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LFPN-DMN x Census: uniform crime reports -0.05 -0.13 028 045 0.650
LFPN-DMN x Other race -0.17 -0.13 0.31 044 0.661
Youth-reported parental monitoring 0.00 -0.13 0.32 0.42 0.671

Parent self-reported aggressive behavior 0.00 012 029 042 0.673
Youth-reported family conflict 0.00 -0.12 0.32 0.39 0.695
LFPN-DMN x Charter school -0.16 -0.11 031 037 0.710
Financial stress 0.00 0.11 033 035 0.726
LFPN-DMN x Head motion 0.03 009 030 030 0.763
LFPN-DMN x Parent never married 0.05 007 027 026 0.795
LFPN-DMN x Parent self-reported withdrawn behavior 0.02 0.08 030 025 0802
Head motion 0.00 0.07 033 0.21 0.835
LFPN-DMN x Parent self-reported aggressive behavior 0.02 006 029 019 0847
Hispanic ethnicity 0.00 005 024 0.19 0.849
Non-hispanic ethnicity 0.00 -0.05 024 0.19 0.849
Parent self-reported intrusive behavior 0.00 0.06 031 019 0.852
Age 0.00 0.06 033 0.17 0.865
Public school 0.00 0.05 029 017 0.868
LFPN-DMN x Parent widowed -0.18 -0.05 033 0.17 0.869
LFPN-DMN x Census: % of families below the poverty level 0.01 004 023 016 0870
Census: % of occupied units without complete plumbing 0.00 0.05 033 0.16 0.873
LFPN-DMN x Youth-reported parental acceptance 0.01 0.04 030 013 0.900
Parent living with partner 0.00 0083 032 0.11 0.914
LFPN-DMN x Parent living with partner -0.04 -0.03 031 010 0.919
LFPN-DMN x Hispanic ethnicity -0.02 -0.03 026 0.10 0.920
LFPN-DMN x Age 0.01 0.02 032 007 0946
LFPN-DMN x Other school setting 0.03 0.01 032 003 0976
5rl?eprlr\7lp%\}7(le\él x Census: % of labor force aged >=16 y 000 -001 025 002 0981
Charter school 0.00 -0.01 030 0.02 0.982
Parent self-reported withdrawn behavior 0.00 0.00 030 0.00 0.997

1356
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