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Genome-wide association study (GWAS) summary statistics are a fundamental resource 16 

for a variety of research applications 136. Yet despite their widespread utility, no common 17 

storage format has been widely adopted, hindering tool development and data sharing, 18 

analysis and integration. Existing tabular formats 7,8 often ambiguously or incompletely 19 

store information about genetic variants and their associations, and also lack essential 20 

metadata increasing the possibility of errors in data interpretation and post-GWAS 21 

analyses. Additionally, data in these formats are typically not indexed, requiring the 22 

whole file to be read which is computationally inefficient. To address these issues, we 23 

propose an adaptation of the variant call format 9 (GWAS-VCF) and have produced a suite 24 

of open-source tools for using this format in downstream analyses. Simulation studies 25 

determine GWAS-VCF is 9-46x faster than tabular alternatives when extracting variant(s) 26 

by genomic position. Our results demonstrate the GWAS-VCF provides a robust and 27 

performant solution for sharing, analysis and integration of GWAS data. We provide open 28 

access to over 10,000 complete GWAS summary datasets converted to this format 29 

(available from: https://gwas.mrcieu.ac.uk).  30 
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Main 31 

 32 

The GWAS is a powerful tool for identifying genetic loci associated with any trait, including 33 

diseases and clinical biomarkers, as well as non-clinical and molecular phenotypes such as 34 

height and gene expression 3 (eQTLs). Sharing of GWAS results as summary statistics (i.e. 35 

variant, effect size, standard error, p-value etc.) has enabled a range of important secondary 36 

research applications including: causal gene and functional variant prioritisation 1, causal 37 

cell/tissue type nomination 2, pathway analysis 3, causal inference (Mendelian 38 

randomization; MR) 4, risk prediction 3, genetic correlation 5 and heritability estimation 6. 39 

However, the utility of GWAS summary statistics is hampered by the absence of a 40 

universally adopted storage format and associated tools. 41 

 42 

Historic lack of a common standard has resulted in GWAS analysis tools outputting summary 43 

statistics in different tabular formats (e.g. plink 10, GCTA 11, BOLT-LMM 12, GEMMA 13, Matrix 44 

eQTL 14  and meta-analysis tools e.g. METAL 15). As a consequence, various processing issues 45 

are typically encountered during secondary analysis. First, there is often inconsistency and 46 

ambiguity of which allele relates to the effect size estimate (the <effect= allele). Confusion 47 

over the effect allele can have disastrous consequences on the interpretation of GWAS 48 

findings and the validity of post-GWAS analyses. For example MR studies may provide 49 

causal estimates with incorrect effect directionality 16. Likewise, prediction models based on 50 

polygenic risk scores might predict disease wrongly or suffer reduced power if some of the 51 

effect directionalities are incorrect. Second, the schema (i.e. which columns/fields are 52 

included and how they are named) of these tabular formats varies greatly. Absent fields can 53 

limit analyses and although approaches exist to estimate the values of some of these 54 
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 4 

missing columns (e.g. standard error from P value) imprecision is introduced reducing 55 

subsequent test power. Varying field names are easily addressed in principle, but the 56 

process can be cumbersome and error prone. Third, data are frequently distributed with no 57 

or insufficient metadata describing the study, trait(s), and variants (e.g., trait measurement 58 

units, variant id/annotation sources, etc.) which can lead to errors, impede integration of 59 

results from different studies and hamper reproducibility. Fourth, querying unindexed text 60 

files is slow and memory inefficient, making some potential applications computationally 61 

infeasible (e.g. systematic hypothesis-free analyses). 62 

 63 

Some proposals for a standard tabular format have been made. The EBI-NHGRI GWAS 64 

catalog (www.ebi.ac.uk/gwas) developed a tab-separated values (TSV) text format with a 65 

minimal set of required (and optional) columns along with standardised headings 7. The 66 

SMR tool 8 introduced a binary format for rapid querying of quantitative trait loci. These 67 

approaches are adequate for storing variant level summary statistics but do not enforce 68 

allele consistency or support embedding of essential metadata. Learning from these 69 

examples and our experiences performing high-throughput analyses across two research 70 

centres, we developed a set of requirements for a suitable universal format (Table 1). These 71 

features place emphasis on consistency and robustness, capacity for metadata to provide a 72 

full audit trail, efficient querying and file storage, ensuring data integrity, interoperability 73 

with existing open-source tools and across multiple datasets to support data sharing and 74 

integration. We determined that adapting the variant call format (VCF) 9 was a convenient 75 

and constructive solution to address these issues. We provide evidence demonstrating how 76 

the VCF meets our requirements and showcase the capabilities of this medium (Table 1). 77 

 78 
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 5 

The VCF is organised into three components: a flexible file header containing metadata 79 

(lines beginning with 8#9), and a file body containing variant- (one locus per row with one or 80 

more alternative alleles/variants) and sample-level information (one sample per column). 81 

We adapt this format to include GWAS-specific metadata and utilise the sample column to 82 

store variant-trait association data (Figure 1; Supplementary Table 1). 83 

 84 

According to the VCF specification, the file header consists of metadata lines containing 1) 85 

the specification version number, 2) information about the reference genome assembly and 86 

contigs, and 3) information (ID, number, type, description, source and version) about the 87 

fields used to describe variants and samples (or variant-trait associations in the case of 88 

GWAS-VCF) in the file body. We take advantage of the VCF file header to store additional 89 

information about the GWAS including 1) source and date of summary statistics, 2) study 90 

IDs (e.g., PMID/DOI of publication describing the study, or accession number and repository 91 

of individual-level data), 3) description of the trait(s) studied (e.g., type, association test 92 

used, sample size, ancestry and measurement unit) as well as the source and version of trait 93 

IDs (e.g., Experimental Factor Ontology 17, Human Phenotyping Ontology 18 or Medical 94 

Subject Headings 19 IDs for clinical and other traits, or Ensembl Gene IDs for eQTL datasets). 95 

 96 

Unlike VCF where a row can contain information about multiple alternative alleles observed 97 

at the same site/locus (and thus may store more than one variant), the GWAS-VCF 98 

specification requires that each variant is stored in a separate row of the file body. Each row 99 

contains eight mandatory fields: chromosome name (CHROM), base-pair position (POS), 100 

unique variant identifier (ID), reference/non-effect allele (REF), alternative/effect allele 101 

(ALT), quality (QUAL), filter (FILTER) and variant information (INFO). The ID, QUAL and 102 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.115824doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.29.115824
http://creativecommons.org/licenses/by/4.0/


 6 

FILTER fields can contain a null value represented by a dot. Importantly, the ID value (unless 103 

null) should not be present in more than one row. The FILTER field may be used to flag poor 104 

quality variants for exclusion in downstream analyses. The INFO column is a flexible data 105 

store for additional variant-level key-value pairs (fields) and may be used to store for 106 

example: population frequency (AF), genomic annotations and variant functional effects. 107 

We also use the INFO field to store the dbSNP 20 locus identifier (rsid) for the site at which 108 

the variant resides. This is because (despite their common usage as variant identifiers) rsids 109 

uniquely identify loci (not variants!) and thus cannot be used in the ID field, as we will 110 

discuss further at the end of this manuscript. Following the INFO column is a format field 111 

(FORMAT) and one or more sample columns which we use to store variant-trait association 112 

data, with values for the fields listed in the FORMAT column for example: effect size (ES), 113 

standard error (SE) and -log10 P-value (LP). 114 

 115 

This format has a number of advantages over existing solutions. First, the VCF provides 116 

consistent and robust approaches to storing genetic variants, annotations and metadata. 117 

Furthermore, variable type and number requirements reduce parsing errors and missing 118 

data and prevent unexpected program operation. Second, the VCF is well established and 119 

supported by existing tools providing a range of functions for querying, annotating, 120 

transforming and analysing genetic data. Third, the GWAS-VCF file header stores 121 

comprehensive metadata about the GWAS. Fourth, a GWAS-VCF file can store individual or 122 

multiple traits (in one or more sample columns) in a single file which is beneficial for the 123 

distribution of GWAS datasets where genotypes of each sample/individual have been tested 124 

for association with multiple traits (e.g., eQTL datasets). 125 

 126 
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 7 

Simulations of query performance demonstrate compressed GWAS-VCF is substantially 127 

quicker than unindexed and uncompressed TSV format for querying by genomic position. 128 

On average GWAS-VCF was 16x faster to extract a single variant using chromosome position 129 

(mean query duration in GWAS-VCF 0.08 seconds [95% CI 0.08, 0.08]) vs mean query 130 

duration in TSV 1.29 seconds [95% CI 1.29, 1.30]) and 9x quicker using the rsid (0.09 seconds 131 

[95% CI 0.09, 0.09] vs 0.81 seconds [95% 0.80, 0.82]). Using a 1Mb window of variants 132 

GWAS-VCF was 46x quicker (0.11 seconds [95% CI 0.11, 0.11] vs 5.02 seconds [95% CI 4.99, 133 

5.04]). Although querying on association P value was faster using TSV (mean query duration 134 

in TSV 7.18 seconds [95% CI 7.09, 7.26] vs mean query duration in GWAS-VCF 18.04 seconds 135 

[95% CI 17.92, 18.16]) GWAS-VCF could be improved by using variant flags (i.e. in the INFO 136 

field) to highlight records below prespecified thresholds if the exact value is unimportant. 137 

For example, all variants below genome-wide significance (P < 5e-8) or a more relaxed 138 

threshold (e.g. P < 5e-5).  139 

 140 

To automate the conversion of existing summary statistics files to the GWAS-VCF format, we 141 

developed open-source Python3 software (Gwas2VCF; Table 2). The application reads in 142 

metadata and variant-trait association data using a user-defined schema. During processing, 143 

variants are harmonised using a supplied reference genome file to ensure the non-effect 144 

allele matches the reference sequence enabling consistent directionality of allelic effects 145 

across studies. Insertion-deletion variants are left-aligned and trimmed for consistent 146 

representation using the vgraph library 21. Finally, the GWAS-VCF is indexed using tabix 22 147 

and rsidx 23 which enable rapid queries by genomic position and rsid , respectively. We have 148 

developed a freely available web application providing a user-friendly interface for this 149 

implementation and encourage other centres to deploy their own instance (Table 2). 150 
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 151 

Once stored in a GWAS-VCF file, summary statistics can be read and queried using R or 152 

Python programming languages with our open-source libraries (Table 2) or from the 153 

command line using for example: bcftools 24, GATK 25 or bedtools 26. Alternatively, GWAS-154 

VCF may be converted to NHGRI-EBI format 27 or any other tabular format to support 155 

incompatible tools. Further, the gwasglue R package provides convenient programming 156 

functions to automate preparation of genetic association data for a range of downstream 157 

analyses (Table 2). Currently, methods exist for streamlining variant fine-mapping 28332, 158 

colocalization 33, MR 34 and data visualisation 35. New methods are being actively added and 159 

users may request new features via the repository issues page. 160 

 161 

To encourage adoption, we made openly available over 10,000 complete GWAS summary 162 

statistics in GWAS-VCF format as part of the IEU OpenGWAS database. These studies include 163 

a broad range of traits, diseases and molecular phenotypes building on the initial collection 164 

for the MR Base platform 34. 165 

 166 

A limitation of current summary statistics formats, including GWAS-VCF, is the lack of a 167 

widely adopted and stable representation of sequence variants that can be used as 168 

universal unique identifier for said variants. Published summary statistics often use rsids 20 169 

to identify variants but this practice is inappropriate because rsids are locus identifiers and 170 

do not distinguish between multiple alternative alleles observed at the same site. Moreover, 171 

rsids are not stable as they can be merged and retired over time. The reason this is a 172 

problem is that in GWAS summary statistics every record represents the effect of a specific 173 

allele on one or more traits, and if a record identifier is used that is not unique for each 174 
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allelic substitution it cannot technically be considered an identifier. An alternative approach 175 

is to concatenate chromosome, base-position, reference and alternative allele field values 176 

into a single string, but this is non-standardised, and genome build specific. Worst still is the 177 

common approach of mixing these types of identifiers within a single file. In version 1.1 of 178 

the GWAS-VCF specification we suggest querying variants by chromosome and base-179 

position and filtering the output to retain the target substitution (implemented in our 180 

parsers), but we acknowledge that this approach can be cumbersome and difficult to 181 

interoperate with other software. The ideal solution would be to populate the ID column of 182 

a GWAS-VCF file using universally accepted and unique variant identifiers. We have 183 

reviewed several existing variant identifier formats as candidates for the variant identifier 184 

field, to be implemented in the next version of the specification (Supplementary Table 2). 185 

However, we refrain from making a unilateral choice at this juncture because successful 186 

implementation will require consultation from a range of stakeholders. The genetics 187 

community uses different approaches already to deal with the problem of sequence variant 188 

representation and there is a need to coalesce upon a single format. 189 

 190 

Here we present an adaptation of the VCF specification for GWAS summary statistics 191 

storage that is amenable to high-throughput analyses and robust data sharing and 192 

integration. We implement open-source tools to convert existing summary statistics formats 193 

to GWAS-VCF, and libraries for reading or querying this format and integrating with existing 194 

analysis tools. Finally, we provide complete GWAS summary statistics for over 10,000 traits 195 

in GWAS-VCF. These resources enable convenient and efficient secondary analyses of GWAS 196 

summary statistics and support future tool development. 197 

 198 
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Code availability 199 

 200 

Open-source query performance evaluation source code available from GitHub 201 

(https://github.com/MRCIEU/gwas-vcf-performance) or pre-built image available from 202 

DockerHub (mrcieu/gwas-vcf-performance) 203 

 204 

Data availability 205 

 206 

Version 1.1 of the GWAS -VCF format specification is available from: 207 

https://github.com/MRCIEU/gwas-vcf-spec/releases/tag/1.1 208 

 209 

Full summary statistics for over 10,000 GWAS in VCF format are available from the IEU 210 

OpenGWAS Database (https://gwas.mrcieu.ac.uk) 211 

 212 

Method 213 

 214 

Specification 215 

 216 

The specification was developed through experience of collecting and harmonising GWAS 217 

summary data across two research centres at scale 34 and performing a range of 218 

representative high throughput analyses on these data (for example LD score regression 36, 219 

MR 37, genetic colocalisation analysis 38 and polygenic risk scores 39). 220 

 221 

Query performance simulation 222 
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 11 

 223 

Densely imputed summary statistics (13,791,467 variants) for a large GWAS of body mass 224 

index data were obtained from Neale et al 40. The data were mapped to VCF using 225 

Gwas2VCF v1.1.1 and processed using bcftools v1.10 24 to remove multiallelic variants or 226 

records with missing dbSNP 20 identifiers. A tabular (unindexed) file was prepared from the 227 

VCF to replicate a typical storage medium currently used for distributing summary statistics. 228 

Query runtime performance was compared between tabix v1.10.2 22 and standard UNIX 229 

commands under the following conditions: single variant selection using dbSNP identifier 20 230 

or chromosome position, multi-variant selection by association P value (thresholds: P < 5e-231 

8, 0.2, 0.4, 0.6, 0.8) or 1 Mb genomic interval. Tests were undertaken with 100 repetitions 232 

using VCF or unindexed text formats with and without GZIP compression on an Ubuntu 233 

v18.04 server with Intel Xeon(R) 2.0 Ghz processor. All comparisons were performed using 234 

singled thread operations and therefore differences in runtime performance were due to 235 

tool and/or file index usage. 236 

 237 
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Table 1. Requirements for a summary statistics storage format and solutions offered by the VCF 

Requirement Solution using the variant call format 

Human readable and easy to parse Easily read with any text viewer. Mature open-source parsing libraries are available (HTSLIB 41 and 

HTSJDK 41) and implemented in most modern programming languages, for example: VariantAnnotation 
42 R-package is available from Bioconductor 43345 and python package pysam 46. Bcftools 24, GATK 25, 

bedtools 26 and others provides user-friendly functionality from the command line. 

Unambiguous interpretation of the 

data 

Data field descriptions, value types and number of values are required and defined in the file header. 

File validity is enforced during each read/write. 

Unambiguous representation of bi-

allelic, multi-allelic and insertion-

deletion variants 

Every variant substitution is represented by reference and alternative allele haplotypes defining the 

exact base change on the forward strand. The reference allele is required to match genome sequences 

defined in the file header. The alternative allele is always the effect allele allowing consistency 

between studies for ease of comparison. 

Genomic information can be 

validated 

The file header contains information about reference genome assembly and contigs. Reference alleles 

must match the sequence in the referenced genome build (in FASTA format). GATK 25 ValidateVariants 

can be used to verify file format validity and compare reference allele information against the 

corresponding genome reference sequence. 

Flexibility on which GWAS fields are 

recorded and enforcement of 

essential fields 

All fields are defined in the file header and can be set optional or required as desired. The specification 

contains essential fields and their reserved names. 

Capacity to store metadata about 

the study and trait(s) 

The file header contains information about the source and date of summary statistics, study IDs (e.g., 

PMID/DOI of publication describing the study, or accession number and repository of individual-level 

data), description of the trait(s) studied (e.g., type, association test used, and measurement unit) as 

well as the source and version of trait IDs (e.g., IEU OpenGWAS database 47, Experimental Factor 

Ontology 17, Human Phenotyping Ontology 18 or Medical Subject Headings 19 IDs for clinical and other 

traits, or Ensembl Gene IDs for eQTL datasets). 

Allows multiple traits to be stored 

together 

The SAMPLE column was chosen to store variant-trait association data to allow for storage of multiple 

traits in a single VCF file, or as individual files if desired. 

Rapid querying by variant identifier, 

genomic position interval or GWAS 

The file is sorted karyotypically and indexed by chromosome position using tabix 22 to enable fast 

queries by genomic position. Secondary indexing on dbSNP 20 identifier is also provided using rsidx 23. 

Refer to performance comparisons of indexed VCF files and standard UNIX tools. 

https://doi.org/10.1101/2020.05.29.115824
http://creativecommons.org/licenses/by/4.0/


 20 

summary statistics value (range or 

exact value) 

File compression VCF files may be compressed with block GZIP 24 or converted to a binary call file which is a binary VCF 

companion format 24. 

Readable by existing open-source 

tools 

A large number of tools support VCF files including: GATK 25, Picard 48, bcftools 24, bedtools 26, vcftools 9 

and plink 10. Bcftools 24 can also provide a tabular extract for use with non-compatible tools. 

Amenable to cloud-based streaming 

and database storage 

Genomic intervals may be extracted over a network using a range-request which extracts file segments 

without transferring the whole file. This enables rapid streaming of queries over the internet. For high-

throughput and distributed storage and querying, VCF files can be easily imported into GenomicsDB 49. 

GWAS, genome-wide association study. dbSNP, database of single-nucleotide polymorphisms. HTSLIB, high-throughput sequencing data 

library. HTSJDK, high-throughput sequencing data java development kit. GATK, genome-analysis toolkit. dbSNP, single nucleotide 

polymorphism database.  eQTL, expression quantitative trait loci. 
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Table 2. Open-source tools for working with GWAS-VCF 

Program Purpose Implementation Source code link 

gwas2vcf Mapping tabular 

GWAS summary 

statistics and 

NHGRI-EBI 

format to VCF 

Python3 

(Docker) 

https://github.com/mrc

ieu/gwas2vcf 

gwas2vcfweb 

http://vcf.mrcieu.ac.uk 
Front-end and 

queue schedular 

for gwas2vcf 

Python3, 

Cromwell 50 

(Docker) 

https://github.com/mrc

ieu/gwas2vcfweb 

 

R/gwasvcf Library for 

querying and 

reading GWAS-

VCF files 

R https://github.com/mrc

ieu/gwasvcf 

pygwasvcf Library for 

querying and 

reading GWAS-

VCF files 

Python3 https://github.com/mrc

ieu/pygwasvcf 

R/gwasglue Library for 

processing 

GWAS summary 

statistics ready 

for secondary 

analysis 

R https://github.com/mrc

ieu/gwasglue 

LD Score Regression 5 

(patch) 

Estimating 

genetic 

correlation and 

heritability 

Python http://github.com/expl

odecomputer/ldsc 

GWAS, genome-wide association study. LD, linkage disequilibrium. VCF, variant call format. 

NHGRI-EBI, National Human Genome Research Institute and European Bioinformatics 

Institute.  
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Figure 1. VCF format adapted to store GWAS summary statistics (GWAS-VCF) 

 
The GWAS-VCF file contains study and trait(s) metadata, variant-level data, and variant-trait 

association summary statistics. Each field is defined in the file header including variable type 

and number of values. The format can store the results of a GWAS with one or more traits in 

a single file. 
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Figure 2. Performance comparison for querying summary statistics in plain text and GWAS-

VCF 

 
Mean query time (log milliseconds [lower is quicker]; repetitions n=100) to extract either: a 

single variant using the chromosome position or dbSNP 20 identifier or multiple variants 

using a 1 Mb interval or association P value. AWK, grep, bcftools 24 and rsidx 23 were 

evaluated using uncompressed and GZIP/BGZIP 24 compressed unindexed text and VCF. 

Error bars represent the 95% confidence interval. 
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Supplementary Table 1. Data fields in the GWAS-VCF 

Field Description 

VCF Header 

Publication Reference to publication describing the study in 

compact uniform resource identifier (CURIE) format 

(prefix:reference) e.g. doi:10.1000/xyz123 or 

pmid:12345678 

Trait ID* Trait identifier e.g. an ontology or metadata repository 

identifier e.g. EFO0004340 (EFO) or ieu-a-835 (IEU 

OpenGWAS database) 

Description Trait description e.g. Body mass index 

Source Source of trait identifier e.g. EFO 17 or IEU OpenGWAS 

database 47 

Version Version of trait ID source used to describe trait 

Type Outcome variable type (continuous or binary) 

Test Statistical test for association data e.g. linear regression 

Unit Phenotype units e.g. kg/m2 or SD 

Population Participant ancestry (or mixed ancestry) using the 

standardised framework 51 

FileUrl URL of GWAS summary statistics file 

FileDate Date GWAS summary statistics were produced 

TotalSamples Total number of samples/individuals in the study 

TotalCases Total number of cases in the study (if case-control) 

TotalVariants Total number of variants tested in the study 

VariantsNotRead Number of variants that could not be read 

VariantsHarmonised Number of harmonised variants 

VariantsNotHarmonised Number of variants that could not be harmonised 

SwitchedAlleles Number of variants strand switched 

VCF FORMAT (per trait variant-level information) 

NS Variant-specific number of samples/individuals with 

called genotypes used to test association with specified 

trait 

EZ Z-score provided if it was used to derive the ES and SE 

fields 

SI Accuracy score of association statistics imputation 

NC Variant-specific number of cases used to estimate 

genetic effect (binary traits only) 

ES* Effect size estimate relative to the alternative allele 

SE* Standard error of effect size estimate 

LP* -log10 p-value for effect estimate 

AF Alternative allele frequency in trait subset 

AC Alternative allele count in the trait subset 

ID, identifier. EFO, Experimental Factor Ontology. * Required fields. 
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Supplementary Table 2. Possible variant identifier schemes for the ID column of GWAS-VCF 

VCF row identifier (ID column) Advantages Disadvantages 

dbSNP 20 rsID with multiallelic 

variants on a single row 

 

Example: 

rs376272854 

• No duplication of information already in the row 

• Rsidx 23 provides fast dbSNP 20 ID queries 

• Widely used 

• Short length 

• Compatibility with existing tools (rsid is 

encouraged by VCF 9 v4.2 specification) 

• Refers to a position rather than a substitution 

• Complexity and ambiguity of manipulating 

multiallelic rows 

• Does not distinguish between multiple 

alternative alleles and therefore a positional 

identifier 

• Multiple rsids can point to the same position 

(e.g. new dbSNP 20 entries awaiting merge with 

existing records) 

No value in ID column with 

multiallelic variants on separate 

rows 

• No duplication of information already in the row 

• Avoids the complexities of a variant identifier 

• Variant queries include multiple fields 

(chromosome, position, reference and 

alternative allele) 

• No guarantees of row uniqueness 

• Difficult to operate with other software that 

requires a unique substitution identifier 

HGVS 52 DNA nomenclature 

with multiallelic variants on 

separate rows 

 

Example: 

chr2:g.84918761_84918811del 

• Unique identifier for every substitution 

• Supports one substitution per row in the VCF 

which is easier to parse 

• Short insertion-deletion encoding 

• Known format 

• Duplicates information already stored in the 

row 

• Not stable between genome builds 

• Comparing between builds is difficult 

• Not widely used for GWAS 

Concatenation of chromosome, 

position and alleles with 

multiallelic variants on separate 

rows 

 

Example: 

chr2:84918760: 

• Unique identifier for every substitution 

• Supports one substitution per row in the VCF 

which is easier to parse 

• Known format 

• Duplicates information already stored in the 

row 

• Comparing between builds is difficult 

• Not stable between genome builds 

• Long insertion-deletion coding 
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CCCAACCCTGCTGTCAT 

AATGCATAAGCAGCCAC 

AGACAGTAAGTGAATGAA:C 

 

SPDI 53 (Sequence-id, Position, 

Deleted Sequence, Insertion 

Sequence separated by a colon) 

with multiallelic variants on 

separate rows 

 

Example: 

NC_000002.12: 84918760: 

CCCAACCCTGCTGTCAT 

AATGCATAAGCAGCCAC 

AGACAGTAAGTGAATGAA:C 

• Unique identifier for every substitution 

• Supports one substitution per row in the VCF 

which is easier to parse 

Known format 

• Duplicates information already stored in the 

row 

• Comparing between builds is difficult 

• Not stable between genome builds 

• Long insertion-deletion coding 

Concatenation of chromosome, 

position and alleles using MD5 

hash to shorten long alleles 

with multiallelic variants on 

separate rows 

 

Example:  

chr2:84918760-

7c43e7284b58ba06e 

7438bff62376edf:C 

• Unique (almost) identifier for every substitution 

• Supports one substitution per row in the VCF 

which is easier to parse 

• Short insertion-deletion coding 

• Duplicates information already stored in the 

row 

• Not stable between genome builds 

• Comparing between builds is difficult 

• Cannot reverse hash without database 

• Not widely used 

GA4GH Variation 

Representation 54 (SHA-512 

message digest of the 

chromosome position and 

alternative allele with 

• Unique (almost) identifier for every substitution 

• Supports one substitution per row in the VCF 

which is easier to parse 

Short insertion-deletion coding 

• Duplicates information already stored in the 

row 

• Not stable between genome builds 

• Comparing between builds is difficult 

• Cannot reverse hash without database 
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multiallelic variants on separate 

rows 

 

Example: 

ga4gh:VA.yOoxi7-

uUnJyn4QkQ23h6RJuT4Zqarow 

• Not widely used 

GWAS, genome-wide association study. VCF, variant call format. Rsidx, file index using the dbSNP identifier. MD5, message-digest algorithm. 

HGVS, Human Genome Variation Society. GA4GH, Global Alliance for Genomics and Health. SHA, Secure Hash Algorithm. 
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