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Genome-wide association study (GWAS) summary statistics are a fundamental resource
for a variety of research applications 5. Yet despite their widespread utility, no common
storage format has been widely adopted, hindering tool development and data sharing,
analysis and integration. Existing tabular formats 72 often ambiguously or incompletely
store information about genetic variants and their associations, and also lack essential
metadata increasing the possibility of errors in data interpretation and post-GWAS
analyses. Additionally, data in these formats are typically not indexed, requiring the
whole file to be read which is computationally inefficient. To address these issues, we
propose an adaptation of the variant call format ° (GWAS-VCF) and have produced a suite
of open-source tools for using this format in downstream analyses. Simulation studies
determine GWAS-VCF is 9-46x faster than tabular alternatives when extracting variant(s)
by genomic position. Our results demonstrate the GWAS-VCF provides a robust and
performant solution for sharing, analysis and integration of GWAS data. We provide open
access to over 10,000 complete GWAS summary datasets converted to this format

(available from: https://gwas.mrcieu.ac.uk).
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Main

The GWAS is a powerful tool for identifying genetic loci associated with any trait, including
diseases and clinical biomarkers, as well as non-clinical and molecular phenotypes such as
height and gene expression 3 (eQTLs). Sharing of GWAS results as summary statistics (i.e.
variant, effect size, standard error, p-value etc.) has enabled a range of important secondary
research applications including: causal gene and functional variant prioritisation !, causal
cell/tissue type nomination 2, pathway analysis 3, causal inference (Mendelian
randomization; MR) 4, risk prediction 3, genetic correlation > and heritability estimation °.
However, the utility of GWAS summary statistics is hampered by the absence of a

universally adopted storage format and associated tools.

Historic lack of a common standard has resulted in GWAS analysis tools outputting summary
statistics in different tabular formats (e.g. plink 1°, GCTA !, BOLT-LMM 12, GEMMA 13, Matrix
eQTL ** and meta-analysis tools e.g. METAL *°). As a consequence, various processing issues
are typically encountered during secondary analysis. First, there is often inconsistency and
ambiguity of which allele relates to the effect size estimate (the “effect” allele). Confusion
over the effect allele can have disastrous consequences on the interpretation of GWAS
findings and the validity of post-GWAS analyses. For example MR studies may provide
causal estimates with incorrect effect directionality . Likewise, prediction models based on
polygenic risk scores might predict disease wrongly or suffer reduced power if some of the
effect directionalities are incorrect. Second, the schema (i.e. which columns/fields are
included and how they are named) of these tabular formats varies greatly. Absent fields can

limit analyses and although approaches exist to estimate the values of some of these
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missing columns (e.g. standard error from P value) imprecision is introduced reducing
subsequent test power. Varying field names are easily addressed in principle, but the
process can be cumbersome and error prone. Third, data are frequently distributed with no
or insufficient metadata describing the study, trait(s), and variants (e.g., trait measurement
units, variant id/annotation sources, etc.) which can lead to errors, impede integration of
results from different studies and hamper reproducibility. Fourth, querying unindexed text
files is slow and memory inefficient, making some potential applications computationally

infeasible (e.g. systematic hypothesis-free analyses).

Some proposals for a standard tabular format have been made. The EBI-NHGRI GWAS

catalog (www.ebi.ac.uk/gwas) developed a tab-separated values (TSV) text format with a

minimal set of required (and optional) columns along with standardised headings ’. The
SMR tool & introduced a binary format for rapid querying of quantitative trait loci. These
approaches are adequate for storing variant level summary statistics but do not enforce
allele consistency or support embedding of essential metadata. Learning from these
examples and our experiences performing high-throughput analyses across two research
centres, we developed a set of requirements for a suitable universal format (Table 1). These
features place emphasis on consistency and robustness, capacity for metadata to provide a
full audit trail, efficient querying and file storage, ensuring data integrity, interoperability
with existing open-source tools and across multiple datasets to support data sharing and
integration. We determined that adapting the variant call format (VCF) °® was a convenient
and constructive solution to address these issues. We provide evidence demonstrating how

the VCF meets our requirements and showcase the capabilities of this medium (Table 1).
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The VCF is organised into three components: a flexible file header containing metadata
(lines beginning with ‘#’), and a file body containing variant- (one locus per row with one or
more alternative alleles/variants) and sample-level information (one sample per column).
We adapt this format to include GWAS-specific metadata and utilise the sample column to

store variant-trait association data (Figure 1; Supplementary Table 1).

According to the VCF specification, the file header consists of metadata lines containing 1)
the specification version number, 2) information about the reference genome assembly and
contigs, and 3) information (ID, number, type, description, source and version) about the
fields used to describe variants and samples (or variant-trait associations in the case of
GWAS-VCF) in the file body. We take advantage of the VCF file header to store additional
information about the GWAS including 1) source and date of summary statistics, 2) study
IDs (e.g., PMID/DOI of publication describing the study, or accession number and repository
of individual-level data), 3) description of the trait(s) studied (e.g., type, association test
used, sample size, ancestry and measurement unit) as well as the source and version of trait
IDs (e.g., Experimental Factor Ontology *’, Human Phenotyping Ontology ® or Medical

Subject Headings ° IDs for clinical and other traits, or Ensembl Gene IDs for eQTL datasets).

Unlike VCF where a row can contain information about multiple alternative alleles observed
at the same site/locus (and thus may store more than one variant), the GWAS-VCF
specification requires that each variant is stored in a separate row of the file body. Each row
contains eight mandatory fields: chromosome name (CHROM), base-pair position (POS),
unique variant identifier (ID), reference/non-effect allele (REF), alternative/effect allele

(ALT), quality (QUAL), filter (FILTER) and variant information (INFO). The ID, QUAL and
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103 FILTER fields can contain a null value represented by a dot. Importantly, the ID value (unless
104  null) should not be present in more than one row. The FILTER field may be used to flag poor
105  quality variants for exclusion in downstream analyses. The INFO column is a flexible data
106  store for additional variant-level key-value pairs (fields) and may be used to store for

107  example: population frequency (AF), genomic annotations and variant functional effects.
108  We also use the INFO field to store the dbSNP 2° locus identifier (rsid) for the site at which
109  the variant resides. This is because (despite their common usage as variant identifiers) rsids
110 uniquely identify loci (not variants!) and thus cannot be used in the ID field, as we will

111 discuss further at the end of this manuscript. Following the INFO column is a format field
112 (FORMAT) and one or more sample columns which we use to store variant-trait association
113 data, with values for the fields listed in the FORMAT column for example: effect size (ES),
114  standard error (SE) and -log10 P-value (LP).

115

116  This format has a number of advantages over existing solutions. First, the VCF provides

117  consistent and robust approaches to storing genetic variants, annotations and metadata.
118  Furthermore, variable type and number requirements reduce parsing errors and missing
119  data and prevent unexpected program operation. Second, the VCF is well established and
120  supported by existing tools providing a range of functions for querying, annotating,

121  transforming and analysing genetic data. Third, the GWAS-VCF file header stores

122 comprehensive metadata about the GWAS. Fourth, a GWAS-VCF file can store individual or
123 multiple traits (in one or more sample columns) in a single file which is beneficial for the
124  distribution of GWAS datasets where genotypes of each sample/individual have been tested
125  for association with multiple traits (e.g., eQTL datasets).

126
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127  Simulations of query performance demonstrate compressed GWAS-VCF is substantially

128  quicker than unindexed and uncompressed TSV format for querying by genomic position.
129  On average GWAS-VCF was 16x faster to extract a single variant using chromosome position
130 (mean query duration in GWAS-VCF 0.08 seconds [95% CI 0.08, 0.08]) vs mean query

131  duration in TSV 1.29 seconds [95% Cl 1.29, 1.30]) and 9x quicker using the rsid (0.09 seconds
132 [95% Cl 0.09, 0.09] vs 0.81 seconds [95% 0.80, 0.82]). Using a 1Mb window of variants

133 GWAS-VCF was 46x quicker (0.11 seconds [95% CI1 0.11, 0.11] vs 5.02 seconds [95% Cl 4.99,
134 5.04]). Although querying on association P value was faster using TSV (mean query duration
135 inTSV 7.18 seconds [95% Cl 7.09, 7.26] vs mean query duration in GWAS-VCF 18.04 seconds
136 [95% Cl 17.92, 18.16]) GWAS-VCF could be improved by using variant flags (i.e. in the INFO
137  field) to highlight records below prespecified thresholds if the exact value is unimportant.
138  For example, all variants below genome-wide significance (P < 5e-8) or a more relaxed

139  threshold (e.g. P < 5e-5).

140

141  To automate the conversion of existing summary statistics files to the GWAS-VCF format, we
142 developed open-source Python3 software (Gwas2VCF; Table 2). The application reads in
143  metadata and variant-trait association data using a user-defined schema. During processing,
144 variants are harmonised using a supplied reference genome file to ensure the non-effect
145  allele matches the reference sequence enabling consistent directionality of allelic effects
146  across studies. Insertion-deletion variants are left-aligned and trimmed for consistent

147  representation using the vgraph library 2. Finally, the GWAS-VCF is indexed using tabix 2
148  and rsidx 2 which enable rapid queries by genomic position and rsid , respectively. We have
149  developed a freely available web application providing a user-friendly interface for this

150 implementation and encourage other centres to deploy their own instance (Table 2).
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151

152  Once stored in a GWAS-VCEF file, summary statistics can be read and queried using R or

153 Python programming languages with our open-source libraries (Table 2) or from the

154  command line using for example: bcftools 24, GATK 2° or bedtools 2°. Alternatively, GWAS-
155  VCF may be converted to NHGRI-EBI format 27 or any other tabular format to support

156  incompatible tools. Further, the gwasglue R package provides convenient programming

157  functions to automate preparation of genetic association data for a range of downstream
158  analyses (Table 2). Currently, methods exist for streamlining variant fine-mapping 2732,

159  colocalization 33, MR 34 and data visualisation 3°. New methods are being actively added and
160  users may request new features via the repository issues page.

161

162  To encourage adoption, we made openly available over 10,000 complete GWAS summary
163  statistics in GWAS-VCF format as part of the IEU OpenGWAS database. These studies include
164  abroad range of traits, diseases and molecular phenotypes building on the initial collection
165  for the MR Base platform 34,

166

167 A limitation of current summary statistics formats, including GWAS-VCF, is the lack of a

168  widely adopted and stable representation of sequence variants that can be used as

169  universal unique identifier for said variants. Published summary statistics often use rsids 2°
170  to identify variants but this practice is inappropriate because rsids are locus identifiers and
171  do not distinguish between multiple alternative alleles observed at the same site. Moreover,
172 rsids are not stable as they can be merged and retired over time. The reason this is a

173 problem is that in GWAS summary statistics every record represents the effect of a specific

174  allele on one or more traits, and if a record identifier is used that is not unique for each
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175  allelic substitution it cannot technically be considered an identifier. An alternative approach
176  is to concatenate chromosome, base-position, reference and alternative allele field values
177  into a single string, but this is non-standardised, and genome build specific. Worst still is the
178  common approach of mixing these types of identifiers within a single file. In version 1.1 of
179  the GWAS-VCF specification we suggest querying variants by chromosome and base-

180  position and filtering the output to retain the target substitution (implemented in our

181  parsers), but we acknowledge that this approach can be cumbersome and difficult to

182  interoperate with other software. The ideal solution would be to populate the ID column of
183  a GWAS-VCF file using universally accepted and unique variant identifiers. We have

184  reviewed several existing variant identifier formats as candidates for the variant identifier
185  field, to be implemented in the next version of the specification (Supplementary Table 2).
186  However, we refrain from making a unilateral choice at this juncture because successful

187  implementation will require consultation from a range of stakeholders. The genetics

188 community uses different approaches already to deal with the problem of sequence variant
189  representation and there is a need to coalesce upon a single format.

190

191  Here we present an adaptation of the VCF specification for GWAS summary statistics

192  storage that is amenable to high-throughput analyses and robust data sharing and

193  integration. We implement open-source tools to convert existing summary statistics formats
194  to GWAS-VCF, and libraries for reading or querying this format and integrating with existing
195  analysis tools. Finally, we provide complete GWAS summary statistics for over 10,000 traits
196  in GWAS-VCF. These resources enable convenient and efficient secondary analyses of GWAS
197  summary statistics and support future tool development.

198
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199  Code availability

200

201  Open-source query performance evaluation source code available from GitHub

202  (https://github.com/MRCIEU/gwas-vcf-performance) or pre-built image available from
203  DockerHub (mrcieu/gwas-vcf-performance)

204

205 Data availability

206

207  Version 1.1 of the GWAS -VCF format specification is available from:

208  https://github.com/MRCIEU/gwas-vcf-spec/releases/tag/1.1

209
210 Full summary statistics for over 10,000 GWAS in VCF format are available from the IEU

211  OpenGWAS Database (https://gwas.mrcieu.ac.uk)

212

213 Method

214

215  Specification

216

217  The specification was developed through experience of collecting and harmonising GWAS
218  summary data across two research centres at scale 34 and performing a range of

219  representative high throughput analyses on these data (for example LD score regression 3¢,
220 MR ¥, genetic colocalisation analysis 38 and polygenic risk scores °).

221

222 Query performance simulation

10


https://doi.org/10.1101/2020.05.29.115824
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.29.115824; this version posted May 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

223

224  Densely imputed summary statistics (13,791,467 variants) for a large GWAS of body mass
225  index data were obtained from Neale et al %°. The data were mapped to VCF using

226  Gwas2VCF v1.1.1 and processed using bcftools v1.10 24 to remove multiallelic variants or
227  records with missing dbSNP 2 identifiers. A tabular (unindexed) file was prepared from the
228  VCF to replicate a typical storage medium currently used for distributing summary statistics.
229  Query runtime performance was compared between tabix v1.10.2 %2 and standard UNIX
230  commands under the following conditions: single variant selection using dbSNP identifier 2°
231  or chromosome position, multi-variant selection by association P value (thresholds: P < 5e-
232 8,0.2,0.4,0.6,0.8) or 1 Mb genomic interval. Tests were undertaken with 100 repetitions
233 using VCF or unindexed text formats with and without GZIP compression on an Ubuntu

234 v18.04 server with Intel Xeon(R) 2.0 Ghz processor. All comparisons were performed using
235  singled thread operations and therefore differences in runtime performance were due to
236  tool and/or file index usage.

237
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Table 1. Requirements for a summary statistics storage format and solutions offered by the VCF

Human readable and easy to parse

Unambiguous interpretation of the
data

Unambiguous representation of bi-
allelic, multi-allelic and insertion-
deletion variants

Genomic information can be
validated

Flexibility on which GWAS fields are
recorded and enforcement of
essential fields

Capacity to store metadata about
the study and trait(s)

Allows multiple traits to be stored
together

Rapid querying by variant identifier,
genomic position interval or GWAS

Easily read with any text viewer. Mature open-source parsing libraries are available (HTSLIB #! and
HTSJDK #!) and implemented in most modern programming languages, for example: VariantAnnotation
42 R-package is available from Bioconductor *** and python package pysam “®. Bcftools 24, GATK 25,
bedtools ¢ and others provides user-friendly functionality from the command line.

Data field descriptions, value types and number of values are required and defined in the file header.
File validity is enforced during each read/write.

Every variant substitution is represented by reference and alternative allele haplotypes defining the
exact base change on the forward strand. The reference allele is required to match genome sequences
defined in the file header. The alternative allele is always the effect allele allowing consistency
between studies for ease of comparison.

The file header contains information about reference genome assembly and contigs. Reference alleles
must match the sequence in the referenced genome build (in FASTA format). GATK 2° ValidateVariants
can be used to verify file format validity and compare reference allele information against the
corresponding genome reference sequence.

All fields are defined in the file header and can be set optional or required as desired. The specification
contains essential fields and their reserved names.

The file header contains information about the source and date of summary statistics, study IDs (e.g.,
PMID/DOI of publication describing the study, or accession number and repository of individual-level
data), description of the trait(s) studied (e.g., type, association test used, and measurement unit) as
well as the source and version of trait IDs (e.g., IEU OpenGWAS database #/, Experimental Factor
Ontology 7, Human Phenotyping Ontology 8 or Medical Subject Headings *° IDs for clinical and other
traits, or Ensembl Gene IDs for eQTL datasets).

The SAMPLE column was chosen to store variant-trait association data to allow for storage of multiple
traits in a single VCF file, or as individual files if desired.

The file is sorted karyotypically and indexed by chromosome position using tabix 22 to enable fast
queries by genomic position. Secondary indexing on dbSNP 29 identifier is also provided using rsidx 2.
Refer to performance comparisons of indexed VCF files and standard UNIX tools.
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summary statistics value (range or
exact value)

File compression VCF files may be compressed with block GZIP 2* or converted to a binary call file which is a binary VCF
companion format %4,

Readable by existing open-source A large number of tools support VCF files including: GATK 2, Picard %8, bcftools 24, bedtools 26, vcftools °

tools and plink 1°. Bcftools 24 can also provide a tabular extract for use with non-compatible tools.

Amenable to cloud-based streaming Genomic intervals may be extracted over a network using a range-request which extracts file segments

and database storage without transferring the whole file. This enables rapid streaming of queries over the internet. For high-

throughput and distributed storage and querying, VCF files can be easily imported into GenomicsDB #°.
GWAS, genome-wide association study. dbSNP, database of single-nucleotide polymorphisms. HTSLIB, high-throughput sequencing data
library. HTSJDK, high-throughput sequencing data java development kit. GATK, genome-analysis toolkit. dbSNP, single nucleotide
polymorphism database. eQTL, expression quantitative trait loci.
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Table 2. Open-source tools for working with GWAS-VCF

Program Purpose Implementation Source code link
gwas2vcf Mapping tabular Python3 https://github.com/mrc
GWAS summary (Docker) ieu/gwas2vcf
statistics and
NHGRI-EBI
format to VCF
gwas2vcfweb Front-end and Python3, https://github.com/mrc
http://vcf.mrcieu.ac.uk  queue schedular Cromwell *° ieu/gwas2vcfweb
for gwas2vcf (Docker)
R/gwasvcf Library for R https://github.com/mrc
querying and ieu/gwasvcf
reading GWAS-
VCF files
pygwasvcf Library for Python3 https://github.com/mrc
guerying and ieu wasvcf
reading GWAS-
VCF files
R/gwasglue Library for R https://github.com/mrc
processing ieu/gwasglue
GWAS summary

statistics ready
for secondary

analysis
LD Score Regression ° Estimating Python http://github.com/expl
(patch) genetic odecomputer/Idsc
correlation and
heritability

GWAS, genome-wide association study. LD, linkage disequilibrium. VCF, variant call format.
NHGRI-EBI, National Human Genome Research Institute and European Bioinformatics
Institute.
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Figure 1. VCF format adapted to store GWAS summary statistics (GWAS-VCF)

##tfileformat=VCFv4.2
##gwasformat=GWAS-VCFv1.1
##tsource=Gwas2VCFv1.2.0
p://1 insti ‘bundle/b37/h \_glk_v37.fasta.gz
##contig=<ID=1,length=249250621,assembly=GRCh37.p13>
#tfcontig=<ID=2,length=243199373,assembly=GRCh37.p13> M eta d ata
#tfcontig=<ID=3 length=198022430,assembly=GRCh37.p13>
##tcontig=<ID=4,length=191154276,assembly=GRCh37.p13>

lig=<ID=5,length=180915260, h37.p13>
##tcontig=<ID=6 length=171115067,assembly=GRCh37.p13>
ig: 7 length=159138663, h37.p13>
ig:  length=146364022 =GRCh37.p13>

#ficontig=<ID=9 length=141213431,assembly=GRCh37.p13>
##icontig=<ID=10length=135534747,assembly=GRCh37.p13>

tig=<ID=11,length=135006516, Ch37.p13>
ig: 12 length=13385189: Ch37.p13>
##icontig=<ID=13,length=115169878,assembly=GRCh37.p13>
ig: 14,length=107349540, Ch37.p13>
ig: 15,length=102531392, Ch37.p13>
ig: 16, 753, h37.p13>
lig=<ID=17,length=81195210, h37.p13>
##icontig=<ID=18 length=78077248,assembly=GRCh37.p13>
ig: 19 leng 28983, h37.p13>
##icontig=<ID=20 length=63025520,assembly=GRCh37.p13>
tig=<ID=21,length=48129895, h37.p13>
ig: 22 length=51304566, bly=GRCh37.p13>
##icontig=<ID=X,length=155270560,assembly=GRCh37.p13>
i leng 73566, h37.p13>

##FILTER=<ID=PASS,Description="All filters passed">

#HINFO=< 1D,Number=1,Type=String,Description="dbSNP identifier",Source="https://ftp.ncbi.nih.gov/snp/latest_release/VCF/GCF_000001405.25.g2" Version="153">
##FORMAT=<ID=NS, Type iption="Variant-specific number of samples/indi with called used to test iation with specified trait">
##FORMAT=<ID=EZ Number=A, Type=Float,Description="Z-score provided if it was used to derive the ES and SE fields">

##FORMAT=<ID=5I,Number=A, Type=Float,Description="Accuracy score of summary association statistics imputation">

#HFORMAT=<ID=NC, \Typ iption="Variant-specific number of cases used to estimate genetic effect (binary traits only)">

##FORMAT=<ID=E \Type=F ipti Effect size estimate relative to the alternative allele">

##FORMAT=<ID=SE Number=A,Type=Float,Description="Standard error of effect size estimate">

##FORMAT=<ID=LP,Number=A,Type=Float,Description="-log 10 p-value for effect estimate">

##FORMAT=<ID=AF | Typ ipti ive allele frequency in trait subset">

-AC, \Typ iption=") ive allele count in the trait subset">

##publication="pmid:29846171"

##itrait=<ID=EF00004340,Description="Body mass

index",Source="EFO" Version="3.14.0",Type="continuous" Test="linear",Unit=" Population="European", T 460, i i ), i i 1866,
851866, FileUrl="https://gwas. mrcieu.ac. uk/files/ukb-b-19953/ukb-b-19953.vcf.g2" FileDate="24/04/2020">

##itrait=<ID=EF00001360,Description="type I diabetes

mellitus” Source="EFO" Version="3.14.0", Type="binary", Test="linear",Unit="NA", Population="European", TotalSamples=462933,TotalCases=2972,T¢ i 1866, Vari; X i i 1866, Vari: i ), SW
itchedAlleles=9851866,FileUrl="https://gwas. mrcieu.ac.uk/files/ukb-b-13806/ukb-b-13806.vcf.g2" FileDate="24/04/2020">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT EFO0004340 EFO0001360
1 49298. T C . PASS  RSID=rs10399793 NS:NC:ES:SE:LP:AF:AC 463005:0:0.00103892:0.0034984:0.113509:0.613764:568351 463005:2972:9.098e-05:0.000294716:0.119186:0.613764:568351
1 49298. T A . PASS  RSID=rs10399793 i 00214602:0. 267606:0.011:4630 463005:2972:0.000102689:0.00029197:0.136677:0.012:4630
1 91536. GIC G . PASS  RSID=rs6702460 463005:0:0.00410514:0.0034125:0.638272:0.456845:423042 463005:2972:0.000329732:0.000287485:0.60206:0.456851:423042
1534192. C T . PASS  RSID=rs6680723 3 000334321:0.0038979:0.0315171:0.24094:223131 463005:2972:0.000106473:0.000328379:0.124939:0.24096:223131
1706368 . A AAA. PASS  RSID=rs12029736  NS:NC:ES:SE:LP:AF:AC 463005:0:-0.00030371:0.00241981:0.0457575:0.515705:477487 463005:2972:7.16085e-06:0.000203854:0.0132283:0.51565:477487
Trait one Trait two
Variants

Association statistics Association statistics

The GWAS-VCF file contains study and trait(s) metadata, variant-level data, and variant-trait
association summary statistics. Each field is defined in the file header including variable type
and number of values. The format can store the results of a GWAS with one or more traits in
a single file.
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Figure 2. Performance comparison for querying summary statistics in plain text and GWAS-
VCF

Query runtime of VCF and unindexed text using a range of operations

4.5

40
File
B
Text (GZIP)
VCF
: ‘ ‘ B ver eze)
0.0

awk bcftools grep awk bcftools grep rsidx awk beftools awk bcftools
Method

Mean runtime (log10 milliseconds)
o o o (4] o (4]

o
o

Mean query time (log milliseconds [lower is quicker]; repetitions n=100) to extract either: a
single variant using the chromosome position or dbSNP 2° identifier or multiple variants
using a 1 Mb interval or association P value. AWK, grep, bcftools 24 and rsidx 22 were
evaluated using uncompressed and GZIP/BGZIP ?* compressed unindexed text and VCF.
Error bars represent the 95% confidence interval.

23


https://doi.org/10.1101/2020.05.29.115824
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.29.115824; this version posted May 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Supplementary Table 1. Data fields in the GWAS-VCF

Field

Publication

Trait ID*

Description
Source

Version
Type

Test

Unit
Population

FileUrl

FileDate

TotalSamples
TotalCases
TotalVariants
VariantsNotRead
VariantsHarmonised
VariantsNotHarmonised
SwitchedAlleles

Description
VCF Header

Reference to publication describing the study in
compact uniform resource identifier (CURIE) format
(prefix:reference) e.g. doi:10.1000/xyz123 or
pmid:12345678

Trait identifier e.g. an ontology or metadata repository
identifier e.g. EFO0004340 (EFO) or ieu-a-835 (IEU
OpenGWAS database)

Trait description e.g. Body mass index

Source of trait identifier e.g. EFO 17 or IEU OpenGWAS
database %’
Version of trait ID source used to describe trait

Outcome variable type (continuous or binary)
Statistical test for association data e.g. linear regression
Phenotype units e.g. kg/m2 or SD

Participant ancestry (or mixed ancestry) using the
standardised framework >!
URL of GWAS summary statistics file

Date GWAS summary statistics were produced
Total number of samples/individuals in the study
Total number of cases in the study (if case-control)
Total number of variants tested in the study
Number of variants that could not be read
Number of harmonised variants

Number of variants that could not be harmonised
Number of variants strand switched

VCF FORMAT (per trait variant-level information)

NS

EZ

Sl
NC

ES*
SE*
LP*
AF
AC

Variant-specific number of samples/individuals with
called genotypes used to test association with specified
trait

Z-score provided if it was used to derive the ES and SE
fields

Accuracy score of association statistics imputation
Variant-specific number of cases used to estimate
genetic effect (binary traits only)

Effect size estimate relative to the alternative allele
Standard error of effect size estimate

-log10 p-value for effect estimate

Alternative allele frequency in trait subset

Alternative allele count in the trait subset

ID, identifier. EFO, Experimental Factor Ontology. * Required fields.
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Supplementary Table 2. Possible variant identifier schemes for the ID column of GWAS-VCF

dbSNP 2° rsID with multiallelic
variants on a single row

Example:
rs376272854

No value in ID column with
multiallelic variants on separate
rows

HGVS °2 DNA nomenclature
with multiallelic variants on
separate rows

Example:
chr2:2.84918761_84918811del
Concatenation of chromosome,
position and alleles with
multiallelic variants on separate
rows

Example:
chr2:84918760:

No duplication of information already in the row
Rsidx 23 provides fast dbSNP 2 ID queries
Widely used

Short length

Compatibility with existing tools (rsid is
encouraged by VCF ° v4.2 specification)

No duplication of information already in the row
Avoids the complexities of a variant identifier

Unique identifier for every substitution
Supports one substitution per row in the VCF
which is easier to parse

Short insertion-deletion encoding

Known format

Unique identifier for every substitution
Supports one substitution per row in the VCF
which is easier to parse

Known format

Refers to a position rather than a substitution
Complexity and ambiguity of manipulating
multiallelic rows

Does not distinguish between multiple
alternative alleles and therefore a positional
identifier

Multiple rsids can point to the same position
(e.g. new dbSNP 2° entries awaiting merge with
existing records)

Variant queries include multiple fields
(chromosome, position, reference and
alternative allele)

No guarantees of row uniqueness

Difficult to operate with other software that
requires a unique substitution identifier
Duplicates information already stored in the
row

Not stable between genome builds
Comparing between builds is difficult

Not widely used for GWAS

Duplicates information already stored in the
row

Comparing between builds is difficult

Not stable between genome builds

Long insertion-deletion coding
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CCCAACCCTGCTGTCAT
AATGCATAAGCAGCCAC
AGACAGTAAGTGAATGAA:C

SPDI >3 (Sequence-id, Position, e
Deleted Sequence, Insertion °
Sequence separated by a colon)
with multiallelic variants on
separate rows

Example:

NC_000002.12: 84918760:
CCCAACCCTGCTGTCAT
AATGCATAAGCAGCCAC
AGACAGTAAGTGAATGAA:C
Concatenation of chromosome, e
position and alleles using MD5 o
hash to shorten long alleles

with multiallelic variants on °
separate rows

Example:

chr2:84918760-
7c43e7284b58bal6e
7438bff62376edf:C

GA4GH Variation °
Representation °* (SHA-512 .
message digest of the
chromosome position and
alternative allele with

Unique identifier for every substitution
Supports one substitution per row in the VCF
which is easier to parse

Known format

Unique (almost) identifier for every substitution
Supports one substitution per row in the VCF
which is easier to parse

Short insertion-deletion coding

Unique (almost) identifier for every substitution
Supports one substitution per row in the VCF
which is easier to parse

Short insertion-deletion coding

Duplicates information already stored in the
row

Comparing between builds is difficult

Not stable between genome builds

Long insertion-deletion coding

Duplicates information already stored in the
row

Not stable between genome builds
Comparing between builds is difficult
Cannot reverse hash without database

Not widely used

Duplicates information already stored in the
row

Not stable between genome builds
Comparing between builds is difficult
Cannot reverse hash without database
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multiallelic variants on separate e Not widely used
rows

Example:

gadgh:VA.yOoxi7-

uUnlyn4QkQ23h6RJuT4Zqarow
GWAS, genome-wide association study. VCF, variant call format. Rsidx, file index using the dbSNP identifier. MD5, message-digest algorithm.
HGVS, Human Genome Variation Society. GA4GH, Global Alliance for Genomics and Health. SHA, Secure Hash Algorithm.
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