

1 **Title**

2 Laminin N-terminus  $\alpha$ 31 is upregulated in invasive ductal breast cancer and changes the  
3 mode of tumour invasion.

4

5 **Authors and affiliations:**

6 Lee D. Troughton<sup>1\*</sup>, Tobias Zech<sup>2</sup>, Kevin J. Hamill<sup>1</sup>

7 <sup>1</sup>Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.

8 <sup>2</sup>Institute of Translational Medicine, University of Liverpool, Liverpool, UK.

9 \*Corresponding author

10 Email [leedavid@liverpool.ac.uk](mailto:leedavid@liverpool.ac.uk)

11 Corresponding address:

12 Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby  
13 Street, University of Liverpool, UK, L7 8TX

14

## 15 **Abstract**

16 Laminin N-terminus  $\alpha$ 31 (LaNt  $\alpha$ 31) is an alternative splice isoform derived from the laminin  
17  $\alpha$ 3 gene. The LaNt  $\alpha$ 31 protein is enriched around the terminal duct lobular units in normal  
18 breast tissue. In the skin and cornea the protein influences epithelial cell migration and  
19 tissue remodelling. However, LaNt  $\alpha$ 31 has never been investigated in a tumour  
20 environment. Here we analysed LaNt  $\alpha$ 31 in invasive ductal carcinoma and determined its  
21 contribution to breast carcinoma invasion. LaNt  $\alpha$ 31 expression and distribution were  
22 analysed by immunohistochemistry in human breast tissue biopsy sections and tissue  
23 microarrays covering 232 breast cancer samples. This analysis revealed LaNt  $\alpha$ 31 to be  
24 upregulated in 56 % of invasive ductal carcinoma specimens compared with matched normal  
25 tissue, and further increased in nodal metastasis compared with the tumour mass in 45 % of  
26 samples. 65.8 % of triple negative cases displayed medium to high LaNt  $\alpha$ 31 expression. To  
27 study LaNt  $\alpha$ 31 function, an adenoviral system was used to induce expression in MCF-7 and  
28 MDA-MB-231 cells. Metabolic activity, 2D cell migration, and invasion into collagen  
29 hydrogels were not significantly different between LaNt  $\alpha$ 31 overexpressing cells and control  
30 treated cells. However, LaNt  $\alpha$ 31 overexpressing MDA-MB-231 cells displayed a striking  
31 change in their mode of invasion into laminin-containing Matrigel; changing from multicellular  
32 streaming to individual cellular-invasion. In agreement with these results, 66.7% of the  
33 tumours with the highest LaNt  $\alpha$ 31 expression were non-cohesive. Together these findings  
34 indicate that breast cancer-associated changes in LaNt  $\alpha$ 31 expression could directly  
35 contribute to tumour invasiveness, and that this little-studied protein may become a  
36 therapeutic target.

37

## 38 **Abbreviations**

39 Antigen ki-67 (Ki67)  
40 Basement membrane (BM)

41 Estrogen receptor (ER)  
42 Extracellular matrix (ECM)  
43 Epidermal growth factor (EGF)  
44 Epidermal growth factor receptor (EGFR)  
45 Enhanced green fluorescent protein (eGFP)  
46 Human epidermal growth factor receptor 2 (Her2)  
47 Laminin N terminal protein  $\alpha$ 31 (LaNt  $\alpha$ 31)  
48 Laminin-type epidermal growth factor-like (LE-repeat)  
49 Laminin (LM)  
50 Laminin N-terminal (LN domain)  
51 Tumour protein p53 (p53)  
52 Paraffin-fixed formalin-embedded (FFPE)  
53 Progesterone receptor (PR)  
54 Terminal duct lobular unit (TDLU)  
55 Triple negative breast cancer (TNBC)  
56  
57

## Introduction

58 An essential stage of tumour progression is acquisition of an ability to breakthrough  
59 an organised extracellular matrix (ECM) structure termed the basement membrane (BM)[1].  
60 Determining the expression and distribution of BM proteins has yielded valuable biomarkers  
61 to predict breast cancer outcomes [2-6]. Much of this work has focused on the laminin (LM)  
62 family of BM proteins, which are not only essential barrier components, but also act as  
63 substrates for tumour cell migration, regulate actin dynamics, influence survival and growth  
64 signalling pathways, and maintain quiescence in cancer stem cell niches; all of which  
65 functions influence breast cancer progression [7-10]. Here we investigated a relatively  
66 unstudied LM-related protein, laminin N-terminus  $\alpha$ 31 (LaNt  $\alpha$ 31) that we predicted would

67 change in cancer and which could therefore represent a new target for therapeutic  
68 development [11, 12].  
69 LMs are obligate heterotrimeric proteins comprised of an  $\alpha$ ,  $\beta$  and  $\gamma$  chain, with each chain  
70 derived from one of five  $\alpha$  genes (LAMA1-5), one of three  $\beta$  (LAMB1-3), and one of three  $\gamma$   
71 (LAMC1-3), as reviewed in [7, 8, 13]. Through the use of distinct promoters, LAMA3  
72 generates two structurally distinct LMs; a so-called “full-length” variant LM $\alpha$ 3b, and the much  
73 shorter LM $\alpha$ 3a [8, 13-15]. The LaNt proteins are also derived from LM-encoding genes,  
74 through intron-retention and polyadenylation within the retained intron [11]. Four LaNt family  
75 members have been identified at the transcript level; however, only LaNt  $\alpha$ 31, derived from  
76 the LAMA3 gene, has been confirmed at the protein level [11]. LaNt  $\alpha$ 31 displays  
77 widespread tissue distribution [11] and is enriched in structured regions of ECM surrounding  
78 terminal duct lobular units (TDLUs) in normal breast tissue [16].

79 LaNt  $\alpha$ 31 functions have only been studied in corneal and skin epithelium to date,  
80 where upregulation of LaNt  $\alpha$ 31 was observed in response to corneal burn wounds or stem  
81 cells activation in ex vivo models, and where knockdown in expression reduced the rate at  
82 which epidermal keratinocytes close scratch wounds [11, 12]. Mechanistic studies have also  
83 indicated a role for this protein in modifying cell adhesion and migration via changes to  
84 matrix organisation and adhesion complex maturation [12, 17]. Further indications to LaNt  
85  $\alpha$ 31 function come from its structure. Although LaNt  $\alpha$ 31 is smaller than LMs and lacks the  
86 coiled-coil domain required for LM trimer formation, it does share structural domains with  
87 LM $\alpha$ 3b. Specifically, LaNt  $\alpha$ 31 is comprised a LM N-terminal domain (LN domain) and two  
88 LM-type epidermal growth factor-like repeats (LE domains) [11]. LN domains are involved in  
89 LM-to-LM interaction, and therefore are essential for laminin network assembly in BMs [7,  
90 18, 19]. LaNt  $\alpha$ 31 also contains 54 unique amino acids with no homology to known structural  
91 motifs but which have allowed specific antibodies to be raised against this protein [11, 12].  
92 Intriguingly the LaNt  $\alpha$ 31 protein architecture is structurally similar to other members of the  
93 laminin superfamily family, the netrins. Netrins are predominantly known as signalling

94 proteins; however, netrin-4, via its LN domain, can disrupt LM-LM interactions and change  
95 the structural characteristics of LM networks [20-22].

96 While functional data suggest that LaNt  $\alpha$ 31 could be capable of influencing tumour  
97 progression, further rationale for investigating this protein in tumour microenvironment  
98 comes from studies of the other, more comprehensively studied, products of the LAMA3  
99 gene. Reduction of LM $\alpha$ 3a and LM $\alpha$ 3b in breast carcinoma has been independently  
100 reported by several groups [23-25], with LM $\alpha$ 3b downregulation in tumour vasculature  
101 associated with later stage tumours [26]. However, the situation is more complicated than a  
102 simple linear relationship, as increased LM $\alpha$ 3 has been associated with triple negative  
103 breast carcinoma, and increased immunoreactivity that correlated with tumour stage has  
104 also been reported with antibodies against conformational epitopes in LM $\alpha$ 3 $\beta$ 3 $\gamma$ 2 (LM332),  
105 LM $\beta$ 3 and LM $\gamma$ 2, the preferred trimerization partners of LM $\alpha$ 3a and LM $\alpha$ 3b [25, 27].

106 Here we performed the first investigation into LaNt  $\alpha$ 31 in breast cancer. Breast  
107 tissue from normal and invasive ductal carcinomas were processed for  
108 immunohistochemistry with antibodies against LaNt  $\alpha$ 31, and correlation between staining  
109 intensity and pathology determined. LaNt  $\alpha$ 31 expression was upregulated in cultured breast  
110 carcinoma cells in culture and the impact on cellular behaviour was determined. The results  
111 revealed that LaNt  $\alpha$ 31 is increased in tumour tissue and that increased expression changes  
112 the mode of invasion of carcinoma cells into LM-rich matrices.

113 **Methods**

114 **Ethical approval**

115 The Liverpool Bio-Innovation Hub Biobank conferred ethical approval in writing for  
116 the use of samples in this project (REC reference 14/NW/1212, NRES Committee North  
117 West – Haydock). Project specific ethical approval for working with human tissue was  
118 conferred in writing by the University of Liverpool Research Ethics Committees (approval  
119 number:7488).

120 **Antibodies**

121 Mouse monoclonal antibodies raised against human LaNt  $\alpha$ 31 were described  
122 previously [12, 16] and were used at 0.225  $\mu$ g mL $^{-1}$  for IHC and 1.8  $\mu$ g mL $^{-1}$  for  
123 immunoblotting. Mouse monoclonal antibodies against human LM $\alpha$ 3 (clone CL3112) and  
124 mouse IgG (both Sigma-Aldrich, St. Louis, Missouri, USA) were used at 0.5  $\mu$ g mL $^{-1}$ .

125 **Immunohistochemistry**

126 Pilot tissues were obtained from the Liverpool Bio-Innovation Hub Biobank, all other  
127 TMA sections were purchased from Reveal Bioscience (product codes: BC02, BC03, BC05,  
128 BC06, and BC10; Reveal Bioscience, San Diego, USA) or US Biomax (product code:  
129 HBreD145Su02; US Biomax, Rockville, Maryland, USA). Sections were dewaxed and  
130 processed using a Leica Bond autostainer with Bond<sup>TM</sup> Polymer Refine Detection system  
131 (Leica Biosystems, Wetzlar, Germany). Briefly, following dewaxing, antigen retrieval was  
132 performed by incubating with a Tris/EDTA (pH 9 solution) solution for 20 mins at 60 °C, then  
133 endogenous peroxidases were blocked for 5 mins at room temperature with Bond hydrogen  
134 peroxide solution. Sections were incubated with primary or isotype-matched control  
135 antibodies at room temperature for 30 mins in Bond primary Ab solution (Tris-buffered  
136 saline, TBS, containing surfactant and protein stabilizer), then secondary anti-mouse IgG  
137 antibodies (<10  $\mu$ g mL $^{-1}$ ) with 10 % v/v animal serum in TBS were added for 15 mins at room  
138 temperature. DAB (66 mM) chromogen substrate was added for 20 mins at room

139 temperature, and counterstaining performed with 0.1 % w/v haematoxylin for 5 mins. At each  
140 stage, washing was performed with Bond wash solution (TBS containing surfactant).  
141 Sections were finally dehydrated through a series of ascending ethanol concentration and  
142 then mounted with Pertex (all reagents Leica Biosystems). Stained tissue sections were  
143 imaged on the Aperio ImageScope slide scanner and processed using ImageScope software  
144 (Leica Biosystems).

#### 145 **Immunohistochemistry interpretation**

146 TMA cores were graded from 0-3 based on LaNt  $\alpha$ 31 immunoreactivity. Scores of 0  
147 and 1 were then combined, and expression defined as low, medium, or high. All cores were  
148 scored by three independent scorers, and the mean score from duplicate cores used in final  
149 analyses. All patient data, including tumour/ node/ metastasis (TNM) status, tumour grade,  
150 and IHC marker scores (antigen ki-67 [ki67], epidermal growth factor receptor [EGFR],  
151 human epidermal growth factor receptor 2 [Her2], oestrogen receptor [ER], and  
152 progesterone receptor [PR]) were provided by Reveal Biosciences. Data were rounded to  
153 the nearest integer for intensity scores where required. For Ki67 percentage cell staining,  
154 scores were grouped as 0, 6, 6-10, or >10%, as provided by Reveal Biosciences.

#### 155 **Cell culture**

156 MCF-7 [28] and MDA-MB-231 [29] cells were cultured in high glucose (4.5 g L<sup>-1</sup>)  
157 Dulbecco's Modified Eagle Medium (DMEM) (Sigma-Aldrich) supplemented with 10 % Foetal  
158 Calf Serum (FCS, LabTech International Ltd, Heathfield, East Sussex, UK) and 4 mM L-  
159 glutamine (Sigma-Aldrich).

#### 160 **LaNt $\alpha$ 31 expression**

161 Full length *LAMA3LN1-eGFP* and *eGFP* adenoviral particles were prepared and  
162 used as previously described [12]. Transduction efficiency was determined by live  
163 fluorescent imaging at the time of analysis and expression confirmed by immunoblotting after  
164 24 hours. Cells were homogenized by scraping into urea/ sodium dodecyl sulphate (SDS)  
165 buffer (10 mM Tris-HCl pH 6.8, 6.7 M Urea, 1 % w/v SDS, 10 % v/v Glycerol and 7.4  $\mu$ M

166 bromophenol blue, containing 50  $\mu$ M phenylmethysulfonyl fluoride and 50  $\mu$ M N-  
167 methylmaleimide, all Sigma-Aldrich). Lysates were sonicated and 10 % v/v  $\beta$ -  
168 mercaptoethanol added (Sigma-Aldrich). Proteins were separated by SDS-polyacrylamide  
169 gel electrophoresis (SDS-PAGE) using 10 % polyacrylamide gels (1.5 M Tris, 0.4 % w/v  
170 SDS, 10 % acrylamide/ bis-acrylamide; electrophoresis buffer; 25 mM Tris, 190 mM glycine,  
171 0.1 % w/v SDS, pH 8.5 all Sigma-Aldrich). Proteins were transferred to nitrocellulose  
172 membranes (Biorad, California, USA) using the Biorad TurboBlot™ system and blocked for  
173 one hour at room temperature in Odyssey® TBS-Blocking Buffer (Li-Cor BioSciences,  
174 Lincoln, Nebraska, USA). The blocked membranes were incubated overnight at 4°C with  
175 primary antibodies diluted in blocking buffer, then probed for 1 hour at room temperature  
176 with IRDye® conjugated secondary antibodies against mouse IgG (800CW) raised in goat  
177 (LiCor BioSciences) diluted in Odyssey® TBS-Blocking Buffer buffer at 0.05  $\mu$ g mL<sup>-1</sup>.  
178 Membranes were imaged using the Odyssey® CLX 9120 infrared imaging system and  
179 Image Studio Light v.5.2 (LiCor BioSciences) used to process scanned membranes.

## 180 **Resazurin reduction assay**

181 Transduced or non-transduced cells were plated in triplicate at 1.5  $\times$  10<sup>4</sup> cells/well of  
182 a 96-well plate (Greiner-Bio One, Kremsmunster, Austria). After 24 hours culture media was  
183 replaced with serum-free and phenol red-free media containing 44  $\mu$ M resazurin sodium salt  
184 (Sigma-Aldrich) [30]. The cells were then incubated for 2 hours. The media was removed  
185 and transferred to a black 96-well plate (Greiner-Bio One) and fluorescence measured at  
186 570 nm using a SPECTROstar plate reader (BMG LABTECH, Ortenberg, Germany).

## 187 **2D migration assays**

188 For gap closure assays, cells were seeded into ibidi® 2-well culture inserts (ibidi,  
189 Martinsried, Germany); at 7.0  $\times$  10<sup>4</sup> cells/well (MCF-7) or 8.0  $\times$  10<sup>4</sup> cells/well (MDA-MB-231).  
190 Culture inserts were carefully removed after 6 hours, cell debris washed away, and the gap  
191 margin imaged using brightfield optics on a Nikon TiE epifluorescence microscope with a

192 10X objective at 0 and 16 hours (Nikon, Tokyo, Japan). Gap closure was measured as a  
193 percentage relative to starting area using the freehand tool in image J (NIH, Bethesda, MA).

194 For low-density migration assays, cells were seeded at  $5.0 \times 10^4$  cells/well of a 12-  
195 well plate, then imaged every 2 minutes over a 2-hour period using a 20X objective on a  
196 Nikon Eclipse Ti-E fluorescent microscope adapted for live cell imaging. Individual cells were  
197 tracked using the MTrackJ plugin on image J and migration speed calculated.

## 198 **Inverted invasion assay**

199 Inverted invasion assays were performed as previously described [31-33]. Briefly,  
200 100  $\mu$ L of 1 mg mL<sup>-1</sup> rat tail collagen I (Corning Inc., New York, USA) or 4 mg mL<sup>-1</sup> Matrigel®  
201 from Engelbreth-Holm-Swarm (EHS) mouse sarcoma [34], was pipetted on top of  
202 Transwell® 24-well, 0.8  $\mu$ m, polycarbonate inserts (Corning). Then collagen was gelled  
203 through addition of 9.2 mM NaOH. Once gelled, the inserts were inverted and 100  $\mu$ L of cell  
204 suspension containing  $8.0 \times 10^5$  cells were added to the lower surface. The transwells were  
205 than incubated for 4 hours to allow the cells to attach before returning to the original position  
206 with basal side downward. 1 mL of serum-free media was pipetted into the lower chamber of  
207 the transwell, and 100  $\mu$ L of normal culture media supplemented with 25 ng mL<sup>-1</sup> EGF, as a  
208 chemoattractant, was added to the upper chamber [35]. After 72 hours, the cells were fixed  
209 with 3.7 % v/v formaldehyde for 30 mins, permeabilised with 0.05 % v/v Triton X-100 then  
210 stained for 1 hour with DAPI (Sigma-Aldrich). The inserts were mounted onto a glass  
211 coverslip and imaged with a Zeiss Marianas (3i) spinning-disk confocal microscope by taking  
212 a z-stack with images every 5  $\mu$ m, using SlideBook 5.5 software (3i, Intelligent Imaging  
213 Innovations Ltd, London, UK).

214 An algorithm was generated to automatically measure the DAPI stained nuclei in  
215 each slice of the z-stack. The average nuclei size was established by taking a range of  
216 manual measurements through the different planes of the z-stack. The average was used to  
217 set: i) the intensity threshold for distinguishing nuclei fluorescence from background as  
218  $t=1000$ , ii) the expected nuclei size  $s=240$  pixels, corresponding to an area of 101.4  $\mu$ m or a

219 radius of 5.68  $\mu\text{m}$ , ii) the lower size threshold  $s^- = 120$  pixels (area = 50.7  $\mu\text{m}$  or  $a =$  radius of  
220 4.02  $\mu\text{m}$ ), below which captured objects were not considered to be nuclei and iv) the upper  
221 size threshold  $s^+ = 400$  pixels (area 169  $\mu\text{m}$  or radius of 7.33  $\mu\text{m}$ ), above which the  
222 captured object was assumed to be an artefact. For each image slice, the image was  
223 imported and a coarse segmentation of the nuclei performed by thresholding at the intensity  
224 value  $t$  to achieve a binary nuclei/non-nuclei image. Any nuclei within an absolute distance of  
225 0.65  $\mu\text{m}$  or 1 pixel were connected to take into account noise, and an initial index taken of  
226 the distinct identified nuclei candidates, while measuring the size of each nuclei.

227 Individual cells were then identified as follows: i) any identified object under  $s^-$ ,  $s/2$   
228 pixels or over  $s^+$  pixels in size was considered to be noise, ii) any captured object within the  
229 thresholds  $s/2$  and  $3s/2$  was considered to be one nuclei, iii) any remaining captured object  
230 which was larger than  $3s/2$  in size was considered to be a cluster of nuclei which could not  
231 be split due to the resolution of the image. In these cases, the number of cells in the cluster  
232 was calculated as  $(\text{cluster size}) / s$ , rounded to the nearest integer. The following measures  
233 were then taken: i) total luminance of the cell image, ii) PixCount: the number of pixels  
234 considered to be a cell after thresholding, corresponding to the total area in microns of the  
235 region considered to contain a cell. iii) Cell Count: the total number of cells identified,  
236 including those estimated from cell clusters, iv) Entropy: a measure of randomness of the  
237 thresholding data, which identified how clustered the cells in the image were.

## 238 **Data analyses**

239 Microsoft Excel (Microsoft, Washington, USA), Graphpad Prism v.6 (Graphpad  
240 Software, California, USA), or SPSS statistic 24 (IBM Corporation, New York, USA) were  
241 used to analyse numerical data and generate graphs. Figures were generated using  
242 CoralDraw 2017. The Wilcoxon signed-rank test or Somers' D was used for ordinal data, or  
243 Mantel-Cox log-rank test for survival data in immunohistochemistry analyses, and one-way  
244 ANOVA with Bonferroni post hoc test were used for continuous variables. Differences were  
245 deemed statistically significant where type I error rates were below 5 %.

246 **Results**

247 **LaNt  $\alpha$ 31 and LM $\alpha$ 3 display distinct distribution patterns in invasive**  
248 **ductal carcinomas**

249 First we compared the distribution of LaNt  $\alpha$ 31 and LM $\alpha$ 3 in a pilot panel of four  
250 normal (Figure 1A), four invasive ductal (Figure 1B) and four triple negative (Er-PR-Her2-)  
251 invasive ductal tissue sections (Figure 1C). The LM $\alpha$ 3 antibodies used recognise both the  
252 LM $\alpha$ 3a and LM $\alpha$ 3b forms. LaNt  $\alpha$ 31 and LM $\alpha$ 3 displayed very similar distribution in the  
253 normal tissue (Figure 1A), primarily restricted to TDLU as previously reported [16]. However,  
254 much stronger and more widespread LaNt  $\alpha$ 31 expression was detected in three of the four  
255 invasive ductal and three of four ER-, PR-, Her2- specimens. In the invasive ductal tissue,  
256 LaNt  $\alpha$ 31 displayed a more widespread distribution than LM $\alpha$ 3 (arrowheads, Figure 1B),  
257 whereas in ER-PR-Her2- cases the LM $\alpha$ 3 and LaNt  $\alpha$ 31 distribution were very similar  
258 (Figure 1C). LM $\alpha$ 3 has been extensively investigated in breast cancer [23-25]; however,  
259 these new data for LaNt  $\alpha$ 31 indicated potential additional value of investigating this isoform  
260 independently from LM $\alpha$ 3 in invasive ductal carcinoma.

261

262 **Figure 1: LaNt  $\alpha$ 31 is upregulated in ductal carcinoma.** Serial sections from formalin-  
263 fixed paraffin-embedded human breast tissue processed for immunohistochemistry with  
264 mouse monoclonal antibodies against laminin  $\alpha$ 3, LaNt  $\alpha$ 31, or mouse IgG- isotype control,  
265 (A) uninvolved breast tissue, (B) invasive ductal carcinoma, and (C) ER-, PR-, Her- invasive  
266 ductal carcinoma. Scale bars: 500  $\mu$ m.

267

268 **LaNt  $\alpha$ 31 expression is elevated in invasive ductal carcinoma and in**  
269 **nodal metastases compared to primary tumour tissue**

270 To formally determine whether LaNt  $\alpha$ 31 expression levels change in invasive ductal  
271 carcinoma, the relative intensity of cellular immunoreactivity in epithelial-like tissue was  
272 compared between normal breast tissue compared with tumour biopsies from the same  
273 person, with intensity scored by three independent, blinded scorers (representative  
274 examples, Figure 2A, all cores Figure S1A, patient demographics Table 1). These paired  
275 analyses revealed LaNt  $\alpha$ 31 expression to be increased in the cancer specimen in 14 of 25  
276 tumours (56%) , eight had no change, while three displayed decreased expression in the  
277 cancer tissue (Wilcoxon signed ranks test,  $z=-2.67$ ,  $p=0.008$ , Figure 2A).

278 Comparison of staining intensity between cores taken from the primary tumour  
279 against those from nodal metastasis from the same person using the same scoring  
280 approach, revealed that 13 of the 29 (45%) of the nodal metastasis displayed stronger LaNt  
281  $\alpha$ 31 staining compared with primary tumour tissue, 12 were scored the same, and four were  
282 decreased in the nodal tissue (Figure 2B, Figure S1B, patient demographics Table 1,  $z=-$   
283  $2.18$ ,  $p=0.029$ ).

284

285 **Figure 2: LaNt  $\alpha$ 31 is upregulated in ductal carcinoma and in lymph node metastases.**  
286 Formalin-fixed paraffin-embedded human breast tissue microarray sections processed for  
287 immunohistochemistry with mouse monoclonal antibodies against LaNt  $\alpha$ 31. Two separate  
288 arrays were used; (A) uninvolved with paired invasive/ in situ ductal carcinoma tissues  
289 ( $N=25$ ), (B) invasive ductal carcinoma with paired node metastases ( $N=29$ ). Cores were  
290 scored as either decreased, no change, or increased staining intensity relative to the paired  
291 uninvolved (A) or primary tumour (B) core from the same donor (representative images  
292 shown). Stacked columns of percentage of cases in each category were plotted and  
293 Wilcoxon signed ranks test used to describe observed relationship. Scale bars: 500  $\mu$ m.

294

295 **Table 1- Patient ages for each study cohort**

| Study cohort                                       | Mean | Median | Range | N   |
|----------------------------------------------------|------|--------|-------|-----|
| Invasive ductal carcinoma vs uninvolved            | 46   | 45     | 29-70 | 25  |
| Invasive ductal carcinoma vs lymph node metastases | 47   | 46     | 30-69 | 29  |
| Ductal carcinoma                                   | 46   | 44     | 21-86 | 166 |
| Invasive ductal carcinoma                          | 60   | 57     | 33-88 | 132 |

296

297 **LaNt  $\alpha$ 31 upregulation is associated with less proliferative tumours**

298 To determine if LaNt  $\alpha$ 31 immunoreactivity held prognostic value for invasive ductal  
299 carcinoma, we processed 166 patients (Table 1) with two cores scored per patient by three  
300 independent scorers with the scores defined as “low”, “medium” or “high” LaNt  $\alpha$ 31 intensity  
301 (Figure 3A). First, we asked if LaNt  $\alpha$ 31 staining intensity was predictive for tumour grade,  
302 Ki67 expression (i.e. high proliferation [36, 37]), nodal involvement, or survival (Figure 3B-E,  
303 respectively). For tumour grade, although an increased proportion of cores displayed strong  
304 LaNt  $\alpha$ 31 staining in higher grade tumours, this association did not reach statistical  
305 significance ( $d=0.109$ ,  $p=0.146$ , Figure 3B). Surprisingly, a negative correlation was  
306 observed between Ki67 expression level and LaNt  $\alpha$ 31 staining intensity ( $d=-0.3$ ,  $p=0.006$ ,  
307 Figure 3C). The relative proportions of high, medium and low LaNt  $\alpha$ 31 expression were  
308 broadly similar between those cases which presented with nodal involvement and those  
309 without (Somers'  $d=0.059$ ,  $p=0.505$ , Figure 3D).

310 Survival was assessed for the 132 cases where these data were available. To  
311 account for the smaller sample size here, LaNt  $\alpha$ 31 staining intensity was simplified to either  
312 low or high expression by combining the medium with the high expression cases. These  
313 data revealed that tumours with higher LaNt  $\alpha$ 31 staining intensity had marginally improved  
314 overall survival, although this did not reach statistical significance at an  $\alpha$  of 0.05 (low=66%  
315 survival, high=76% survival, hazard ratio 1.52, confidence interval 0.8-2.8,  $p=0.22$ , Figure  
316 3E).

317

318 **Figure 3: LaNt  $\alpha$ 31 upregulation in ductal carcinoma does not correlate with nodal**  
319 **involvement or tumour grade.** Formalin-fixed paraffin embedded human breast tissue  
320 microarray sections processed for immunohistochemistry with mouse monoclonal antibodies  
321 against LaNt  $\alpha$ 31. Cores were scored based on LaNt  $\alpha$ 31 staining intensity from 0-3. Scores  
322 of 0 or 1 were combined and designated as low LaNt  $\alpha$ 31 expression, score 2 as medium  
323 expression, and 3 as high expression. (A) Representative example of core scoring. (B-D)  
324 Stacked column graphs of percentage of cases with each staining intensity segregated by  
325 tumour grade I, II, or III (B), Ki67 expression (C), or by nodal involvement (D). Somers' D  
326 was used to describe observed relationships between LaNt  $\alpha$ 31 staining intensity and the  
327 independent variables. (E) Kaplan–Meier survival curve, were LaNt  $\alpha$ 31 staining intensity  
328 was simplified to low or high by pooling medium and high cores. Logrank was used to  
329 determine hazard ratio and chi square for significance. Scale bar in (A): 300  $\mu$ m.

330

331 Next, we asked if LaNt  $\alpha$ 31 staining displayed a relationship with any of the  
332 commonly used breast cancer biomarkers (Figure 4). These data revealed a positive  
333 association between LaNt  $\alpha$ 31 and EGFR (EGFR  $d=0.26$ ,  $p=0.003$ , Figure 4A), while  
334 observed associations with Her2, ER and PR were each below statistical significance at an  
335  $\alpha$  of 0.05 (Figure 4B-D). However, the data suggest a potential weak, negative association  
336 with ER ( $d=-0.12$ ,  $p=0.056$ ).

337 The cores from triple negative cancers were analysed separately (Figure 4E,  $n=38$   
338 cores). These data revealed that more than 65 % of the ER- PR- Her2- cores had either  
339 medium or high LaNt  $\alpha$ 31 staining intensity.

340

341 **Figure 4: Positive correlation between LaNt  $\alpha$ 31 staining intensity and EGFR**  
342 **expression.** Formalin-fixed paraffin embedded human breast tissue microarray sections  
343 processed for immunohistochemistry with mouse monoclonal antibodies against LaNt  $\alpha$ 31.  
344 Cores were scored based on LaNt  $\alpha$ 31 staining intensity from 0-3. Scores of 0 or 1 were

345 combined and designated as low LaNt  $\alpha$ 31 expression, scores 2 as medium expression, and  
346 3 as high expression. Stacked column graph of percentage of cases that fall into group after  
347 segregation based on pathologist provided grading of immunohistochemistry markers; (A)  
348 EGFR, (B) Her2, (C) ER, (D) PR, or (E) ER- PR- Her2- cases. Somers' D was used to  
349 describe observed relationship between LaNt  $\alpha$ 31 staining intensity and independent  
350 variable.

351

352 **LaNt  $\alpha$ 31 expression does not induce increased 2D migration or invasion**  
353 **in a non-motile cell line**

354 Together the immunohistochemistry findings indicate an association between LaNt  
355  $\alpha$ 31 staining and a subset of tumours; however, this does not necessarily indicate that  
356 expression change contributes to the disease. To address this question, we used an  
357 adenoviral system to drive overexpression of LaNt  $\alpha$ 31 tagged with eGFP (+LaNt  $\alpha$ 31-  
358 eGFP) in two widely used cell lines derived from invasive ductal carcinomas; MCF-7 and  
359 MDA-MB-231 (Figure S2A-B). Cells transduced with eGFP only were used to control for  
360 adenoviral transduction and eGFP expression. Expression of eGFP or LaNt  $\alpha$ 31-eGFP had  
361 no effect on metabolic activity of either MCF-7 or MDA-MB-231 cells (Figure S2C-D).

362 MCF-7 cells migrate slowly and do not invade in 3D invasion assays [38-40]. This  
363 line was therefore used to assess if induction of LaNt  $\alpha$ 31 expression was sufficient to  
364 increase these behaviours. In gap closure assays (Figure S3A-B), MCF-7 cells expressing  
365 LaNt  $\alpha$ 31 closed the gap more slowly than controls in three out of seven independent  
366 experiments; however, overall the differences were not statistically significant (Figure S3B  
367 median: MCF-7 83.3 %, +eGFP 79.7 %, +LaNt  $\alpha$ 31-eGFP 67.8 %,  $p=0.37$ ). In single cell  
368 assays (Figure S3C-D), a small increase in migration speed was observed three out of four  
369 independent experiments, although differences between LaNt  $\alpha$ 31 and control treatments  
370 were not statistically significant (mean migration speed +/- S.D. MCF-7 0.31  $\mu$ m min $^{-1}$  +/-

371 0.13, +eGFP 0.36  $\mu\text{m min}^{-1}$  +/- 0.09, +LaNt  $\alpha$ 31-eGFP 0.35  $\mu\text{m min}^{-1}$  +/- 0.06,  $p=0.53$ ,  
372 determined by ANOVA. Figure S3D).

373 Next, we asked if increasing LaNt  $\alpha$ 31 expression could induce invasive capabilities  
374 in MCF7 using an inverted invasion assay [33, 41], where cells were seeded on the base of  
375 a porous membrane then stimulated to invade into a provided matrix and using an EGF  
376 gradient as a chemoattractant (Figure S3E-H). As LaNt  $\alpha$ 31 effects could be LM specific,  
377 invasion into two different matrices were analysed; collagen I to mimic the interstitial matrix  
378 (Figure S3E-F) and Matrigel, a BM analogue that contains approximately 60 % LM111, 30 %  
379 Type IV collagen, and 8 % entactin [34, 42] (Figure S3G-H). As expected, untreated MCF-7  
380 cells had very low invasive capabilities into both matrices, and overexpression of LaNt  $\alpha$ 31  
381 did not lead to any significant change in invasion depth (mean +/- S.D invasion depth into  
382 collagen I: MCF-7 57  $\mu\text{m}$  +/- 24, +eGFP 55  $\mu\text{m}$  +/- 22, +LaNt  $\alpha$ 31-eGFP 50  $\mu\text{m}$  +/- 17,  
383  $p=0.78$ , determined by ANOVA. Figure S3F. Into Matrigel: MCF-7 55  $\mu\text{m}$  +/- 0, +eGFP 57  
384  $\mu\text{m}$  +/- 13, +LaNt  $\alpha$ 31-eGFP 58  $\mu\text{m}$  +/- 6,  $p>0.71$ , determined by ANOVA. Figure S3H).

385 **Increased LaNt  $\alpha$ 31 expression causes a change in mode of invasion  
386 into laminin-rich hydrogels**

387 In contrast to MCF7, MDA-MB-231 are much more motile and invasive [33, 41, 43].  
388 However, the effect of LaNt  $\alpha$ 31 expression on the 2D migration of MDA-MB-231 was  
389 minimal, with a slight, but not statistically significant reduction in gap closure rate (median:  
390 MDA-MB-231 98.8 %, +eGFP 92.7 %, +LaNt  $\alpha$ 31-eGFP 85.1 %,  $p=0.23$ . Figure 5A-B), and  
391 similar outcome in single cell migration assays (mean speed +/- S.D: MDA-MB-231 0.48  $\mu\text{m}$   
392  $\text{min}^{-1}$  +/- 0.10, +eGFP 0.50  $\mu\text{m min}^{-1}$  +/- 0.14, +LaNt  $\alpha$ 31-eGFP 0.36  $\mu\text{m min}^{-1}$  +/- 0.15,  
393 MDA-MB-231 vs +LaNt  $\alpha$ 31-eGFP,  $p=0.16$ ; +eGFP vs +LaNt  $\alpha$ 31-eGFP,  $p=0.02$  determined  
394 by ANOVA with Bonferroni post hoc test. Figure 5C-D).

395

396 **Figure 5: LaNt  $\alpha$ 31 overexpression does not significantly affect 2D migration MDA-**  
397 **MB-231 cells.** MDA-MB-231 cells were either left untreated or transduced with eGFP  
398 (+eGFP), or LAMA3LN1-eGFP (+LaNt  $\alpha$ 31-eGFP). For gap closure assays, 24 hours after  
399 transduction, cells were seeded into ibidi® 2-well culture inserts and allowed to attach for 6  
400 hours, the inserts were then removed, and the gap margin imaged at 0 hours and 16 hours.  
401 For single cell migration assays, 24 hours after transduction, cells were seeded onto tissue  
402 culture plastic and the migration paths of individual cells tracked over a four-hour period. (A)  
403 Representative images from immediately after removing chamber (T0 upper panels) and  
404 after 16 hours (T16 lower panels), yellow lines delineate wound margins. (B) Gap closure  
405 was measured as a percentage relative to starting gap area. (C) Vector diagrams showing  
406 representative migration paths of 10 individual cells with each colour representing a single  
407 cell. (D) Migration speed was measured as total distance migrated over time. Each point on  
408 the associated dot plots represents an independent experiment with 2-3 technical replicates  
409 per experiment for gap closures assays or 20-40 cells per low density migration assay.  
410 Statistical tests of differences relative to controls were performed using one-way ANOVA  
411 followed by Bonferroni's post hoc analyses;  $p>0.05$  in all comparisons. Scale bar in (a)  
412 represents 100  $\mu$ m.

413

414 As expected MDA-MB-231 invaded into both collagen I and Matrigel matrices (Figure  
415 6). The invasion depth of +LaNt  $\alpha$ 31-eGFP MDA-MB-231 cells into collagen I was  
416 unchanged compared with controls; however, there was a slight reduction in total invasion  
417 depth into Matrigel although this did not reach statistical significance compared with both  
418 controls once adjusted for multiple comparisons (mean +/- S.D depth into collagen: MDA-  
419 MB-231 89  $\mu$ m +/- 22, +eGFP 90  $\mu$ m +/- 7, +LaNt  $\alpha$ 31-eGFP 87  $\mu$ m +/- 18,  $p=0.52$ . Figure  
420 6A-B. Invasion into Matrigel: MDA-MB-231 136  $\mu$ m +/- 10 S.D, +eGFP 127  $\mu$ m +/- 4, +LaNt  
421  $\alpha$ 31-eGFP 97  $\mu$ m +/- 11, MDA-MB-231 vs +LaNt  $\alpha$ 31-eGFP  $p=0.11$ , +eGFP vs +LaNt  $\alpha$ 31-  
422 eGFP  $p=0.14$ , ANOVA with Bonferroni post hoc test. Figure 6C-D).

423

424 **Figure 6: LaNt  $\alpha$ 31 overexpression causes a small reduction in invasion of MDA-MB-**

425 **231 cells into Matrigel.** MDA-MB-231 cells, either left untreated or transduced with eGFP

426 (+eGFP), or LAMA3LN1-eGFP (+LaNt  $\alpha$ 31-eGFP), were plated onto the outside of a

427 transwell membrane. 10 ng mL<sup>-1</sup> epidermal growth factor was used to stimulate invasion

428 through the membrane into collagen I (A-B) or Matrigel (C-D). After 48 hours, the cells were

429 fixed and DAPI stained then imaged at 5  $\mu$ m intervals using a spinning disk confocal

430 microscope. (A) and (C) Representative images from 10-40  $\mu$ m depth presented at equal

431 intervals, with an additional slice at 80  $\mu$ m in (C). Absolute invasion depth was measured

432 where cell count  $\geq$ 1. Treatment with GM6001 MMP inhibitor was included as an invasion

433 inhibiting control. Each point on the graphs in (B) and (D) represents an independent

434 experiment, with 2-3 technical replicates per assay. \* represents  $p < 0.05$  between bracketed

435 groups as determined by one-way ANOVA followed by Bonferroni's post hoc analyses.

436

437 Although there were minimal differences in invasion depth, visual analysis of the

438 Matrigel invasion assays, revealed an intriguing distinct phenotypic difference between the

439 LaNt  $\alpha$ 31 overexpressing cells compared with the controls (Figure 6C and 7A). Whereas

440 MDA-MB-231 cells usually invade into Matrigel as multicellular streams, as has been

441 reported previously [43, 44], the +LaNt  $\alpha$ 31-eGFP cells did not display this behaviour (Movies

442 1 and 2, maximum intensity projection Figure 7A). To assess this quantitatively, we wrote a

443 macro to convert the DAPI stained images at 60  $\mu$ m depth into an inverse entropy score as

444 measure of cohesiveness (entropy<sup>-1</sup>) (Figure 7B). At this invasion depth, cell densities were

445 not different between +LaNt  $\alpha$ 31-eGFP and controls. These analyses agreed with our visual

446 impression that the +LaNt  $\alpha$ 31-eGFP were less cohesive in their invasion profile (mean +/-

447 S.D entropy<sup>-1</sup>  $\times 10^{-7}$ : MDA-MB-231 1.9 +/- 0.8, +eGFP 2.0 +/- 0.02, +LaNt  $\alpha$ 31-eGFP 0.93 +/-

448 0.55,  $p=0.29$ . Figure 7C).

449

450 **Figure 7: LaNt  $\alpha$ 31 overexpression causes a change in mode of invasion of MDA-MB-  
451 231 cells into Matrigel.** MDA-MB-231 cells, either left untreated or transduced with eGFP  
452 (+eGFP), or LAMA3LN1-eGFP (+LaNt  $\alpha$ 31-eGFP), were plated onto the outside of a  
453 transwell membrane. 10 ng mL<sup>-1</sup> epidermal growth factor was used to stimulate invasion  
454 through the membrane and into Matrigel. After 48 hours, the cells were fixed and stained  
455 with DAPI then imaged at 5  $\mu$ m intervals using a spinning disk confocal microscope. (A)  
456 Maximum intensity projection of planes from 20-60  $\mu$ m from the same assays in Figure 6C.  
457 (B) Image analyses method for determining entropy<sup>-1</sup> as a measure of cell clustering; each  
458 stack of images was processed using an automated processing algorithm, where cell count  
459 and entropy score after a threshold was measured for each image in the stack. (C) Entropy<sup>-1</sup>  
460 score at 60  $\mu$ m normalised to pixel intensity plotted to assess clustering of cells.

461

## 462 **Tumours with high LaNt $\alpha$ 31 expression are likely to be non-cohesive**

463 As the LaNt  $\alpha$ 31 functional studies data suggested that high expression of this  
464 protein changes the mode of tumour invasion, we returned to the tissue array data, focusing  
465 specifically on the cores with high LaNt  $\alpha$ 31 intensity and assessed the tumour appearance  
466 in each of those cores as either “cohesive” or “non-cohesive” depending on whether tumour  
467 cells were present in contiguous islands with well-defined borders, (representative examples  
468 Figure 8A). These analyses revealed that 67.7 % of the high LaNt  $\alpha$ 31 expressing tumours  
469 were non-cohesive in appearance (21 of 31 cores, Figure 8B).

470

471 **Figure 8: High LaNt  $\alpha$ 31 expression is associated with low tumour cohesion in  
472 invasive ductal carcinoma.** Formalin-fixed paraffin embedded human breast tissue  
473 microarray sections processed for immunohistochemistry with mouse monoclonal antibodies  
474 against LaNt  $\alpha$ 31. Tumour cohesion was graded as either cohesive (tight tumour islands), or  
475 non-cohesive (chord-like) in tumour cores scored as having high LaNt  $\alpha$ 31 expression. (A)

476 Representative example of core grading. (B) Stacked column graphs of percentage of cases  
477 that are either cohesive or non-cohesive. Scale bars: 300  $\mu$ m.

478

## 479 Discussion

480 The findings presented here have revealed that the little-known LM-related protein  
481 LaNt  $\alpha$ 31 is upregulated in a distinct sub-population of breast cancers, including a subset of  
482 TNBC, but is not definitively predictive of patient outcome. However, the results also show  
483 that LaNt  $\alpha$ 31 is capable of changing the mode of invasion of breast cancer cells into LM-  
484 rich matrices, suggesting that dysregulation of this protein could actively contribute to tumour  
485 pathology.

486 Usually in tumour situations, very few cells acquire the ability to invade and a  
487 hallmark of more aggressive tumours is plasticity in the modes of migration [45, 46]. A switch  
488 from multicellular streaming to individual cell invasion can happen in multiple overlapping  
489 ways. A major driver is the mechanical properties the ECM including matrix stiffness and the  
490 orientation of fibres; however decreased cell-cell adhesion, increased Rac-driven  
491 cytoskeletal protrusion compared with Rho-mediated contraction, an increased ability to  
492 generate traction forces, and differences in proteolytic activities all can drive the changes  
493 [43], as reviewed in [47]. Many of these mechanisms are intrinsically linked, which makes it  
494 challenging to directly assign a single behaviour to an individual protein. However, the  
495 Matrigel-specific effects and the structural similarity between netrin-4 and LaNt  $\alpha$ 31 make it  
496 tempting to predict that LaNt  $\alpha$ 31 has a disruptive effect on LM networks, softening and  
497 disordering the matrix through which the cells are invading [20, 22]. Matrigel contains many  
498 components beyond LM111 [42], therefore the observed phenotype could also be due to  
499 LaNt  $\alpha$ 31 interaction with these additional factors or acting through competition with cell  
500 surface receptors. LN domains, including the LN domain of LM $\alpha$ 3b, are known to have cell-  
501 surface receptor-binding capabilities [48] [49], and notably netrin-4 and a proteolytically  
502 released LN domain fragment of LM $\beta$ 1 are each capable of inducing epithelial to

503 mesenchymal transition [20, 21, 50, 51]. Dissecting the mechanism of the LaNt  $\alpha$ 31-induced  
504 changes will not be a trivial undertaking but could be valuable to understand the process and  
505 as a route toward targeted intervention approaches.

506 An additional intriguing finding was the difference between LaNt  $\alpha$ 31 and LM $\alpha$ 3.  
507 Although these proteins are genetically linked, they are structurally and functionally distinct.  
508 Specifically, LM $\alpha$ 3a, as part of LM332, has been robustly demonstrated to enhance the  
509 migratory behaviour of MCF7 and MDA-MB-231 cells in culture [52, 53]. However, loss or  
510 focal disruption of LM332 staining is a more common feature in breast cancer, particularly  
511 for LM $\alpha$ 3b, which shares a promoter with LaNt  $\alpha$ 31, and is downregulated in the tumour  
512 vasculature [26]. Indeed, in side-by-side comparison of the same tissue, the observation of  
513 different structures displaying upregulation of LaNt  $\alpha$ 31 compared with LM $\alpha$ 3 points to  
514 differences in post-transcriptional regulation. We do not yet know if the difference is due to  
515 differences between the isoforms in terms of pre-mRNA processing, mRNA degradation, or  
516 post-translational proteolytic processing; however, these data do suggest that changes to  
517 LaNt  $\alpha$ 31 expression may have more widespread implications to other cancer subtypes  
518 where LM $\alpha$ 3 is known to be dysregulated. In these contexts, processing tissue for LaNt  $\alpha$ 31  
519 may have value as a biomarker.

520

## 521 **Conclusions**

522 The combination of patient data and manipulative experimental data presented here  
523 have revealed LaNt  $\alpha$ 31, for the first time, to be associated with the progression of breast  
524 cancer. Moreover, the finding that LaNt  $\alpha$ 31 actively influences invasive behaviour indicate  
525 that targeting this protein's function could hold potential as a therapeutic approach.

526

## 527 Acknowledgements

528 This work was supported by Biotechnology and Biological Sciences Research Council  
529 Grants BB/L020513/1 and BB/P0257731, and by North West Cancer Research. These  
530 funding sources supported the purchase of consumables and equipment access and paid  
531 salaries of LDT.  
532 LDT designed and conducted the experiments, analysed the data, and made the figures. TZ  
533 assisted in design, analysis and interpretation of the invasion assays. KJH designed the  
534 study, analysed data. All authors contributed to the writing and editing of the manuscript. The  
535 authors would also like to thank Bryan Williams for his help in writing image analysis macro,  
536 Abigail Pickett, Marian Jones, Eleanor Hughes, and Louisa Orfanou for their help in image  
537 scoring, and Louise Brown (funded by Breast Cancer Now grant 2014MayPR292) for help  
538 with the invasion assays. The authors would like to acknowledge the donors, for without  
539 whom, this work would not be possible.

540

## 541 References

- 542 1. Hanahan D, Weinberg RA. The hallmarks of cancer. *Cell*. 2000;100(1):57-70.
- 543 2. Sidhom G, Imam M. Evaluation of serum laminin as a tumor marker in breast cancer. *Int J Clin Lab Res*. 1999;29(1):26-9.
- 544 3. Giussani M, Landoni E, Merlini G, Turdo F, Veneroni S, Paolini B, et al. Extracellular  
545 matrix proteins as diagnostic markers of breast carcinoma. *J Cell Physiol*. 2018;233(8):6280-  
546 90.
- 547 4. Moriggi M, Giussani M, Torretta E, Capitanio D, Sandri M, Leone R, et al. ECM  
548 Remodeling in Breast Cancer with Different Grade: Contribution of 2D-DIGE Proteomics.  
549 *Proteomics*. 2018;18(24):e1800278.
- 550 5. Holler E. Laminin isoform expression in breast tumors. *Breast Cancer Res*.  
551 2005;7(4):166-7.
- 552 6. Brassart-Pasco S, Brezillon S, Brassart B, Ramont L, Oudart JB, Monboisse JC.  
553 Tumor Microenvironment: Extracellular Matrix Alterations Influence Tumor Progression.  
554 *Front Oncol*. 2020;10:397.
- 555 7. Hohenester E, Yurchenco PD. Laminins in basement membrane assembly. *Cell*  
556 adhesion & migration. 2013;7(1):56-63.
- 557 8. Hamill KJ, Kligys K, Hopkinson SB, Jones JC. Laminin deposition in the extracellular  
558 matrix: a complex picture emerges. *J Cell Sci*. 2009;122(Pt 24):4409-17.
- 559 9. Patarroyo M, Tryggvason K, Virtanen I. Laminin isoforms in tumor invasion,  
560 angiogenesis and metastasis. *Semin Cancer Biol*. 2002;12(3):197-207.
- 561 10. Rousselle P, Scoazec JY. Laminin 332 in cancer: When the extracellular matrix turns  
562 signals from cell anchorage to cell movement. *Semin Cancer Biol*. 2019.

564 11. Hamill KJ, Langbein L, Jones JC, McLean WH. Identification of a novel family of  
565 laminin N-terminal alternate splice isoforms: structural and functional characterization. *J Biol  
566 Chem.* 2009;284(51):35588-96.

567 12. Barrera V, Troughton LD, Iorio V, Liu S, Oyewole O, Sheridan CM, et al. Differential  
568 Distribution of Laminin N-Terminus alpha31 Across the Ocular Surface: Implications for  
569 Corneal Wound Repair. *Invest Ophthalmol Vis Sci.* 2018;59(10):4082-93.

570 13. Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P,  
571 et al. A simplified laminin nomenclature. *Matrix Biol.* 2005;24(5):326-32.

572 14. Ryan MC, Tizard R, VanDevanter DR, Carter WG. Cloning of the LamA3 gene  
573 encoding the alpha 3 chain of the adhesive ligand epiligrin. Expression in wound repair. *J  
574 Biol Chem.* 1994;269(36):22779-87.

575 15. Miner JH, Patton BL, Lentz SI, Gilbert DJ, Snider WD, Jenkins NA, et al. The laminin  
576 alpha chains: expression, developmental transitions, and chromosomal locations of alpha1-  
577 5, identification of heterotrimeric laminins 8-11, and cloning of a novel alpha3 isoform. *J Cell  
578 Biol.* 1997;137(3):685-701.

579 16. Troughton LD, Reuten R, Sugden C, J, Hamill K. Laminin N-terminus α31 protein  
580 distribution in adult human tissues. *bioRxiv.* 2020.

581 17. Iorio V, Troughton LD, Barrera V, Hamill K. LaNt α31 modulates LM332 organisation  
582 during matrix deposition leading to cell-matrix adhesion and migration defects. *bioRxiv.*  
583 2019.

584 18. Cheng YS, Champliaud MF, Burgeson RE, Marinkovich MP, Yurchenco PD. Self-  
585 assembly of laminin isoforms. *J Biol Chem.* 1997;272(50):31525-32.

586 19. Yurchenco PD, Cheng YS. Laminin self-assembly: a three-arm interaction hypothesis  
587 for the formation of a network in basement membranes. *Contrib Nephrol.* 1994;107:47-56.

588 20. Schneiders FI, Maertens B, Bose K, Li Y, Brunkent WJ, Paulsson M, et al. Binding of  
589 netrin-4 to laminin short arms regulates basement membrane assembly. *J Biol Chem.*  
590 2007;282(33):23750-8.

591 21. Staquicini FI, Dias-Neto E, Li J, Snyder EY, Sidman RL, Pasqualini R, et al.  
592 Discovery of a functional protein complex of netrin-4, laminin gamma1 chain, and integrin  
593 alpha6beta1 in mouse neural stem cells. *Proc Natl Acad Sci U S A.* 2009;106(8):2903-8.

594 22. Reuten R, Patel TR, McDougall M, Rama N, Nikodemus D, Gibert B, et al. Structural  
595 decoding of netrin-4 reveals a regulatory function towards mature basement membranes.  
596 *Nat Commun.* 2016;7:13515.

597 23. Bergstraesser LM, Srinivasan G, Jones JC, Stahl S, Weitzman SA. Expression of  
598 hemidesmosomes and component proteins is lost by invasive breast cancer cells. *Am J  
599 Pathol.* 1995;147(6):1823-39.

600 24. Martin KJ, Kwan CP, Nagasaki K, Zhang X, O'Hare MJ, Kaelin CM, et al. Down-  
601 regulation of laminin-5 in breast carcinoma cells. *Mol Med.* 1998;4(9):602-13.

602 25. Henning K, Berndt A, Katenkamp D, Kosmehl H. Loss of laminin-5 in the epithelium-  
603 stroma interface: an immunohistochemical marker of malignancy in epithelial lesions of the  
604 breast. *Histopathology.* 1999;34(4):305-9.

605 26. Mori T, Kariya Y, Komiya E, Higashi S, Miyagi Y, Sekiguchi K, et al. Downregulation  
606 of a newly identified laminin, laminin-3B11, in vascular basement membranes of invasive  
607 human breast cancers. *Cancer Sci.* 2011;102(5):1095-100.

608 27. Carpenter PM, Wang-Rodriguez J, Chan OT, Wilczynski SP. Laminin 5 expression in  
609 metaplastic breast carcinomas. *Am J Surg Pathol.* 2008;32(3):345-53.

610 28. Soule HD, Vazquez J, Long A, Albert S, Brennan M. A human cell line from a pleural  
611 effusion derived from a breast carcinoma. *J Natl Cancer Inst.* 1973;51(5):1409-16.

612 29. Cailleau R, Young R, Olive M, Reeves WJ, Jr. Breast tumor cell lines from pleural  
613 effusions. *J Natl Cancer Inst.* 1974;53(3):661-74.

614 30. O'Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin)  
615 fluorescent dye for the assessment of mammalian cell cytotoxicity. *Eur J Biochem.*  
616 2000;267(17):5421-6.

617 31. Oppelt A, Haugsten EM, Zech T, Danielsen HE, Sveen A, Lobert VH, et al. PIKfyve,  
618 MTMR3 and their product PtdIns5P regulate cancer cell migration and invasion through  
619 activation of Rac1. *Biochem J.* 2014;461(3):383-90.

620 32. Garcia E, Ragazzini C, Yu X, Cuesta-Garcia E, Bernardino de la Serna J, Zech T, et  
621 al. WIP and WICH/WIRE co-ordinately control invadopodium formation and maturation in  
622 human breast cancer cell invasion. *Sci Rep.* 2016;6:23590.

623 33. MacDonald E, Brown L, Selvais A, Liu H, Waring T, Newman D, et al. HRS-WASH  
624 axis governs actin-mediated endosomal recycling and cell invasion. *J Cell Biol.*  
625 2018;217(7):2549-64.

626 34. Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological  
627 activity. *Semin Cancer Biol.* 2005;15(5):378-86.

628 35. Lu Z, Jiang G, Blume-Jensen P, Hunter T. Epidermal growth factor-induced tumor  
629 cell invasion and metastasis initiated by dephosphorylation and downregulation of focal  
630 adhesion kinase. *Mol Cell Biol.* 2001;21(12):4016-31.

631 36. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of  
632 a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-  
633 67. *J Immunol.* 1984;133(4):1710-5.

634 37. Dowsett M, Nielsen TO, A'Hern R, Bartlett J, Coombes RC, Cuzick J, et al.  
635 Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast  
636 Cancer working group. *J Natl Cancer Inst.* 2011;103(22):1656-64.

637 38. Kligys K, Wu Y, Hamill KJ, Lewandowski KT, Hopkinson SB, Budinger GR, et al.  
638 Laminin-332 and alpha3beta1 integrin-supported migration of bronchial epithelial cells is  
639 modulated by fibronectin. *Am J Respir Cell Mol Biol.* 2013;49(5):731-40.

640 39. Hamill KJ, Hopkinson SB, Hoover P, Todorovic V, Green KJ, Jones JC. Fibronectin  
641 expression determines skin cell motile behavior. *J Invest Dermatol.* 2012;132(2):448-57.

642 40. Hamill KJ, Hiroyasu S, Colburn ZT, Ventrella RV, Hopkinson SB, Skalli O, et al.  
643 Alpha actinin-1 regulates cell-matrix adhesion organization in keratinocytes: consequences  
644 for skin cell motility. *J Invest Dermatol.* 2015;135(4):1043-52.

645 41. Yu X, Zech T, McDonald L, Gonzalez EG, Li A, Macpherson I, et al. N-WASP  
646 coordinates the delivery and F-actin-mediated capture of MT1-MMP at invasive pseudopods.  
647 *J Cell Biol.* 2012;199(3):527-44.

648 42. Hughes CS, Postovit LM, Lajoie GA. Matrigel: a complex protein mixture required for  
649 optimal growth of cell culture. *Proteomics.* 2010;10(9):1886-90.

650 43. Wolf K, Wu YI, Liu Y, Geiger J, Tam E, Overall C, et al. Multi-step pericellular  
651 proteolysis controls the transition from individual to collective cancer cell invasion. *Nat Cell  
652 Biol.* 2007;9(8):893-904.

653 44. Scott RW, Hooper S, Crighton D, Li A, Konig I, Munro J, et al. LIM kinases are  
654 required for invasive path generation by tumor and tumor-associated stromal cells. *J Cell  
655 Biol.* 2010;191(1):169-85.

656 45. Pinner S, Sahai E. Imaging amoeboid cancer cell motility in vivo. *J Microsc.*  
657 2008;231(3):441-5.

658 46. Farina KL, Wyckoff JB, Rivera J, Lee H, Segall JE, Condeelis JS, et al. Cell motility  
659 of tumor cells visualized in living intact primary tumors using green fluorescent protein.  
660 *Cancer Res.* 1998;58(12):2528-32.

661 47. Friedl P, Wolf K. Plasticity of cell migration: a multiscale tuning model. *J Cell Biol.*  
662 2010;188(1):11-9.

663 48. Garbe JH, Gohring W, Mann K, Timpl R, Sasaki T. Complete sequence, recombinant  
664 analysis and binding to laminins and sulphated ligands of the N-terminal domains of laminin  
665 alpha3B and alpha5 chains. *Biochem J.* 2002;362(Pt 1):213-21.

666 49. Kariya Y, Yasuda C, Nakashima Y, Ishida K, Tsubota Y, Miyazaki K. Characterization  
667 of laminin 5B and NH2-terminal proteolytic fragment of its alpha3B chain: promotion of  
668 cellular adhesion, migration, and proliferation. *J Biol Chem.* 2004;279(23):24774-84.

669 50. Horejs CM, Serio A, Purvis A, Gormley AJ, Bertazzo S, Poliniewicz A, et al.  
670 Biologically-active laminin-111 fragment that modulates the epithelial-to-mesenchymal  
671 transition in embryonic stem cells. *Proc Natl Acad Sci U S A.* 2014;111(16):5908-13.

672 51. Xu X, Yan Q, Wang Y, Dong X. NTN4 is associated with breast cancer metastasis  
673 via regulation of EMT-related biomarkers. *Oncol Rep.* 2017;37(1):449-57.  
674 52. Plopper GE, Domanico SZ, Cirulli V, Kiosses WB, Quaranta V. Migration of breast  
675 epithelial cells on Laminin-5: differential role of integrins in normal and transformed cell  
676 types. *Breast Cancer Res Treat.* 1998;51(1):57-69.  
677 53. Carpenter PM, Sivadas P, Hua SS, Xiao C, Gutierrez AB, Ngo T, et al. Migration of  
678 breast cancer cell lines in response to pulmonary laminin 332. *Cancer Med.* 2017;6(1):220-  
679 34.

680

## 681 **Supporting information**

682 **Figure S1: LaNt  $\alpha$ 31 is upregulated in ductal carcinoma and in lymph node  
683 metastases.** Formalin-fixed paraffin-embedded human breast tissue microarray sections  
684 processed for immunohistochemistry with mouse monoclonal antibodies against LaNt  $\alpha$ 31.  
685 Two separate arrays were used; (A) uninvolved with paired invasive/ in situ ductal carcinoma  
686 tissues (N=25), (B) invasive ductal carcinoma with paired node metastases (N=29). All  
687 paired cores analysed in Figure 2 ordered based on LaNt  $\alpha$ 31 staining intensity, low to high  
688 (left to right). Scale bars: 500  $\mu$ m.

689

690 **Figure S2: LaNt  $\alpha$ 31 overexpression does not affect cell metabolism.** MCF-7 or MDA-  
691 MB-231 cells, either left untreated or transduced with eGFP (+eGFP), or LAMA3LN1-eGFP  
692 (+LaNt  $\alpha$ 31-eGFP), were maintained for 48 hours following transduction. (A) Immunoblots  
693 from total cell lysates for MCF-7 or MDA-MB-231 cells probed with antibodies against LaNt  
694  $\alpha$ 31, with ponceau S total protein stained membrane below. (B) Resazurin salts (44  $\mu$ M)  
695 were added to transduced cells for 2 hours, then the fluorescence intensity of the culture  
696 medium was measured at 570 nm. Dot plot of fluorescence intensity relative to non-  
697 transduced cells.

698

699 **Figure S3: LaNt  $\alpha$ 31 overexpression does not significantly affect 2D migration or 3D  
700 invasion of MCF-7 cells.** MCF-7 cells were either left untreated or transduced with eGFP  
701 (+eGFP), or LAMA3LN1-eGFP (+LaNt  $\alpha$ 31-eGFP). For gap closure assays, 24 hours after  
702 transduction, cells were seeded into ibidi® 2-well culture inserts and allowed to attach for 6

703 hours, the inserts were then removed, and the gap margin imaged at 0 hours and 16 hours.  
704 For single cell migration assays, 24 hours after transduction, cells were seeded onto tissue  
705 culture plastic and the migration paths of individual cells tracked over a four-hour period. (A)  
706 Representative images from immediately after removing chamber (T0 upper panels) and  
707 after 16 hours (T16 lower panels), yellow lines delineate wound margins. (B) Gap closure  
708 was measured as a percentage relative to starting gap area. (C) Vector diagrams showing  
709 representative migration paths of 10 individual cells with each colour representing a single  
710 cell. (D) Migration speed was measured as total distance migrated over time. Each point on  
711 the associated dot plots represents an independent experiment with 2-3 technical replicates  
712 per experiment for gap closures assays or 20-40 cells per low density migration assay. For  
713 invasion assays, cells were plated onto the outside of a transwell membrane. 10 ng mL<sup>-1</sup>  
714 epidermal growth factor was used to stimulate invasion through the membrane and into  
715 collagen I or Matrigel. After 48 hours, the cells were fixed and stained with DAPI then  
716 imaged at 5 µm intervals using a spinning disk confocal microscope. (E and G)  
717 Representative images of invasion into collagen I or Matrigel from 10-40 µm presented at  
718 equal intervals. (F and H) Absolute invasion depth was measured where cell count ≥1.  
719 Treatment with GM6001 MMP inhibitor was included as an invasion inhibiting control. Each  
720 point on the graphs represents an independent experiment, with 2-3 technical replicates per  
721 assay. \* represents p<0.05 between bracketed groups as determined by one-way ANOVA  
722 followed by Bonferroni's post hoc analyses. Statistical tests of differences relative to controls  
723 were performed using one-way ANOVA followed by Bonferroni's post hoc analyses; p>0.05  
724 in all comparisons. Scale bar in (a) represents 100 µm.

725

#### 726 **Movie 1: MDA-MB-231 +eGFP invasion into Matrigel (.avi)**

727 MDA-MB-231 cells transduced with eGFP were plated onto the outside of a transwell  
728 membrane. 10 ng mL<sup>-1</sup> epidermal growth factor was used to stimulate invasion through the  
729 membrane and into Matrigel. After 48 hours, the cells were fixed and stained with DAPI then

730 imaged at 5  $\mu$ m intervals using a spinning disk confocal microscope. Representative movie  
731 of invasion profile generated from z-stack slices for invasion between 20 and 60  $\mu$ m after  
732 applying threshold.

733

734 **Movie 2: MDA-MB-231 +LaNt  $\alpha$ 31-eGFP invasion into Matrigel (.avi).** MDA-MB-231 cells  
735 transduced with LaNt  $\alpha$ 31-eGFP were plated onto the outside of a transwell membrane. 10  
736 ng mL<sup>-1</sup> epidermal growth factor was used to stimulate invasion through the membrane and  
737 into Matrigel. After 48 hours, the cells were fixed and stained with DAPI then imaged at 5  $\mu$ m  
738 intervals using a spinning disk confocal microscope. Representative movie of invasion profile  
739 generated from z-stack slices for invasion between 20 and 60  $\mu$ m after applying threshold.

740

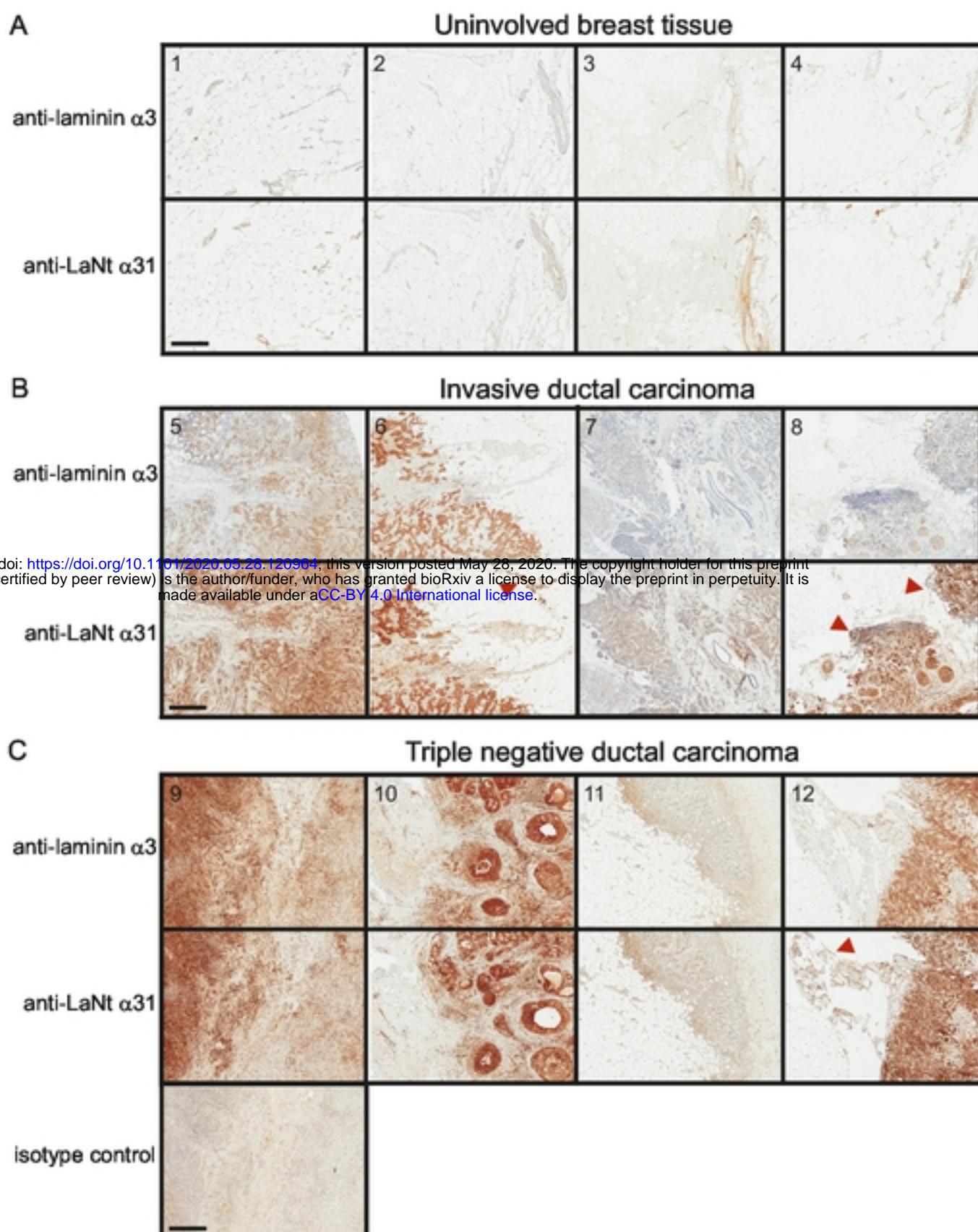
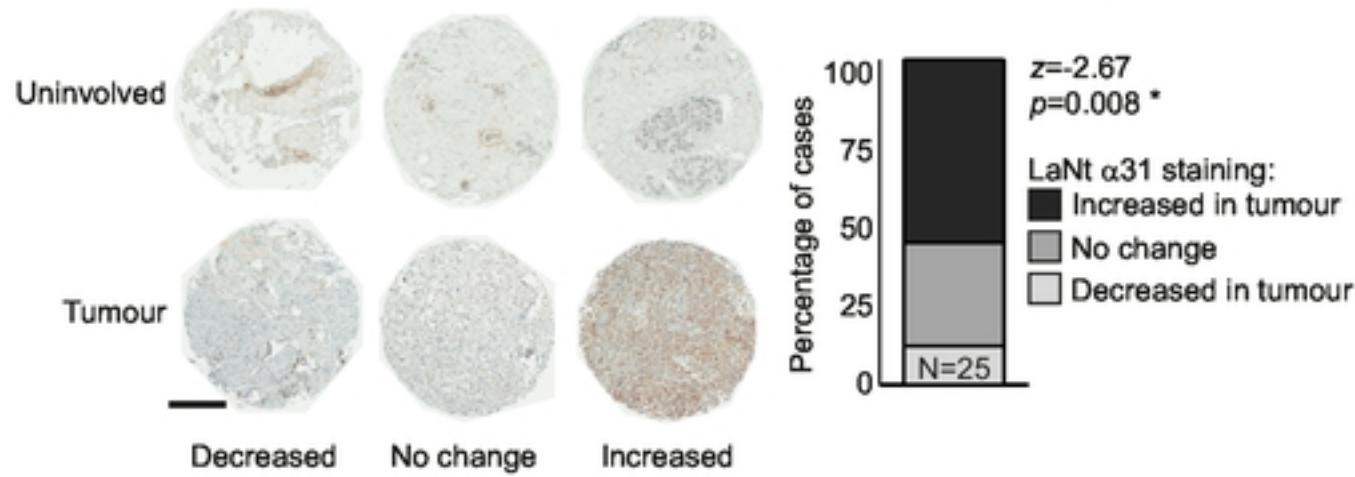
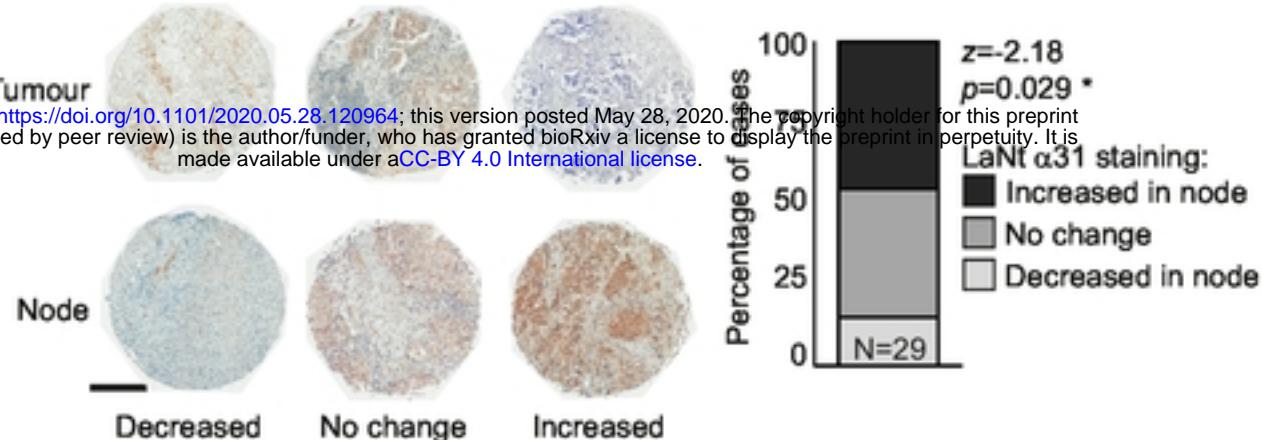




Figure 1


A

Invasive ductal carcinoma vs matched uninvolvled tissue



B

Invasive ductal carcinoma vs matched lymph node metasteses



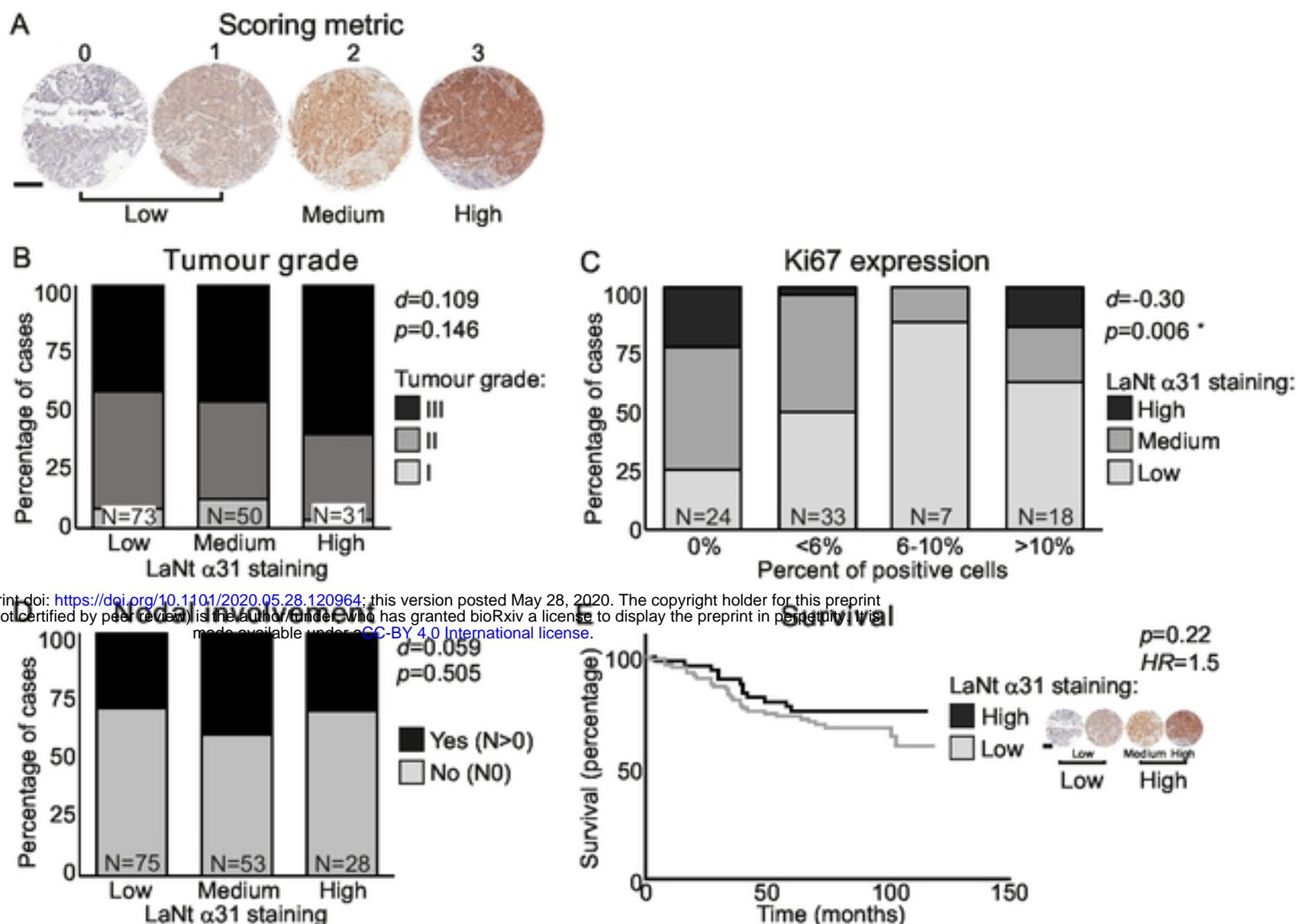
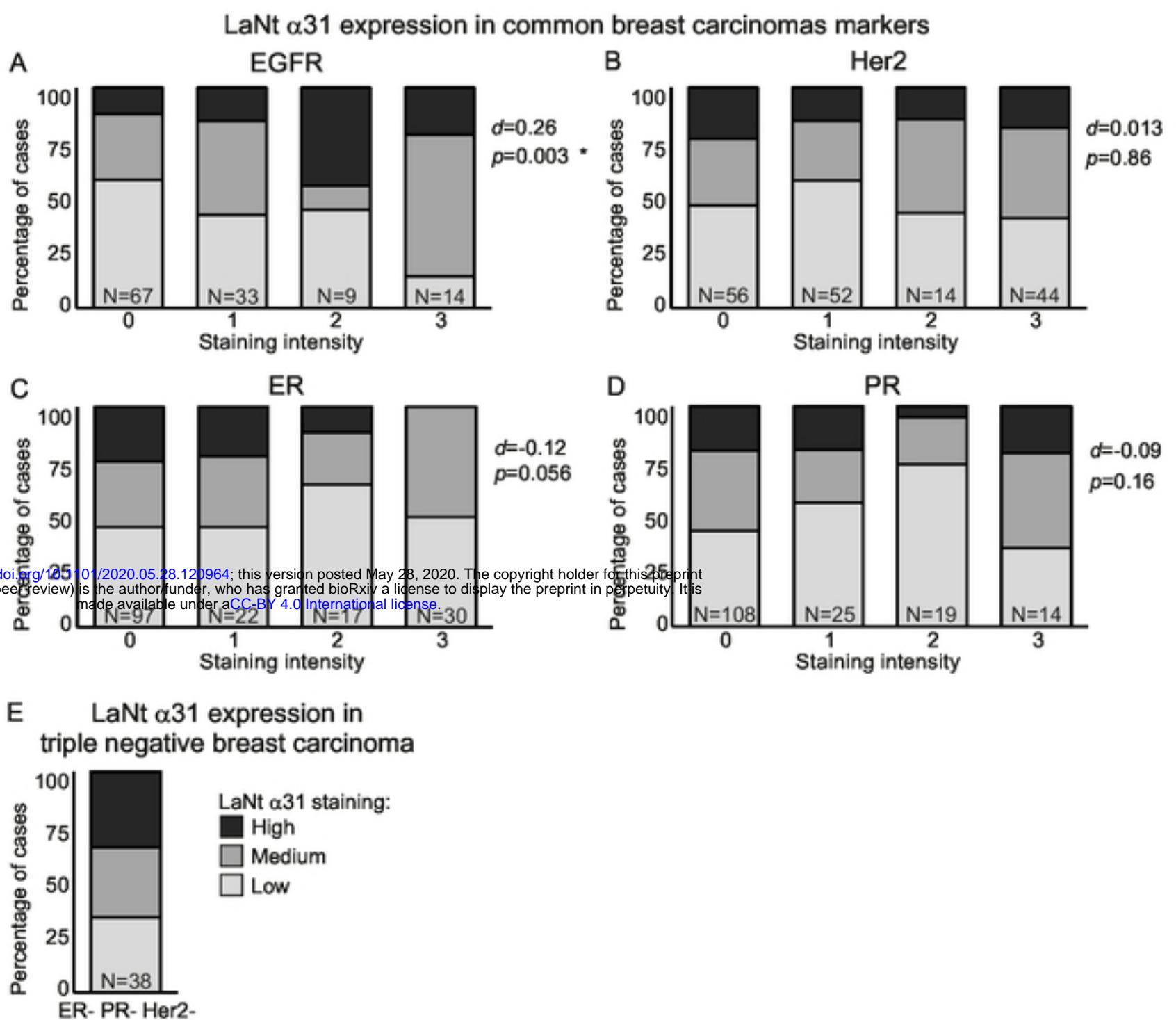
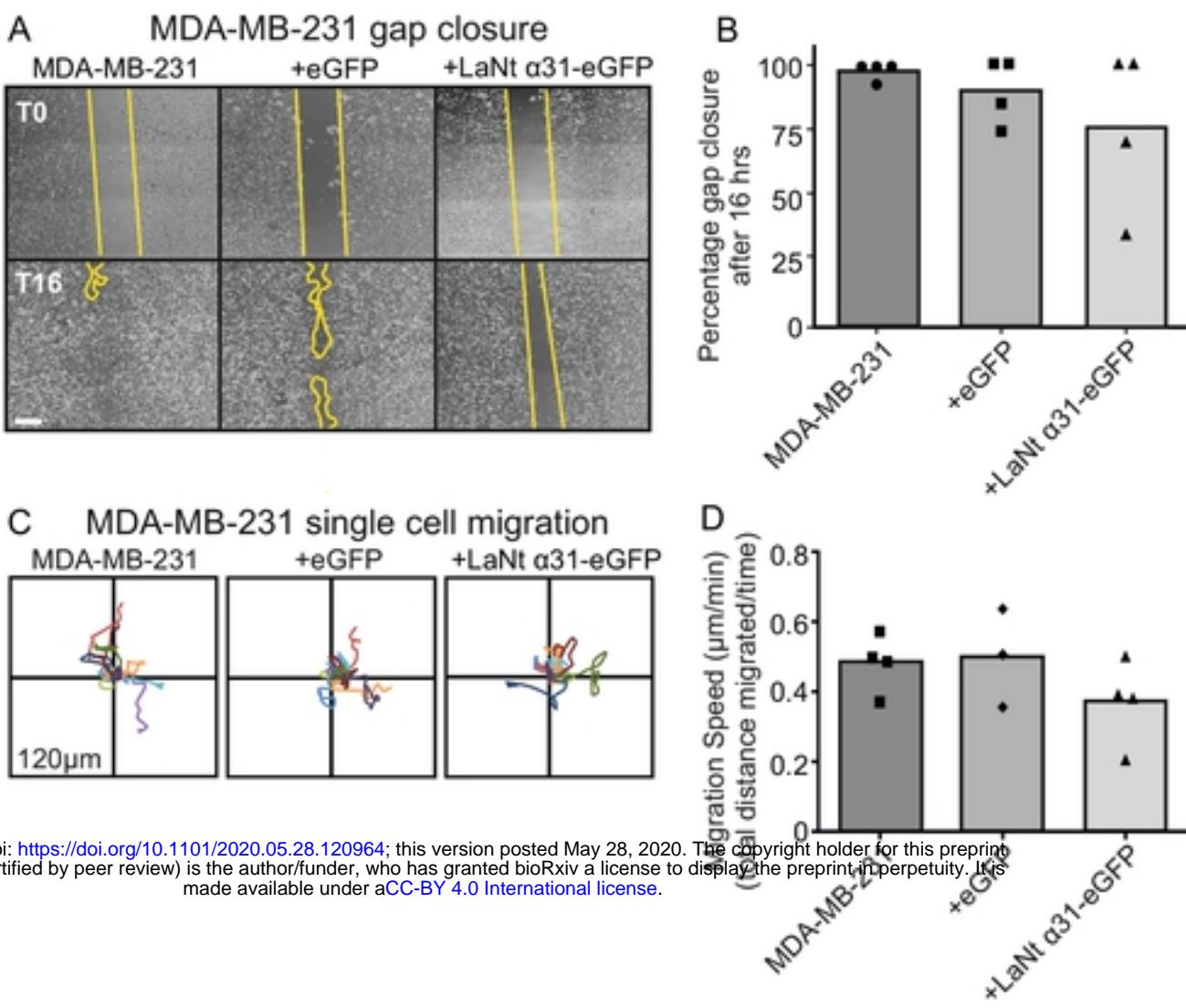
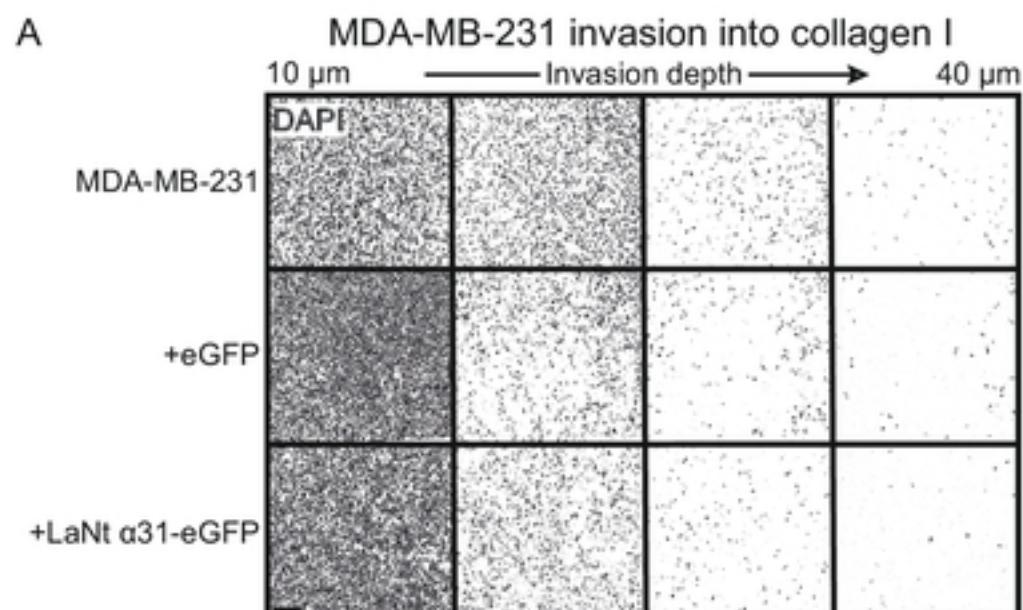



Figure 3



Figure 4



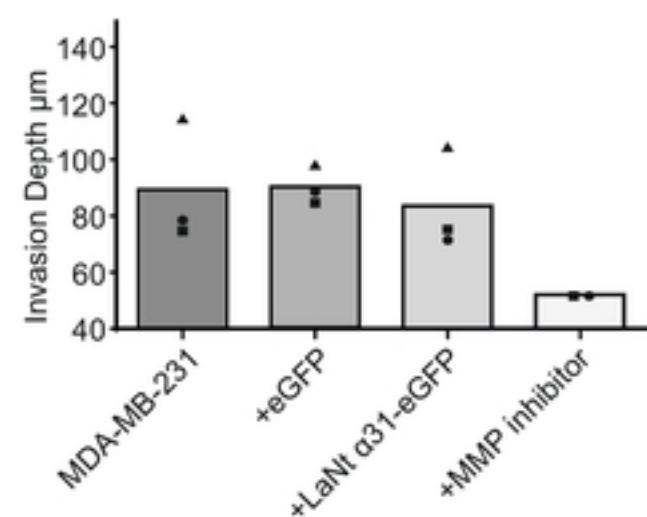
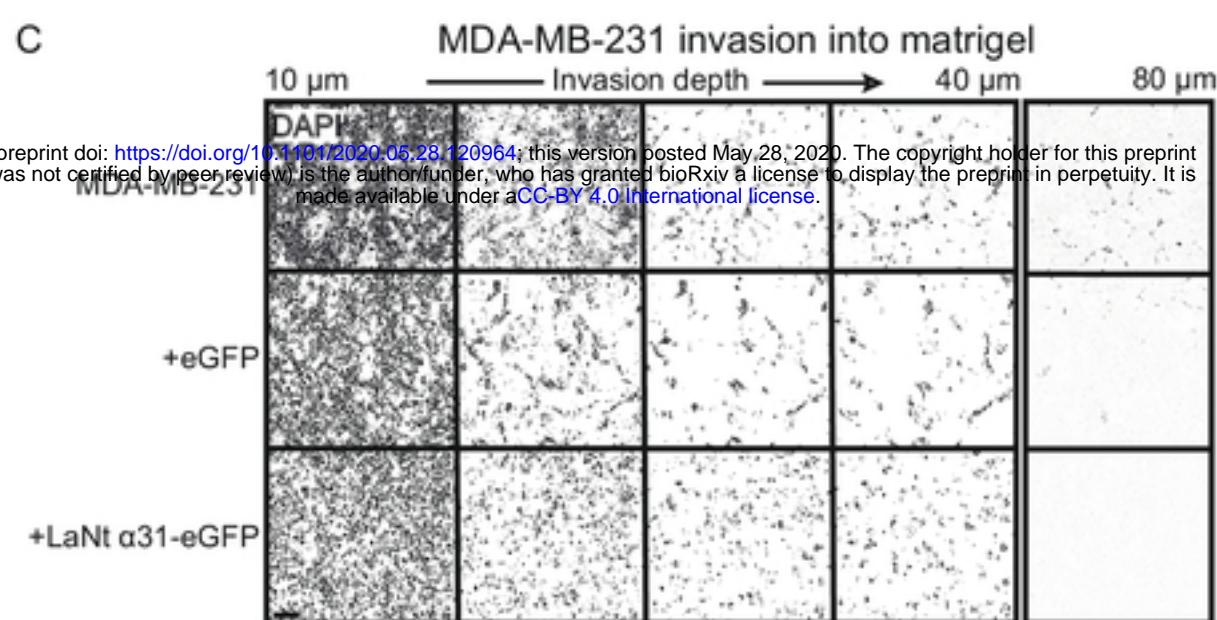

bioRxiv preprint doi: <https://doi.org/10.1101/2020.05.28.120964>; this version posted May 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 5


A



B



C



D

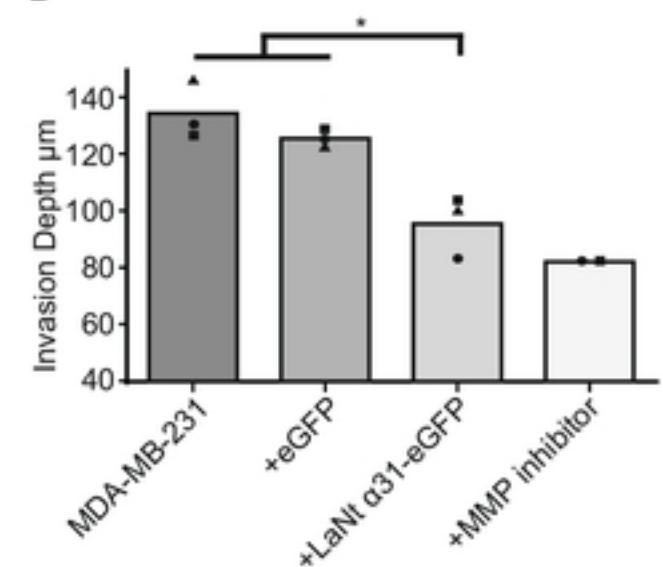



Figure 6

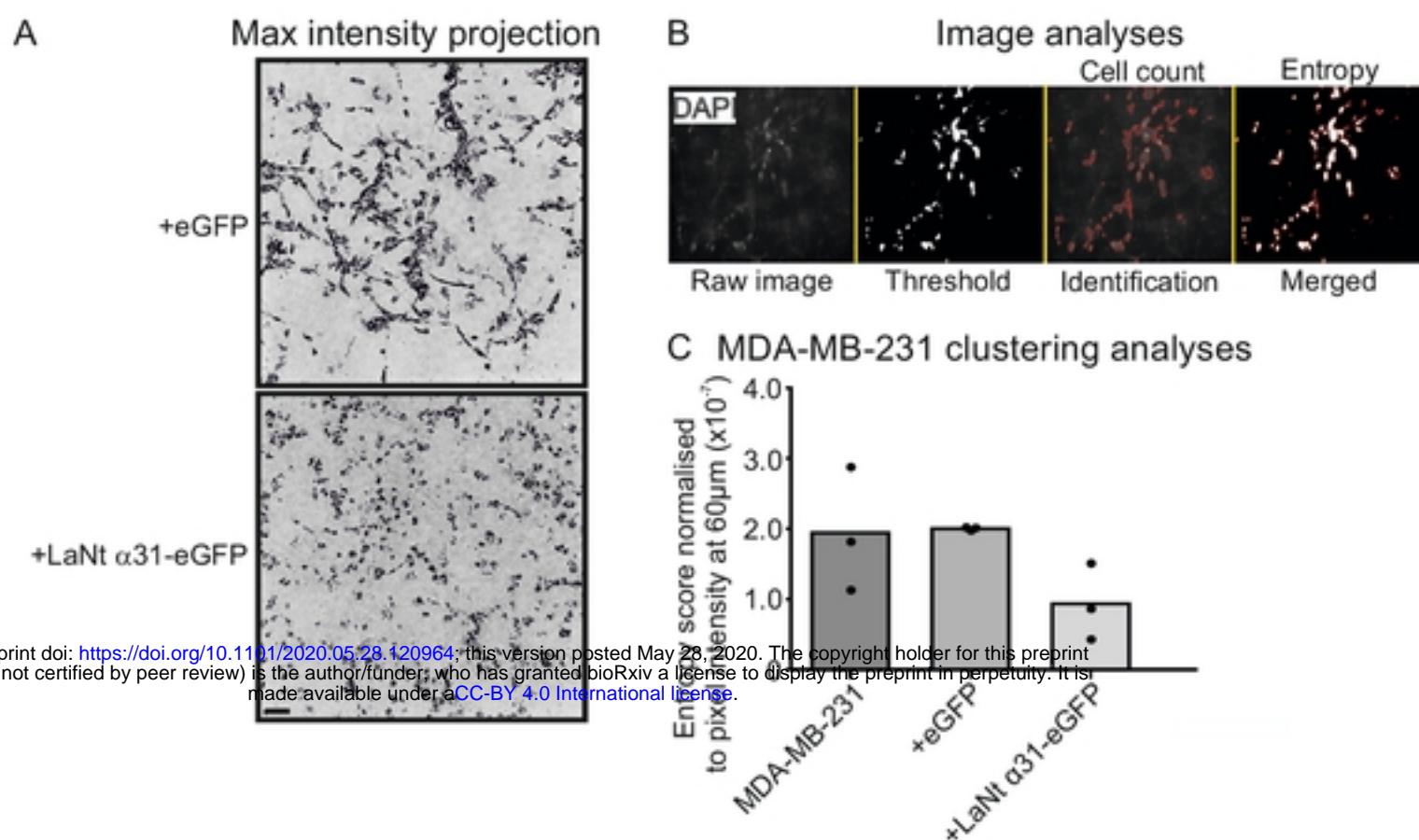
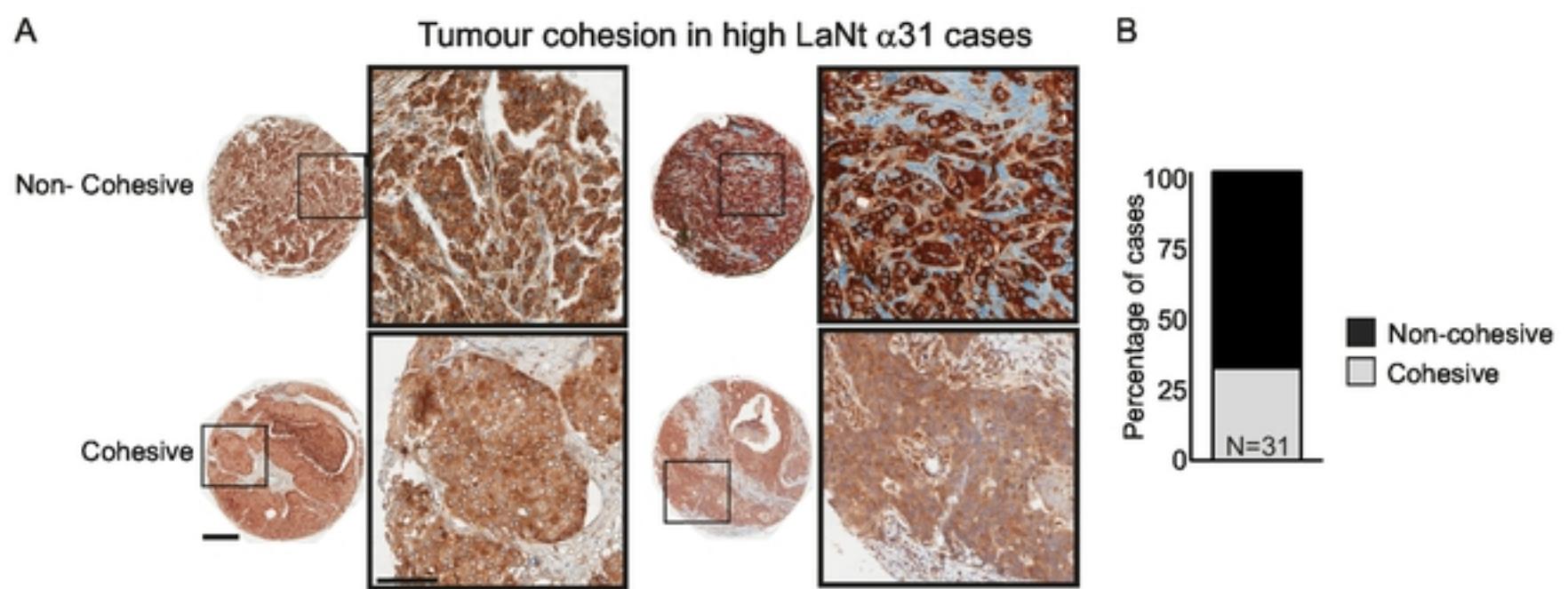




Figure 7



bioRxiv preprint doi: <https://doi.org/10.1101/2020.05.28.120964>; this version posted May 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

**Figure 8**