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ABSTRACT Large-scale phenotype data can enhance the power of genomic prediction in plant and animal breeding, as well as

human genetics. However, the statistical foundation of multi-trait genomic prediction is based on the multivariate linear mixed

effect model, a tool notorious for its fragility when applied to more than a handful of traits. We present MegaLMM, a statistical

framework and associated software package for mixed model analyses of a virtually unlimited number of traits. Using three

examples with real plant data, we show that MegaLMM can leverage thousands of traits at once to significantly improve genetic

value prediction accuracy.
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1

Background2

New high-throughput phenotyping technologies hold promise3

for a revolution in data-driven decisions in plant and animal4

breeding programs (Araus et al. 2018; Koltes et al. 2019). For5

example, drone-based hyperspectral cameras can image fields6

at high resolution across hundreds of spectral bands (Rutkoski7

et al. 2016), wearable sensors can continuously monitor animals8

health and physiology (Neethirajan 2017), and RNA sequencing9

and metabolite profiling can simultaneously assay the concentra-10

tions of tens-of-thousands of targets (Schrag et al. 2018). These11

high-dimensional traits could allow breeders to rapidly assess12

many aspects of performance more accurately or earlier in de-13

velopment than was possible using traditional tools. This can14

increase the rate of gain in target traits by increasing selection15

accuracy, increasing selection intensity, and reducing breeding16

cycle durations.17

However, efficiently incorporating high-dimensional pheno-18

type data into breeding decisions is challenging. Whenever two19

traits are genetically correlated, joint analyses can improve the20

precision of variety evaluation (Thompson and Meyer 1986).21

However, two key problems emerge. First, the number of traits22

in high-dimensional datasets is often much larger than the num-23

ber of breeding lines, which means that naive correlation es-24

timates are not robust. Second, phenotypic correlation among25

traits are often poor approximations to genetic correlation, so not26

all correlated traits are useful for breeding decisions (Bernardo27

2010). For example, plants grown in more productive areas28

of a field will tend to produce higher yields and be greener29

(measured by hyperspectral reflectance). Yet, selecting indi-30

rectly based on green plants instead of directly on higher yields31

may be counter-productive because “green-ess” may indicate32

an over-investment in vegetative tissues at the expense of seed.33

This contrasts with the problem of predicting genetic values34
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from genotype data (e.g., genomic prediction; Meuwissen et al.35

(2001)), where all correlations between candidate features and36

performance are useful for selection.37

The multivariate linear mixed model (MvLMM) is a widely-38

used statistical tool for decomposing phenotypic correlations39

into genetic and non-genetic components. The MvLMM is a40

multi-outcome generalization of the univariate linear mixed41

model (LMM) that forms the backbone of the majority of meth-42

ods in quantitative genetics. The MvLMM was introduced over43

40 years ago (Henderson and Quaas 1976), and has repeatedly44

been shown to increase selection efficiency (Piepho et al. 2007;45

Calus and Veerkamp 2011; Jia and Jannink 2012). Yet, MvLMMs46

are still rarely used in actual breeding programs because naive47

implementations of the framework are sensitive to noise, prone48

to overfitting, and exhibit convergence problems (Johnstone49

and Titterington 2009). Furthermore, existing algorithms are50

extremely computationally demanding. The fragility of naive51

MvLMMs is due to the number of variance-covariance parame-52

ters that must be estimated which increases quadratically with53

the number of traits. The computational demands increase even54

more dramatically: from cubically to quintically with the num-55

ber of traits (Zhou and Stephens 2014) because most algorithms56

require repeated inversion of large covariance matrices. These57

matrix operations dominate the time required to fit a MvLMMs,58

leading to models that take days, weeks, or even years to con-59

verge.60

Here, we describe MegaLMM (linear mixed models for millions61

of observations), a novel statistical method and computational62

algorithm for fitting massive-scale MvLMMs to large-scale phe-63

notypic datasets. Although we focus on plant breeding appli-64

cations for concreteness, our method can be broadly applied65

wherever multi-trait linear mixed models are used (e.g., hu-66

man genetics, industrial experiments, psychology, linguistics,67

etc.). MegaLMM dramatically improves upon existing methods68

that fit low-rank MvLMMs, allowing multiple random effects69

and un-balanced study designs with large amounts of missing70

data. We achieve both scalability and statistical robustness by71
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combining strong, but biologically motivated, Bayesian priors72

for statistical regularization–analogous to the p >> n approach73

of genomic prediction methods–with algorithmic innovations74

recently developed for LMMs. In the three examples below, we75

demonstrate that our algorithm maintains high predictive accu-76

racy for tens-of-thousands of traits, and dramatically improves77

the prediction of genetic values over existing methods when78

applied to data from real breeding programs.79

Results80

Methods overview.81

MegaLMM fits a full multi-trait linear mixed model (MvLMM)82

to a matrix of phenotypic observations for n genotypes and83

t traits (level 1 of Figure 1A). We decompose this matrix into84

fixed, random, and residual components, while modeling the85

sources of variation and covariation among all pairs of traits.86

The main statistical and computational challenge of fitting large87

MvLMMs centers around the need to robustly estimate t × t88

covariance matrices for the residuals and each random effect.89

Each covariance matrix has t(t − 1)/2 + t free parameters, and90

any direct estimation approach is computationally demanding91

because it requires repeatedly inverting these matrices (an O(t3)92

operation).93

We solve both of these problems by introducing K un-94

observed (latent) traits called factors (fk) to represent the causes95

of covariance among the t observed traits. We treat each latent96

trait just as we would any directly measured trait and decom-97

pose its variation into the same fixed, random and residual com-98

ponents using a set of parallel univariate linear mixed models99

(level 2 of Figure 1A). We then model the pairwise correlations100

between each latent trait and each observed trait through K101

loadings vectors λk·.102

Together, the set of parallel univariate LMMs and the set103

of factor loading vectors result in a novel and very general re-104

parameterization of the MvLMM framework as a mixed-effect105

factor model. This parameterization leads to dramatic computa-106

tional performance gains by avoiding all large matrix inversions.107

It also serves as a scaffold for eliciting Bayesian priors that are108

intuitive and provide powerful regularization which is neces-109

sary for robust performance with limited data. Our default prior110

distributions encourage: i) shrinkage on the factor-trait correla-111

tions (λjk) to avoid over-fitting covariances, and ii) shrinkage on112

the factor sizes to avoid including too many latent traits. This113

two-dimensional regularization helps the model focus only on114

the strongest, most relevant signals in the data.115

While others have used latent factor approaches to reduce116

dimensionality of MvLMMs (e.g., de Los Campos and Gianola117

2007; Meyer 2007; Runcie and Mukherjee 2013; Dahl et al. 2016),118

these methods only use factors for a single random effect (usu-119

ally the matrix of random genetic values)–with the exception120

of BSFG which uses factors for the combined effect of a single121

random effect and the residuals (Runcie and Mukherjee 2013).122

In MegaLMM, we expand this framework and use factors to model123

the joint effects of all predictors: fixed, random and residual124

factors on multiple traits.125

We combine this efficient factor model structure with algorith-126

mic innovations that greatly enhance computational efficiency,127

drawing upon recent work in LMMs (Kang et al. 2008; Zhou128

and Stephens 2012; Lippert et al. 2011; Runcie and Crawford129

2019). While Gibbs samplers for MvLMMs are notoriously slow,130

we discovered extensive opportunities for collapsing sampling131

steps, marginalizing over missing data, and discritizing vari-132

ance components so that intermediate results can be cached133

(Supplemental Methods).134

Genomic prediction using MegaLMM works by fitting the135

model to a partially observed trait matrix, with the traits to136

be predicted imputed as missing data. MegaLMM then estimates137

genetic values for all traits (both observed and missing) in a138

single step (Figure 1B).139

MegaLMM is efficient and effective for large datasets140

We used a gene expression matrix with 20,843 genes measured141

in each of 665 Arabidopsis thaliana accessions (a total of nearly 14142

million observations), to evaluate the accuracy and time require-143

ments for trait-assisted genomic prediction–a classic example144

of an applied use of MvLMMs–across a panel of existing soft-145

ware packages. We created datasets with 4 to 20,842 “secondary”146

traits with complete data, and used these data to predict the147

genetic values of a single randomly selected “focal” gene with148

50% missing data.149

Despite the limited number of independent lines in this data150

set, adding up to ≈ 200 secondary traits improved the genomic151

prediction accuracy of MegaLMM and two other Bayesian meth-152

ods: MCMCglmm and phenix (Figure 2A). The maximum likeli-153

hood method MTG2 (Lee and van der Werf 2016), on the other154

hand, did only marginally better than single-trait prediction,155

and genomic prediction accuracy declined with 32 traits, likely156

due to overfitting. We note that the results here are averages157

over 20 randomly selected focal genes. The prediction accuracy158

and benefits of multi-trait prediction varied considerably among159

genes (Figures S1 and S2), but comparisons among methods160

were largely correlated. Using simulated datasets where we161

knew the true genetic and residual covariances among traits, we162

also found that MegaLMM was at least as accurate in estimating163

covariance parameters as the competing methods (Figure S3).164

Beyond 32 secondary traits, computational times for165

MCMCglmm and MTG2 became prohibitive (Figure 2B). Using ex-166

trapolation, we estimated that fitting these methods for 512 traits167

would take 20 days and 217 days, respectively, without consid-168

ering issues of model convergence. In contrast, phenix and169

MegaLMM were both able to converge on good model fits for 512170

traits in approximately one hour.171

Beyond 512 traits, MegaLMM was the only viable method as172

phenix cannot be applied to datasets with t > n phenotypes.173

Although the genomic prediction accuracy of MegaLMM did not174

increase further after ≈ 256 traits, performance did not suffer175

even with the full dataset of > 20, 000 traits and the analysis176

was completed in less than a day. This shows that MegaLMM177

is feasible to apply to very high-dimensional studies and, in178

most cases, does not require pre-filtering of traits–something179

that requires great care in genomic prediction applications to180

avoid misleading results (Runcie and Cheng 2019).181

An important feature of MegaLMM is that the choice of the num-182

ber of latent factors K is less critical than in most factor models.183

Since factors are ordered from most-to-least important by the184

prior (See Methods), as long as enough factors are specified to185

capture the majority of the covariance among traits, adding ad-186

ditional latent factors does not lead to over-fitting (Figure S4A).187

Additional factors do increase the run-time of the algorithm,188

though (Figure S4B), so some optimization of K during the burn-189

in period can reduce computational demands during posterior190

sampling.191
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Figure 1 Overview of the MegaLMM model: A. MegaLMM decomposes a typical MvLMM into a two-level hierarchical model. In level
1, raw data from t traits on each of the n plants (more generally observational units) (yi·) are combined into an n × t trait matrix
Y. Variation in Y is decomposed into two parts: a low-rank model (FΛ) consisting of K latent factor traits, each of which controls
variation in a subset of the original traits through the loadings matrix Λ, and a residual matrix (E) of independent residuals for each
trait. The latent factor traits and the t residual vectors are now mutually un-correlated, and are each modeled with independent
LMMs in level 2. Experimental design factors, genetic background effects, and other modeling terms are introduced at this level. Cells
highlighted in green show observations and associated parameters for plant i. Cells highlighted in orange highlight observations and
associated parameters for trait j. B. Two multi-trait genomic prediction applications: i) the use of high-throughput phenotyping data
to supplement for expensive direct measures of focal traits like grain yield, and ii) the analysis of large multi-environment trials. In
each case, observed data of focal traits (green) and secondary traits (blue) are used to predict genetic values for individuals without
direct phenotypic observations (grey).

Applications to real breeding programs192

To demonstrate the utility of MegaLMM, we developed two classes193

of genomic prediction models for high-dimensional phenotype194

data in real plant breeding programs.195

Genomic prediction using hyperspectral reflectance data196

When the final performance of a variety is difficult or costly197

to obtain, breeding programs can supplement direct measures198

of performance with data from surrogate traits that can be mea-199

sured cheaply, earlier in the breeding cycle, and on more vari-200

eties. For example, in the bread wheat breeding program at CIM-201

MYT, hyperspectral reflectance data can be collected rapidly and202

repeatedly by aerial drones on thousands of plots (Krause et al.203

2019). We developed a multi-trait genomic prediction model204

to incorporate 62-band hyperspectral reflectance data from 10205

different drone flights over the course of one growing season,206

and compared the accuracy of these genetic value predictions207

against more traditional approaches.208

We first compared three standard univariate methods: GBLUP209

(Hayes et al. 2009), Bayesian LASSO (BL) (Park and Casella210

2013), and Reproducing kernel Hilbert space (RKHS) regression211

(de Los Campos et al. 2010). GBLUP achieved a prediction accu-212

racy of ρg = 0.43 for yield (Figure 3A). Both the BL and RKHS213

methods showed modest improvements, with ρg = 0.47 and214

ρg = 0.49, respectively in these data. The RKHS model often out-215

performs GBLUP in plant breeding datasets, but improvements216

are generally slight and inconsistent depending on the genetic217

architecture of the targeted trait.218

In the original analysis of this dataset, Krause et al. (2019)219

achieved increased performance by replacing the genomic ker-220

nel (K in our notation) with a kernel based on the cross-product221

of hyperspectral reflectances across all wavelengths and time222

points (termed the H matrix). We replicated these results, achiev-223

ing a prediction accuracy of ρg = 0.58 (HBLUP method). These224
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Figure 2 MegaLMM scales efficiently for very high-dimensional traits. Four competing methods were used to fit multi-trait genomic
prediction models to predict genetic values for a single focal gene expression trait using complete data from t additional traits. Data are
from an Arabidopsis thaliana gene expression data with 20,843 genes and 665 lines. A) Average estimated genomic prediction accuracy
across 20 focal traits using t additional secondary traits for each of the four prediction methods (the horizontal line is the average
univariate prediction accuracy). Genomic prediction accuracy was estimated by cross-validation as ρg = corg(û, y)

√

h2(û) to account
for non-genetic correlations between the secondary traits and focal traits since all were measured in the same sample. Smoothed
curves are estimated by stats::lowess. The number of latent factors used for MegaLMM (K) is listed in red at the top of the figure.
B) Computational times required to find a solution for each MvLMM. For the MCMC methods MCMCglmm and MegaLMM, times were
estimated as the time required to collect an effective sample size of at least 1000 for > 90% of the elements in the genetic covariance
matrix U. Computational times for MCMCglmm and MTG2 above 64 traits were linearly extrapolated (on log scale) based on the slope
between 32 and 64 traits. Black lines show the slope of exponential scaling functions with the specified exponents for reference.

authors also proposed a multi-kernel model combining the K225

and H kernel matrices, although they only applied this to cross-226

treatment genotype-by-environment predictions. We found that227

applying this multi-kernel method to the within-environment228

data resulted in additional accuracy gains (ρg = 0.64) (GBLUP+H229

method; Figure 3A).230

While more effective than univariate methods, predictions231

based on the H kernel matrix are biased by non-genetic cor-232

relations between surrogate traits and yield because they do233

not directly model the genetic component of these correlations.234

MegaLMM implements a full multi-trait mixed model and thus235

can separate these sources of correlation. We fit three differ-236

ent multi-trait prediction models with MegaLMM. The first was237

a standard multi-trait mixed model with a single random ef-238

fect based on the genomic relationship matrix K. This method239

achieved a dramatically higher prediction accuracy than any of240

the previous approaches (ρg = 0.73). Second, because the RKHS241

model had the highest performance among univariate predic-242

tions, we implemented an approximate RKHS method in MegaLMM243

based on averaging over three kernel matrices (de Los Campos244

et al. 2010). We are not aware of any other high-dimensional245

MvLMM implementations that allow models with multiple ran-246

dom effects. This model achieved the highest predictive ac-247

curacy (ρg = 0.77). Finally, we repeated the MegaLMM-GBLUP248

analysis but this time masking all phenotype data (both grain249

yield and hyperspectral data) from the testing set. We called250

this approach MegaLMM-GBLUP-CV1 following the nomenclature251

from Burgueño et al. (2012). Genetic prediction accuracy in the252

CV1 setting was similar to the univariate methods (ρg = 0.49),253

showing that nearly all benefit of MegaLMM in this dataset came254

through the optimal use of secondary trait phenotypes on the255

lines of interest.256

In summary, by directly modeling the genetic covariance be-257

tween the surrogate traits (hyperspectral reflectance measures),258

we achieved performance increases of 56%-79%, and up to 36%259

over the HBLUP method. To show that these conclusions were260

robust in other datasets, we repeated the same analyses in the261

other 19 trials reported by Krause et al. (2019) and results were262

highly similar in all trials (Figure S5).263

To explore why directly modeling the genetic correlation is264

important, we compared the estimated genetic correlations be-265

tween each hyperspectral band and grain yield to the corre-266

sponding phenotypic correlations (Figure 3B). Most genetic cor-267

relation estimates closely paralleled the phenotypic correlations,268

with the largest values for low-to-intermediate wavelengths oc-269

curring on dates towards the end of the growing season while270

plants were in the grain filling stage (Krause et al. 2019). How-271

ever, there were notable differences. For example, genomic cor-272

relations were moderate (ρg ≈ 0.2) for most wavelengths during273

early February sampling dates while phenotypic correlations274
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Figure 3 Performance of single-trait and multi-trait genomic prediction for wheat yield. A) 8 methods for predicting Grain Yields
of 1,092 bread wheat lines. Genetic value prediction accuracy was estimated by cross-validation. Complete data (yield, marker
genotypes, and 620 hyperspectral wavelength reflectances) was available for all lines, but 50% of the yield values were masked during
model training. Genetic value prediction accuracy was estimated as ρg = corg(û, y)

√

h2(û) because hyperspectral data and actual
yields were collected on the same plots (Runcie and Cheng 2019). Bars show average estimates (± standard error) over 20 replicate
cross-validation runs for each method. Details of each model are presented in the Supplemental Methods. Briefly, the three single-trait
methods only used yield and genotype data. The five multi-trait methods additionally used hyperspectral data measured on all 1,092
lines. B) Phenotypic correlation (black lines), and estimates of genetic correlation (red lines) between each hyperspectral wavelength
measured on each of the 10 flight dates with final grain yield. Genetic correlations were estimated with the MegaLMM GBLUP method
using complete data. Ribbons show the 95% highest posterior density (HPD) intervals.

were near zero; yet, during early March time points, phenotypic275

correlations between yield and bands around 800 nanometers276

were moderate (ρy ≈ −0.2) but genomic correlations were near-277

zero. MegaLMM is able to model the discrepancy between genomic278

and phenotypic correlations, but methods based on the H matrix279

(e.g., HBLUP) are not.280

Genomic prediction of agronomic traits across multi-281

environmental trials282

Multi-trait mixed models are also used to analyze data from283

multi-environment trials to account for genotype-environment284

interactions and select the best genotypes in each environment.285

The Genomes2Field initiative (https://www.genomes2fields.org/) is286

an ongoing multi-environment field experiment of maize hybrid287

genotypes across 20 American states and Canadian provinces.288

Data from the years 2014-2017 included 119 trials with a total289

of 2102 hybrids. As in many large-scale multi-environment290

trials, only a small proportion of the available genotypes were291

grown in each trial. Therefore, the majority of trial-genotype292

combinations were un-observed.293

We selected four representative agronomically important294

traits and compared the ability of four modeling approaches295

to impute the missing measurements. Including across-trial in-296

formation was beneficial for each of the four traits, suggesting297

generally positive genetic correlations across trials. However,298

applying MegaLMM to each of the four trait datasets improved299

predictions dramatically, with average benefits across trials rang-300

ing from ρy = 0.10 to ρy = 0.17 (Figure 4). The performance of301

phenix was inconsistent across traits and trials, likely because its302

model for the non-additive genetic covariance (i.e., the residual)303

is less flexible than MegaLMM.304

To explore why jointly modeling all genetic and non-genetic305

covariances for each pair of trials improved prediction accu-306

racy for each trait, we assessed the per-trial differences in per-307

formance between MegaLMM and the corresponding within-trial308

genomic prediction model. Trials varied considerably in how309

much MegaLMM improved genomic prediction accuracy, with sev-310

eral trials seeing improvements of ρ > 0.4. The magnitude of311

the MegaLMM effect on genomic prediction accuracy was largely312

explained by the maximum genetic covariance between that trial313

and any other trial in the dataset (Figure S6). This is expected314

because the benefit of a MvLMM is largely dependent on the315

magnitude of genetic covariances between traits.316

A common approach in multi-environment trials is to com-317

bine similar trials (based on geographic location or similar en-318

vironments) into clusters and make genetic value predictions319

separately for each cluster (Piepho and Möhring 2005). How-320

ever, this will not be successful if clusters cannot be selected a321

priori because using the trial data itself to identify clusters can322

lead to overfitting if not performed carefully (Runcie and Cheng323

2019). In these data, the distribution of genomic correlations be-324

tween trials differed among traits, so it is not straightforward to325
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Figure 4 Average within-trial prediction accuracy for four
maize traits in the Genomes2Fields Initiative experiment.
Traits included: days to silking (DTS), anthesis-silking inter-
val (ASI), grain yield, and plant height. Bars show the aver-
age ±95% confidence intervals of prediction accuracy for each
method across the 76-99 trials with sufficient training data for
each trait. For each trail, prediction accuracies were estimated
as the mean over 20 randomized cross-validation replicates.

identify which pairs or subsets of trials could be combined. The326

most obvious predictor of trial similarity is geographic distance,327

but we did not see consistent spatial patterns in the among-trial328

covariances across the four traits. The trials with the greatest329

benefit from our MvLMM showed geographic clustering in the330

central mid-west for the anthesis-silking interval (ASI) but not331

for the other three traits (Figure 5A). Genetic correlations tended332

to decrease over long distances for ASI and over short distances333

for plant height, but not for the other two traits (Figure 5B), re-334

sulting in obvious geographic clustering of genetic correlations335

for ASI but not the other traits (Figure 5C). This suggests that in-336

cluding all trials together in one model is necessary to maximize337

the benefit of the MvLMM approach to multi-environment plant338

breeding.339

Discussion340

Novel statistical methods can help optimize plant and animal341

breeding programs to meet future food security needs. In the342

above examples, we highlighted two areas where large-scale343

phenotype data can improve the accuracy of genomic predic-344

tion in realistic plant breeding scenarios: by incorporating high-345

throughput phenotyping data from remote sensors, and by syn-346

thesizing data on gene-environment interactions across large-347

scale multi-environment trials. In both examples, we apply348

high-dimensional multivariate linear mixed models to efficiently349

integrate all available genotype and phenotype data into genetic350

value predictions. MegaLMM is a scalable tool that extends the351

feasible range of input data for multivariate linear mixed models352

by at least two orders of magnitude over existing methods, while353

providing the flexibility to plug directly into existing breeding354

programs.355

Computational and statistical efficiency356

Computational issues in single-trait LMMs have been studied357

extensively, allowing implementations for large datasets (Lip-358

pert et al. 2011; Zhou and Stephens 2014; Loh et al. 2015; Runcie359

and Crawford 2019). Most of these algorithms diagonalize the360

genomic relationship matrices to improve computational effi-361

ciency. This technique dramatically improves the performance362

of simple, low-dimensional MvLMMs as well (e.g., Zhou and363

Stephens 2014; Lee and van der Werf 2016). However, diagonal-364

ization does not address the computational challenge imposed365

by large trait-covariance matrices, and can only be applied to366

models with a single random effect and no missing data. There-367

fore, these tools cannot be applied to the datasets studied here or,368

more generally, to most large-scale studies of gene-environment369

interactions that frequently have large proportions of missing370

data (Piepho et al. 2007) (Figure 1) and to studies that have exper-371

imental designs with multiple sources of covariance (e.g., spatial372

environmental variation or non-additive genetics).373

Our work builds on the factor-analytic approach to regulariz-374

ing MvLMMs (de Los Campos and Gianola 2007; Meyer 2007;375

Runcie and Mukherjee 2013; Dahl et al. 2016) and is most similar376

to BSFG (Runcie and Mukherjee 2013) and phenix (Dahl et al.377

2016), which improve upon traditional quantitative genetic fac-378

tor models by specifying sparse or low-rank factor matrices to379

improve robustness in high dimensions. Importantly, however,380

these models are limited to a single random effect and are not381

tractable for datasets with large numbers of traits because of com-382

putational inefficiencies (BSFG), or a lack of strong regularization383

on the residual covariance matrix (phenix). MegaLMM generalizes384

both methods and dramatically improves their weaknesses, al-385

lowing analyses with >20,000 traits to be completed in less than386

one day. Since MegaLMM scales approximately linearly with the387

number of traits (Figure 2), applying it to datasets with many388

more traits may be feasible. While we have designed many of389

our routines to take advantage of multi-core CPUs, graphical390

processing units may offer additional performance gains.391

Two key advantages of MegaLMM are its flexibility and gener-392

ality. We have designed the MegaLMM R package to be as general393

as possible so that it can be applied to a wide array of prob-394

lems in quantitative genetics. MegaLMM tolerates unbalanced395

designs with incomplete observations (something that makes396

MCMCglmm and MTG2 very slow), arbitrarily complex fixed effect397

specifications to model experimental blocks, covariates, or other398

sources of variation among samples (unlike phenix), and most399

importantly, multiple random effects (unlike phenix, GEMMA, or400

MTG2). Multiple random effect terms can be used to account401

for spatially correlated variation across fields, non-additive ge-402

netic variation that is not useful for breeding, or to more flexibly403

model non-linear genetic architectures as we demonstrated with404

the approximate RKHS regression approach in the wheat ap-405

plication (Figure 3). To make multiple-random-effect models406

computationally efficient, we take our earlier work with LMMs407

(Runcie and Crawford 2019) and extend the same discrete estima-408

tion procedure to MvLMMs where the impact on computational409

efficiency is exponentially greater. Other commonly used tools410

for fitting MvLMMs such as ASREML (Gilmour 2007) allow more411

flexibility in the specification of multiple variance-component412

models with correlated random effects that are not currently pos-413

sible in MegaLMM. However, these tools do not scale well beyond414

≈ 10 traits, so are not feasible to apply directly to large-scale415

datasets in plant breeding.416

Applicability to high-throughput phenotypic data417

Large-scale phenotype data collection is rapidly emerging as a418

standard tool in plant breeding and other fields that use quanti-419

tative genetics (GTEx Consortium 2017; Araus et al. 2018; Bycroft420

et al. 2018). These deep phenotyping datasets can be used as421
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Figure 5 Benefit of MegaLMM and geographic distributions of among-trial genetic correlations vary among traits. Traits analyzed
included: days to silking (DTS), anthesis-silking interval (ASI), grain yield, and plant height. A) Trial locations for each trait are shown.
Points were jittered west-to-east to prevent overlap of repeated trials across years. Size and color of each point correspond to the
increase in prediction accuracy for MegaLMM versus a univariate LMM. B) Smoothed estimates (computed using geom_smooth with a
bandwidth of 1.0) of the relationship between geographic distance and genetic correlation for each trial. Line colors correspond to the
benefit of MegaLMM in each focal trial. C) Genetic correlations between the trial with the greatest benefit of MegaLMM for each trait and
each other trial.
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high-dimenisional features to predict genetic values in agronom-422

ically important traits and serve as substitutes for direct assays423

where these are more time-consuming or expensive to collect.424

Breeding objectives differ from the goals of polygenic risk425

score predictions for human diseases because the prediction426

target is not the phenotype of an individual, but its genetic value427

(Runcie and Cheng 2019). Genetic values quantify the expected428

phenotype of a plant’s offspring, and so exclude impacts of the429

plant’s own microenvironment on its phenotype (Bernardo 2010).430

Therefore, accurate genetic value prediction requires models431

that can distinguish between genetic and non-genetic sources of432

covariation among traits.433

The MvLMM is considered the gold-standard method for434

isolating genetic correlations from non-genetic correlations in435

genetic value prediction (Piepho et al. 2007). However, it has436

rarely been applied in breeding programs because of the com-437

putational challenges associated with estimating multiple large438

covariance matrices. With high-throughput phenotype (HTP)439

data, MvLMMs have only been applied directly to sets of ≈ 2− 5440

traits. Instead, several authors have used a prior round of feature441

selection or calculated summary statistics of the HTP to gener-442

ate model inputs rather than using the raw high-dimensional443

data itself (e.g., Jia and Jannink 2012; Guo et al. 2014; Rutkoski444

et al. 2016; Sun et al. 2017; Crain et al. 2018). Other authors have445

replaced the MvLMM with a direct regression on the HTP data,446

using techniques such as factorial regression (van Eeuwijk et al.447

2019), functional regression (Montesinos-López et al. 2017), ker-448

nel regression (Krause et al. 2019), and deep learning(Cuevas449

et al. 2019). While straightforward to implement, this condition-450

ing on the HTP traits creates a form of collider bias which can451

induce genotype-phenotype associations that do not actually452

exist and impede genetic value predictions (Runcie and Cheng453

2019). Alternative methods including IBCF (Juliana et al. 2019))454

and regularized selection indexes (Lopez-Cruz et al. 2020) avoid455

computational complexities of the full MvLMMs, but do not456

make full use of the trait correlations in the data.457

MegaLMM, on the other hand, fits a full MvLMM to an arbitrary458

number of HTP traits and should be more efficient at leveraging459

high-dimensional genetic correlations while accounting for non-460

genetic sources of covariance, particularly for datasets when461

HTP traits and focal performance traits are measured on the462

same plants. Non-genetic correlations will be less important463

on datasets where these sets of traits are measured on different464

plots. At least in the wheat breeding trial datasets we exam-465

ined, the benefit of multi-trait modeling was much greater when466

traits were partially observed on each individual than when sec-467

ondary traits were only observed in the training partition. This468

is expected theoretically and has been demonstrated previously469

in simulations Runcie and Cheng (2019), but the magnitude of470

the benefit was particularly dramatic here. This suggests that471

breeding programs should focus on developing HTP technolo-472

gies that can measure secondary traits on the target individuals;473

HTP measurements on training individuals may be less useful474

for prediction applications. Unlike other methods, including475

too many traits, or including redundant traits that are highly476

correlated is unlikely to significantly impact prediction accuracy,477

reducing the need to carefully choose which traits to include478

and which to exclude a priori; MegaLMM allows users to simply479

include all traits they have at once.480

Applicability to multi-environment trial data481

The analysis of multi-environment trials provides a separate set482

of computational and statistical challenges for plant breeders.483

Multi-environment trials (METs) are necessary because gene-484

environment interactions (GEIs) often prevent the same variety485

from performing best in all locations where a crop is grown486

(Piepho et al. 2007). However, METs are expensive and logis-487

tically difficult. Genomic predictions in METs could reduce488

the need to test every variety in every environment, allowing489

smaller individual trials (Heffner et al. 2009).490

GEIs can be modeled in two ways: (i) as changes in variety491

effects on the same trait across environments (i.e., variety-by-492

environment interactions), or (ii) as a set of genetically correlated493

traits, with each trait-environment combination considered as a494

different phenotype (Piepho et al. 2007). When formulated with495

linear mixed models and random genetic effects, these two ap-496

proaches are mathematically equivalent. Traditionally, the most497

common model for analyzing METs has been the AMMI model498

in which the genetic effects of each variety in each environment499

are modeled using a set of products between genetic and en-500

vironmental vectors (Gauch 1988). AMMI models are used to501

rank genotypes in different environments and to identify envi-502

ronmental clusters with similar rankings of varieties. However,503

AMMI models cannot easily incorporate marker data. When504

genetic values are treated as random effects, AMMI models be-505

comes factor models (generally called factor analytic models in506

this literature) (e.g. Piepho 1998; Smith et al. 2001), and can in-507

corporate genetic marker data (e.g. Jarquín et al. 2014). MegaLMM508

extends this factor-analytic method for analyzing METs, making509

the methods robust for METs with hundreds or more individual510

trials.511

A limitation of the AMMI factor-analytic approach to analyz-512

ing METs is that there is no mechanism for extending predictions513

to new environments outside of those already tested. Even large-514

scale commercial trials cannot test every field a farmer might use.515

Several authors have proposed using environmental covariates516

(ECs) to model environmental similarity in METs and predict517

GEIs for novel environments (e.g., Jarquín et al. 2014; Malosetti518

et al. 2016; Rincent et al. 2019). These approaches all involve re-519

gressions of genetic variation on the ECs, and so, if relevant ECs520

are missing or the relationship between variety plasticity and521

ECs is non-linear, these models will under-fit the GEIs. Neverthe-522

less, these approaches are promising and have been successfully523

applied to large METs (e.g. Jarquín et al. 2014). MegaLMM cannot524

currently incorporate ECs to predict novel environments. How-525

ever, a possible extension could involve replacing the iid prior on526

the elements of the factor loadings matrix with a regression on527

the ECs. This hybrid of ECs and a full MvLMM could leverage528

the strengths of both approaches.529

Model limitations530

While MegaLMM works well across a wide range of applications in531

breeding programs, our approach does have some limitations.532

First, since MegaLMM is built on the Grid-LMM framework for533

efficient likelihood calculations (Runcie and Crawford 2019), it534

does not scale well to large numbers of observations (in contrast535

to large numbers of traits), or large numbers of random effects.536

As the number of observational units increases, MegaLMM’s mem-537

ory requirements increase quadratically because of the require-538

ment to store sets of pre-calculated inverse-variance matrices.539

Similarly, for each additional random effect term included in the540

model, memory requirements increase exponentially. Therefore,541
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we generally limit models to fewer than 10,000 observations and542

only 1-to-4 random effect terms per trait. There may be oppor-543

tunities to reduce this memory burden if some of the random544

effects are low-rank; then these random effects could be updated545

on the fly using efficient routines for low-rank Cholesky updates.546

Second, MegaLMM is inherently a linear model and cannot ef-547

fectively model trait relationships that are non-linear. Some548

non-linear relationships between predictor variables (like geno-549

types) and traits can be modeled through non-linear kernel ma-550

trices, as we demonstrated with the RKHS application to the551

Bread Wheat data. However, allowing non-linear relationships552

among traits is currently beyond the capacity of our software553

and modeling approach. Extending our mixed effect model on554

the low-dimensional latent factor space to a non-linear modeling555

structure like a neural network may be an exciting area for future556

research. Also, some sets of traits may not have low-rank corre-557

lation structures that are well-approximated by a factor model.558

For example, certain auto-regressive dependence structures are559

low-rank but cannot efficiently be decomposed into a discrete560

set of factors.561

Nevertheless, we believe that in its current form, MegaLMM562

will be useful to a wide range of researchers in quantitative563

genetics and plant breeding.564

Potential extensions565

Beyond the examples we show in this work, the scalability566

and statistical power of MegaLMM can open up new avenues567

for innovation in genomic prediction applications across the568

fields of quantitative genetics–both in breeding programs as we569

have described here and, potentially, in human genetics. Ge-570

nomic prediction is also used for the calculation of polygenic risk571

scores for complex human traits and diseases (The International572

Schizophrenia Consortium 2009). MegaLMM may help leverage573

past case histories, survey responses, molecular tests, and the574

genetic architecture of other correlated traits to provide a more575

comprehensive multi-trait polygenic risk score (e.g. Turley et al.576

2018).577

We have focused here on simple scalar phenotypes: the ex-578

pression of a single gene, the total grain yield, and individual579

measures of agronomic performance. However, many important580

traits in plants, animals, and humans cannot easily be reduced581

to a scalar value. Examples include time-series traits such as582

growth curves (Campbell et al. 2018), metabolic traits such as583

the relative concentrations of different families of metabolites584

(Chan et al. 2011), and morphological traits such as shape or585

color (Demmings et al. 2019). Each of these traits can be decom-586

posed into vectors of interrelated components, but treating these587

components as independent prediction targets using existing588

univariate LMM or low-dimensional MvLMM genomic predic-589

tion tools is inefficient because of their statistical dependence.590

MegaLMM can be adapted to make joint predictions on vectors of591

hundreds or thousands of correlated trait components, which592

could be fed into high-dimensional selection indices for efficient593

selection of these important plant characteristics. In human594

genetics, MegaLMM may provide a way to derive multi-ethnic595

polygenic risk scores (Márquez-Luna et al. 2017) by treating596

outcomes within each ethnic, geographic, or other stratified pop-597

ulation group as correlated traits, similar to the analysis of the598

multi-environment trials above.599

MegaLMM should be straightforward to extend to more flexi-600

ble genetic models including the Bayesian Alphabet family of601

mixture priors on marker effect sizes. These effects can be incor-602

porated into the parameters B2R and B2F by adapting the prior603

structure. This will be further explored in future manuscripts.604

Lastly, we have only focused on Gaussian MvLMMs, in which605

observations are assumed to marginally follow a Gaussian distri-606

bution. However, many other types of data require more flexible607

models. It should be possible to extend MegaLMM to the broader608

family of generalized LMMs. These approaches model the rela-609

tionships among predictor variables in a latent space, which is610

then related to the observed data through a link function and611

an exponential family error distribution. More generally, link-612

functions could be any non-linear function of multiple parame-613

ters such as a polynomial or spline basis, or a mechanistic model.614

In this case, we would model the correlations among model615

parameters on this link-scale and then use the link-function to616

relate the latent scale variables to the observed data. Extend-617

ing MegaLMM to accommodate such generalized LMM structures618

would require new sampling steps in our MCMC algorithm (see619

Methods), but we do not see any conceptual challenges with this620

approach.621

Conclusions622

MegaLMM is a flexible and powerful framework for the analysis of623

very high-dimensional datasets in genetics. Multivariate linear624

mixed models are widely used for analyzing correlated traits,625

but have been limited to a maximum of a dozen or so traits at626

a time by the curse of dimensionality. We developed a novel627

re-parameterization of the MvLMM that allows powerful statis-628

tical regularization and efficient computation with thousands of629

traits. When applied to real plant breeding objectives, MegaLMM630

efficiently leverages information across traits to improve genetic631

value predictions. Our open-source software package will en-632

able users to apply and extend this method in many directions,633

opening up new areas of research and development in breeding634

programs.635

Methods636

Multivariate linear mixed models637

Multivariate linear mixed models (MvLMMs) are widely used
to model multiple sources of covariance among related observa-
tions. Let the n × t matrix Y represent observations on t traits for
n observational units (i.e., individual plants, plots, or replicates).
A general MvLMM takes on the following form

Y = XB + ZU + E (1)

where X is a n × b matrix of “fixed” effect covariates with effect638

sizes matrix B, U is an r × t matrix of random effects for each of639

the t traits, with corresponding random effect design matrix Z,640

and E is a n × t matrix of residuals for each of the t traits.641

MegaLMM uses this formulation to accommodate a large num-642

ber of designs through different specifications of X and Z, and643

different priors on B, U and E. The distinction between “fixed”644

and “random” effects in Bayesian mixed models is not well-645

defined because every parameter requires a prior. However, we646

use the following distinction here: “fixed” effects are covari-647

ates assigned flat (i.e., infinite variance) priors or priors with648

independent variances on each coefficient; “random” effects, in649

contrast, are grouped in sets that can be thought of as (possi-650

bly correlated) samples from a common population distribution.651

Generally, “fixed” effects are used to model experimental design652

terms such as blocks, time, sex, etc, genetic principal compo-653

nents, or specific genetic markers; while “random” effects are654

used to model genetic values, spatial variation, or related effects.655
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An important feature of MegaLMM is that the multiple random
effect terms can be included in the model. We specify this as

ZU =
M

∑
m=1

ZmUm = [Z1, . . . , ZM][Uᵀ

1 , . . . , U
ᵀ

M]ᵀ,

where each Zm is an n × rm design matrix for a set of related656

parameters with corresponding coefficient matrix Um. For exam-657

ple, U1 may model additive genetic values for each individual,658

while U2 may model spatial environmental effects for each indi-659

vidual. The distribution of each random effect coefficient matrix660

is Um ∼ N (0, Km, Gm), where N (M, Σ, Ψ) is the matrix normal661

distribution with mean matrix M, among-row covariance Km662

and among-column (i.e., among-trait) covariance Gm. We as-663

sume that both Zm and Km are known, while Gm is unknown664

and must be learned from the data. Note that Km must be posi-665

tive semi-definite, while Gm is positive-definite. The covariance666

among different coefficient matrices is assumed to be zero.667

To complete the specification of the MvLMM, we assign the668

residual matrix the distribution E ∼ N (0, In, R) where In is the669

n× n identity matrix and R is an unknown t× t positive-definite670

covariance matrix.671

Computational challenges with large multi-trait mixed models672

Fitting Eq. (1) is challenging because the columns of U and E are673

correlated. This means that data from individual traits (columns674

of Y) cannot be treated independently. Maximum-likelihood675

approaches for fitting MvLMMs (e.g., MTG2) compute the full676

(or restricted) likelihood of Y, which involves calculating the677

inverse of an nt × nt matrix many times during model optimiza-678

tion. This is computationally prohibitive when n and/or t are679

large (Figure 2A). Gibbs samplers (e.g., MCMCglmm) avoid forming680

and computing the inverse of this extremely large matrix, but681

still require inverting each of the Gm and R matrices repeatedly,682

which is still prohibitive when t is large. Furthermore, the num-683

ber of parameters in each Gm and R grow with the square of t684

and quickly get larger than the total number of observations (nt)685

when t is large. This means that Gm and R are not identifiable686

in many datasets and estimates require strong regularization.687

Mixed effect factor model688

If both Gm and R were diagonal matrices, the t traits would be
uncorrelated. Fitting Eq. (1) then could be done in parallel across
traits, greatly reducing the computational burden. While we
cannot directly de-correlate traits, if we can identify the sources
of variation that cause trait correlations, the residuals of each
trait on these causal factors will be un-correlated. We circumvent
this issue by re-parameterizing Eq. (1) as a factor model, where
we introduce a set of un-observed (or latent) factors that account
for all sources of correlation among the traits. Conditional on the
values of these factors, the model reduces to a set of independent
linear mixed models. Our re-parameterized multi-trait mixed
effect factor model is

Y = FΛ + X1B1 + X2B2R + ZUR + ER

F = X2B2F + ZUF + EF
(2)

where F is an n × K matrix of latent factors, Λ is a K × t factor
loadings matrix, X = [X1, X2] is a partition of the n × b fixed
effect covariate matrix between the b1 covariates with improper
priors and the b2 = b − b1 covariates with proper priors, and UR

and UF coefficients matrices are specified as:

UR = [Uᵀ

R1, . . . , U
ᵀ

RM]ᵀ

UF = [Uᵀ

F1, . . . , U
ᵀ

FM]ᵀ.

The distributions of the random effects are specified as:

URm ∼ N (0, Km, ΨRm), UFm ∼ N (0, Km, ΨFm)

ER ∼ N (0, In, ΨRE), EF ∼ N (0, In, ΨFE)

where ΨRm, ΨFm, ΨRE, and ΨFE are all diagonal matrices. Diag-689

onal elements of ΨFm and ΨFE are non-negative, while diagonal690

elements of ΨRm and ΨRE are strictly positive.691

Conditional on F and Λ, the variation in each of the t columns692

of Y are uncorrelated and can be fitted to the remaining terms in-693

dependently. Similarly, the K columns of F are also uncorrelated694

and can be modeled independently as well. Therefore, we can695

fit Eq. (2) without requiring calculating the inverses of any t × t696

matrices, and many calculations can be done in parallel across697

different CPU cores.698

As long as K is sufficiently large, Eq. (2) is simply a re-
parameterization of Eq. (1). To see how Eq. (2) can represent the
terms of Eq. (1), let:

B = [Bᵀ

1 , (B2R + B2FΛ)ᵀ]ᵀ

U = UR + UFΛ

E = ER + EFΛ

Based on the properties of matrix normal random variables, we
can integrate over UR, UF, ER and EF to calculate the distribu-
tions of each Um and E as:

Um ∼ N (0, Km, ΨRm + Λ
ᵀ

ΨFmΛ)

E ∼ N (0, In, ΨRE + Λ
ᵀ

ΨFEΛ)

Therefore, each Gm is re-parameterized as ΨRm + Λ
ᵀ

ΨFmΛ699

and R is re-parameterized as ΨRE + Λ
ᵀ

ΨFEΛ, such that all off-700

diagonal elements of each matrix are controlled by Λ.701

Although these equations appear to imply that our mixed702

effect factor model constrains B, U and E (and thus each Gm703

and R) to be correlated due to the shared dependence on Λ,704

this is not necessarily the case. When any diagonal element of705

any ΨFx matrix is set to zero, the corresponding row of Λ does706

not contribute to that term. If at least t linearly independent707

rows of Λ contribute to each matrix, then any set of positive-708

definite matrices can be represented as above. Therefore, we can709

represent any set of positive-definite matrices Gm and R with710

our model as long as K >= t(M + 1).711

Of course, the reason that we parameterize our model in this712

way is that we do expect some correlation among the genetic713

and residual covariance matrices. From a statistical perspective,714

when it is reasonable (given the data) to use the same row of Λ715

for multiple covariance matrices, we can save parameters in the716

model. From a biological perspective, shared factors provide a717

biologically realistic explanation for correlations among traits.718

If we consider the columns of F to be K traits that simply have719

not been observed, then it is reasonable to propose that each720

of these traits is regulated by the same sources of genetic and721

environmental variation as any of the observed traits.722

In Eq. (2), the K latent traits (F) are the key drivers of all723

phenotypic co-variation among the t observed traits (Y). These724

latent traits may not account for all variation in the observed725

traits. But, by definition, this residual variation (e.g., measure-726

ment errors in each trait) is unique to each trait and uncorrelated727

with the residual variation in other traits.728
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Prior parameterization. The intuitive structure of the mixed ef-729

fect factor model (Eq. (2) and Figure 1) makes prior specification730

and elicitation easier than for Eq. (1) because we do not need to731

define prior distributions for very large covariance matrices di-732

rectly. Instead, priors on the random effect variance components733

and fixed effect regression coefficients are separable and can be734

described independently, while priors on trait correlations are735

specified indirectly as priors on the factor loading matrix Λ.736

In MegaLMM, we have chosen functional forms for each prior737

parameter that balance between interpretability (for accurate738

prior elicitation), and compatibility with efficient computational739

approaches. For the variance components, we use the non-740

parametric discrete prior on variance proportions we previously741

introduced in GridLMM (Runcie and Crawford 2019) that approx-742

imates nearly any joint distribution for multiple random effects.743

For the factor loadings matrix and matrices of regression coeffi-744

cients, we use a two-dimensional global-local prior based on the745

horseshoe prior (Carvalho et al. 2010), parameterized in terms of746

the effective number of non-zero coefficients. For the factor load-747

ings matrix specifically, our prior achieves both regularization748

and interpretability of the factor traits without having to care-749

fully specify K itself. Full details of each prior distribution are750

provided in the Supplemental Methods. Table S1 lists the default751

hyperparameters for each prior used in the analyses reported752

here and provided as defaults in the MegaLMM R package.753

Computational details and posterior inference754

We use a carefully constructed MCMC algorithm to draw sam-755

ples from the posterior distribution of each model parameter. We756

gain efficiency in both per-iteration computational time and in757

effective samples per iteration through careful uses of diagonal-758

ization, sparse matrix algebra, parallelization, and integration759

(or partial collapsing). In particular, our algorithm synthesizes760

and extends several recent innovations in computational ap-761

proaches to linear mixed models (Runcie and Mukherjee 2013;762

Zhou and Stephens 2012; Makalic and Schmidt 2016; Runcie and763

Crawford 2019). Full details of the computational algorithm are764

provided in the Supplemental Methods.765

Data Analyses766

We demonstrate MegaLMM using three example datasets.767

Scaling performance with gene expression data. To compare768

the scalability of MegaLMM to other multi-trait mixed model769

programs, we used a large gene expression dataset of 24,175770

genes across 728 Arabidopsis thaliana accessions. We down-771

loaded the data from NCBI GEO (Barrett et al. 2012) (Huang772

et al. GSE80744) and removed genes with average counts < 10.773

We then normalized and variance stabilized the counts using the774

varianceStabilizingTransformation function from DESeq2775

(Love et al. 2014). We downloaded a corresponding genomic776

relationship matrix K from the 1001 genomes project (Alonso-777

Blanco et al. 2016) and subsetted to the 665 individuals present778

in both datasets.779

We generated datasets of varying sizes from t = 2 to t =780

24, 175 genes by randomly sampling. We selected one gene as781

the “focal” trait in each dataset, masked 50% of its values, fit the782

model in Eq. (1) using four different representative MvLMM pro-783

grams to the remaining data, and used the results to predict the784

genetic values of each masked individual for this “focal” gene.785

Prediction accuracies were estimated as ρg = corg(û, y)
√

h2(û),786

where corg is the estimated genetic correlation evaluated in the787

testing lines only, and h2(û) is the heritability of the predictor û788

estimated using a univariate LMM (Thompson and Meyer 1986;789

Lopez-Cruz et al. 2020). The simpler Pearson’s correlation esti-790

mate of prediction accuracy is not valid in these data because all791

genes were measured together in the same sample, and therefore792

some correlation among genes is caused by non-genetic factors793

(Runcie and Cheng 2019). The four MvLMM prediciton methods794

were:795

1. MTG2 (Lee and van der Werf 2016): a restricted maximum-796

likelihood method written in fortran. We pre-calculated797

the eigenvalue decomposition for K, thus this additional798

time is not included in the results. MTG2 does not work799

well with a high percentage of missing data, so genetic800

value predictions were made with the two-step approach801

from Runcie and Cheng (2019) which involves estimating802

model parameters only from the individuals with complete803

observations, and then incorporating secondary trait values804

of the new individuals in the second step.805

2. MCMCglmm (Hadfield 2010): a Bayesian MCMC algorithm806

largely written in C++. We used “default” priors for R807

and G with diagonal means and ν = p, and ran a single808

MCMC chain for 7000 iterations, discarding the first 5000809

samples as burnin. To speed up calculations (and make810

the timing results more comparable with the MegaLMM al-811

gorithm), we rotated the input data by pre-multiplying by812

the eigenvectors of K so that the input relationship matrix813

was diagonal. Since this matrix rotation is only possible814

with complete data, we again used the two-step multi-trait815

prediction approach (Runcie and Cheng 2019).816

3. phenix (Dahl et al. 2016): a variational Bayes algorithm817

written in R that uses a low-rank representation of G but818

a full-rank prior for R. We set the maximum number of819

factors to p/4 and used the eigendecomposition of K as the820

input. Again, we excluded this calculation from the time821

estimates.822

4. MegaLMM: we ran MegaLMM using “default priors” with K =823

min(n/4, p/2) and collected 6000 MCMC samples, discard-824

ing the first 5000 as burnin. We excluded the preparatory825

calculations, only including the MCMC iterations in the826

time calculations. For small datasets, these calculations827

were significant, but were a miniscule part of the analyses828

of larger datasets.829

Each method was run 20 times on different randomly sam-830

pled datasets. For the two MCMC methods, we estimated the831

effective sample size of each element of U using the ess_bulk832

function of the rstan package (Stan Development Team 2019),833

and used this to estimate the time necessary for the effective834

sample size to be at least 1000 for 90% of the uij. We ran MTG2835

and MCMCglmm for datasets up to t = 64 because computational836

times were prohibitively long for larger datasets. We linearly837

extrapolated the (log) computational times for these methods838

out to t = 512 for comparisons. phenix fails when t ≥ n, so this839

method is limited to t < 665 in this dataset.840

To assess the accuracy of each method for estimating genetic841

and non-genetic covariances, we generated new datasets with842

128 genes by calculating empirical correlation matrices for G and843

R from two separate samples of 128 genes from the full expres-844

sion dataset, and then generating genetic and residual values for845

128 traits from multivariate normal distributions based on these846
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correlation matrices. For each trait, we converted the correlation847

matrices into covariance matrices by sampling an independent848

heritability value for each trait between 0.1 and 0.8. We then849

estimated the genetic and residual covariance matrices for sub-850

sets of these simulated datasets using each of the four above851

methods. In this example, we found that setting K larger (2p)852

gave better results, probably because the G and R matrices were853

largely uncorrelated and so independent factors were needed854

to model the two sets of covariances. Accuracy was reported855

as the Pearson correlation between the estimated covariance856

parameters and the true covariance parameters (excluding the857

variance parameters on the diagonal).858

Wheat yield prediction using hyperspectral data. We used data859

from a bread wheat breeding trial to demonstrate how MegaLMM860

can leverage “secondary” traits from high-throughput phenotyp-861

ing technologies to better predict genetic values of a single target862

trait. We downloaded grain yield and hyperspectral reflectance863

data from the bread wheat trials at the Campo Experimental864

Norman E. Borlaug in Ciudad Obregón, México reported in865

Krause et al. (2019) (Mondal et al. 2020). We selected the 2014-866

2015 Optimal Flat site-year for our main analysis because it had867

among the greatest number of hyperspectral reflectance data868

points, and Krause et al. (2019) reported relatively low predictive869

accuracy for grain yield in this site-year. Best linear unbiased es-870

timates (BLUEs) and best linear unbiased predictors (BLUPs) of871

the line means for grain yield (GY) and 62 hyperspectral bands872

collected at each of 10 time-points during the growing season,873

and genotype data from 8519 markers were provided for 1,092874

lines in this trial. All other trials were analyzed in the analysis875

presented in Figure S5.876

We compared eight methods for predicting the GY trait based877

on the genetic marker and hyperspectral data. The first five878

were “standard” methods using state-of-the-art models for ge-879

nomic prediction. The final three were new models implemented880

within the MegaLMM framework.881

1. GBLUP: implemented using the R package rrBLUP (Endel-882

man 2011), with the genomic relationship matrix K calcu-883

lated with the A.mat function of rrBLUP as in Endelman884

and Jannink (2012).885

2. Bayesian Lasso (BL): implemented using the R package BGLR886

(Perez and de los Campos 2014). We first removed mark-887

ers with > 50% missing data, and imputed the remain-888

ing missing genotypes with the population mean allele889

frequency. We used the default prior parameters for the890

Bayesian Lasso in BGLR, and collected 9,000 posterior sam-891

ples with a thinning rate of 5 after a 5,000 iteration burnin.892

3. RKHS: implemented using rrBLUP. We used the same893

thinned and imputed genotype dataset as for the BL method894

to calculate a genomic distance matrix (D). We also used895

the default theta.seq parameter to automatically choose896

the scale parameter of the Gaussian kernel.897

4. HBLUP: implemented using the R package lme4qtl. This898

replicates the analysis reported by Krause et al. (2019),899

which uses the GBLUP method but replaces the genomic re-900

lationship matrix described above with H, a hyperspectral901

reflectance relationship matrix calculated as H = SSᵀ/620,902

where S is a matrix of centered and standardized BLUEs of903

hyperspectral bands from each timepoint.904

5. GBLUP+H: implemented in the R package lme4qtl (Ziyatdi-905

nov et al. 2018). This is a two-kernel method, where we906

use two relationship matrices: K and H. This method is907

analogous to the methods proposed by Krause et al. (2019)908

for leveraging the hyperspectral data in prediction; how-909

ever, those authors only used two-kernel methods for G×E910

prediction across site-years. Since lme4qtl does not predict911

random effects for un-measured observations, we formed912

predictions as: KnoK−1
oo ûko + HnoH−1

oo ûho where Kno is the913

nn × no quadrant of K specifying the genomic relationships914

among the nn “new” un-observed lines, Koo is the no × no915

quadrant of K specifying the genomic relationships among916

the “old” observed lines, ûko is the vector of BLUPs for the917

genomic random effect, and Hno, Hoo and ûho are similar918

quantities for the hyperspectral random effect.919

6. MegaLMM-GBLUP: we modeled the combined trait data Y =920

[y, S] with the model specified in Eq. (2) using a single ran-921

dom effect with relationship matrix K as above, no fixed922

effects besides an intercept (X was a column of ones and X2923

had zero columns). We ran MegaLMM with K = 100 factors,924

“default” priors (see Table S1), and two partitions of the trait925

data (the first containing grain yield with the masked train-926

ing set as described below, and the second containing all927

620 hyperspectral bands with complete data). We collected928

500 posterior samples of the quantity: u1 = uR1 + (UFλ1)929

at a thinning rate of 2, discarding the first 1,000 iterations930

as burn-in.931

7. MegaLMM-RKHS: we implemented multi-trait RKHS regres-932

sion model using the “kernel-averaging” method proposed933

by de Los Campos et al. (2010). We standardized D based934

on its mean (squared) value, and placed a uniform prior935

on the set of scaling factors h = {1/5, 1, 5}, which we im-936

plemented by calculating three corresponding relationship937

matrices K1, . . . , K3 and by specifying three random effects938

in Eq. (2). We again used “default” priors, K = 100 factors,939

and treated only the global intercept per-trait as fixed ef-940

fects. We collected 500 posterior samples of the quantity:941

Zu1 = ZuR1 + Z(UFλ1) at a thinning rate of 2, discarding942

the first 1000 iterations as burn-in.943

8. MegaLMM-GBLUP-CV1: we repeated the MegaLMM-GBLUP944

method above, but this time without partitioning the trait945

data. Instead, we masked both the grain yield and the 620946

hyperspectral band data from the testing set so all lines947

in the training data had complete data. Predictions of the948

genetic values were calculated identically to above.949

We used cross-validation to evaluate the prediction accuracy950

of each method. We randomly selected 50% of the lines for model951

training, 50% for testing, and masked the GY observations for the952

testing lines. We fit each model to the partially-masked dataset953

and collected the predictions of GY for the testing lines. We es-954

timated prediction accuracy as ρg = corg(û, y)
√

h2(û) because955

the hyperspectral reflectance data were collected on the same956

plots as the GY data and therefore non-genetic (i.e., microen-957

vironmental) factors that affect both reflectance and yield may958

induce non-genetic correlations among traits (Runcie and Cheng959

2019). BLUPs were used as the predictand except in the 2016-17960

year when the BLUPs were poorly corelated with the BLUEs961

suggesing data quality issues. We used a 50-50 training-testing962

split of the data to ensure that corg could be estimated accu-963
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rately in the testing partition. This cross-validation algorithm964

was repeated 20 times with different random partitions.965

Maize trait imputation in multi-environment trails. We used data966

on maize hybrids from the Genomes-To-Fields Initiative experi-967

ments to demonstrate how MegaLMM can leverage genetic corre-968

lations across locations in multi-environment trials. We down-969

loaded the agronomic data from the 2014-2017 field seasons970

from the CyVerse data repository (McFarland et al. 2020) and971

corresponding genomic data. We used TASSEL5 (Bradbury et al.972

2007) to build a kinship matrix for each hybrid genotype using973

the CenteredIBS routine.974

A total of 2012 non-check hybrids with phenotype and975

genotype data from 108 trials (i.e., site-years) were available.976

We selected four representative agronomic traits: plant height977

(cm), grain yield (bushels/acre), days-to-silking (days), and the978

anthesis-silking interval (ASI, days). For each trait in each site-979

year, we calculated BLUPs for all observed genotypes using the980

R package lme4 (Bates et al. 2015) with Rep and Block:Rep as981

fixed effects to account for the experimental design in each field,982

and formed them into 2012 × 108 BLUP matrices for each trait.983

We then dropped site-years where the BLUP variance was zero,984

or which had fewer than 50 tested lines. On average ≈ 12% of985

hybrid-site-year combinations were observed across each of the986

four BLUP matrices. We then used four methods to predict the987

BLUPs of hybrids that were not grown in each trial:988

1. GBLUP (univariate): missing values were imputed sepa-989

rately for each site:year using the mixed.solve function of990

the rrBLUP package.991

2. GBLUP (env BLUPs): genetic values for each hybrid were992

assumed to be constant across all site-years. We estimated993

these in two steps. In the first step, we estimated hybrid994

main effects treating lines as independent random effects995

using lme4, with site:year included as a fixed effect. In996

the second step, we estimated genetic values using the997

mixed.solve function of the rrBLUP package.998

3. phenix: we used phenix to impute missing observations in999

Y using K as a relationship matrix.1000

4. MegaLMM: we fit the model specified in Eq. (2) to the full1001

matrix Y, with K = 50 factors and “default”. Here, we1002

partitioned Y into 4 sets based on year to minimize the1003

number of missing observations to condition on during the1004

MCMC. We collected 1000 posterior samples of imputed1005

values Ỹ = X1B1 + FΛ + ZUR with a thinning rate of 2,1006

after discarding the first 5000 iterations as burnin.1007

We estimated prediction accuracy of each method using cross-1008

validation. For each of 20 replicate cross-validation runs per1009

model, we randomly masked 20% of the non-missing BLUPs,1010

and then calculated the Pearson’s correlation between these1011

“observed” values and the imputed values of each method. Pear-1012

son’s correlation is appropriate as an estimate of genomic predic-1013

tion accuracy in this case because different plants were used in1014

each trial, so there is no non-genetic source of correlation among1015

site-years that may bias accuracy estimates.1016
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