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ABSTRACT Large-scale phenotype data can enhance the power of genomic prediction in plant and animal breeding, as well as
human genetics. However, the statistical foundation of multi-trait genomic prediction is based on the multivariate linear mixed
effect model, a tool notorious for its fragility when applied to more than a handful of traits. We present MegalLMVM, a statistical
framework and associated software package for mixed model analyses of a virtually unlimited number of traits. Using three
examples with real plant data, we show that MegaLMM can leverage thousands of traits at once to significantly improve genetic

value prediction accuracy.

KEYWORDS Multi-trait Linear Mixed Model, Genomic prediction, High-throughput phenotyping, Multi-environment trial

Background

New high-throughput phenotyping technologies hold promise
for a revolution in data-driven decisions in plant and animal
breeding programs (Araus et al. 2018; Koltes et al. 2019). For
example, drone-based hyperspectral cameras can image fields
at high resolution across hundreds of spectral bands (Rutkoski
et al. 2016), wearable sensors can continuously monitor animals
health and physiology (Neethirajan 2017), and RNA sequencing
and metabolite profiling can simultaneously assay the concentra-
tions of tens-of-thousands of targets (Schrag et al. 2018). These
high-dimensional traits could allow breeders to rapidly assess
many aspects of performance more accurately or earlier in de-
velopment than was possible using traditional tools. This can
increase the rate of gain in target traits by increasing selection
accuracy, increasing selection intensity, and reducing breeding
cycle durations.

However, efficiently incorporating high-dimensional pheno-
type data into breeding decisions is challenging. Whenever two
traits are genetically correlated, joint analyses can improve the
precision of variety evaluation (Thompson and Meyer 1986).
However, two key problems emerge. First, the number of traits
in high-dimensional datasets is often much larger than the num-
ber of breeding lines, which means that naive correlation es-
timates are not robust. Second, phenotypic correlation among
traits are often poor approximations to genetic correlation, so not
all correlated traits are useful for breeding decisions (Bernardo
2010). For example, plants grown in more productive areas
of a field will tend to produce higher yields and be greener
(measured by hyperspectral reflectance). Yet, selecting indi-
rectly based on green plants instead of directly on higher yields
may be counter-productive because “green-ess” may indicate
an over-investment in vegetative tissues at the expense of seed.
This contrasts with the problem of predicting genetic values
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from genotype data (e.g., genomic prediction; Meuwissen ef al.
(2001)), where all correlations between candidate features and
performance are useful for selection.

The multivariate linear mixed model (MvLMM) is a widely-
used statistical tool for decomposing phenotypic correlations
into genetic and non-genetic components. The MvLMM is a
multi-outcome generalization of the univariate linear mixed
model (LMM) that forms the backbone of the majority of meth-
ods in quantitative genetics. The MvLMM was introduced over
40 years ago (Henderson and Quaas 1976), and has repeatedly
been shown to increase selection efficiency (Piepho et al. 2007;
Calus and Veerkamp 2011; Jia and Jannink 2012). Yet, MvLMMs
are still rarely used in actual breeding programs because naive
implementations of the framework are sensitive to noise, prone
to overfitting, and exhibit convergence problems (Johnstone
and Titterington 2009). Furthermore, existing algorithms are
extremely computationally demanding. The fragility of naive
MvLMMs is due to the number of variance-covariance parame-
ters that must be estimated which increases quadratically with
the number of traits. The computational demands increase even
more dramatically: from cubically to quintically with the num-
ber of traits (Zhou and Stephens 2014) because most algorithms
require repeated inversion of large covariance matrices. These
matrix operations dominate the time required to fit a MvLMMs,
leading to models that take days, weeks, or even years to con-
verge.

Here, we describe MegaLMM (linear mixed models for millions
of observations), a novel statistical method and computational
algorithm for fitting massive-scale MvLMMs to large-scale phe-
notypic datasets. Although we focus on plant breeding appli-
cations for concreteness, our method can be broadly applied
wherever multi-trait linear mixed models are used (e.g., hu-
man genetics, industrial experiments, psychology, linguistics,
etc.). MegaLMM dramatically improves upon existing methods
that fit low-rank MvLMMs, allowing multiple random effects
and un-balanced study designs with large amounts of missing
data. We achieve both scalability and statistical robustness by

bioRyiv  May 2021 1


https://doi.org/10.1101/2020.05.26.116814
http://creativecommons.org/licenses/by/4.0/

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

12

13

114

115

116

17

118

19

120

121

122

123

124

125

126

127

128

129

130

131

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.26.116814; this version posted May 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

combining strong, but biologically motivated, Bayesian priors
for statistical regularization—-analogous to the p >> n approach
of genomic prediction methods—with algorithmic innovations
recently developed for LMMs. In the three examples below, we
demonstrate that our algorithm maintains high predictive accu-
racy for tens-of-thousands of traits, and dramatically improves
the prediction of genetic values over existing methods when
applied to data from real breeding programs.

Results

Methods overview.

MegalMM fits a full multi-trait linear mixed model (MvLMM)
to a matrix of phenotypic observations for n genotypes and
t traits (level 1 of Figure 1A). We decompose this matrix into
fixed, random, and residual components, while modeling the
sources of variation and covariation among all pairs of traits.
The main statistical and computational challenge of fitting large
MvLMMs centers around the need to robustly estimate ¢ x ¢
covariance matrices for the residuals and each random effect.
Each covariance matrix has f(t — 1) /2 + t free parameters, and
any direct estimation approach is computationally demanding
because it requires repeatedly inverting these matrices (an O(#%)
operation).

We solve both of these problems by introducing K un-
observed (latent) traits called factors (fy) to represent the causes
of covariance among the t observed traits. We treat each latent
trait just as we would any directly measured trait and decom-
pose its variation into the same fixed, random and residual com-
ponents using a set of parallel univariate linear mixed models
(level 2 of Figure 1A). We then model the pairwise correlations
between each latent trait and each observed trait through K
loadings vectors Ay..

Together, the set of parallel univariate LMMs and the set
of factor loading vectors result in a novel and very general re-
parameterization of the MvLMM framework as a mixed-effect
factor model. This parameterization leads to dramatic computa-
tional performance gains by avoiding all large matrix inversions.
It also serves as a scaffold for eliciting Bayesian priors that are
intuitive and provide powerful regularization which is neces-
sary for robust performance with limited data. Our default prior
distributions encourage: i) shrinkage on the factor-trait correla-
tions (Ax) to avoid over-fitting covariances, and ii) shrinkage on
the factor sizes to avoid including too many latent traits. This
two-dimensional regularization helps the model focus only on
the strongest, most relevant signals in the data.

While others have used latent factor approaches to reduce
dimensionality of MVLMMs (e.g., de Los Campos and Gianola
2007; Meyer 2007; Runcie and Mukherjee 2013; Dahl et al. 2016),
these methods only use factors for a single random effect (usu-
ally the matrix of random genetic values)-with the exception
of BSFG which uses factors for the combined effect of a single
random effect and the residuals (Runcie and Mukherjee 2013).
In MegaLMM, we expand this framework and use factors to model
the joint effects of all predictors: fixed, random and residual
factors on multiple traits.

We combine this efficient factor model structure with algorith-
mic innovations that greatly enhance computational efficiency,
drawing upon recent work in LMMs (Kang ef al. 2008; Zhou
and Stephens 2012; Lippert et al. 2011; Runcie and Crawford
2019). While Gibbs samplers for MvLMMs are notoriously slow,
we discovered extensive opportunities for collapsing sampling

steps, marginalizing over missing data, and discritizing vari-
ance components so that intermediate results can be cached
(Supplemental Methods).

Genomic prediction using MegaLMM works by fitting the
model to a partially observed trait matrix, with the traits to
be predicted imputed as missing data. MegaLMM then estimates
genetic values for all traits (both observed and missing) in a
single step (Figure 1B).

MegaLMM is efficient and effective for large datasets

We used a gene expression matrix with 20,843 genes measured
in each of 665 Arabidopsis thaliana accessions (a total of nearly 14
million observations), to evaluate the accuracy and time require-
ments for trait-assisted genomic prediction—a classic example
of an applied use of MvLMMs-across a panel of existing soft-
ware packages. We created datasets with 4 to 20,842 “secondary”
traits with complete data, and used these data to predict the
genetic values of a single randomly selected “focal” gene with
50% missing data.

Despite the limited number of independent lines in this data
set, adding up to ~ 200 secondary traits improved the genomic
prediction accuracy of MegaLMM and two other Bayesian meth-
ods: MCMCglmm and phenix (Figure 2A). The maximum likeli-
hood method MTG2 (Lee and van der Werf 2016), on the other
hand, did only marginally better than single-trait prediction,
and genomic prediction accuracy declined with 32 traits, likely
due to overfitting. We note that the results here are averages
over 20 randomly selected focal genes. The prediction accuracy
and benefits of multi-trait prediction varied considerably among
genes (Figures S1 and S2), but comparisons among methods
were largely correlated. Using simulated datasets where we
knew the true genetic and residual covariances among traits, we
also found that MegaLMM was at least as accurate in estimating
covariance parameters as the competing methods (Figure S3).

Beyond 32 secondary traits, computational times for
MCMCglmm and MTG2 became prohibitive (Figure 2B). Using ex-
trapolation, we estimated that fitting these methods for 512 traits
would take 20 days and 217 days, respectively, without consid-
ering issues of model convergence. In contrast, phenix and
MegaLMM were both able to converge on good model fits for 512
traits in approximately one hour.

Beyond 512 traits, MegaLMM was the only viable method as
phenix cannot be applied to datasets with t > n phenotypes.
Although the genomic prediction accuracy of MegaLMM did not
increase further after ~ 256 traits, performance did not suffer
even with the full dataset of > 20,000 traits and the analysis
was completed in less than a day. This shows that MegaLMM
is feasible to apply to very high-dimensional studies and, in
most cases, does not require pre-filtering of traits—something
that requires great care in genomic prediction applications to
avoid misleading results (Runcie and Cheng 2019).

An important feature of MegaLMM is that the choice of the num-
ber of latent factors K is less critical than in most factor models.
Since factors are ordered from most-to-least important by the
prior (See Methods), as long as enough factors are specified to
capture the majority of the covariance among traits, adding ad-
ditional latent factors does not lead to over-fitting (Figure S4A).
Additional factors do increase the run-time of the algorithm,
though (Figure S4B), so some optimization of K during the burn-
in period can reduce computational demands during posterior
sampling.

2 Runcie et al.
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A MegalLMM model
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|
focal trait
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Figure 1 Overview of the MegaLMM model: A. MegaLMM decomposes a typical MvLMM into a two-level hierarchical model. In level
1, raw data from f traits on each of the n plants (more generally observational units) (y;.) are combined into an n X t trait matrix
Y. Variation in Y is decomposed into two parts: a low-rank model (FA) consisting of K latent factor traits, each of which controls
variation in a subset of the original traits through the loadings matrix A, and a residual matrix (E) of independent residuals for each
trait. The latent factor traits and the t residual vectors are now mutually un-correlated, and are each modeled with independent
LMMs in level 2. Experimental design factors, genetic background effects, and other modeling terms are introduced at this level. Cells
highlighted in green show observations and associated parameters for plant i. Cells highlighted in orange highlight observations and
associated parameters for trait j. B. Two multi-trait genomic prediction applications: i) the use of high-throughput phenotyping data
to supplement for expensive direct measures of focal traits like grain yield, and ii) the analysis of large multi-environment trials. In
each case, observed data of focal traits (green) and secondary traits (blue) are used to predict genetic values for individuals without

direct phenotypic observations (grey).

Applications to real breeding programs

To demonstrate the utility of MegaLMM, we developed two classes
of genomic prediction models for high-dimensional phenotype
data in real plant breeding programs.

Genomic prediction using hyperspectral reflectance data
When the final performance of a variety is difficult or costly
to obtain, breeding programs can supplement direct measures
of performance with data from surrogate traits that can be mea-
sured cheaply, earlier in the breeding cycle, and on more vari-
eties. For example, in the bread wheat breeding program at CIM-
MYT, hyperspectral reflectance data can be collected rapidly and
repeatedly by aerial drones on thousands of plots (Krause ef al.
2019). We developed a multi-trait genomic prediction model
to incorporate 62-band hyperspectral reflectance data from 10
different drone flights over the course of one growing season,
and compared the accuracy of these genetic value predictions

against more traditional approaches.

We first compared three standard univariate methods: GBLUP
(Hayes et al. 2009), Bayesian LASSO (BL) (Park and Casella
2013), and Reproducing kernel Hilbert space (RKHS) regression
(de Los Campos et al. 2010). GBLUP achieved a prediction accu-
racy of pg = 0.43 for yield (Figure 3A). Both the BL and RKHS
methods showed modest improvements, with po = 0.47 and
pg = 0.49, respectively in these data. The RKHS model often out-
performs GBLUP in plant breeding datasets, but improvements
are generally slight and inconsistent depending on the genetic
architecture of the targeted trait.

In the original analysis of this dataset, Krause et al. (2019)
achieved increased performance by replacing the genomic ker-
nel (K in our notation) with a kernel based on the cross-product
of hyperspectral reflectances across all wavelengths and time
points (termed the H matrix). We replicated these results, achiev-
ing a prediction accuracy of pg = 0.58 (HBLUP method). These

Mega-scale linear mixed models 3
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Figure 2 MegaLMM scales efficiently for very high-dimensional traits. Four competing methods were used to fit multi-trait genomic
prediction models to predict genetic values for a single focal gene expression trait using complete data from t additional traits. Data are
from an Arabidopsis thaliana gene expression data with 20,843 genes and 665 lines. A) Average estimated genomic prediction accuracy
across 20 focal traits using t additional secondary traits for each of the four prediction methods (the horizontal line is the average
univariate prediction accuracy). Genomic prediction accuracy was estimated by cross-validation as pg = corg(f,y)/h? (@) to account
for non-genetic correlations between the secondary traits and focal traits since all were measured in the same sample. Smoothed
curves are estimated by stats: :lowess. The number of latent factors used for MegaLMM (K) is listed in red at the top of the figure.
B) Computational times required to find a solution for each MvLMM. For the MCMC methods MCMCglmm and MegaL MV, times were
estimated as the time required to collect an effective sample size of at least 1000 for > 90% of the elements in the genetic covariance
matrix U. Computational times for MCMCglmm and MTG2 above 64 traits were linearly extrapolated (on log scale) based on the slope

between 32 and 64 traits. Black lines show the slope of exponential scaling functions with the specified exponents for reference.

authors also proposed a multi-kernel model combining the K
and H kernel matrices, although they only applied this to cross-
treatment genotype-by-environment predictions. We found that
applying this multi-kernel method to the within-environment
data resulted in additional accuracy gains (o = 0.64) (GBLUP+H
method; Figure 3A).

While more effective than univariate methods, predictions
based on the H kernel matrix are biased by non-genetic cor-
relations between surrogate traits and yield because they do
not directly model the genetic component of these correlations.
MegalMM implements a full multi-trait mixed model and thus
can separate these sources of correlation. We fit three differ-
ent multi-trait prediction models with MegaLMM. The first was
a standard multi-trait mixed model with a single random ef-
fect based on the genomic relationship matrix K. This method
achieved a dramatically higher prediction accuracy than any of
the previous approaches (o = 0.73). Second, because the RKHS
model had the highest performance among univariate predic-
tions, we implemented an approximate RKHS method in MegaLMM
based on averaging over three kernel matrices (de Los Campos
et al. 2010). We are not aware of any other high-dimensional
MvLMM implementations that allow models with multiple ran-
dom effects. This model achieved the highest predictive ac-
curacy (pg = 0.77). Finally, we repeated the MegaLMM-GBLUP
analysis but this time masking all phenotype data (both grain
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274

yield and hyperspectral data) from the testing set. We called
this approach MegaLMM-GBLUP-CV1 following the nomenclature
from Burguefio et al. (2012). Genetic prediction accuracy in the
CV1 setting was similar to the univariate methods (o = 0.49),
showing that nearly all benefit of MegaLMM in this dataset came
through the optimal use of secondary trait phenotypes on the
lines of interest.

In summary, by directly modeling the genetic covariance be-
tween the surrogate traits (hyperspectral reflectance measures),
we achieved performance increases of 56%-79%, and up to 36%
over the HBLUP method. To show that these conclusions were
robust in other datasets, we repeated the same analyses in the
other 19 trials reported by Krause et al. (2019) and results were
highly similar in all trials (Figure S5).

To explore why directly modeling the genetic correlation is
important, we compared the estimated genetic correlations be-
tween each hyperspectral band and grain yield to the corre-
sponding phenotypic correlations (Figure 3B). Most genetic cor-
relation estimates closely paralleled the phenotypic correlations,
with the largest values for low-to-intermediate wavelengths oc-
curring on dates towards the end of the growing season while
plants were in the grain filling stage (Krause et al. 2019). How-
ever, there were notable differences. For example, genomic cor-
relations were moderate (o = 0.2) for most wavelengths during
early February sampling dates while phenotypic correlations

4 Runcie et al.
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Figure 3 Performance of single-trait and multi-trait genomic prediction for wheat yield. A) 8 methods for predicting Grain Yields
of 1,092 bread wheat lines. Genetic value prediction accuracy was estimated by cross-validation. Complete data (yield, marker
genotypes, and 620 hyperspectral wavelength reflectances) was available for all lines, but 50% of the yield values were masked during
model training. Genetic value prediction accuracy was estimated as py = corg (@, y)/h? (1) because hyperspectral data and actual
yields were collected on the same plots (Runcie and Cheng 2019). Bars show average estimates (+ standard error) over 20 replicate
cross-validation runs for each method. Details of each model are presented in the Supplemental Methods. Briefly, the three single-trait
methods only used yield and genotype data. The five multi-trait methods additionally used hyperspectral data measured on all 1,092
lines. B) Phenotypic correlation (black lines), and estimates of genetic correlation (red lines) between each hyperspectral wavelength
measured on each of the 10 flight dates with final grain yield. Genetic correlations were estimated with the MegaLMM GBLUP method
using complete data. Ribbons show the 95% highest posterior density (HPD) intervals.

were near zero; yet, during early March time points, phenotypic
correlations between yield and bands around 800 nanometers
were moderate (py ~ —0.2) but genomic correlations were near-
zero. MegaLMM is able to model the discrepancy between genomic
and phenotypic correlations, but methods based on the H matrix
(e.g., HBLUP) are not.

Genomic prediction of agronomic traits across multi-
environmental trials

Multi-trait mixed models are also used to analyze data from
multi-environment trials to account for genotype-environment
interactions and select the best genotypes in each environment.
The Genomes2Field initiative (https:/www.genomes2fields.org/) is
an ongoing multi-environment field experiment of maize hybrid
genotypes across 20 American states and Canadian provinces.
Data from the years 2014-2017 included 119 trials with a total
of 2102 hybrids. As in many large-scale multi-environment
trials, only a small proportion of the available genotypes were
grown in each trial. Therefore, the majority of trial-genotype
combinations were un-observed.

We selected four representative agronomically important
traits and compared the ability of four modeling approaches
to impute the missing measurements. Including across-trial in-
formation was beneficial for each of the four traits, suggesting
generally positive genetic correlations across trials. However,
applying MegaLMM to each of the four trait datasets improved

predictions dramatically, with average benefits across trials rang-
ing from p, = 0.10 to py = 0.17 (Figure 4). The performance of
phenix was inconsistent across traits and trials, likely because its
model for the non-additive genetic covariance (i.e., the residual)
is less flexible than MegaLMM.

To explore why jointly modeling all genetic and non-genetic
covariances for each pair of trials improved prediction accu-
racy for each trait, we assessed the per-trial differences in per-
formance between MegaLMM and the corresponding within-trial
genomic prediction model. Trials varied considerably in how
much MegaLMM improved genomic prediction accuracy, with sev-
eral trials seeing improvements of p > 0.4. The magnitude of
the MegaLMM effect on genomic prediction accuracy was largely
explained by the maximum genetic covariance between that trial
and any other trial in the dataset (Figure S6). This is expected
because the benefit of a MvLMM is largely dependent on the
magnitude of genetic covariances between traits.

A common approach in multi-environment trials is to com-
bine similar trials (based on geographic location or similar en-
vironments) into clusters and make genetic value predictions
separately for each cluster (Piepho and Mohring 2005). How-
ever, this will not be successful if clusters cannot be selected a
priori because using the trial data itself to identify clusters can
lead to overfitting if not performed carefully (Runcie and Cheng
2019). In these data, the distribution of genomic correlations be-
tween trials differed among traits, so it is not straightforward to

Mega-scale linear mixed models 5
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Figure 4 Average within-trial prediction accuracy for four
maize traits in the Genomes2Fields Initiative experiment.
Traits included: days to silking (DTS), anthesis-silking inter-
val (ASI), grain yield, and plant height. Bars show the aver-
age £95% confidence intervals of prediction accuracy for each
method across the 76-99 trials with sufficient training data for
each trait. For each trail, prediction accuracies were estimated
as the mean over 20 randomized cross-validation replicates.

identify which pairs or subsets of trials could be combined. The
most obvious predictor of trial similarity is geographic distance,
but we did not see consistent spatial patterns in the among-trial
covariances across the four traits. The trials with the greatest
benefit from our MvLMM showed geographic clustering in the
central mid-west for the anthesis-silking interval (ASI) but not
for the other three traits (Figure 5A). Genetic correlations tended
to decrease over long distances for ASI and over short distances
for plant height, but not for the other two traits (Figure 5B), re-
sulting in obvious geographic clustering of genetic correlations
for ASI but not the other traits (Figure 5C). This suggests that in-
cluding all trials together in one model is necessary to maximize
the benefit of the MvVLMM approach to multi-environment plant
breeding.

Discussion

Novel statistical methods can help optimize plant and animal
breeding programs to meet future food security needs. In the
above examples, we highlighted two areas where large-scale
phenotype data can improve the accuracy of genomic predic-
tion in realistic plant breeding scenarios: by incorporating high-
throughput phenotyping data from remote sensors, and by syn-
thesizing data on gene-environment interactions across large-
scale multi-environment trials. In both examples, we apply
high-dimensional multivariate linear mixed models to efficiently
integrate all available genotype and phenotype data into genetic
value predictions. MegaLMM is a scalable tool that extends the
feasible range of input data for multivariate linear mixed models
by at least two orders of magnitude over existing methods, while
providing the flexibility to plug directly into existing breeding
programs.

Computational and statistical efficiency

Computational issues in single-trait LMMs have been studied
extensively, allowing implementations for large datasets (Lip-
pert et al. 2011; Zhou and Stephens 2014; Loh et al. 2015; Runcie
and Crawford 2019). Most of these algorithms diagonalize the
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genomic relationship matrices to improve computational effi-
ciency. This technique dramatically improves the performance
of simple, low-dimensional MvLMMs as well (e.g., Zhou and
Stephens 2014; Lee and van der Werf 2016). However, diagonal-
ization does not address the computational challenge imposed
by large trait-covariance matrices, and can only be applied to
models with a single random effect and no missing data. There-
fore, these tools cannot be applied to the datasets studied here or,
more generally, to most large-scale studies of gene-environment
interactions that frequently have large proportions of missing
data (Piepho et al. 2007) (Figure 1) and to studies that have exper-
imental designs with multiple sources of covariance (e.g., spatial
environmental variation or non-additive genetics).

Our work builds on the factor-analytic approach to regulariz-
ing MvLMMs (de Los Campos and Gianola 2007; Meyer 2007;
Runcie and Mukherjee 2013; Dahl ef al. 2016) and is most similar
to BSFG (Runcie and Mukherjee 2013) and phenix (Dahl et al.
2016), which improve upon traditional quantitative genetic fac-
tor models by specifying sparse or low-rank factor matrices to
improve robustness in high dimensions. Importantly, however,
these models are limited to a single random effect and are not
tractable for datasets with large numbers of traits because of com-
putational inefficiencies (BSFG), or a lack of strong regularization
on the residual covariance matrix (phenix). MegaLMM generalizes
both methods and dramatically improves their weaknesses, al-
lowing analyses with >20,000 traits to be completed in less than
one day. Since MegaLMM scales approximately linearly with the
number of traits (Figure 2), applying it to datasets with many
more traits may be feasible. While we have designed many of
our routines to take advantage of multi-core CPUs, graphical
processing units may offer additional performance gains.

Two key advantages of MegaLMM are its flexibility and gener-
ality. We have designed the MegaLMM R package to be as general
as possible so that it can be applied to a wide array of prob-
lems in quantitative genetics. MegaLMM tolerates unbalanced
designs with incomplete observations (something that makes
MCMCglmm and MTG2 very slow), arbitrarily complex fixed effect
specifications to model experimental blocks, covariates, or other
sources of variation among samples (unlike phenix), and most
importantly, multiple random effects (unlike phenix, GEMMA, or
MTG2). Multiple random effect terms can be used to account
for spatially correlated variation across fields, non-additive ge-
netic variation that is not useful for breeding, or to more flexibly
model non-linear genetic architectures as we demonstrated with
the approximate RKHS regression approach in the wheat ap-
plication (Figure 3). To make multiple-random-effect models
computationally efficient, we take our earlier work with LMMs
(Runcie and Crawford 2019) and extend the same discrete estima-
tion procedure to MvLMMs where the impact on computational
efficiency is exponentially greater. Other commonly used tools
for fitting MvLMMSs such as ASREML (Gilmour 2007) allow more
flexibility in the specification of multiple variance-component
models with correlated random effects that are not currently pos-
sible in MegaLMM. However, these tools do not scale well beyond
~ 10 traits, so are not feasible to apply directly to large-scale
datasets in plant breeding.

Applicability to high-throughput phenotypic data

Large-scale phenotype data collection is rapidly emerging as a
standard tool in plant breeding and other fields that use quanti-
tative genetics (GTEx Consortium 2017; Araus et al. 2018; Bycroft
et al. 2018). These deep phenotyping datasets can be used as

6 Runcie et al.
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Figure 5 Benefit of MegaLMM and geographic distributions of among-trial genetic correlations vary among traits. Traits analyzed
included: days to silking (DTS), anthesis-silking interval (ASI), grain yield, and plant height. A) Trial locations for each trait are shown.
Points were jittered west-to-east to prevent overlap of repeated trials across years. Size and color of each point correspond to the
increase in prediction accuracy for MegaLMM versus a univariate LMM. B) Smoothed estimates (computed using geom_smooth with a
bandwidth of 1.0) of the relationship between geographic distance and genetic correlation for each trial. Line colors correspond to the

benefit of MegaLMM in each focal trial. C) Genetic correlations between the trial with the greatest benefit of MegaLMM for each trait and
each other trial.

Mega-scale linear mixed models 7
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high-dimenisional features to predict genetic values in agronom-
ically important traits and serve as substitutes for direct assays
where these are more time-consuming or expensive to collect.

Breeding objectives differ from the goals of polygenic risk
score predictions for human diseases because the prediction
target is not the phenotype of an individual, but its genetic value
(Runcie and Cheng 2019). Genetic values quantify the expected
phenotype of a plant’s offspring, and so exclude impacts of the
plant’s own microenvironment on its phenotype (Bernardo 2010).
Therefore, accurate genetic value prediction requires models
that can distinguish between genetic and non-genetic sources of
covariation among traits.

The MvLMM is considered the gold-standard method for
isolating genetic correlations from non-genetic correlations in
genetic value prediction (Piepho ef al. 2007). However, it has
rarely been applied in breeding programs because of the com-
putational challenges associated with estimating multiple large
covariance matrices. With high-throughput phenotype (HTP)
data, MVvLMMs have only been applied directly to sets of =~ 2 —5
traits. Instead, several authors have used a prior round of feature
selection or calculated summary statistics of the HTP to gener-
ate model inputs rather than using the raw high-dimensional
data itself (e.g., Jia and Jannink 2012; Guo et al. 2014; Rutkoski
et al. 2016; Sun et al. 2017; Crain et al. 2018). Other authors have
replaced the MVLMM with a direct regression on the HTP data,
using techniques such as factorial regression (van Eeuwijk ef al.
2019), functional regression (Montesinos-Lépez et al. 2017), ker-
nel regression (Krause et al. 2019), and deep learning(Cuevas
et al. 2019). While straightforward to implement, this condition-
ing on the HTP traits creates a form of collider bias which can
induce genotype-phenotype associations that do not actually
exist and impede genetic value predictions (Runcie and Cheng
2019). Alternative methods including IBCF (Juliana et al. 2019))
and regularized selection indexes (Lopez-Cruz et al. 2020) avoid
computational complexities of the full MvLMMs, but do not
make full use of the trait correlations in the data.

MegaL MM, on the other hand, fits a full MvLMM to an arbitrary
number of HTP traits and should be more efficient at leveraging
high-dimensional genetic correlations while accounting for non-
genetic sources of covariance, particularly for datasets when
HTP traits and focal performance traits are measured on the
same plants. Non-genetic correlations will be less important
on datasets where these sets of traits are measured on different
plots. At least in the wheat breeding trial datasets we exam-
ined, the benefit of multi-trait modeling was much greater when
traits were partially observed on each individual than when sec-
ondary traits were only observed in the training partition. This
is expected theoretically and has been demonstrated previously
in simulations Runcie and Cheng (2019), but the magnitude of
the benefit was particularly dramatic here. This suggests that
breeding programs should focus on developing HTP technolo-
gies that can measure secondary traits on the target individuals;
HTP measurements on training individuals may be less useful
for prediction applications. Unlike other methods, including
too many traits, or including redundant traits that are highly
correlated is unlikely to significantly impact prediction accuracy,
reducing the need to carefully choose which traits to include
and which to exclude a priori; MegaLMM allows users to simply
include all traits they have at once.
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Applicability to multi-environment trial data

The analysis of multi-environment trials provides a separate set
of computational and statistical challenges for plant breeders.
Multi-environment trials (METs) are necessary because gene-
environment interactions (GEIs) often prevent the same variety
from performing best in all locations where a crop is grown
(Piepho et al. 2007). However, METs are expensive and logis-
tically difficult. Genomic predictions in METs could reduce
the need to test every variety in every environment, allowing
smaller individual trials (Heffner et al. 2009).

GEIs can be modeled in two ways: (i) as changes in variety
effects on the same trait across environments (i.e., variety-by-
environment interactions), or (ii) as a set of genetically correlated
traits, with each trait-environment combination considered as a
different phenotype (Piepho et al. 2007). When formulated with
linear mixed models and random genetic effects, these two ap-
proaches are mathematically equivalent. Traditionally, the most
common model for analyzing METs has been the AMMI model
in which the genetic effects of each variety in each environment
are modeled using a set of products between genetic and en-
vironmental vectors (Gauch 1988). AMMI models are used to
rank genotypes in different environments and to identify envi-
ronmental clusters with similar rankings of varieties. However,
AMMI models cannot easily incorporate marker data. When
genetic values are treated as random effects, AMMI models be-
comes factor models (generally called factor analytic models in
this literature) (e.g. Piepho 1998; Smith et al. 2001), and can in-
corporate genetic marker data (e.g. Jarquin et al. 2014). MegaLMM
extends this factor-analytic method for analyzing METs, making
the methods robust for METs with hundreds or more individual
trials.

A limitation of the AMMI factor-analytic approach to analyz-
ing METs is that there is no mechanism for extending predictions
to new environments outside of those already tested. Even large-
scale commercial trials cannot test every field a farmer might use.
Several authors have proposed using environmental covariates
(ECs) to model environmental similarity in METs and predict
GEIs for novel environments (e.g., Jarquin et al. 2014; Malosetti
et al. 2016; Rincent et al. 2019). These approaches all involve re-
gressions of genetic variation on the ECs, and so, if relevant ECs
are missing or the relationship between variety plasticity and
ECs is non-linear, these models will under-fit the GEIs. Neverthe-
less, these approaches are promising and have been successfully
applied to large METs (e.g. Jarquin ef al. 2014). MegaLMM cannot
currently incorporate ECs to predict novel environments. How-
ever, a possible extension could involve replacing the iid prior on
the elements of the factor loadings matrix with a regression on
the ECs. This hybrid of ECs and a full MvLMM could leverage
the strengths of both approaches.

Model limitations

While MegaLMM works well across a wide range of applications in
breeding programs, our approach does have some limitations.
First, since MegaLMM is built on the Grid-LMM framework for
efficient likelihood calculations (Runcie and Crawford 2019), it
does not scale well to large numbers of observations (in contrast
to large numbers of traits), or large numbers of random effects.
As the number of observational units increases, MegaLMM’s mem-
ory requirements increase quadratically because of the require-
ment to store sets of pre-calculated inverse-variance matrices.
Similarly, for each additional random effect term included in the
model, memory requirements increase exponentially. Therefore,

8 Runcie et al.
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we generally limit models to fewer than 10,000 observations and
only 1-to-4 random effect terms per trait. There may be oppor-
tunities to reduce this memory burden if some of the random
effects are low-rank; then these random effects could be updated
on the fly using efficient routines for low-rank Cholesky updates.

Second, MegaLMM is inherently a linear model and cannot ef-
fectively model trait relationships that are non-linear. Some
non-linear relationships between predictor variables (like geno-
types) and traits can be modeled through non-linear kernel ma-
trices, as we demonstrated with the RKHS application to the
Bread Wheat data. However, allowing non-linear relationships
among traits is currently beyond the capacity of our software
and modeling approach. Extending our mixed effect model on
the low-dimensional latent factor space to a non-linear modeling
structure like a neural network may be an exciting area for future
research. Also, some sets of traits may not have low-rank corre-
lation structures that are well-approximated by a factor model.
For example, certain auto-regressive dependence structures are
low-rank but cannot efficiently be decomposed into a discrete
set of factors.

Nevertheless, we believe that in its current form, Megal. MM
will be useful to a wide range of researchers in quantitative
genetics and plant breeding.

Potential extensions

Beyond the examples we show in this work, the scalability
and statistical power of MegaLMM can open up new avenues
for innovation in genomic prediction applications across the
fields of quantitative genetics-both in breeding programs as we
have described here and, potentially, in human genetics. Ge-
nomic prediction is also used for the calculation of polygenic risk
scores for complex human traits and diseases (The International
Schizophrenia Consortium 2009). MegaLMM may help leverage
past case histories, survey responses, molecular tests, and the
genetic architecture of other correlated traits to provide a more
comprehensive multi-trait polygenic risk score (e.g. Turley et al.
2018).

We have focused here on simple scalar phenotypes: the ex-
pression of a single gene, the total grain yield, and individual
measures of agronomic performance. However, many important
traits in plants, animals, and humans cannot easily be reduced
to a scalar value. Examples include time-series traits such as
growth curves (Campbell ef al. 2018), metabolic traits such as
the relative concentrations of different families of metabolites
(Chan et al. 2011), and morphological traits such as shape or
color (Demmings et al. 2019). Each of these traits can be decom-
posed into vectors of interrelated components, but treating these
components as independent prediction targets using existing
univariate LMM or low-dimensional MvLMM genomic predic-
tion tools is inefficient because of their statistical dependence.
MegaLMM can be adapted to make joint predictions on vectors of
hundreds or thousands of correlated trait components, which
could be fed into high-dimensional selection indices for efficient
selection of these important plant characteristics. In human
genetics, MegaLMM may provide a way to derive multi-ethnic
polygenic risk scores (Marquez-Luna ef al. 2017) by treating
outcomes within each ethnic, geographic, or other stratified pop-
ulation group as correlated traits, similar to the analysis of the
multi-environment trials above.

MegaLMM should be straightforward to extend to more flexi-
ble genetic models including the Bayesian Alphabet family of
mixture priors on marker effect sizes. These effects can be incor-
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porated into the parameters Byr and B, by adapting the prior
structure. This will be further explored in future manuscripts.

Lastly, we have only focused on Gaussian MvLMMs, in which
observations are assumed to marginally follow a Gaussian distri-
bution. However, many other types of data require more flexible
models. It should be possible to extend MegaLMM to the broader
family of generalized LMMs. These approaches model the rela-
tionships among predictor variables in a latent space, which is
then related to the observed data through a link function and
an exponential family error distribution. More generally, link-
functions could be any non-linear function of multiple parame-
ters such as a polynomial or spline basis, or a mechanistic model.
In this case, we would model the correlations among model
parameters on this link-scale and then use the link-function to
relate the latent scale variables to the observed data. Extend-
ing MegaLMM to accommodate such generalized LMM structures
would require new sampling steps in our MCMC algorithm (see
Methods), but we do not see any conceptual challenges with this
approach.

Conclusions

MegalMM is a flexible and powerful framework for the analysis of
very high-dimensional datasets in genetics. Multivariate linear
mixed models are widely used for analyzing correlated traits,
but have been limited to a maximum of a dozen or so traits at
a time by the curse of dimensionality. We developed a novel
re-parameterization of the MvLMM that allows powerful statis-
tical regularization and efficient computation with thousands of
traits. When applied to real plant breeding objectives, MegaLMM
efficiently leverages information across traits to improve genetic
value predictions. Our open-source software package will en-
able users to apply and extend this method in many directions,
opening up new areas of research and development in breeding
programs.

Methods

Multivariate linear mixed models

Multivariate linear mixed models (MvLMMs) are widely used
to model multiple sources of covariance among related observa-
tions. Let the n x t matrix Y represent observations on f traits for
n observational units (i.e., individual plants, plots, or replicates).
A general MVLMM takes on the following form

Y =XB+ZU+E 1)

where X is a n x b matrix of “fixed” effect covariates with effect
sizes matrix B, U is an r X t matrix of random effects for each of
the t traits, with corresponding random effect design matrix Z,
and E is a n x f matrix of residuals for each of the ¢ traits.
MegaLMM uses this formulation to accommodate a large num-
ber of designs through different specifications of X and Z, and
different priors on B, U and E. The distinction between “fixed”
and “random” effects in Bayesian mixed models is not well-
defined because every parameter requires a prior. However, we
use the following distinction here: “fixed” effects are covari-
ates assigned flat (i.e., infinite variance) priors or priors with
independent variances on each coefficient; “random” effects, in
contrast, are grouped in sets that can be thought of as (possi-
bly correlated) samples from a common population distribution.
Generally, “fixed” effects are used to model experimental design
terms such as blocks, time, sex, etc, genetic principal compo-
nents, or specific genetic markers; while “random” effects are
used to model genetic values, spatial variation, or related effects.

Mega-scale linear mixed models 9
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An important feature of MegaLMM is that the multiple random

effect terms can be included in the model. We specify this as

M
ZU =Y Z,Uy = [Zy,...,Zm][U], ..., U},]T,
m=1

where each Z,, is an n x ry, design matrix for a set of related
parameters with corresponding coefficient matrix Uy,. For exam-
ple, Uj may model additive genetic values for each individual,
while U, may model spatial environmental effects for each indi-
vidual. The distribution of each random effect coefficient matrix
is Uy, ~ N(0,Ky, G ), where N'(M, Z, ¥) is the matrix normal
distribution with mean matrix M, among-row covariance K,
and among-column (i.e., among-trait) covariance G;,. We as-
sume that both Z,, and K;,, are known, while G, is unknown
and must be learned from the data. Note that K, must be posi-
tive semi-definite, while Gy, is positive-definite. The covariance
among different coefficient matrices is assumed to be zero.

To complete the specification of the MVLMM, we assign the
residual matrix the distribution E ~ A(0,1,;, R) where I, is the
n x n identity matrix and R is an unknown t X t positive-definite
covariance matrix.

Computational challenges with large multi-trait mixed models

Fitting Eq. (1) is challenging because the columns of U and E are
correlated. This means that data from individual traits (columns
of Y) cannot be treated independently. Maximum-likelihood
approaches for fitting MvLMM s (e.g., MTG2) compute the full
(or restricted) likelihood of Y, which involves calculating the
inverse of an nt x nt matrix many times during model optimiza-
tion. This is computationally prohibitive when n and/or t are
large (Figure 2A). Gibbs samplers (e.g., MCMCglmm) avoid forming
and computing the inverse of this extremely large matrix, but
still require inverting each of the G;; and R matrices repeatedly,
which is still prohibitive when ¢ is large. Furthermore, the num-
ber of parameters in each G;; and R grow with the square of ¢
and quickly get larger than the total number of observations (1)
when t is large. This means that G;; and R are not identifiable
in many datasets and estimates require strong regularization.

Mixed effect factor model

If both G;; and R were diagonal matrices, the t traits would be
uncorrelated. Fitting Eq. (1) then could be done in parallel across
traits, greatly reducing the computational burden. While we
cannot directly de-correlate traits, if we can identify the sources
of variation that cause trait correlations, the residuals of each
trait on these causal factors will be un-correlated. We circumvent
this issue by re-parameterizing Eq. (1) as a factor model, where
we introduce a set of un-observed (or latent) factors that account
for all sources of correlation among the traits. Conditional on the
values of these factors, the model reduces to a set of independent
linear mixed models. Our re-parameterized multi-trait mixed
effect factor model is

Y = FA + X 1By + XyBogr + ZUR + Er
F = XyByr +ZUr + Er
where F is an n x K matrix of latent factors, A is a K x t factor
loadings matrix, X = [X1,X3] is a partition of the n x b fixed
effect covariate matrix between the by covariates with improper
priors and the by = b — by covariates with proper priors, and Ug
and Uf coefficients matrices are specified as:
Ug = [UL,, ..., UkIT
Ur = [U},,..., UL, "
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The distributions of the random effects are specified as:

URm ~ N(O/ KWU‘I’Rm)/
Eg ~ N (0,1, ¥YrE),

UFm ~ N(O/ Ky, TFm)
Er ~ N (0,1, ¥rE)

where Yr,, Yrm, ¥YrE, and ¥rg are all diagonal matrices. Diag-
onal elements of ¥r,, and ¥r are non-negative, while diagonal
elements of ¥Yr,, and YR are strictly positive.

Conditional on F and A, the variation in each of the t columns
of Y are uncorrelated and can be fitted to the remaining terms in-
dependently. Similarly, the K columns of F are also uncorrelated
and can be modeled independently as well. Therefore, we can
fit Eq. (2) without requiring calculating the inverses of any ¢ x ¢
matrices, and many calculations can be done in parallel across
different CPU cores.

As long as K is sufficiently large, Eq. (2) is simply a re-
parameterization of Eq. (1). To see how Eq. (2) can represent the
terms of Eq. (1), let:

B = [B], (Bor + BorA)T]T
U=Ug +UrA
E=Eg +EfA

Based on the properties of matrix normal random variables, we
can integrate over Ug, U, Eg and EF to calculate the distribu-
tions of each U, and E as:

Um ~ N(O/ Kmr ‘I’Rm + AT‘YFntA)
E~ N(0,1;, ¥Yre + ATY¥FrEA)

Therefore, each Gy, is re-parameterized as ¥g,;, + ATY¥r, A
and R is re-parameterized as Yrg + ATYrgA, such that all off-
diagonal elements of each matrix are controlled by A.

Although these equations appear to imply that our mixed
effect factor model constrains B, U and E (and thus each Gy,
and R) to be correlated due to the shared dependence on A,
this is not necessarily the case. When any diagonal element of
any ¥r, matrix is set to zero, the corresponding row of A does
not contribute to that term. If at least f linearly independent
rows of A contribute to each matrix, then any set of positive-
definite matrices can be represented as above. Therefore, we can
represent any set of positive-definite matrices G,; and R with
our model as long as K >=t(M + 1).

Of course, the reason that we parameterize our model in this
way is that we do expect some correlation among the genetic
and residual covariance matrices. From a statistical perspective,
when it is reasonable (given the data) to use the same row of A
for multiple covariance matrices, we can save parameters in the
model. From a biological perspective, shared factors provide a
biologically realistic explanation for correlations among traits.
If we consider the columns of F to be K traits that simply have
not been observed, then it is reasonable to propose that each
of these traits is regulated by the same sources of genetic and
environmental variation as any of the observed traits.

In Eq. (2), the K latent traits (F) are the key drivers of all
phenotypic co-variation among the t observed traits (Y). These
latent traits may not account for all variation in the observed
traits. But, by definition, this residual variation (e.g., measure-
ment errors in each trait) is unique to each trait and uncorrelated
with the residual variation in other traits.

10 Runcie et al.
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Prior parameterization. The intuitive structure of the mixed ef-
fect factor model (Eq. (2) and Figure 1) makes prior specification
and elicitation easier than for Eq. (1) because we do not need to
define prior distributions for very large covariance matrices di-
rectly. Instead, priors on the random effect variance components
and fixed effect regression coefficients are separable and can be
described independently, while priors on trait correlations are
specified indirectly as priors on the factor loading matrix A.

In MegaLMVM, we have chosen functional forms for each prior
parameter that balance between interpretability (for accurate
prior elicitation), and compatibility with efficient computational
approaches. For the variance components, we use the non-
parametric discrete prior on variance proportions we previously
introduced in GridLMM (Runcie and Crawford 2019) that approx-
imates nearly any joint distribution for multiple random effects.
For the factor loadings matrix and matrices of regression coeffi-
cients, we use a two-dimensional global-local prior based on the
horseshoe prior (Carvalho et al. 2010), parameterized in terms of
the effective number of non-zero coefficients. For the factor load-
ings matrix specifically, our prior achieves both regularization
and interpretability of the factor traits without having to care-
fully specify K itself. Full details of each prior distribution are
provided in the Supplemental Methods. Table S1 lists the default
hyperparameters for each prior used in the analyses reported
here and provided as defaults in the MegaLMM R package.

Computational details and posterior inference

We use a carefully constructed MCMC algorithm to draw sam-
ples from the posterior distribution of each model parameter. We
gain efficiency in both per-iteration computational time and in
effective samples per iteration through careful uses of diagonal-
ization, sparse matrix algebra, parallelization, and integration
(or partial collapsing). In particular, our algorithm synthesizes
and extends several recent innovations in computational ap-
proaches to linear mixed models (Runcie and Mukherjee 2013;
Zhou and Stephens 2012; Makalic and Schmidt 2016; Runcie and
Crawford 2019). Full details of the computational algorithm are
provided in the Supplemental Methods.

Data Analyses
We demonstrate MegaLMM using three example datasets.

Scaling performance with gene expression data. To compare
the scalability of MegalMM to other multi-trait mixed model
programs, we used a large gene expression dataset of 24,175
genes across 728 Arabidopsis thaliana accessions. We down-
loaded the data from NCBI GEO (Barrett et al. 2012) (Huang
et al. GSE80744) and removed genes with average counts < 10.
We then normalized and variance stabilized the counts using the
varianceStabilizingTransformation function from DESeq2
(Love et al. 2014). We downloaded a corresponding genomic
relationship matrix K from the 1001 genomes project (Alonso-
Blanco ef al. 2016) and subsetted to the 665 individuals present
in both datasets.

We generated datasets of varying sizes from t = 2to t =
24,175 genes by randomly sampling. We selected one gene as
the “focal” trait in each dataset, masked 50% of its values, fit the
model in Eq. (1) using four different representative MvLMM pro-
grams to the remaining data, and used the results to predict the
genetic values of each masked individual for this “focal” gene.
Prediction accuracies were estimated as pg = corg (@, y)+/h%(@),
where coryg is the estimated genetic correlation evaluated in the
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testing lines only, and 4 (i@) is the heritability of the predictor @
estimated using a univariate LMM (Thompson and Meyer 1986;
Lopez-Cruz et al. 2020). The simpler Pearson’s correlation esti-
mate of prediction accuracy is not valid in these data because all
genes were measured together in the same sample, and therefore
some correlation among genes is caused by non-genetic factors
(Runcie and Cheng 2019). The four MvLMM prediciton methods
were:

1. MTG2 (Lee and van der Werf 2016): a restricted maximum-
likelihood method written in fortran. We pre-calculated
the eigenvalue decomposition for K, thus this additional
time is not included in the results. MTG2 does not work
well with a high percentage of missing data, so genetic
value predictions were made with the two-step approach
from Runcie and Cheng (2019) which involves estimating
model parameters only from the individuals with complete
observations, and then incorporating secondary trait values
of the new individuals in the second step.

2. MCMCglmm (Hadfield 2010): a Bayesian MCMC algorithm
largely written in C++. We used “default” priors for R
and G with diagonal means and v = p, and ran a single
MCMC chain for 7000 iterations, discarding the first 5000
samples as burnin. To speed up calculations (and make
the timing results more comparable with the MegalLMM al-
gorithm), we rotated the input data by pre-multiplying by
the eigenvectors of K so that the input relationship matrix
was diagonal. Since this matrix rotation is only possible
with complete data, we again used the two-step multi-trait
prediction approach (Runcie and Cheng 2019).

3. phenix (Dahl ef al. 2016): a variational Bayes algorithm
written in R that uses a low-rank representation of G but
a full-rank prior for R. We set the maximum number of
factors to p/4 and used the eigendecomposition of K as the
input. Again, we excluded this calculation from the time
estimates.

4. MegaLMM: we ran MegaLMM using “default priors” with K =
min(n/4, p/2) and collected 6000 MCMC samples, discard-
ing the first 5000 as burnin. We excluded the preparatory
calculations, only including the MCMC iterations in the
time calculations. For small datasets, these calculations
were significant, but were a miniscule part of the analyses
of larger datasets.

Each method was run 20 times on different randomly sam-
pled datasets. For the two MCMC methods, we estimated the
effective sample size of each element of U using the ess_bulk
function of the rstan package (Stan Development Team 2019),
and used this to estimate the time necessary for the effective
sample size to be at least 1000 for 90% of the u;;. We ran MTG2
and MCMCglmm for datasets up to ¢t = 64 because computational
times were prohibitively long for larger datasets. We linearly
extrapolated the (log) computational times for these methods
out to t = 512 for comparisons. phenix fails when ¢ > n, so this
method is limited to t < 665 in this dataset.

To assess the accuracy of each method for estimating genetic
and non-genetic covariances, we generated new datasets with
128 genes by calculating empirical correlation matrices for G and
R from two separate samples of 128 genes from the full expres-
sion dataset, and then generating genetic and residual values for
128 traits from multivariate normal distributions based on these
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correlation matrices. For each trait, we converted the correlation
matrices into covariance matrices by sampling an independent
heritability value for each trait between 0.1 and 0.8. We then
estimated the genetic and residual covariance matrices for sub-
sets of these simulated datasets using each of the four above
methods. In this example, we found that setting K larger (2p)
gave better results, probably because the G and R matrices were
largely uncorrelated and so independent factors were needed
to model the two sets of covariances. Accuracy was reported
as the Pearson correlation between the estimated covariance
parameters and the true covariance parameters (excluding the
variance parameters on the diagonal).

Wheat yield prediction using hyperspectral data. We used data
from a bread wheat breeding trial to demonstrate how MegaL.MM
can leverage “secondary” traits from high-throughput phenotyp-
ing technologies to better predict genetic values of a single target
trait. We downloaded grain yield and hyperspectral reflectance
data from the bread wheat trials at the Campo Experimental
Norman E. Borlaug in Ciudad Obregén, México reported in
Krause et al. (2019) (Mondal et al. 2020). We selected the 2014-
2015 Optimal Flat site-year for our main analysis because it had
among the greatest number of hyperspectral reflectance data
points, and Krause et al. (2019) reported relatively low predictive
accuracy for grain yield in this site-year. Best linear unbiased es-
timates (BLUEs) and best linear unbiased predictors (BLUPs) of
the line means for grain yield (GY) and 62 hyperspectral bands
collected at each of 10 time-points during the growing season,
and genotype data from 8519 markers were provided for 1,092
lines in this trial. All other trials were analyzed in the analysis
presented in Figure S5.

We compared eight methods for predicting the GY trait based
on the genetic marker and hyperspectral data. The first five
were “standard” methods using state-of-the-art models for ge-
nomic prediction. The final three were new models implemented
within the MegaLMM framework.

1. GBLUP: implemented using the R package rrBLUP (Endel-
man 2011), with the genomic relationship matrix K calcu-
lated with the A.mat function of rrBLUP as in Endelman
and Jannink (2012).

2. Bayesian Lasso (BL): implemented using the R package BGLR
(Perez and de los Campos 2014). We first removed mark-
ers with > 50% missing data, and imputed the remain-
ing missing genotypes with the population mean allele
frequency. We used the default prior parameters for the
Bayesian Lasso in BGLR, and collected 9,000 posterior sam-
ples with a thinning rate of 5 after a 5,000 iteration burnin.

3. RKHS: implemented using rrBLUP. We used the same
thinned and imputed genotype dataset as for the BL method
to calculate a genomic distance matrix (D). We also used
the default theta.seq parameter to automatically choose
the scale parameter of the Gaussian kernel.

4. HBLUP: implemented using the R package 1me4qtl. This
replicates the analysis reported by Krause et al. (2019),
which uses the GBLUP method but replaces the genomic re-
lationship matrix described above with H, a hyperspectral
reflectance relationship matrix calculated as H = SST /620,
where S is a matrix of centered and standardized BLUEs of
hyperspectral bands from each timepoint.

905

5. GBLUP+H: implemented in the R package 1me4qtl (Ziyatdi-
nov et al. 2018). This is a two-kernel method, where we
use two relationship matrices: K and H. This method is
analogous to the methods proposed by Krause et al. (2019)
for leveraging the hyperspectral data in prediction; how-
ever, those authors only used two-kernel methods for GXE
prediction across site-years. Since 1me4qt1 does not predict
random effects for un-measured observations, we formed
predictions as: KnoKo_olﬁko + H,mHo_ol 0, where K,;, is the
ny X n, quadrant of K specifying the genomic relationships
among the 711, “new” un-observed lines, Ky, is the 1, x 1,
quadrant of K specifying the genomic relationships among
the “old” observed lines, 1, is the vector of BLUPs for the
genomic random effect, and H;,,, Ho, and iy, are similar
quantities for the hyperspectral random effect.

6. MegalMM-GBLUP: we modeled the combined trait data Y =
[y, S] with the model specified in Eq. (2) using a single ran-
dom effect with relationship matrix K as above, no fixed
effects besides an intercept (X was a column of ones and X,
had zero columns). We ran MegalLMM with K = 100 factors,
“default” priors (see Table S1), and two partitions of the trait
data (the first containing grain yield with the masked train-
ing set as described below, and the second containing all
620 hyperspectral bands with complete data). We collected
500 posterior samples of the quantity: u; = ugy + (UpAq)
at a thinning rate of 2, discarding the first 1,000 iterations
as burn-in.

7. MegaLMM-RKHS: we implemented multi-trait RKHS regres-
sion model using the “kernel-averaging” method proposed
by de Los Campos et al. (2010). We standardized D based
on its mean (squared) value, and placed a uniform prior
on the set of scaling factors h = {1/5,1,5}, which we im-
plemented by calculating three corresponding relationship
matrices K, ..., K3 and by specifying three random effects
in Eq. (2). We again used “default” priors, K = 100 factors,
and treated only the global intercept per-trait as fixed ef-
fects. We collected 500 posterior samples of the quantity:
Zuy = Zug; + Z(UpAq) at a thinning rate of 2, discarding
the first 1000 iterations as burn-in.

8. MegalLMM-GBLUP-CV1: we repeated the MegalMM-GBLUP
method above, but this time without partitioning the trait
data. Instead, we masked both the grain yield and the 620
hyperspectral band data from the testing set so all lines
in the training data had complete data. Predictions of the
genetic values were calculated identically to above.

We used cross-validation to evaluate the prediction accuracy
of each method. We randomly selected 50% of the lines for model
training, 50% for testing, and masked the GY observations for the
testing lines. We fit each model to the partially-masked dataset
and collected the predictions of GY for the testing lines. We es-
timated prediction accuracy as pg = corg(f1,y)/h?(1t) because
the hyperspectral reflectance data were collected on the same
plots as the GY data and therefore non-genetic (i.e., microen-
vironmental) factors that affect both reflectance and yield may
induce non-genetic correlations among traits (Runcie and Cheng
2019). BLUPs were used as the predictand except in the 2016-17
year when the BLUPs were poorly corelated with the BLUEs
suggesing data quality issues. We used a 50-50 training-testing
split of the data to ensure that corg could be estimated accu-
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rately in the testing partition. This cross-validation algorithm
was repeated 20 times with different random partitions.

Maize trait imputation in multi-environment trails. We used data
on maize hybrids from the Genomes-To-Fields Initiative experi-
ments to demonstrate how MegaLMM can leverage genetic corre-
lations across locations in multi-environment trials. We down-
loaded the agronomic data from the 2014-2017 field seasons
from the CyVerse data repository (McFarland et al. 2020) and
corresponding genomic data. We used TASSELS (Bradbury et al.
2007) to build a kinship matrix for each hybrid genotype using
the CenteredIBS routine.

A total of 2012 non-check hybrids with phenotype and
genotype data from 108 trials (i.e., site-years) were available.
We selected four representative agronomic traits: plant height
(cm), grain yield (bushels/acre), days-to-silking (days), and the
anthesis-silking interval (ASI, days). For each trait in each site-
year, we calculated BLUPs for all observed genotypes using the
R package 1me4 (Bates et al. 2015) with Rep and Block:Rep as
fixed effects to account for the experimental design in each field,
and formed them into 2012 x 108 BLUP matrices for each trait.
We then dropped site-years where the BLUP variance was zero,
or which had fewer than 50 tested lines. On average ~ 12% of
hybrid-site-year combinations were observed across each of the
four BLUP matrices. We then used four methods to predict the
BLUPs of hybrids that were not grown in each trial:

1. GBLUP (univariate): missing values were imputed sepa-
rately for each site:year using the mixed.solve function of
the rrBLUP package.

2. GBLUP (env BLUPs): genetic values for each hybrid were
assumed to be constant across all site-years. We estimated
these in two steps. In the first step, we estimated hybrid
main effects treating lines as independent random effects
using 1me4, with site:year included as a fixed effect. In
the second step, we estimated genetic values using the
mixed.solve function of the rrBLUP package.

3. phenix: we used phenix to impute missing observations in
Y using K as a relationship matrix.

4. MegaLMM: we fit the model specified in Eq. (2) to the full
matrix Y, with K = 50 factors and “default”. Here, we
partitioned Y into 4 sets based on year to minimize the
number of missing observations to condition on during the
MCMC. We collected 1000 posterior samples of imputed
values Y = XqB; + FA + ZUg with a thinning rate of 2,
after discarding the first 5000 iterations as burnin.

We estimated prediction accuracy of each method using cross-
validation. For each of 20 replicate cross-validation runs per
model, we randomly masked 20% of the non-missing BLUPs,
and then calculated the Pearson’s correlation between these
“observed” values and the imputed values of each method. Pear-
son’s correlation is appropriate as an estimate of genomic predic-
tion accuracy in this case because different plants were used in
each trial, so there is no non-genetic source of correlation among
site-years that may bias accuracy estimates.
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