

1 **Title**

2 An updated staging system for cephalochordate development: one table  
3 suits them all

4

5 **Authors**

6 João E. Carvalho<sup>1#</sup>, François Lahaye<sup>1</sup>, Luok Wen Yong<sup>2</sup>, Jenifer C. Croce<sup>1</sup>,  
7 Hector Escrivá<sup>3</sup>, Jr-Kai Yu<sup>2,4</sup>, Michael Schubert<sup>1\*</sup>

8

9 **Affiliations**

10 1- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement  
11 de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Villefranche-  
12 sur-Mer, France

13 2- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei,  
14 Taiwan

15 3- Sorbonne Université, CNRS, Biologie Intégrative des Organismes  
16 Marins, Observatoire Océanologique, Banyuls-sur-Mer, France

17 4- Marine Research Station, Institute of Cellular and Organismic Biology,  
18 Academia Sinica, Yilan, Taiwan

19 # Current address: Institute for Research on Cancer and Aging, Nice  
20 (IRCAN), CNRS, INSERM, Université Côte d'Azur, Nice, France

21 \* Corresponding author

22

23 **Correspondence**

24 [michael.schubert@obs-vlfr.fr](mailto:michael.schubert@obs-vlfr.fr)

25 **Abstract**

26 Chordates are divided into three subphyla: Vertebrata, Tunicata and  
27 Cephalochordata. Phylogenetically, the Cephalochordata, more commonly known  
28 as lancelets or amphioxus, constitute the sister group of Vertebrata and Tunicata.  
29 Lancelets are small, benthic, marine filter feeders, and their roughly three dozen  
30 described species are divided into three genera: *Branchiostoma*, *Epigonichthys*  
31 and *Asymmetron*. Due to their phylogenetic position and their stereotypical  
32 chordate morphology and genome architecture, lancelets are key models for  
33 understanding the evolutionary history of chordates. Lancelets have thus been  
34 studied by generations of scientists, with the first descriptions of adult anatomy and  
35 developmental morphology dating back to the 19<sup>th</sup> century. Today, several different  
36 lancelet species are used as laboratory models, predominantly for developmental,  
37 molecular and genomic studies. Surprisingly, however, a universal staging system  
38 and an unambiguous nomenclature for developing lancelets have not yet been  
39 adopted by the scientific community.

40 In this work, we characterized the development of the European amphioxus  
41 (*Branchiostoma lanceolatum*) using confocal microscopy and compiled a  
42 streamlined developmental staging system, from fertilization through larval life,  
43 including an unambiguous stage nomenclature. By tracing growth curves of the  
44 European amphioxus reared at different temperatures, we were able to show that  
45 our staging system permitted an easy conversion of any developmental time into a  
46 specific stage name. Furthermore, comparisons of embryos and larvae from the  
47 European lancelet (*B. lanceolatum*), the Florida lancelet (*B. floridae*), the Chinese  
48 lancelet (*B. belcheri*), the Japanese lancelet (*B. japonicum*) and the Bahamas

49 lancelet (*Asymmetron lucayanum*) demonstrated that our staging system could  
50 readily be applied to other lancelet species.

51 Although the detailed staging description was carried out on developing *B.*  
52 *lanceolatum*, the comparisons with other lancelet species thus strongly suggested  
53 that both staging and nomenclature are applicable to all extant lancelets. We  
54 conclude that this description of embryonic and larval development will be of great  
55 use for the scientific community and that it should be adopted as the new standard  
56 for defining and naming developing lancelets. More generally, we anticipate that  
57 this work will facilitate future studies comparing representatives from different  
58 chordate lineages.

59

60 **Keywords**

61 Amphioxus, Lancelet, *Branchiostoma lanceolatum*, *Branchiostoma floridae*,  
62 *Branchiostoma belcheri*, *Branchiostoma japonicum*, *Asymmetron lucayanum*,  
63 Confocal Microscopy, Embryonic and Larval Development, Evolution and  
64 Development

65

66

67 **1. Introduction**

68 The subphylum Cephalochordata comprises only a few dozen species of  
69 small, lancet-shaped filter-feeders (Bertrand and Escrivá, 2011; Holland, 2015).  
70 The Cephalochordata (commonly referred to as lancelets or amphioxus) belong to  
71 the chordate phylum and are the sister group to all other chordates (Tunicata and  
72 Vertebrata) (Bertrand and Escrivá, 2011; Holland, 2015). Due to this phylogenetic  
73 position and their slow evolutionary rate (Louis et al., 2012), lancelets are  
74 considered valuable proxies for the chordate ancestor, both at the anatomic and  
75 genomic levels (Bertrand and Escrivá, 2011; Holland, 2015). The subphylum  
76 Cephalochordata is subdivided into three genera: *Branchiostoma*, *Epigonichthys*  
77 and *Asymmetron* (Poss and Boschung, 1996; Nishikawa, 2004; Zhang et al., 2006;  
78 Kon et al., 2007; Holland and Holland, 2010; Yue et al., 2014; Carvalho et al.,  
79 2017b; Subirana et al., 2020). Recent analyses of mitochondrial genomes  
80 suggested that the genus *Asymmetron* occupies the basal position and diverged  
81 from the *Epigonichthys* / *Branchiostoma* clade about 258-171 Mya (million years  
82 ago) (Subirana et al., 2020). It was further proposed that the split of the  
83 *Epigonichthys* and *Branchiostoma* lineages occurred about 182-120 Mya and that  
84 speciation within the genus *Branchiostoma*, between *B. belcheri* and *B. japonicum*  
85 versus *B. floridae* and *B. lanceolatum*, took place about 130-85 Mya (Subirana et  
86 al., 2020).

87 The importance of lancelets for understanding chordate evolution has driven  
88 generations of scientists to study their embryos and larvae (Holland and Holland,  
89 2017). An initial description of lancelet development was already performed in the

90 19<sup>th</sup> century, on *B. lanceolatum* material obtained in Naples, Italy (Kovalevsky,  
91 1867). This work was subsequently completed, at the end of the 19<sup>th</sup> and the  
92 beginning of the 20<sup>th</sup> century, by a series of additional surveys on the same  
93 species (Hatschek, 1893; Cerfontaine, 1906; Conklin, 1932). More recently, in the  
94 early 1990s, the early development of *B. japonicum* was the subject of a detailed  
95 characterization by electron microscopy (Hirakow and Kajita, 1990, 1991, 1994). A  
96 similar approach was used to characterize neurulae, larvae and post-metamorphic  
97 specimens of *B. floridae* (Holland and Holland, 1992; Stokes and Holland, 1995).  
98 The most recent description of lancelet development was that of *A. lucayanum*  
99 embryos and larvae using differential interference contrast (DIC) microscopy  
100 (Holland and Holland, 2010; Holland et al., 2015). Taken together, these studies on  
101 species of the two most distantly related lancelet genera have revealed that the  
102 ontogeny of lancelets is a highly coordinated and conserved process. It is thus all  
103 the more surprising that there is currently no universal developmental staging  
104 system available for the members of this subphylum.

105 In the course of the last three decades, lancelets have become important  
106 models for addressing developmental processes from a molecular and genomic  
107 perspective (Bertrand and Escrivá, 2011; Acemel et al., 2016; Carvalho et al.,  
108 2017b; Marlétaz et al., 2018; Simakov et al., 2020). However, unlike for other  
109 developmental model organisms, such as zebrafish, the scientific community is  
110 using different lancelet species for their studies, with the choice being mainly  
111 dependent on the availability of animal resources (Carvalho et al., 2017b).  
112 Husbandry protocols have been established for at least five lancelet species  
113 (Carvalho et al., 2017b), but, due to the absence of a universal staging system, the

114 nomenclature of embryos and larvae obtained with these protocols has become  
115 extremely confusing. While developing lancelets are often named in accordance  
116 with previous reports on the same species (Bertrand et al., 2011; Lu et al., 2012;  
117 Holland, 2015; Annona et al., 2017), it is also not uncommon to indicate the time  
118 after fertilization, usually measured in hours after fertilization (Fuentes et al., 2007;  
119 Bertrand and Escrivá, 2011). However, developmental speed is known to vary  
120 between lancelet species and to depend on the rearing temperature, which is not  
121 the same in each study (Fuentes et al., 2007; Bertrand and Escrivá, 2011). The  
122 absence of an unambiguous nomenclature for developing lancelets artificially  
123 complicates comparisons of results obtained in different species and sometimes  
124 even within the same species, for example, when two laboratories use  
125 incompatible staging styles (Bertrand et al., 2011; Pantzartzi et al., 2017). There is,  
126 therefore, an urgent need to establish an easy and systematic classification for  
127 embryonic and larval development that applies to different lancelet species.

128 To achieve this objective, we illustrated the development of *B. lanceolatum*  
129 using confocal microscopy and established growth curves at different temperatures  
130 based on the number of somites. We further compared embryos and larvae of *B.*  
131 *lanceolatum* with those of other lancelets. By applying and expanding the stage  
132 definitions of Hirakow and Kajita (Hirakow and Kajita, 1990, 1991, 1994) and Lu  
133 and colleagues (Lu et al., 2012), we compiled a streamlined staging system of *B.*  
134 *lanceolatum* development, from fertilization through larval life, with an  
135 unambiguous stage nomenclature. Analyses of the growth curves revealed that our  
136 staging system could be used to easily convert developmental times into  
137 unambiguous stage names, at any given rearing temperature. Furthermore,

138 comparisons between *B. lanceolatum*, *B. floridae*, *B. belcheri*, *B. japonicum* and *A.*  
139 *lucayanum* embryos and larvae demonstrated that the updated staging system  
140 could readily be applied to other lancelet species. We hope that the scientific  
141 community will adopt this universal developmental staging system for lancelets to  
142 facilitate the use of these fascinating animals as laboratory models.

143

## 144 **2. Material and methods**

### 145 **2.1. Animal husbandry and *in vitro* cultures**

146 Ripe *B. lanceolatum* adults were collected by dredging in Argelès-sur-Mer,  
147 France, and retrieved from the sand by sieving. Animals were transported,  
148 quarantined and maintained in Villefranche-sur-Mer as previously described  
149 (Carvalho et al., 2017b). Spawning was induced by a 36-hour thermal shock at  
150 23°C (Fuentes et al., 2004). Sperm and oocytes were collected separately and  
151 fertilization was performed *in vitro*. *B. lanceolatum* embryos and larvae were raised  
152 in the dark at constant temperatures (16°C, 19°C or 22°C) until the desired  
153 developmental stages, and larvae were fed daily with *Tisochrysis lutea* algae  
154 (Carvalho et al., 2017b).

155 Adult *B. floridae* were collected in Tampa Bay, Florida, USA. Animals were  
156 maintained in the laboratory as previously described (Zhang et al., 2007; Yong et  
157 al., 2019). Gametes were obtained either by electric stimulation, heat shock or  
158 spontaneous spawning (Holland and Yu, 2004; Ono et al., 2018). Embryos and  
159 larvae were cultured at constant temperatures (25°C or 30°C) until the desired  
160 stages, and larvae were fed daily with *Isochrysis* sp. algae.

161        Adult *B. belcheri* and *B. japonicum* were collected in Kinmen Island near  
162        Xiamen in southeastern China (Zhang et al., 2013). Animals were maintained as  
163        previously described (Zhang et al., 2007; Yong et al., 2019). Embryos were  
164        obtained through spontaneous spawning in the facility (Zhang et al., 2007).  
165        Embryos and larvae were cultured at a constant temperature (24°C for *B. belcheri*  
166        and 25°C for *B. japonicum*) until the desired stages, and larvae were fed daily with  
167        *Isochrysis* sp. algae.

168        *A. lucayanum* adults were collected in the lagoon between North and South  
169        Bimini, Bahamas. Embryos and larvae were obtained and subsequently cultured at  
170        a constant temperature (27°C) as previously described (Holland and Holland,  
171        2010).

172

## 173        **2.2. Differential interference contrast (DIC) microscopy**

174        Embryos and larvae used for observation and imaging by DIC microscopy  
175        were fixed in 4% PFA in MOPS buffer for 1 hour at room temperature or overnight  
176        at 4°C. Embryos and larvae were subsequently washed twice in ice-cold 70%  
177        ethanol in DEPC-treated water and stored at -20°C until further use. Embryos and  
178        larvae were rehydrated in PBS buffer and mounted in PBS buffer or 80% glycerol  
179        for imaging.

180        DIC microscopy of *B. lanceolatum* embryos and larvae was performed using  
181        a Zeiss Axiophot microscope, equipped with an AxioCam ERc 5s camera (Carl  
182        Zeiss SAS, Marly-le-Roi, France). Images of *B. floridae*, *B. belcheri*, *B. japonicum*  
183        and *A. lucayanum* embryos and larvae were acquired with a Zeiss Axio Imager A1  
184        microscope, equipped with a AxioCam HRc CCD camera (Carl Zeiss SAS, Marly-

185 le-Roi, France). For 64-cell, 128-cell and blastula stages, multiple z-levels were  
186 taken manually. The z-stack images were processed with the Extended-Depth-of-  
187 Field plugin of the ImageJ software using default settings (Schneider et al., 2012),  
188 and panels were subsequently formatted with Adobe Photoshop CS6 (Adobe Inc.,  
189 San Jose, USA).

190

### 191 **2.3. Fluorescent staining and immunohistochemistry**

192 *B. lanceolatum* fertilized egg, cleavage- and gastrula-stage embryos were  
193 stained using FM 4-64 lipophilic dye (Invitrogen, Cergy Pontoise, France) at a final  
194 concentration of 10 µg/ml. The FM 4-64 lipophilic dye is a nontoxic vital dye  
195 commonly used to label plasma membranes and endocytic pathways (Sardet et al.,  
196 2011). Following dye incubation, the embryos were fixed for 1 hour at room  
197 temperature with freshly prepared 4% PFA (paraformaldehyde) in MOPS buffer  
198 (Yu and Holland, 2009). Embryos were washed twice in 70% ethanol and  
199 subsequently rehydrated in PBS buffer (Yu and Holland, 2009). Nuclear DNA  
200 staining was performed for 10 minutes at room temperature using Hoechst dye  
201 (Invitrogen, Cergy Pontoise, France) at a final dilution of 1:5000. Embryos were  
202 mounted in PBS buffer and imaged within 3 hours after staining with the FM 4-64  
203 and Hoechst dyes.

204 For neurula, tailbud and larva stages, the FM 4-64 lipophilic dye yielded  
205 unsatisfactory results. These stages were thus stained by immunohistochemistry  
206 using a primary antibody against aPKC (polarity protein atypical protein kinase C),  
207 which labels structures associated with cell membranes (Patalano et al., 2006;  
208 Prulière et al., 2011). For whole-mount immunohistochemistry *B. lanceolatum*

209 embryos and larvae were fixed overnight at 4°C in freshly prepared ice-cold 4%  
210 PFA in MOPS buffer (Yu and Holland, 2009). Immunohistochemistry was  
211 performed as previously described (Zieger et al., 2018), using the primary antibody  
212 against aPKC (SC216, Santa Cruz Biotechnology, Dallas, USA) at a final dilution of  
213 1:100 and a secondary anti-mouse IgG-heavy and light chain antibody conjugated  
214 with Cy3™ (A90-516C3, Bethyl Laboratories Inc., Montgomery, USA) at a final  
215 dilution of 1:200. Hoechst dye (Invitrogen, Cergy Pontoise, France) at a final  
216 dilution of 1:5000 was used for nuclear DNA staining. Embryos were mounted in  
217 PBS buffer and subsequently imaged.

218 Imaging was systematically carried out on a Leica TCS SP8 confocal  
219 microscope, using a 20x objective (0.75 IMM HC PL APO CORR CS WD =  
220 0,68mm) (Leica Microsystems SAS, Nanterre, France). FM 4-64/DNA staining and  
221 aPKC/DNA staining scans were obtained sequentially. DNA, FM 4-64 and aPKC  
222 staining were excited using, respectively, 405nm, 514nm and 552nm lasers. Series  
223 of optical sections were taken at a z-step interval of 2 µm. The ImageJ software  
224 (Schneider et al., 2012) was subsequently used for image processing and to  
225 generate maximum as well as average projections. Adobe Photoshop CS6 (Adobe  
226 Inc., San Jose, USA) was used to format larger panels requiring the reconstitution  
227 of partial images.

228

#### 229 **2.4. Growth curves and *in situ* hybridization**

230 Developing *B. lanceolatum* embryos were reared at three different  
231 temperatures: 16°C, 19°C and 22°C. At regular intervals, animals were collected  
232 and fixed for subsequent *in situ* hybridization analyses. A 874-bp fragment

233 containing the complete coding sequence of the *B. lanceolatum mrf1* (*myogenic*  
234 *regulatory factor 1*) gene, a member of the *myoD* gene family (Schubert et al.,  
235 2003), was amplified by PCR from cDNA and cloned into the pGEM-T Easy Vector  
236 (GenBank accession number of *B. lanceolatum mrf1*: MT452570). *In situ*  
237 hybridization experiments were carried out with a *mrf1*-specific antisense riboprobe  
238 as previously described (Yu and Holland, 2009; Carvalho et al., 2017c). Following  
239 *in situ* hybridization, embryos and larvae were mounted for DIC microscopy and  
240 imaged as described above.

241 Expression of the *mrf1* gene was used to visualize the somites and thus to  
242 obtain somite pair counts of embryos and larvae reared at different temperatures.  
243 The somite pair counts were used to define a training set of data points for each  
244 rearing temperature (16°C, 19°C and 22°C), hence allowing the calculation of best  
245 natural logarithmic tendency curves using Microsoft Excel (Microsoft Corporation,  
246 Redmond, USA). The curves were subsequently curated and used to define time  
247 intervals for each developmental stage (i.e. cleavage, blastula, gastrula, neurula,  
248 tailbud and larva stages).

249

### 250 **3. Results**

#### 251 **3.1. *Branchiostoma lanceolatum* staging series**

252 Making use of the available *in vitro* culture protocols for developing lancelets  
253 (Carvalho et al., 2017b), the updated staging system was established using *B.*  
254 *lanceolatum* embryos and larvae. Prior to confocal imaging, embryos and larvae  
255 were fixed at the desired stages and labeled with fluorescent probes marking cell

256 membranes and nuclei, hence allowing detailed morphological analyses of  
257 individual developmental stages. In the following, each stage of the updated  
258 staging system will be presented and defined. The stage names are indicative of  
259 the developmental period and are in accordance with previous descriptions of  
260 lancelet development (Hirakow and Kajita, 1990, 1991, 1994; Lu et al., 2012) as  
261 well as with the recently developed ontology for the *Branchiostoma* genus, AMPHX  
262 (Bertrand et al., 2021).

263

264 **3.1.1. Fertilization and cleavage**

265 Lancelets are gonochoric and reproduce by external fertilization. Under  
266 appropriate environmental conditions, gravid males and females respectively  
267 release mature spermatozoa and oocytes into the water column. Prior to spawning,  
268 the mature lancelet oocyte undergoes the first meiotic division with formation of the  
269 first polar body and it is subsequently arrested in the second meiotic metaphase  
270 (Holland and Onai, 2012). Following spawning, the second meiotic division of the  
271 oocyte is triggered by fertilization and is completed within 10 min. The second  
272 meiotic division leads to the formation of the second polar body and the migration  
273 of the maternal chromosomes to the animal pole, which is defined by the position  
274 of the polar body (Fig. 1A, Supplementary Fig. 1A) (Holland and Holland, 1992).  
275 Independent of the entry point, the nucleus of the sperm first migrates to the  
276 vegetal half and only then joins the maternal chromosomes at the animal pole  
277 (Holland, 2015). Very soon after fertilization, a whorl composed of sheets of  
278 endoplasmic reticulum is further formed within the 1-cell stage. This whorl likely  
279 constitutes the germ plasm, since expression of germ cell markers, such as *nanos*

280 and *vasa*, is associated with this structure (Wu et al., 2011). The 1-cell stage  
281 embryo is semi-opaque, due to the high quantity of granules uniformly distributed  
282 throughout the cell, and is surrounded by a membrane called the vitelline layer  
283 (Willey, 1894). As soon as fertilization occurs, the vitelline layer detaches from the  
284 1-cell stage and expands, giving rise to the fertilization envelope (Holland and  
285 Holland, 1989). Cleavage, gastrulation and the first stages of neurulation will occur  
286 within the fertilization envelope (Holland, 2015).

287 Lancelet cleavage is radial holoblastic, meaning that cleavage completely  
288 separates blastomeres and results in early stage embryos with radial symmetry  
289 along the animal-vegetal axis (Barresi and Gilbert, 2019). The first cleavage starts  
290 from the animal pole and gives rise to the 2-cell stage, which is composed of two  
291 identically shaped blastomeres (Fig. 1B). When dissociated, each one of the first  
292 two blastomeres can give rise to a complete animal, but only one of the two  
293 blastomeres inherits the germ plasm (Holland and Onai, 2012). The second  
294 division is meridional and at a right angle to the first one, creating four blastomeres  
295 with approximately equal size, the 4-cell stage (Fig. 1C). Individual blastomeres are  
296 not adhering very strongly at this stage, and their dissociation can lead to the  
297 formation of twins or even quadruplets (Holland and Onai, 2012). Cleavage  
298 continues by an equatorial division, creating four animal and four vegetal  
299 blastomeres at the 8-cell stage, with the former being smaller than the latter (Fig.  
300 1D). The blastomeres are held together by short microvilli and slender filopodial  
301 processes that bridge the space between adjacent blastomeres (insets in Fig.  
302 1D,E) (Hirakow and Kajita, 1990). The 16-cell stage is the result of a meridional  
303 cleavage (Fig. 1E), and the 32-cell stage of a subsequent equatorial cleavage of

304 each blastomere (Fig. 1F). At the 32-cell stage, the embryo is composed of a  
305 single layer of cells forming a central cavity called the blastocoel (Supplementary  
306 Fig. 1B) (Grassé, 1948; Hirakow and Kajita, 1990). The blastomeres will keep  
307 dividing regularly, giving rise to the 64-cell stage (Fig. 1G) and then to the 128-cell  
308 stage (Fig. 1H). The 8<sup>th</sup> cell division cycle, i.e. the transition from 128 cells to 256  
309 cells, which we define as the B stage, is characterized by the initiation of  
310 asynchronous cell division within the embryo (Grassé, 1948; Hirakow and Kajita,  
311 1990) and further marks the formation of the blastula (Fig. 1I). The cells  
312 constituting the blastula will divide further, until the initiation of the gastrulation  
313 process.

314

### 315 **3.1.2. Gastrulation**

316 The cells forming the hollow blastula are not identical in shape and size. The  
317 vegetal blastula cells are larger and hence indicate where the initial flattening of the  
318 gastrula takes place at the G0 stage (Fig. 2A) (Willey, 1894; Holland, 2015). The  
319 vegetal side of the embryo will continue to flatten and bend inward at the G1 stage  
320 (Fig. 2B,B'), hence forming a depression that marks the position of the blastopore.  
321 Thereafter, the vegetal tissue starts to invaginate into the blastocoel at the G2  
322 stage (Fig. 2C,C') (Hirakow and Kajita, 1991). The invaginating cells correspond to  
323 the presumptive endomesoderm, while the non-invaginating cells of the outer layer  
324 constitute the future general and neural ectoderm (Holland and Onai, 2012). As  
325 gastrulation proceeds with further cell divisions, the invaginating cells reduce the  
326 size of the blastocoelic cavity, ultimately leading, at the G3 stage, to a two-layered  
327 gastrula with an archenteron and a blastoporal lip. In this cap-shaped gastrula, the

328 diameter of the blastopore is about half the size of the entire embryo (Fig. 2D,D')  
329 (Hirakow and Kajita, 1991). Subsequent gastrulation movements result in an  
330 expansion of the cavity of the archenteron and in an almost complete loss of the  
331 blastocoelic cavity. This process leads to a narrowing of the blastoporal opening,  
332 which inflects the blastoporal lip, forming a cup-shaped gastrula at the G4 stage  
333 (Fig. 2E,E') and a vase-shaped gastrula at the G5 stage (Fig. 2F,F') (Hirakow and  
334 Kajita, 1991). Starting at the G5 stage, differences between the dorsal and ventral  
335 sides of the embryo become discernable, with the dorsal side beginning to flatten  
336 (Fig. 2F,F') (Willey, 1894). These differences become more pronounced at the G6  
337 stage, as the size of the blastopore continues to decrease and the embryo  
338 continues to elongate (Fig. 2G,G'). At this late gastrula stage, the embryo is bottle-  
339 shaped, and the blastopore starts to incline towards the dorsal side of the embryo,  
340 which is likely a synapomorphic trait of chordates, already present in their last  
341 common ancestor (Willey, 1894).

342 Expression patterns of marker genes have determined that, with the  
343 exception of the tissues located in the immediate vicinity of the blastopore, most of  
344 the gastrula is destined to become the anteriormost region of the amphioxus larva.  
345 This includes the lancelet cerebral vesicle, the anteriormost somites, the pharynx  
346 with mouth and gill slits as well as the anterior section of the notochord (Holland  
347 and Onai, 2012). Transplantation experiments further demonstrated that the dorsal  
348 lip of the blastopore corresponds to a gastrulation organizer, similar or equivalent  
349 to the Spemann-Mangold organizer of vertebrates (Tung et al., 1961, 1962; Le  
350 Petillon et al., 2017).

351

352 **3.1.3. Neurulation**

353 Following gastrulation, ectodermal cells develop cilia (Supplementary Fig.  
354 1C,C'), and the embryo therefore starts to rotate within the fertilization envelope by  
355 ciliary movement (Lu et al., 2012; Holland, 2015). Cilia are also present on the  
356 endomesodermal cells of the archenteron (Hirakow and Kajita, 1991), and these  
357 cilia have been shown to play a role in establishing left-right asymmetry (Blum et  
358 al., 2014; Zhu et al., 2020). At this point in development, the N0 stage, neurulation  
359 starts. The N0 stage embryo is unsegmented and shows a typical diploblastic  
360 organization, with the ectoderm externally and the endomesoderm internally (Fig.  
361 3A). A small blastopore is still visible, and the dorsal ectoderm, destined to become  
362 the neuroectoderm, is flat with a shallow longitudinal groove (Fig. 3A). The  
363 subsequent N1 stage is characterized by the establishment of the first somites  
364 (somite pairs 1 through 3) (Fig. 3B,B'). The mesoderm, located dorsally within the  
365 endomesoderm, forms three folds: one medially that will develop into the notochord  
366 and two laterally that will give rise to the anterior somite pairs (Supplementary Fig.  
367 1C'). At the N1 stage, the somites start pinching off in an anterior to posterior  
368 sequence. At the same stage, the dorsal non-neural ectoderm starts to detach from  
369 the edges of the neural plate. Following their detachment, the ectodermal cells will  
370 migrate over the neural plate using lamellipodia and fuse at the dorsal midline  
371 (Holland et al., 1996). At the end of this process, the neural plate will be completely  
372 covered by non-neural ectoderm, and the neuropore will have been formed  
373 anteriorly (Supplementary Fig. 1C) (Hatschek, 1881, 1893; Holland and Onai,  
374 2012).

375            As neurulation proceeds, the archenteron is no longer in contact with the  
376            exterior, but still communicates with the forming neural tube: the blastopore is  
377            incorporated into the neureneric canal, which connects the neural tube with the  
378            archenteron (Supplementary Fig. 1D,E,E',E''), which becomes the presumptive  
379            gastric cavity (Willey, 1894). The embryo keeps elongating by the addition of new  
380            somites, reaching 4 to 5 somite pairs at the N2 stage (Fig. 3C,C', Supplementary  
381            Fig. 1E'). At this stage, the embryo hatches from the fertilization envelope by the  
382            synthesis and secretion of hatching enzymes and starts swimming freely by ciliary  
383            activity (Stokes and Holland, 1995; Stokes, 1997). The neural plate is V-shaped  
384            (Supplementary Fig. 1E) and the primordium of the notochord is a round mass of  
385            cells extending ventrally along the neural plate (Supplementary Fig. 1E'). Central  
386            nervous system, notochord and somites are clearly distinguishable, although the  
387            boundaries between notochord and somites are not always evident (Fig. 3C',  
388            Supplementary Fig. 1E,E',E'') (Hirakow and Kajita, 1994). The archenteron located  
389            anterior to the first somite pair starts expanding at this stage, forming two  
390            dorsolateral lobes (Supplementary Fig. 1E'').

391            At the N3 stage, the embryo is characterized by 6 to 7 somite pairs (Fig.  
392            3D,D'). The neural tube is closing, but will only become circular at subsequent  
393            developmental stages. The notochord is individualized from the somites, except at  
394            the most anterior tip of the embryo (Hatschek, 1893; Conklin, 1932). Ventral  
395            extensions of the somites start to generate the lateral and ventral coeloms as well  
396            as the musculature of the atrial floor (Holland and Onai, 2012). Furthermore,  
397            expression of early markers of Hatschek's nephridium, such as *pax2/5/8*, becomes  
398            detectable in the mesothelial wall of the first somite on the left side of the embryo

399 (Kozmik et al., 1999, 2007; Carvalho et al., 2017a). The subsequent N4 stage is  
400 characterized by 8 to 9 somite pairs (Fig. 3E,E'). At this stage, the two dorsolateral  
401 lobes that originated from the anterior archenteron have formed two distinctive  
402 head cavities: Hatschek's left and right diverticulum (Willey, 1894; Grassé, 1948).

403 The N5 stage, which is characterized by 10 to 11 somite pairs, is when the  
404 asymmetric formation of somites from the tail bud is initiated (Fig. 3F,F'). Thus,  
405 while early somites are established from endomesoderm internalized during  
406 gastrulation by enterocoely, starting at the N5 stage, somites are formed by  
407 schizocoely from the tail bud (Holland, 2015). At this stage, the left and right  
408 diverticulum are asymmetrically organized: while the left diverticulum roughly  
409 maintains its original form and size, the right diverticulum moves anteriorly, flattens  
410 and increases in size (Willey, 1894). Furthermore, the primordium of the club  
411 shaped gland is first discernable, ventrally in the anterior endoderm on the right  
412 side of the embryo. This developmental stage is further characterized by a  
413 decrease of proliferative activity in somites and notochord, where it becomes  
414 limited to cells at the posterior end of the embryo. However, cell proliferation  
415 continues in the tail bud, in the endoderm and in the anterior neural plate (Holland  
416 and Holland, 2006).

417

#### 418 **3.1.4. Tailbud and larva**

419 Following neurulation, at the T0 stage, the embryo has 12 pairs of somites  
420 and exhibits a transitional morphology between neurula and larva stages (Fig.  
421 4A,A') that resembles a generic vertebrate tailbud stage embryo (Slack et al.,  
422 1993; Marlétaz et al., 2018). At this T0 stage, the anterior portion of the embryo

423 becomes clearly distinct from the posterior one, as the pharyngeal region  
424 commences to grow. In addition, the embryo starts to twitch and bend as its  
425 neuromuscular system slowly becomes operational (Hirakow and Kajita, 1994). At  
426 the subsequent T1 stage, embryos are longer than those at the T0 stage, but this  
427 length difference is not due to the addition of a significant number of new somite  
428 pairs. Instead, it is due to the maturation and elongation of the existing ones, in  
429 particular those located in the anterior half of the embryo (Fig. 4B,B',  
430 Supplementary Fig. 2A,B). The overall shape of the embryo also changes at the T1  
431 stage: the body is becoming slender as the embryo elongates, a distinctive rostral  
432 snout is appearing and the tail fin is starting to form in the caudal ectoderm  
433 (Supplementary Fig. 2B) (Hirakow and Kajita, 1994). The first pigment spot in the  
434 central nervous system appears, located in the ventral wall of the neural tube at the  
435 level of the fifth somite pair (Supplementary Fig. 2B) (Willey, 1894). Concomitant  
436 with the elongation of the rostral snout, the right diverticulum expands anteriorly,  
437 hence forming the snout cavity below the notochord (Supplementary Fig. 2A,C). In  
438 addition, the left diverticulum starts fusing with the ectoderm to form the pre-oral  
439 pit, and the anlage of the mouth is clearly visible. Yet, neither one of these two  
440 structures penetrates the ectoderm and opens to the exterior at this stage (Kaji et  
441 al., 2016).

442 The earliest larva, the L0 stage, already features the main structural  
443 elements that define the asymmetry, along the left-right axis, of all subsequent  
444 larval stages (Fig. 4C). The larval mouth opens on the left side of the developing  
445 animal by fusion of ectoderm and endoderm (Fig. 4C,C') (Kaji et al., 2016; Holland,  
446 2018). The left diverticulum has now penetrated the ectoderm to form the pre-oral

447 pit, also known as Hatschek's pit (Supplementary Fig. 2C). Hatschek's nephridium,  
448 the kidney of larval lancelets, is now detectable between the ectoderm and the  
449 anterior-most somite on the left side of the larva (Hatschek, 1893; Holland, 2018).  
450 On the right side, the club-shaped gland is forming in the anterior endoderm,  
451 opposite to the mouth (Supplementary Fig. 2C) (Goodrich, 1930). Once completely  
452 developed, the club-shaped gland resembles a tube that connects the pharyngeal  
453 lumen on the right with the external environment on the left (Jefferies, 1987). The  
454 opening is located just anterior to the mouth and is characterized by cells bearing  
455 large cilia that create a water current from the exterior into the organ (Olsson,  
456 1983). The club-shaped gland has been shown to secrete mucoproteins and might  
457 thus contribute to larval feeding (Holland, 2015). Another structure detectable on  
458 the right side of the pharynx at the L0 stage is the endostyle. The endostyle forms  
459 from a thickening of the endodermal wall and is located just anterior to the club-  
460 shaped gland (Supplementary Fig. 2C). The endostyle, which secretes mucus  
461 used to trap food particles, has been proposed to be homologous to the vertebrate  
462 thyroid gland (Ogasawara, 2000; Paris et al., 2008; Bertrand and Escrivá, 2011).

463       Although the definitive gill slits of lancelet larvae are found on the right side  
464 of the body (Holland, 2015), the anlage of the first gill slit forms at the ventral  
465 midline at the L0 stage (Supplementary Fig. 2C). The anlage of the anus arises at  
466 the same stage at the posterior end of the gut, which is located just anterior to the  
467 ectodermal caudal fin (Supplementary Fig. 2C) (Jefferies, 1987). However, while  
468 the anlage of the anus also originates at the ventral midline, the definitive anus will  
469 be located on the left side of the body (Jefferies, 1987). The first definitive gill slit  
470 penetrates at the L1 stage (Fig. 4D), and, following the establishment of all the

471 structures referred to above, the L1 larva starts feeding. Following the L1 stage,  
472 new gill slits are added sequentially, hence defining the subsequent developmental  
473 stages: L2 stage for 2 gill slits (Fig. 4E), L3 stage for 3 gill slits (Fig. 4F) and so on,  
474 until the larva enters metamorphosis. The number of gill slits required before a  
475 larva becomes competent to undergo metamorphosis varies between different  
476 lancelet species (Wickstead, 1967; Holland and Yu, 2004; Urata et al., 2007;  
477 Carvalho et al., 2017b).

478

### 479 **3.2. *Branchiostoma lanceolatum* developmental timing**

480 It is well established that temperature directly affects the speed and  
481 potentially even the progression of animal development, in lancelets as well as in  
482 other animals (Fuentes et al., 2007; Ebisuya and Briscoe, 2018). To define the  
483 impact of temperature on *B. lanceolatum* development, we reared embryos and  
484 larvae at three different temperatures (16°C, 19°C and 22°C). We then mapped  
485 their developmental progression, according to our staging system and using somite  
486 pairs as defining landmark. To visualize the somites, embryos were fixed at regular  
487 intervals starting at the N0 stage, and *in situ* hybridization was performed with the  
488 somite marker *mrf1*. For each of the three temperatures, the number of somite  
489 pairs at a given developmental time was subsequently used as a training set  
490 (Supplementary Fig. 3, Supplementary Table 1) to define the growth curve that  
491 best reflected *B. lanceolatum* development. We further extrapolated the time  
492 intervals for the different development stages of our staging system prior to and  
493 following the neurula stages (Fig. 5). The results show that, despite a marked  
494 effect on the speed of development, the shapes of the growth curves, marking the

495 progression of development, are very similar for the three temperatures (Fig. 5).  
496 This indicates that the different temperatures predominantly impact the rate of cell  
497 division during development and not the overall physiology of the embryos and  
498 larvae. It is, however, almost certain that *B. lanceolatum* can only develop within a  
499 certain temperature range. *B. lanceolatum* adults, for example, die after being  
500 cultured at 30°C for two weeks (Fuentes et al., 2007), and it is likely that embryos  
501 and larvae are even more temperature sensitive than adults. The results further  
502 demonstrate that these growth curves can be used to easily transform a  
503 developmental stage expressed as time after fertilization into an unambiguous  
504 stage name.

505

### 506 **3.3. Comparative lancelet developmental staging**

507 We next assessed whether the staging table we elaborated using *B.*  
508 *lanceolatum* (Fig. 6) can be applied to the development of other lancelets. For this,  
509 we compared *B. lanceolatum* embryos and larvae with those from four additional  
510 lancelet species, three from the genus *Branchiostoma* (*B. floridae*, *B. belcheri*, *B.*  
511 *japonicum*) and one from the genus *Asymmetron* (*A. lucayanum*). A total of 13  
512 developmental stages were included in the comparative analysis: unfertilized eggs,  
513 8-cell, 64-cell, 128-cell, B, G1, G4, G6, N1, N2, N4, T1 and L2 (Fig. 7). DIC images  
514 of the different stages revealed a strong overall conservation of the morphology of  
515 the five species. However, differences were detected in the overall size of the  
516 developing lancelets. The unfertilized egg of *B. floridae*, for example, is significantly  
517 larger than those of the other analyzed species. The diameter of the *B. floridae* egg  
518 is about 25% larger than that of *B. lanceolatum*, 18% larger than that of *B. belcheri*,

519 22% larger than that of *B. japonicum* and 33% larger than that of *A. lucayanum*  
520 (Fig. 7A). Another notable difference is the appearance of pigmentation in the  
521 posterior-most ectoderm, which is detectable as early as the N4 stage in *A.*  
522 *lucayanum*, but only appears at the T1 stage in the *Branchiostoma* species (Fig.  
523 7B,C). In addition, the timing of rostrum and tail fin formation is not strictly  
524 conserved (Fig. 7C). Thus, while the rostrum is clearly elongated in T1 stage *B.*  
525 *lanceolatum*, development of the snout region is much less advanced in the other  
526 species, in particular in *A. lucayanum* (Fig. 7C). The lack of anterior head cavities  
527 in members of the genus *Asymmetron* may at least partially explain this prominent  
528 difference (Holland and Holland, 2010; Holland et al., 2015). Posteriorly, pigmented  
529 cells are detectable in *A. lucayanum* as well as *B. lanceolatum* and *B. belcheri*. In  
530 these three lancelet species, the rudiment of the forming tail fin is also already  
531 present at the T1 stage (Fig. 7C). In the larva, the species-specific differences in  
532 the snout and tail regions become even more accentuated. While *B. lanceolatum*  
533 larvae have a particularly long and thin snout, the rostrum of the other lancelet  
534 species is much less pronounced. At the L2 stage, the tail fins are either pointy (in  
535 *A. lucayanum*, *B. lanceolatum* and *B. belcheri*) or roundish (in *B. floridae* and *B.*  
536 *japonicum*). Previous studies have further shown that, when compared to *B.*  
537 *floridae*, *B. lanceolatum* larvae are characterized by a heterochronic delay of  
538 second gill slit formation and that this delay is not due to differences in  
539 developmental speed (Somorjai et al., 2008).

540 Despite these differences, the defining characters of each developmental  
541 stage that we established in *B. lanceolatum* embryos and larva were conserved in  
542 all other lancelet species. The cleavage, gastrula and neurula stages of the five

543 lancelet species are thus remarkably similar (Fig. 7A,B). Furthermore, the rate of  
544 somite formation as well as the timing of appearance of key morphological features  
545 at the neurula and tailbud stages are comparable (Fig. 7B,C). For example, the N2  
546 stage embryo of all five species is characterized by 4 to 5 somite pairs, a  
547 neuropore and a neureneric canal. Taken together, although there are minor  
548 species-specific differences, the overall development of the five lancelets is highly  
549 conserved and fully compatible with our updated staging and stage nomenclature  
550 systems. We thus expect these systems to be widely applicable to embryos and  
551 larvae of all extant lancelets.

552

#### 553 **4. Discussion**

554 In the present study, we carried out a detailed analysis of the development  
555 of the lancelet *B. lanceolatum* using confocal microscopy and we defined  
556 straightforward staging and nomenclature systems for developing lancelets. We  
557 validated the updated staging system at different rearing temperatures for *B.*  
558 *lanceolatum* and demonstrated that it can be used for staging lancelets from the  
559 genus *Branchiostoma* as well as from the genus *Asymmetron*. This work thus  
560 resolves two fundamental problems for studies carried out in lancelets: (1) the lack  
561 of comparability between embryos and larvae from different species and (2) the  
562 confusion created by varying staging and stage nomenclature systems in a given  
563 species. Importantly, the morphological characters used to define each stage are  
564 generally easy to identify, such as the total number of cells for the cleavage stages,  
565 the initiation of asynchronous cell division for the blastula (B) stage, the shape of

566 the gastrula (G), the number of somite pairs in the neurula (N) and tailbud (T)  
567 stages and the formation of pharyngeal structures for the tailbud (T) and larva (L)  
568 stages. Most of these characters have previously been validated as distinguishing  
569 hallmarks of lancelet development (Kovalevsky, 1867; Hatschek, 1893;  
570 Cerfontaine, 1906; Conklin, 1932; Hirakow and Kajita, 1990, 1991, 1994) and are  
571 also regularly used for the staging of other model organisms (Kimmel et al., 1995;  
572 Richardson and Wright, 2003).

573 Our updated staging system also allowed us to clarify previously unresolved  
574 controversies about lancelet development. One example is the definition of the  
575 blastula stage. Some authors suggested that the blastula is established as soon as  
576 the blastocoel is enclosed by cells (at the 64-cell stage) (Holland and Yu, 2004),  
577 while others proposed that the blastula forms after the 8<sup>th</sup> round of cell divisions  
578 (after the 128-cell stage) (Hirakow and Kajita, 1990). Here, we redefined the B  
579 stage, which is characterized by the initiation of asynchronous cell divisions (at the  
580 transition from 128 cells to 256 cells) and ends with the initial flattening of the  
581 vegetal side of the embryo. In chordates, the first asynchronous cell divisions are  
582 often observed around the mid-blastula transition (MBT) and are thus correlated  
583 with the activation of zygotic gene transcription (McDougall et al., 2019). A detailed  
584 analysis of transcriptomes obtained at different developmental stages suggests  
585 that this is also the case in amphioxus, as the transition from 128 cells to 256 cells  
586 is marked by a strong increase in the expression of genes required for the initiation  
587 of zygotic transcription, including, for example, those encoding nuclear ribonucleic  
588 proteins (Yang et al., 2016).

589 Another ambiguous developmental period is the transition between the  
590 gastrula and the neurula stage, sometimes referred to as a very late gastrula  
591 (Hirakow and Kajita, 1991) or a very early neurula (Lu et al., 2012; Zhang et al.,  
592 2013). We redefined this important stage as N0, corresponding to an embryo with  
593 a small blastopore, which is characteristic for gastrula stages, and a flattened  
594 neural plate, marking the onset of neurulation. We further expanded the  
595 classification of neurulae to six independent N stages, hence allowing more  
596 detailed descriptions of the morphological changes occurring during this crucial  
597 developmental period. Previous descriptions distinguished only three (Hirakow and  
598 Kajita, 1994) or four different N stages (Lu et al., 2012).

599 Another controversial point of lancelet development is the definition of the  
600 larva. Some authors claimed that the larval stage starts when “tissues and cells  
601 prepare for performing their own function” (Hirakow and Kajita, 1994). Alternatively,  
602 the larval stage has been defined by the opening of the mouth and thus by the  
603 moment the animal starts feeding (Holland, 2015). To clarify this issue, we defined  
604 a new developmental period for lancelets that, based on the gestalt of the embryo  
605 at this stage, we called the tailbud (T) stage (Lemaire, 2011). We further defined  
606 the onset of the larval stage (L0) as the moment when the mouth opens, as it has  
607 previously been suggested for lancelets (Holland, 2015) and other animals  
608 (Kimmel et al., 1995; Smith et al., 2008).

609 Significant efforts have been made to develop protocols for maintaining and  
610 spawning adult lancelets in captivity and for manipulating lancelet embryos and  
611 larvae. Thanks to these efforts, lancelets have become attractive laboratory models  
612 (Carvalho et al., 2017b; Su et al., 2020). However, one of the remaining obstacles

613 was the absence of a widely applicable staging system guaranteeing the  
614 comparability of results obtained in different lancelet species. Here, we propose a  
615 complete staging system for developing lancelets. Although the stage descriptions  
616 were carried out in *B. lanceolatum*, our comparisons with other lancelet species  
617 clearly demonstrate that both staging and nomenclature are valid beyond *B.*  
618 *lanceolatum* and are likely applicable to all extant lancelets. Using the defining  
619 characters for each stage, we were thus able to establish a comparative  
620 developmental table for the five lancelet species used in this study: *B. lanceolatum*,  
621 *B. floridae*, *B. belcheri*, *B. japonicum* and *A. lucayanum* (Table 1). In this regard,  
622 this work adds morphological evidence to genomic results suggesting that  
623 lancelets evolve at a very slow rate (Putnam et al., 2008; Igawa et al., 2017;  
624 Marlétaz et al., 2018; Simakov et al., 2020). Taken together, we strongly believe  
625 that this description and organization of embryonic and larval development, along  
626 with the ontology for anatomy and development for the *Branchiostoma* genus  
627 (AMPHX) (Bertrand et al., 2021), should become the standards for the scientific  
628 community in an effort to harmonize research on developing lancelets. We also  
629 anticipate that this updated description of lancelet development will facilitate future  
630 comparative studies between lancelets and other chordates.

631

632

633 **Acknowledgements**

634 The authors are indebted to Linda Z. Holland and Nicholas D. Holland from  
635 the Scripps Institution of Oceanography, La Jolla, USA, for collecting *Asymmetron*  
636 *lucayanum* adults. Janet Chenevert from the Laboratoire de Biologie du  
637 Développement de Villefranche-sur-Mer, Villefranche-sur-Mer, France, kindly  
638 provided the FM 4-64 lipophilic dye and the primary antibody against aPKC as well  
639 as useful technical advice. We would like to thank Estelle Hirsinger from the Institut  
640 de Biologie Paris-Seine, Paris, France, for reading and commenting the  
641 manuscript. We are further grateful to Tzu-Kai Huang and the staff at the Marine  
642 Research Station of the Institute of Cellular and Organismic Biology for technical  
643 assistance. We also thank the Centre de Ressources Biologiques (CRB) of the  
644 Institut de la Mer de Villefranche (IMEV), specifically the Service Aquariologie (SA)  
645 and the Mediterranean Culture Collection of Villefranche (MCCV), and the  
646 Plateforme d'Imagerie par Microscopie (PIM) of the Institut de la Mer de  
647 Villefranche (IMEV), which are supported by EMBRC-France (ANR-10-INBS-02).  
648 JEC was a FCT doctoral fellow (SFRH/BD/86878/2012) and is currently supported  
649 by a FRM fellowship (SPF20170938703). LWY and JKY are supported by  
650 Academia Sinica intramural funds and grants from the Ministry of Science and  
651 Technology, Taiwan (MOST-105-2628-B-001-003-MY3 and MOST-108-2311-B-  
652 001-035-MY3). HE is financed by ANR-16-CE12-0008-01, ANR-17-CE13-0027-02  
653 and ANR-19-CE13-0011. MS is funded by the CNRS.

654

## 655 References

656 Acemel, R. D., Tena, J. J., Irastorza-Azcarate, I., Marlétaz, F., Gómez-Marín, C.,  
657 de la Calle-Mustienes, E., et al. (2016). A single three-dimensional  
658 chromatin compartment in amphioxus indicates a stepwise evolution of  
659 vertebrate Hox bimodal regulation. *Nat. Genet.* 48, 336–341.  
660 doi:10.1038/ng.3497.

661 Annona, G., Caccavale, F., Pascual-Anaya, J., Kuratani, S., De Luca, P., Palumbo,  
662 A., et al. (2017). Nitric Oxide regulates mouth development in amphioxus.  
663 *Sci. Rep.* 7, 8432. doi:10.1038/s41598-017-08157-w.

664 Bertrand, S., Camasses, A., Somorjai, I., Belgacem, M. R., Chabrol, O., Escande,  
665 M.-L., et al. (2011). Amphioxus FGF signaling predicts the acquisition of  
666 vertebrate morphological traits. *Proc. Natl. Acad. Sci. U.S.A.* 108, 9160–  
667 9165. doi:10.1073/pnas.1014235108.

668 Bertrand, S., Carvalho, J. E., Dauga, D., Matentzoglu, N., Daric, V., Yu, J.-K.,  
669 Schubert M., Escrivá H. (2021). The ontology of amphioxus anatomy and  
670 life cycle (AMPHX). *Front. Cell Dev. Biol.* XX:XX.

671 Bertrand, S., and Escrivá, H. (2011). Evolutionary crossroads in developmental  
672 biology: amphioxus. *Development* 138, 4819–4830.  
673 doi:10.1242/dev.066720.

674 Blum, M., Feistel, K., Thumberger, T., and Schweickert, A. (2014). The evolution  
675 and conservation of left-right patterning mechanisms. *Development* 141,  
676 1603–1613. doi:10.1242/dev.100560.

677 Carvalho, J. E., Lahaye, F., Croce, J. C., and Schubert, M. (2017a). CYP26  
678 function is required for the tissue-specific modulation of retinoic acid  
679 signaling during amphioxus development. *Int. J. Dev. Biol.* 61, 733–747.  
680 doi:10.1387/ijdb.170227ms.

681 Carvalho, J. E., Lahaye, F., and Schubert, M. (2017b). Keeping amphioxus in the  
682 laboratory: an update on available husbandry methods. *Int. J. Dev. Biol.* 61,  
683 773–783. doi:10.1387/ijdb.170192ms.

684 Carvalho, J. E., Theodosiou, M., Chen, J., Chevret, P., Alvarez, S., De Lera, A. R.,  
685 et al. (2017c). Lineage-specific duplication of amphioxus retinoic acid  
686 degrading enzymes (CYP26) resulted in sub-functionalization of patterning  
687 and homeostatic roles. *BMC Evol. Biol.* 17, 24. doi:10.1186/s12862-016-  
688 0863-1.

689 Cerfontaine, P. (1906). *Recherches sur le développement de l'Amphioxus*. Impr. H.  
690 Vaillant-Carmanne.

691 Conklin, E. G. (1932). The embryology of amphioxus. *J. Morphol.* 54, 69–151.  
692 doi:10.1002/jmor.1050540103.

693 Ebisuya, M., and Briscoe, J. (2018). What does time mean in development?  
694 *Development* 145. doi:10.1242/dev.164368.

695 Fuentes, M., Benito, E., Bertrand, S., Paris, M., Mignardot, A., Godoy, L., et al.  
696 (2007). Insights into spawning behavior and development of the European  
697 amphioxus (*Branchiostoma lanceolatum*). *J. Exp. Zoolog. B Mol. Dev. Evol.*  
698 308B, 484–493. doi:10.1002/jez.b.21179.

699 Fuentes, M., Schubert, M., Dalfo, D., Candiani, S., Benito, E., Gardenyes, J., et al.  
700 (2004). Preliminary observations on the spawning conditions of the  
701 European amphioxus (*Branchiostoma lanceolatum*) in captivity. *J. Exp.*  
702 *Zoolog. B Mol. Dev. Evol.* 302B, 384–391. doi:10.1002/jez.b.20025.

703 Barresi, M. J. F., and Gilbert, S. F., 2019. *Developmental Biology* Twelfth edition.  
704 2019. Oxford University Press, New York, NY, USA.

705 Goodrich, E. S. (1930). Memoirs: the development of the club-shaped gland in  
706 amphioxus. *J. Cell Sci.* s2-74, 155–164.

707 Grassé, P.-P. (1948). *Traité de zoologie: anatomie, systématique, biologie - Tome*  
708 *XI, Echinodermes - Stomocordes - Procordes*. Paris: Masson & Cie.

709 Hatschek, B. (1881). *Studien über Entwicklung des Amphioxus*. Wien: A. Hölder.

710 Hatschek, B. (1893). *The Amphioxus and its development*, ed. J. Tuckey London:  
711 Swan Sonnenschein & Co.

712 Hirakow, R., and Kajita, N. (1990). An electron microscopic study of the  
713 development of amphioxus, *Branchiostoma belcheri tsingtauense*: cleavage.  
714 *J. Morphol.* 203, 331–344. doi:10.1002/jmor.1052030308.

715 Hirakow, R., and Kajita, N. (1991). Electron microscopic study of the development  
716 of amphioxus, *Branchiostoma belcheri tsingtauense*: the gastrula. *J.*  
717 *Morphol.* 207, 37–52. doi:10.1002/jmor.1052070106.

718 Hirakow, R., and Kajita, N. (1994). Electron microscopic study of the development  
719 of amphioxus, *Branchiostoma belcheri tsingtauense*: the neurula and larva.  
720 *Kaibogaku Zasshi* 69, 1–13.

721 Holland, L. Z. (2015). “Cephalochordata” in *Evolutionary developmental biology of*  
722 *invertebrates*, ed. A. Wanninger (Springer), 91–133.

723 Holland, L. Z., and Holland, N. D. (1992). Early development in the lancelet (=  
724 amphioxus) *Branchiostoma floridae* from sperm entry through pronuclear  
725 fusion: presence of vegetal pole plasm and lack of conspicuous ooplasmic  
726 segregation. *Biol. Bull.* 182, 77–96. doi:10.2307/1542182.

727 Holland, L. Z., and Holland, N. D. (1998). Developmental gene expression in  
728 amphioxus: new insights into the evolutionary origin of vertebrate brain  
729 regions, neural crest, and rostrocaudal segmentation. *Am. Zool.* 38, 647–  
730 658. doi:10.1093/icb/38.4.647.

731 Holland, L. Z., and Onai, T. (2012). Early development of cephalochordates  
732 (amphioxus). *Wiley Interdiscip. Rev. Dev. Biol.* 1, 167–183.  
733 doi:10.1002/wdev.11.

734 Holland, L. Z., and Yu, J.-K. (2004). Cephalochordate (amphioxus) embryos:  
735 procurement, culture, and basic methods. *Methods Cell Biol.* 74, 195–215.

736 Holland, N. D. (2018). Formation of the initial kidney and mouth opening in larval  
737 amphioxus studied with serial blockface scanning electron microscopy  
738 (SBSEM). *EvoDevo* 9, 16. doi:10.1186/s13227-018-0104-3.

739 Holland, N. D., and Holland, L. Z. (1989). Fine structural study of the cortical  
740 reaction and formation of the egg coats in a lancelet (= amphioxus),  
741 *Branchiostoma floridae* (phylum Chordata: subphylum Cephalochordata =  
742 Acrania). *Biol. Bull.* 176, 111–122. doi:10.2307/1541578.

743 Holland, N. D., and Holland, L. Z. (2006). Stage- and tissue-specific patterns of cell  
744 division in embryonic and larval tissues of amphioxus during normal

745 development. *Evol. Dev.* 8, 142–149. doi:10.1111/j.1525-  
746 142X.2006.00085.x.

747 Holland, N. D., and Holland, L. Z. (2010). Laboratory spawning and development of  
748 the Bahama lancelet, *Asymmetron lucayanum* (Cephalochordata):  
749 fertilization through feeding larvae. *Biol. Bull.* 219, 132–141.  
750 doi:10.1086/BBLv219n2p132.

751 Holland, N. D., and Holland, L. Z. (2017). The ups and downs of amphioxus  
752 biology: a history. *Int. J. Dev. Biol.* 61, 575–583. doi:10.1387/ijdb.160395LH.

753 Holland, N. D., Holland, L. Z., and Heimberg, A. (2015). Hybrids between the  
754 Florida amphioxus (*Branchiostoma floridae*) and the Bahamas lancelet  
755 (*Asymmetron lucayanum*): developmental morphology and chromosome  
756 counts. *Biol. Bull.* 228, 13–24. doi:10.1086/BBLv228n1p13.

757 Holland, N. D., Panganiban, G., Henyey, E. L., and Holland, L. Z. (1996).  
758 Sequence and developmental expression of *AmphiDII*, an amphioxus Distal-  
759 less gene transcribed in the ectoderm, epidermis and nervous system:  
760 insights into evolution of craniate forebrain and neural crest. *Development*  
761 122, 2911–2920.

762 Igawa, T., Nozawa, M., Suzuki, D. G., Reimer, J. D., Morov, A. R., Wang, Y., et al.  
763 (2017). Evolutionary history of the extant amphioxus lineage with shallow-  
764 branching diversification. *Sci. Rep.* 7, 1157. doi:10.1038/s41598-017-00786-  
765 5.

766 Jefferies, R. P. S. (1987). *The ancestry of the vertebrates*. Cambridge: Cambridge  
767 University Press.

768 Kaji, T., Reimer, J. D., Morov, A. R., Kuratani, S., and Yasui, K. (2016). Amphioxus  
769 mouth after dorso-ventral inversion. *Zool. Lett.* 2. doi:10.1186/s40851-016-  
770 0038-3.

771 Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., and Schilling, T. F.  
772 (1995). Stages of embryonic development of the zebrafish. *Dev. Dyn.* 203,  
773 253–310. doi:10.1002/aja.1002030302.

774 Kon, T., Nohara, M., Yamanoue, Y., Fujiwara, Y., Nishida, M., and Nishikawa, T.  
775 (2007). Phylogenetic position of a whale-fall lancelet (Cephalochordata)  
776 inferred from whole mitochondrial genome sequences. *BMC Evol. Biol.* 7,  
777 127. doi:10.1186/1471-2148-7-127.

778 Kovalevsky, A. O. (1867). Entwicklungsgeschichte des *Amphioxus lanceolatus*.  
779 *Mém. Académie Impérial Sci. St Pétersbourg* XI.

780 Kozmík, Z., Holland, N. D., Kalousová, A., Páčes, J., Schubert, M., and Holland, L.  
781 Z. (1999). Characterization of an amphioxus paired box gene,  
782 *AmphiPax2/5/8*: developmental expression patterns in optic support cells,  
783 nephridium, thyroid-like structures and pharyngeal gill slits, but not in the  
784 midbrain-hindbrain boundary region. *Development* 126, 1295–1304.

785 Kozmík, Z., Holland, N. D., Kreslova, J., Oliveri, D., Schubert, M., Jonasová, K., et  
786 al. (2007). *Pax–Six–Eya–Dach* network during amphioxus development:  
787 conservation *in vitro* but context specificity *in vivo*. *Dev. Biol.* 306, 143–159.  
788 doi:10.1016/j.ydbio.2007.03.009.

789 Le Petillon, Y., Luxardi, G., Scerbo, P., Cibois, M., Leon, A., Subirana, L., et al.  
790 (2017). Nodal–Activin pathway is a conserved neural induction signal in  
791 chordates. *Nat. Ecol. Evol.* 1, 1192–1200. doi:10.1038/s41559-017-0226-3.

792 Lemaire, P. (2011). Evolutionary crossroads in developmental biology: the  
793 tunicates. *Development* 138, 2143–2152. doi:10.1242/dev.048975.

794 Louis, A., Crollius, H. R., and Robinson-Rechavi, M. (2012). How much does the  
795 amphioxus genome represent the ancestor of chordates? *Brief. Funct.*  
796 *Genomics* 11, 89–95. doi:10.1093/bfgp/els003.

797 Lu, T.-M., Luo, Y.-J., and Yu, J.-K. (2012). BMP and Delta/Notch signaling control  
798 the development of amphioxus epidermal sensory neurons: insights into the  
799 evolution of the peripheral sensory system. *Development* 139, 2020–2030.  
800 doi:10.1242/dev.073833.

801 Marlétaz, F., Firbas, P. N., Maeso, I., Tena, J. J., Bogdanovic, O., Perry, M., et al.  
802 (2018). Amphioxus functional genomics and the origins of vertebrate gene  
803 regulation. *Nature* 564, 64–70. doi:10.1038/s41586-018-0734-6.

804 McDougall, A., Chenevert, J., Godard, B. G., and Dumollard, R. (2019).  
805 “Emergence of embryo shape during cleavage divisions” in *Evo-Devo: Non-*  
806 *model Species in Cell and Developmental Biology* Results and Problems in  
807 Cell Differentiation, eds. W. Tworzydlo and S. M. Bilinski (Cham: Springer  
808 International Publishing), 127–154. doi:10.1007/978-3-030-23459-1\_6.

809 Morov, A. R., Ukitzintambara, T., Sabirov, R. M., and Yasui, K. (2016). Acquisition  
810 of the dorsal structures in chordate amphioxus. *Open Biol.* 6, 160062.  
811 doi:10.1098/rsob.160062.

812 Nishikawa, T. (2004). A new deep-water lancelet (Cephalochordata) from off Cape  
813 Nomamisaki, SW Japan, with a proposal of the revised system recovering  
814 the genus *Asymmetron*. *Zoolog. Sci.* 21, 1131–1136.  
815 doi:10.2108/zsj.21.1131.

816 Ogasawara, M. (2000). Overlapping expression of amphioxus homologs of the  
817 thyroid transcription factor-1 gene and thyroid peroxidase gene in the  
818 endostyle: insight into evolution of the thyroid gland. *Dev. Genes Evol.* 210,  
819 231–242. doi:10.1007/s004270050309.

820 Olsson, R. (1983). Club-shaped gland and endostyle in larval *Branchiostoma*  
821 *lanceolatum* (Cephalochordata). *Zoomorphology* 103, 1–13.  
822 doi:10.1007/BF00312054.

823 Ono, H., Koop, D., and Holland, L. Z. (2018). Nodal and Hedgehog synergize in gill  
824 slit formation during development of the cephalochordate *Branchiostoma*  
825 *floridae*. *Development* 145, dev162586. doi:10.1242/dev.162586.

826 Pantzartzi, C. N., Pergner, J., Kozmikova, I., and Kozmik, Z. (2017). The opsin  
827 repertoire of the European lancelet: a window into light detection in a basal  
828 chordate. *Int. J. Dev. Biol.* 61, 763–772. doi:10.1387/ijdb.170139zk.

829 Paris, M., Escrivá, H., Schubert, M., Brunet, F., Brtko, J., Ciesielski, F., et al.  
830 (2008). Amphioxus postembryonic development reveals the homology of  
831 Chordate metamorphosis. *Curr. Biol.* 18, 825–830.  
832 doi:10.1016/j.cub.2008.04.078.

833 Patalano, S., Prulière, G., Prodon, F., Paix, A., Dru, P., Sardet, C., et al. (2006).  
834 The aPKC–PAR-6–PAR-3 cell polarity complex localizes to the centrosome  
835 attracting body, a macroscopic cortical structure responsible for asymmetric  
836 divisions in the early ascidian embryo. *J. Cell Sci.* 119, 1592–1603.  
837 doi:10.1242/jcs.02873.

838 Poss, S. G., and Boschung, H. T. (1996). Lancelets (Cephalochordata:  
839 Branchiostomatidae): how many species are valid? *Isr. J. Zool.* 42, S13–  
840 S66. doi:10.1080/00212210.1996.10688872.

841 Prulière, G., Cosson, J., Chevalier, S., Sardet, C., and Chenevert, J. (2011).  
842 Atypical protein kinase C controls sea urchin ciliogenesis. *Mol. Biol. Cell* 22,  
843 2042–2053. doi:10.1091/mbc.e10-10-0844.

844 Putnam, N. H., Butts, T., Ferrier, D. E. K., Furlong, R. F., Hellsten, U., Kawashima,  
845 T., et al. (2008). The amphioxus genome and the evolution of the chordate  
846 karyotype. *Nature* 453, 1064–1071. doi:10.1038/nature06967.

847 Richardson, M. K., and Wright, G. M. (2003). Developmental transformations in a  
848 normal series of embryos of the sea lamprey *Petromyzon marinus*  
849 (Linnaeus). *J. Morphol.* 257, 348–363. doi:10.1002/jmor.10119.

850 Sardet, C., McDougall, A., Yasuo, H., Chenevert, J., Pruliere, G., Dumollard, R., et  
851 al. (2011). “Embryological methods in ascidians: the Villefranche-sur-Mer  
852 protocols,” in *Vertebrate Embryogenesis Methods in Molecular Biology*  
853 (Humana Press, Totowa, NJ), 365–400. doi:10.1007/978-1-61779-210-  
854 6\_14.

855 Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). NIH Image to ImageJ:  
856 25 years of image analysis. *Nat. Methods* 9, 671–675.  
857 doi:10.1038/nmeth.2089.

858 Schubert, M., Meulemans, D., Bronner-Fraser, M., Holland, L. Z., and Holland, N.  
859 D. (2003). Differential mesodermal expression of two amphioxus *MyoD*  
860 family members (*AmphiMRF1* and *AmphiMRF2*). *Gene Expr. Patterns* 3,  
861 199–202. doi:10.1016/S1567-133X(02)00099-6.

862 Simakov, O., Marlétaz, F., Yue, J.-X., O’Connell, B., Jenkins, J., Brandt, A., et al.  
863 (2020). Deeply conserved synteny resolves early events in vertebrate  
864 evolution. *Nat. Ecol. Evol.*, 1–11. doi:10.1038/s41559-020-1156-z.

865 Slack, J. M. W., Holland, P. W. H., and Graham, C. F. (1993). The zootype and the  
866 phylotypic stage. *Nature* 361, 490–492. doi:10.1038/361490a0.

867 Smith, M. M., Smith, L. C., Cameron, R. A., and Urry, L. A. (2008). The larval  
868 stages of the sea urchin, *Strongylocentrotus purpuratus*. *J. Morphol.* 269,  
869 713–733. doi:10.1002/jmor.10618.

870 Somorjai, I., Bertrand, S., Camasses, A., Haguenuer, A., and Escrivá, H. (2008).  
871 Evidence for stasis and not genetic piracy in developmental expression  
872 patterns of *Branchiostoma lanceolatum* and *Branchiostoma floridae*, two  
873 amphioxus species that have evolved independently over the course of 200  
874 Myr. *Dev. Genes Evol.* 218, 703–713. doi:10.1007/s00427-008-0256-6.

875 Stokes, M. (1997). Larval locomotion of the lancelet. *J. Exp. Biol.* 200, 1661–1680.

876 Stokes, M. D., and Holland, N. D. (1995). Embryos and larvae of a lancelet,  
877 *Branchiostoma floridae*, from hatching through metamorphosis: growth in  
878 the laboratory and external morphology. *Acta Zool.* 76, 105–120.  
879 doi:10.1111/j.1463-6395.1995.tb00986.x.

880 Su, L., Shi, C., Huang, X., Wang, Y., and Li, G. (2020). Application of  
881 CRISPR/Cas9 nuclease in amphioxus genome editing. *Genes* 11, 1311.  
882 doi:10.3390/genes11111311.

883 Subirana, L., Farsley, V., Bertrand, S., and Escrivá, H. (2020). *Asymmetron*  
884 *lucayanum*: how many species are valid? *PLOS ONE* 15, e0229119.  
885 doi:10.1371/journal.pone.0229119.

886 Tung, T. C., Wu, S. C., and Tung, Y. Y. F. (1961). Experimental studies on neural  
887 induction in amphioxus. *Sci. Sin.* 7, 263–270.

888 Tung, T. C., Wu, S. C., and Tung, Y. Y. F. (1962). The presumptive areas of the  
889 egg of amphioxus. *Sci. Sin.* 11, 629–644.

890 Urata, M., Yamaguchi, N., Henmi, Y., and Yasui, K. (2007). Larval development of  
891 the Oriental lancelet, *Branchiostoma belcheri*, in laboratory mass culture.  
892 *Zoolog. Sci.* 24, 787–797. doi:10.2108/zsj.24.787.

893 Wickstead, J. H. (1967). *Branchiostoma lanceolatum* larvae: some experiments on  
894 the effect of thiouracil on metamorphosis. *J. Mar. Biol. Assoc. U.K.* 47, 49–  
895 59. doi:10.1017/S0025315400033555.

896 Willey, A. (1894). *Amphioxus and the ancestry of the vertebrates*. London:  
897 Macmillan and Co.

898 Wu, H.-R., Chen, Y.-T., Su, Y.-H., Luo, Y.-J., Holland, L. Z., and Yu, J.-K. (2011).  
899 Asymmetric localization of germline markers *Vasa* and *Nanos* during early  
900 development in the amphioxus *Branchiostoma floridae*. *Dev. Biol.* 353, 147–  
901 159. doi:10.1016/j.ydbio.2011.02.014.

902 Yang, K. Y., Chen, Y., Zhang, Z., Ng, P. K.-S., Zhou, W. J., Zhang, Y., et al.  
903 (2016). Transcriptome analysis of different developmental stages of  
904 amphioxus reveals dynamic changes of distinct classes of genes during  
905 development. *Sci. Rep.* 6, 1–9. doi:10.1038/srep23195.

906 Yong, L. W., Kozmikova, I., and Yu, J.-K. (2019). “Using amphioxus as a basal  
907 chordate model to study BMP signaling pathway,” in *Bone Morphogenetic  
908 Proteins: Methods and Protocols* Methods in Molecular Biology, ed. M. B.  
909 Rogers (New York, NY: Springer), 91–114. doi:10.1007/978-1-4939-8904-  
910 1\_8.

911 Yu, J.-K., and Holland, L. Z. (2009). Amphioxus whole-mount *in situ* hybridization.  
912 *Cold Spring Harb. Protoc.* 2009, pdb.prot5286. doi:10.1101/pdb.prot5286.

913 Yue, J.-X., Yu, J.-K., Putnam, N. H., and Holland, L. Z. (2014). The transcriptome  
914 of an amphioxus, *Asymmetron lucayanum*, from the Bahamas: a window  
915 into chordate evolution. *Genome Biol. Evol.* 6, 2681–2696.  
916 doi:10.1093/gbe/evu212.

917 Zhang, Q.-J. (2017). Taxonomy of genus *Branchiostoma* in Xiamen waters and  
918 continuous breeding of two lancelets in the laboratory. [Doctoral  
919 dissertation, Xiamen University, Xiamen, China].

920 Zhang, Q.-J., Luo, Y.-J., Wu, H.-R., Chen, Y.-T., and Yu, J.-K. (2013). Expression  
921 of germline markers in three species of amphioxus supports a preformation  
922 mechanism of germ cell development in cephalochordates. *EvoDevo* 4, 17.  
923 doi:10.1186/2041-9139-4-17.

924 Zhang, Q.-J., Sun, Y., Zhong, J., Li, G., Lü, X.-M., and Wang, Y.-Q. (2007).  
925 Continuous culture of two lancelets and production of the second filial  
926 generations in the laboratory. *J. Exp. Zoolog. B Mol. Dev. Evol.* 308B, 464–  
927 472. doi:10.1002/jez.b.21172.

928 Zhang, Q.-J., Zhong, J., Fang, S.-H., and Wang, Y.-Q. (2006). *Branchiostoma*  
929 *japonicum* and *B. belcheri* are distinct lancelets (Cephalochordata) in  
930 Xiamen waters in China. *Zoolog. Sci.* 23, 573–579. doi:10.2108/zsj.23.573.

931 Zhu, X., Shi, C., Zhong, Y., Liu, X., Yan, Q., Wu, X., et al. (2020). Cilia-driven  
932 asymmetric Hedgehog signalling determines the amphioxus left-right axis by  
933 controlling *Dand5* expression. *Development* 147. doi:10.1242/dev.182469.

934 Zieger, E., Garbarino, G., Robert, N. S. M., Yu, J.-K., Croce, J. C., Candiani, S., et  
935 al. (2018). Retinoic acid signaling and neurogenic niche regulation in the  
936 developing peripheral nervous system of the cephalochordate amphioxus.  
937 *Cell. Mol. Life Sci.*, 1–23. doi:10.1007/s00018-017-2734-3.

938

939 **Figure captions**

940 **Figure 1** – *Branchiostoma lanceolatum* fertilization, cleavage and blastula stages.

941 Embryos are stained with the lipophilic dye FM 4-64 (magenta). (B,C) Animal pole

942 views. (D-I) Animal pole is up. Maximum projections of confocal z-stacks of *B.*

943 *lanceolatum* embryos at the (A) 1 cell-stage, (B) 2-cell stage, (C) 4-cell stage, (D)

944 8-cell stage, (E) 16-cell stage, (F) 32-cell stage, (G) 64-cell stage, (H) 128-cell

945 stage and (I) blastula stage. Insets in (D) and (E) show slender filopodia between

946 blastomeres. In (H,I), Hoechst DNA staining (cyan) shows synchronous cell

947 divisions at the 128-cell stage (H) and asynchronous cell divisions at the forming

948 blastula B-stage (I), with a white dashed line highlighting a cell in telophase and a

949 green dashed line highlighting a cell following cytokinesis. Abbreviations: m –

950 maternal DNA; p – paternal DNA. Scale bar: 50  $\mu$ m.

951 **Figure 2** – *Branchiostoma lanceolatum* gastrula stages. Embryos are stained with

952 the lipophilic dye FM 4-64 (magenta) and with the DNA dye Hoechst (cyan). Animal

953 pole and anterior pole are to the left and dorsal side is up. (A-G) Maximum

954 projections of confocal z-stacks of entire embryos (B'-G'). Single z-stacks

955 highlighting the inner morphology of the developing gastrula. (A) G0 stage, (B,B')

956 G1 stage, (C,C') G2 stage, (D,D') G3 stage, (E,E') G4 stage, (F,F') G5 stage,

957 (G,G') G6 stage. In (A), the yellow arrowhead indicates the vegetal cells. In (F), the

958 yellow arrow highlights the flattened side of the gastrula embryo. In (G'), the yellow

959 lines delimit the upper and lower lips of the blastopore, and the dashed line

960 indicates the midline of the embryo. Scale bar: 50  $\mu$ m.

961 **Figure 3** – *Branchiostoma lanceolatum* neurula stages. Embryos are labeled for  
962 aPKC (magenta) and stained with the DNA dye Hoechst (cyan). Anterior pole is to  
963 the left and dorsal side is up. (A-G) Average projections for aPKC (magenta) and  
964 maximum projections for Hoechst DNA staining (cyan) of confocal z-stacks of  
965 entire embryos. (B'-G') Single z-stacks highlighting the inner morphology of the  
966 developing neurula. (A) N0 stage, (B,B') N1 stage, (C,C') N2 stage, (D,D') N3  
967 stage, (E,E') N4 stage, (F,F') N5 stage. In (B'-F'), white dashed lines delineate the  
968 somites, the yellow arrowheads indicate the posterior limit of the somites and the  
969 green arrowheads highlight the posterior limit of somites newly established by  
970 enterocoely (C'-E') or newly formed by schizocoely (F'). Scale bar: 100  $\mu$ m.

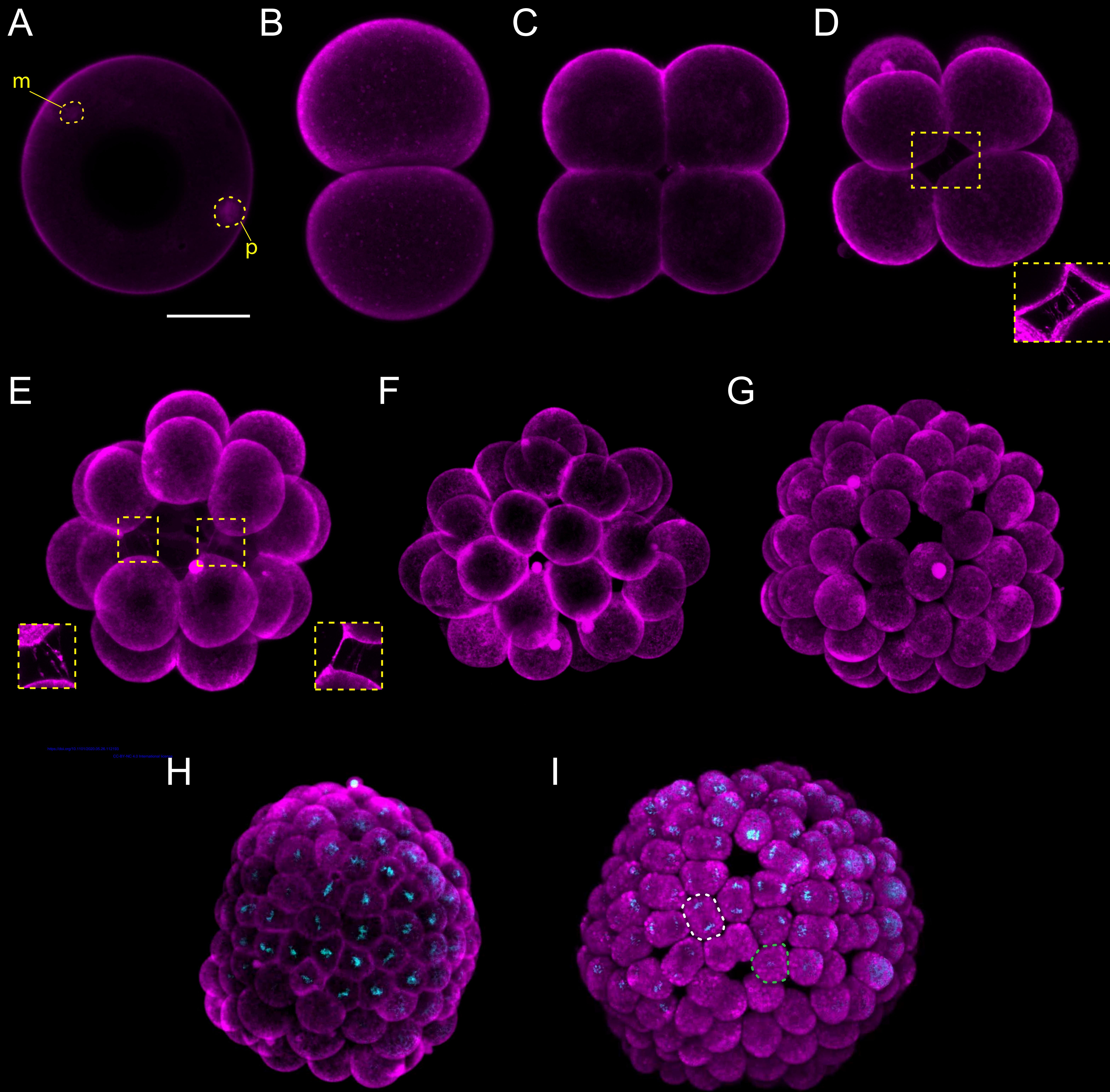
971 **Figure 4** – *Branchiostoma lanceolatum* tailbud and larval stages. Embryos and  
972 larvae are labeled for aPKC (magenta) and stained with the DNA dye Hoechst  
973 (cyan). Average projections for aPKC (magenta) and maximum projections for  
974 Hoechst DNA staining (cyan) of confocal z-stacks of entire embryos and larvae.  
975 Anterior pole is to the left and dorsal side is up. (A,A') T0 stage, (B,B') T1 stage,  
976 (C) L0 stage, (D) L1 stage, (E) L2 stage, (F) L3 stage. (A',B') Single z-stacks  
977 highlighting the inner morphology of the developing tailbud. Insets in (A-F) highlight  
978 the pharyngeal region. In (A',B'), yellow arrowheads indicate the posterior limits of  
979 the somites. Abbreviations: gs1 – 1<sup>st</sup> gill slit; gs2 – 2<sup>nd</sup> gill slit; gs3 – 3<sup>rd</sup> gill slit; m –  
980 mouth; ma – mouth anlagen. Scale bar: 100  $\mu$ m.

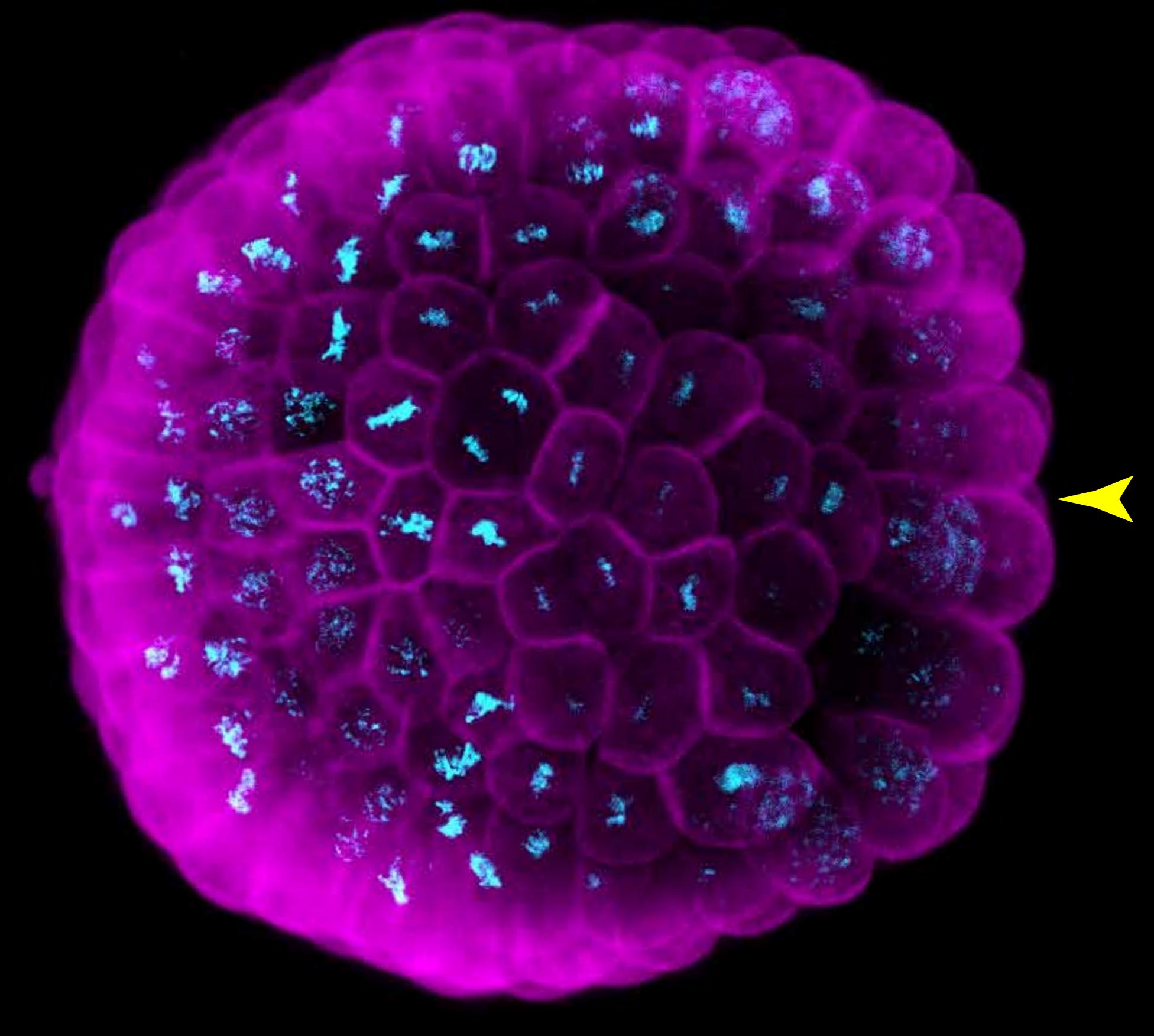
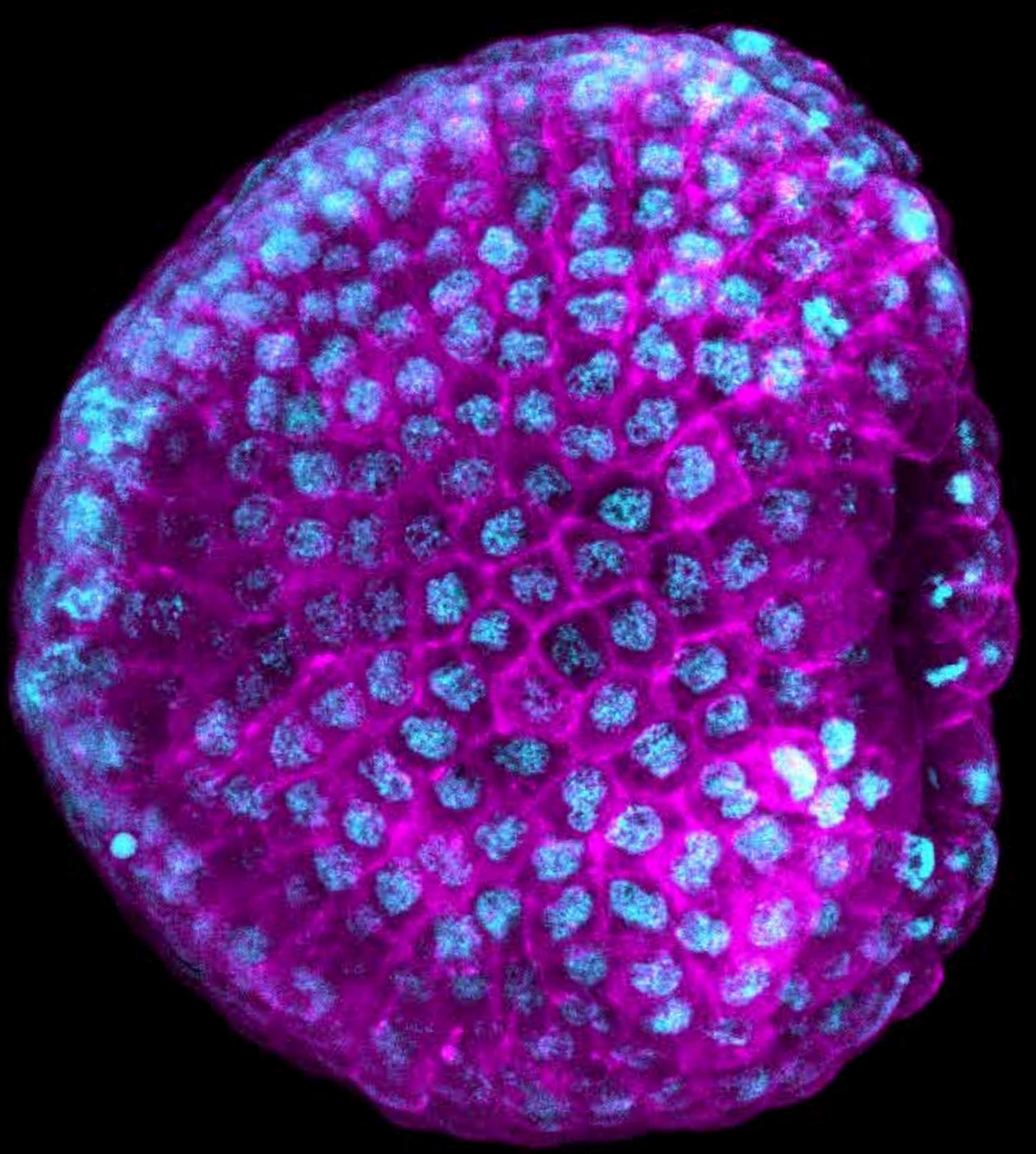
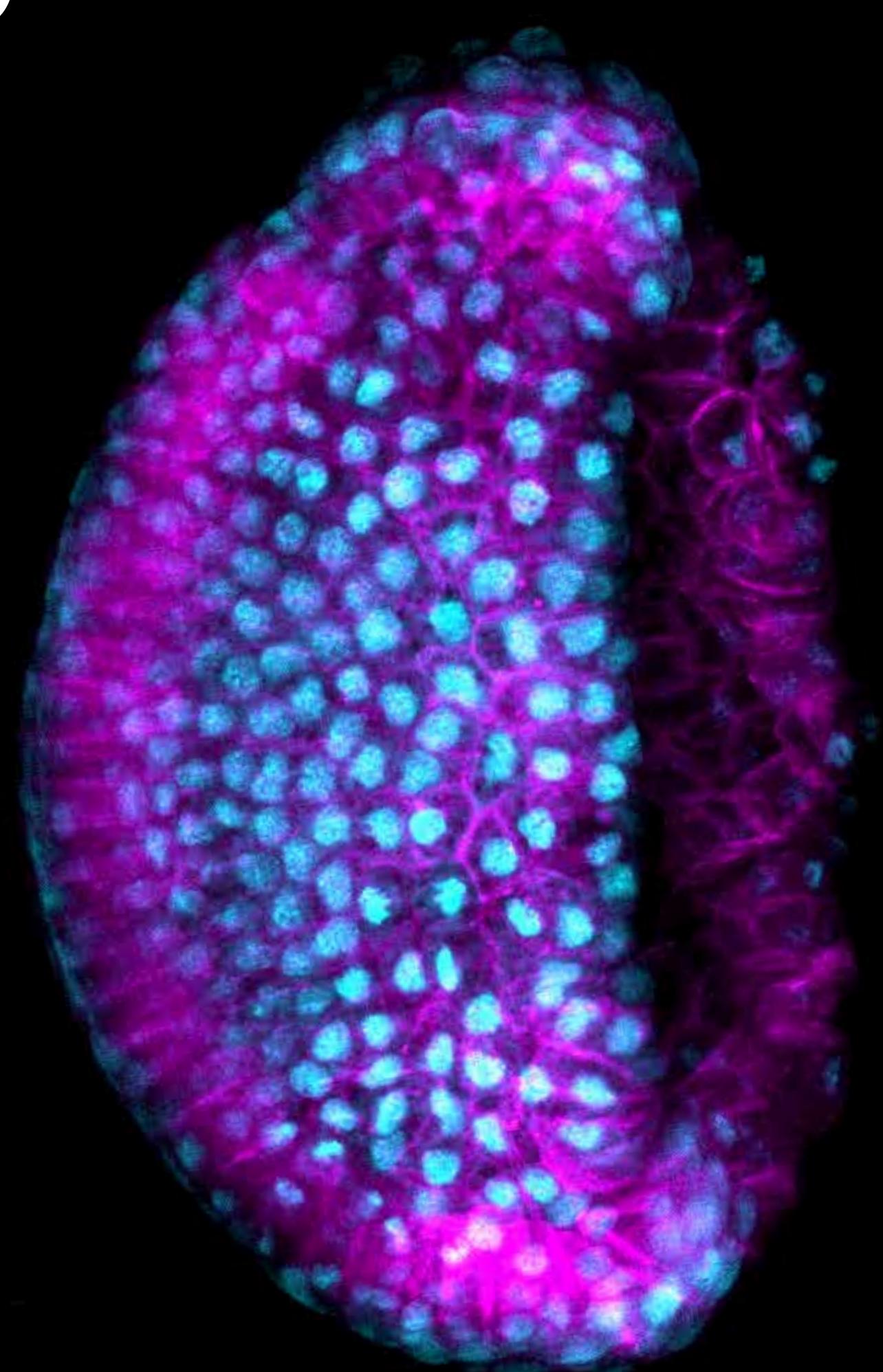
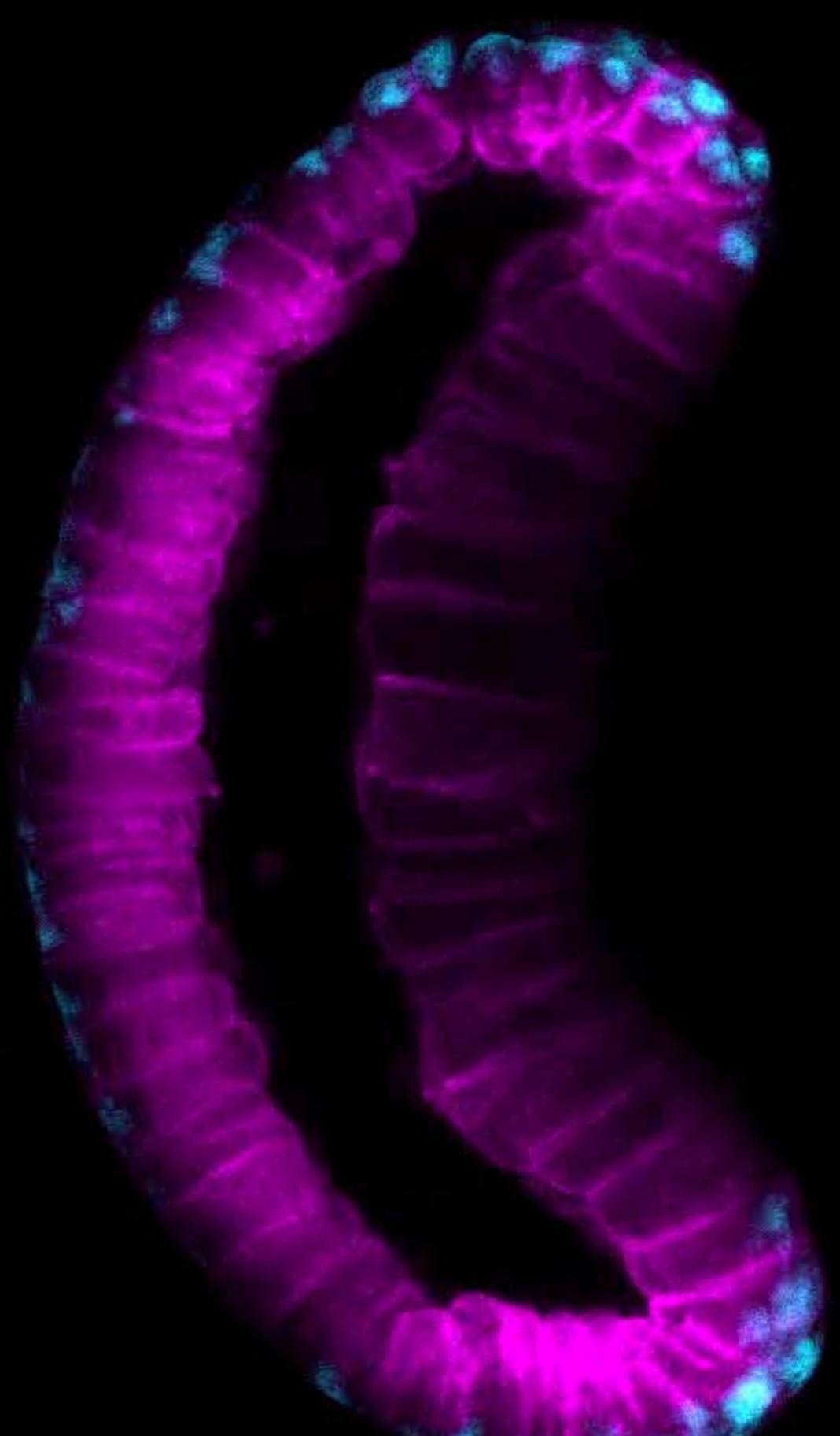
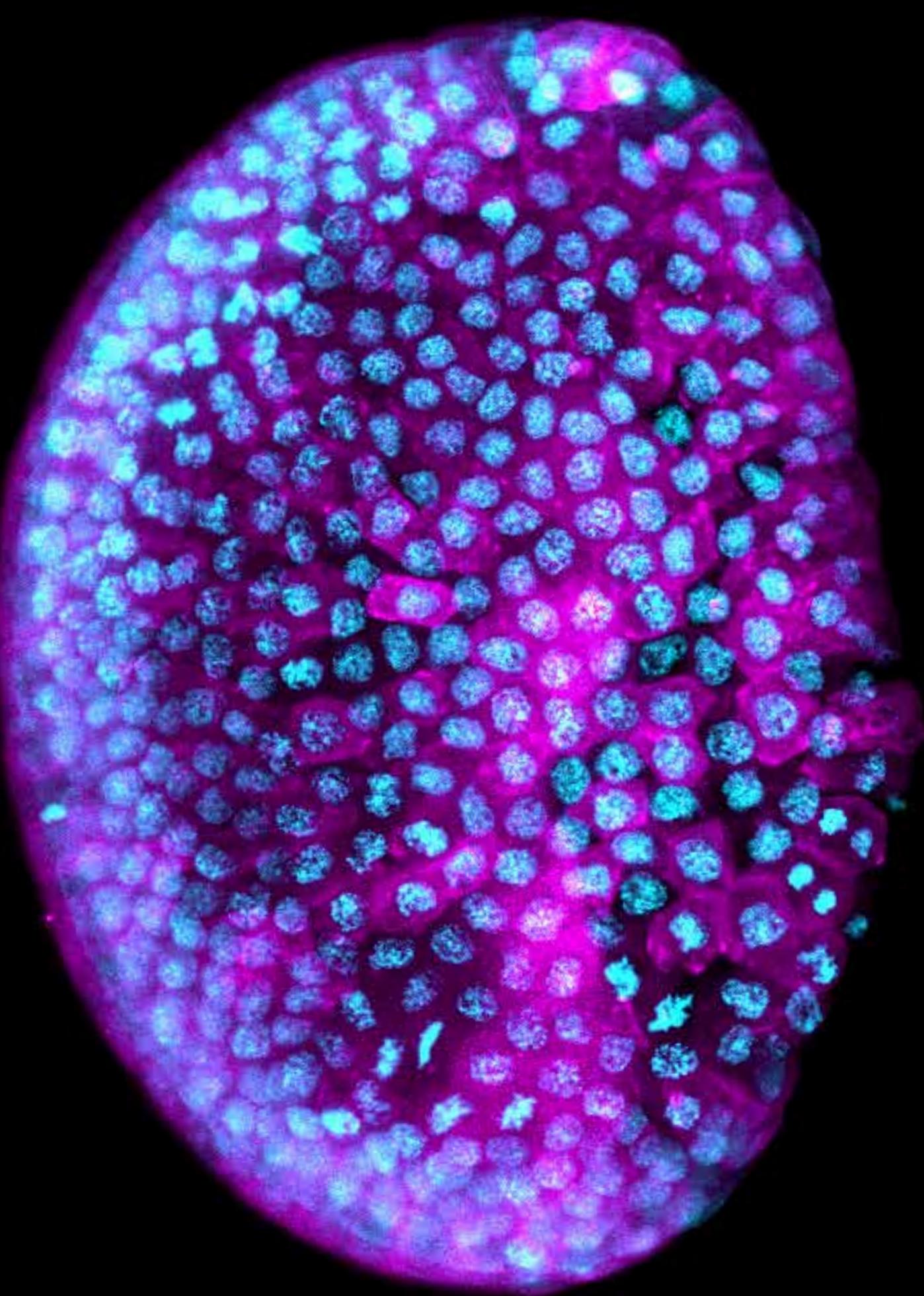
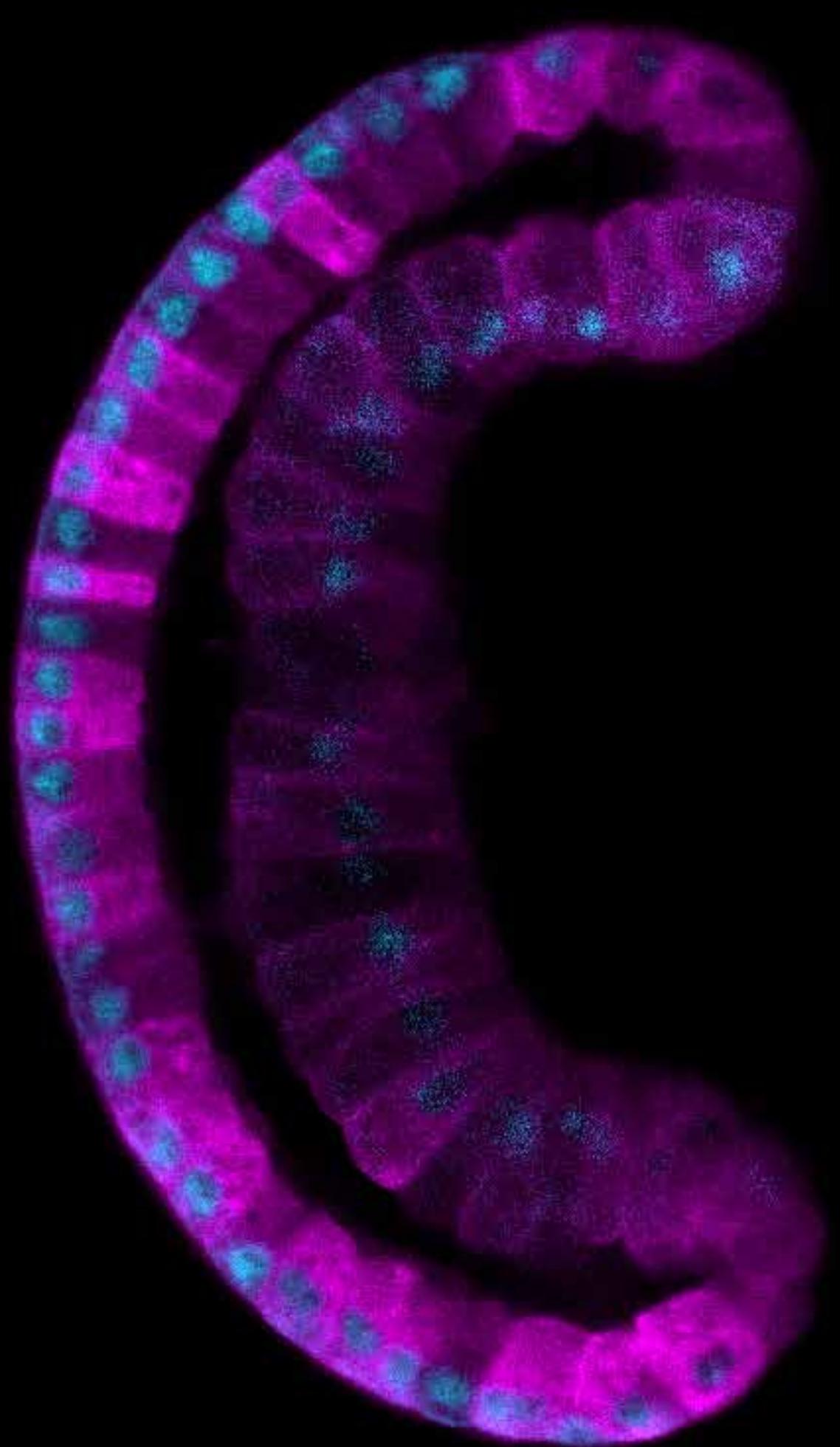
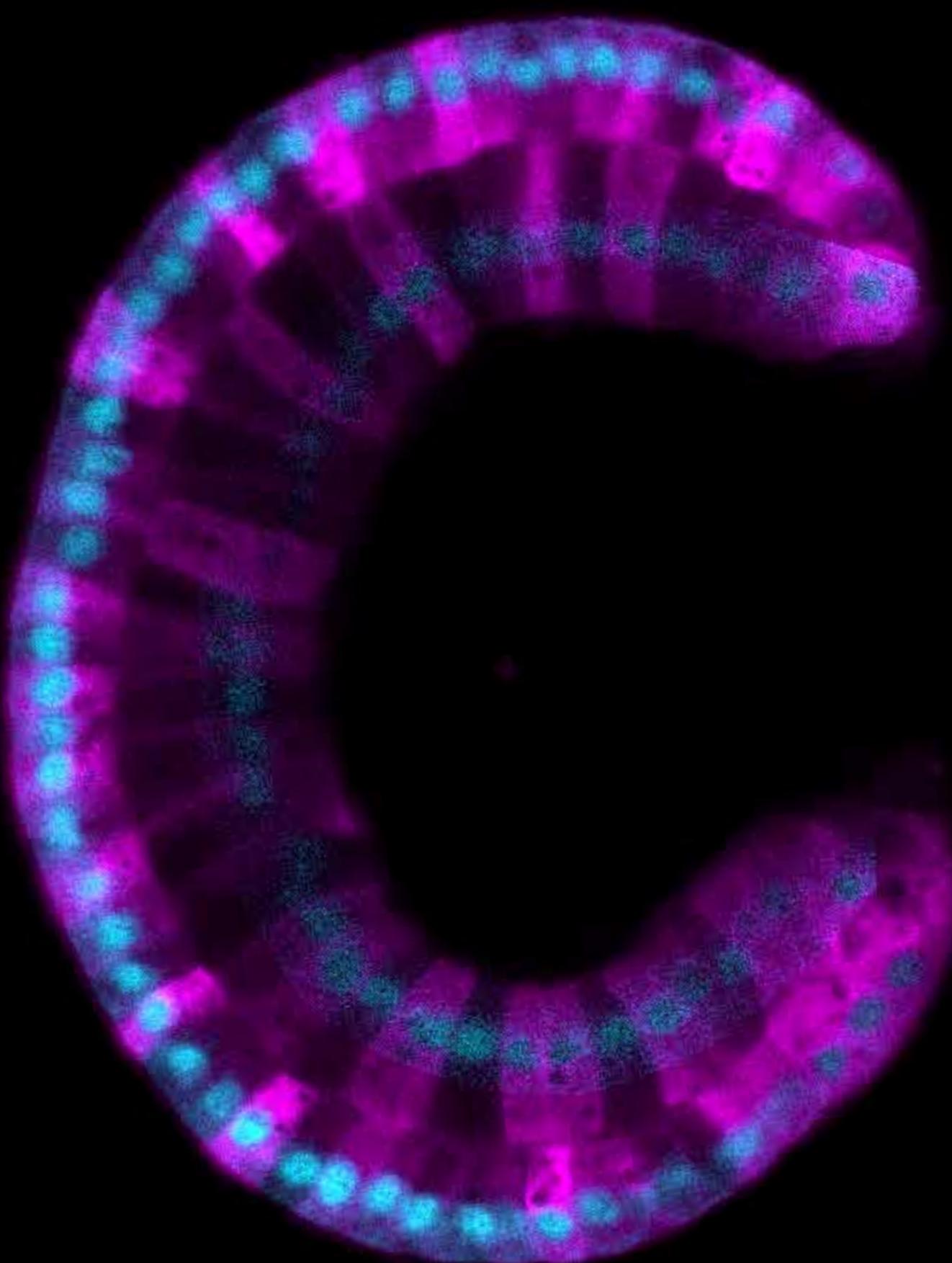
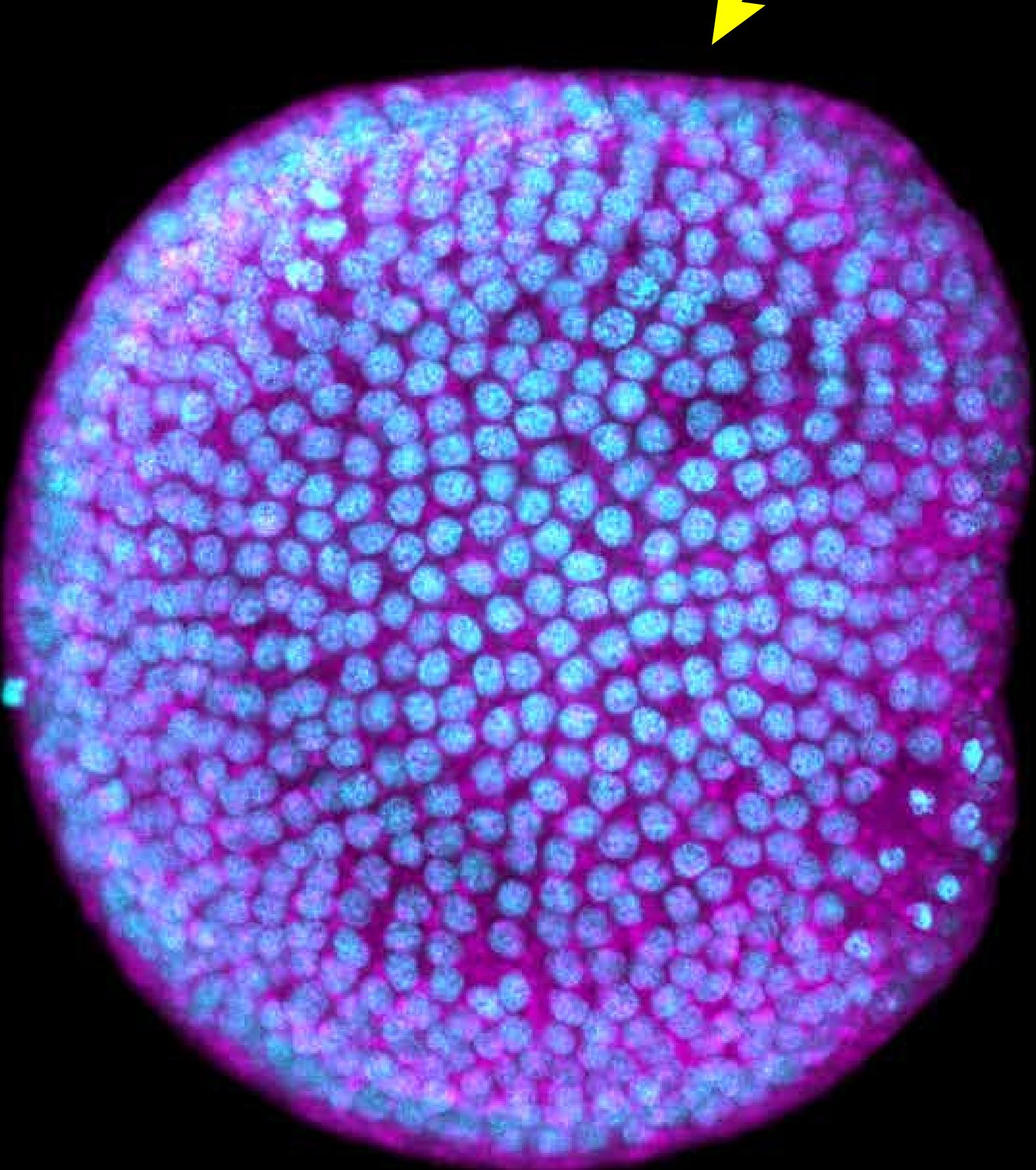
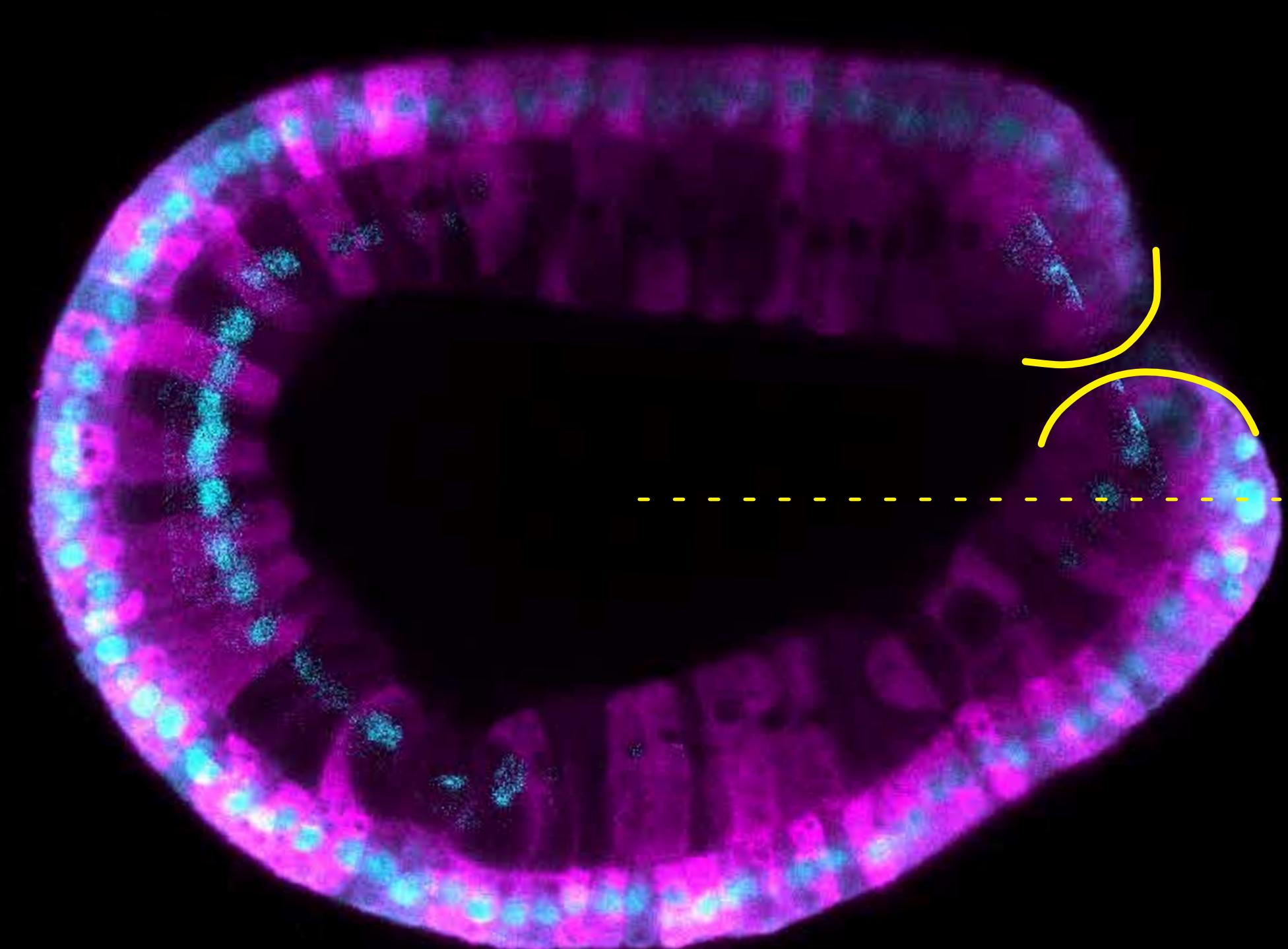
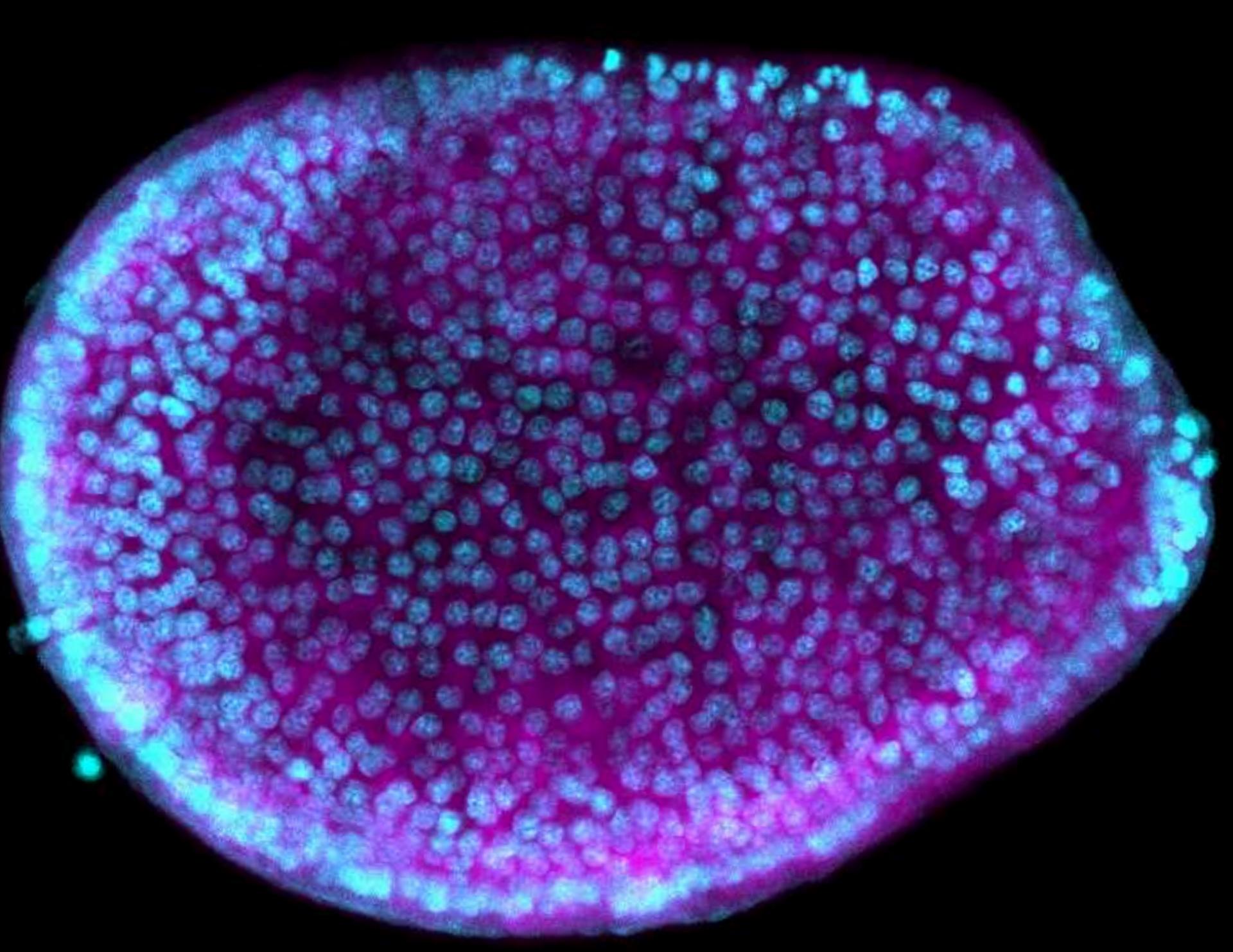
981 **Figure 5** – Growth curves of *Branchiostoma lanceolatum* embryos and larvae at  
982 16°C, 19°C and 22°C. Animal schematics and stage nomenclatures are according  
983 to the staging system detailed in Figure 6. Tendency adjusted curves were  
984 obtained from the training sets and are defined by the equations: [y=12.403ln(x) -

985 36.493] for 16°C; [y=12.466ln(x) - 30.812] for 19°C; [y=11.25ln(x) - 24.354] for  
986 22°C. These curves use natural logarithms and do thus not reach 0 hours post  
987 fertilization (0 hpf). The graphs were simplified accordingly. Abbreviations: hpf –  
988 hours post fertilization.

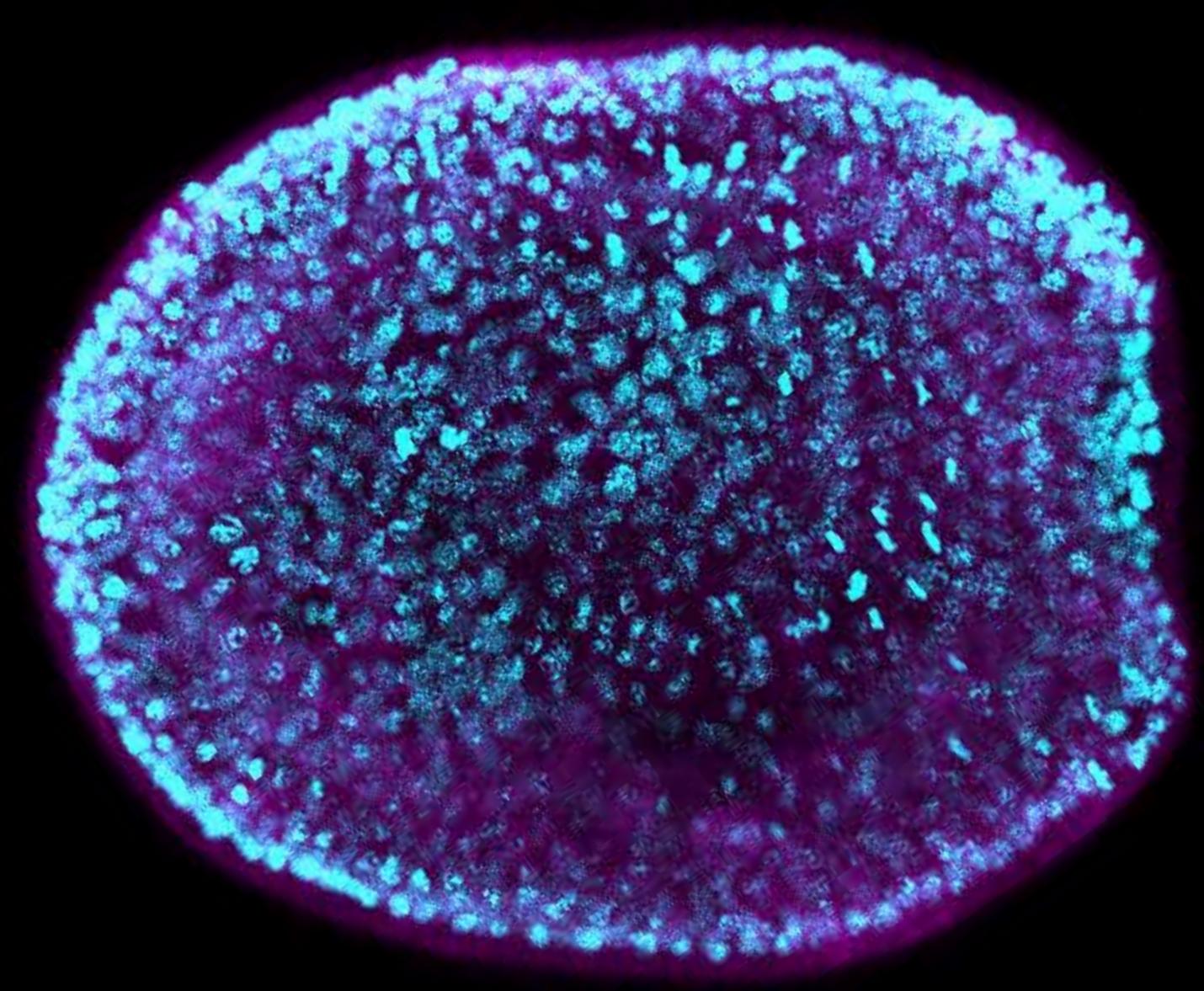
989 **Figure 6** – Schematic representation of *Branchiostoma lanceolatum* development.  
990 Representations from the 1-cell stage to the L0 stage. Animal pole and anterior  
991 pole are to the left and dorsal side is up in lateral views. Drawings adapted from  
992 Hatscheck's original descriptions of *Branchiostoma lanceolatum* development  
993 (Hatschek, 1881).

994 **Figure 7** – Comparison of lancelet development. Five species were analyzed:  
995 *Branchiostoma lanceolatum*, *Branchiostoma floridae*, *Branchiostoma belcheri*,  
996 *Branchiostoma japonicum* and *Asymmetron lucayanum*. (A) cleavage, blastula and  
997 gastrula stages, (B) neurula stages, (C) tailbud and larva stages. Cladograms  
998 represent the evolutionary relationship between the different species (Igawa et al.,  
999 2017). The green lines in (B) trace the somites on one side of the neurula, with  
1000 dashed green lines highlighting forming somites. The green ovals in (C) indicate  
1001 the gill slits of the larva. Scale bars: 100 µm.

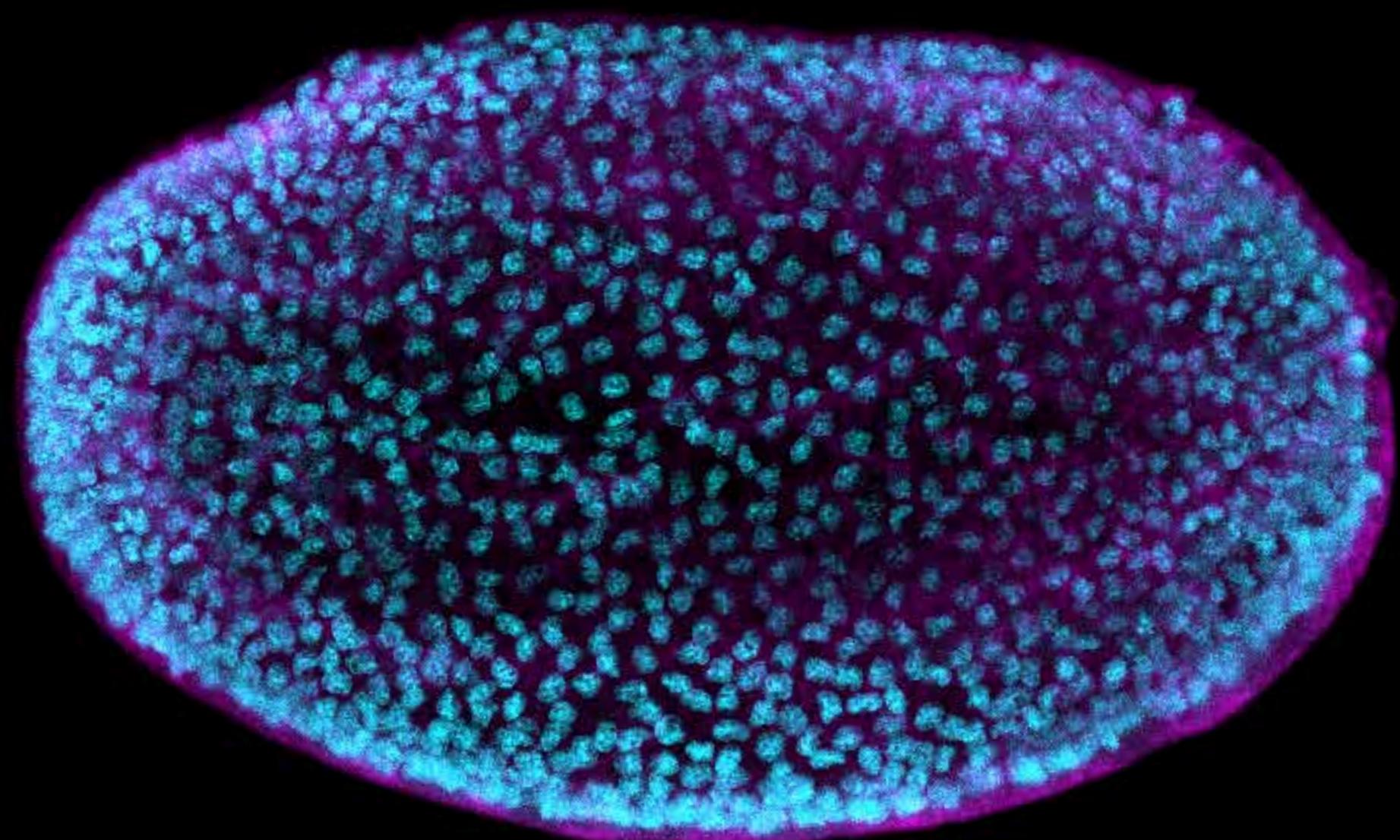

1002 **Table 1** – Comparison of lancelet development. Species: *Branchiostoma*  
1003 *lanceolatum*, *Branchiostoma floridae*, *Branchiostoma belcheri*, *Branchiostoma*  
1004 *japonicum*, *Asymmetron lucayanum*. Data origin: <sup>1</sup> Current study, <sup>2</sup> Stokes and  
1005 Holland, 1995; Holland and Holland, 1998; Holland and Yu, 2004; Holland et al.,  
1006 2015, <sup>3</sup> Zhang, 2017, <sup>4</sup> Hirakow and Kajita, 1990, 1991, 1994; Morov et al., 2016, <sup>5</sup>  
1007 Holland and Holland, 2010; Holland et al., 2015. “/” indicates that different  
1008 developmental times have been reported.











1009 **Supplementary Figure 1** – Detailed highlights of specific structures of  
1010 *Branchiostoma lanceolatum* development during cleavage and neurula stages.  
1011 (A,B) Embryos are stained with the lipophilic dye FM 4-64 (magenta). (C-E)  
1012 Embryos are labeled for aPKC (magenta) and stained with the DNA dye Hoechst  
1013 (cyan). The anterior pole is to the left, and, on the dorsal views, the right side is up  
1014 (C,C',E-E''), while, on the lateral view, the dorsal side is up (D). Maximum  
1015 projections of confocal z-stacks of *B. lanceolatum* embryos at the 1 cell-stage (A),  
1016 32-cell stage (B), N1 stage (C,C') and N2 stage (D-E''). Insets correspond to  
1017 regions highlighted with dotted rectangles and are shown at 2x magnification.  
1018 Abbreviations: bc – blastocoel; bp – blastopore; cv – cerebral vesicle; m – maternal  
1019 DNA; nc – neureenteric canal; np – neuropore; nrt – neural tube; nt – notochord; p –  
1020 paternal DNA; pb1 – 1<sup>st</sup> polar body; pb2 – 2<sup>nd</sup> polar body; phc – presumptive head  
1021 cavities; s1-5 – somite pairs 1 to 5; sm – somitic mesoderm. Scale bar: 50 µm.

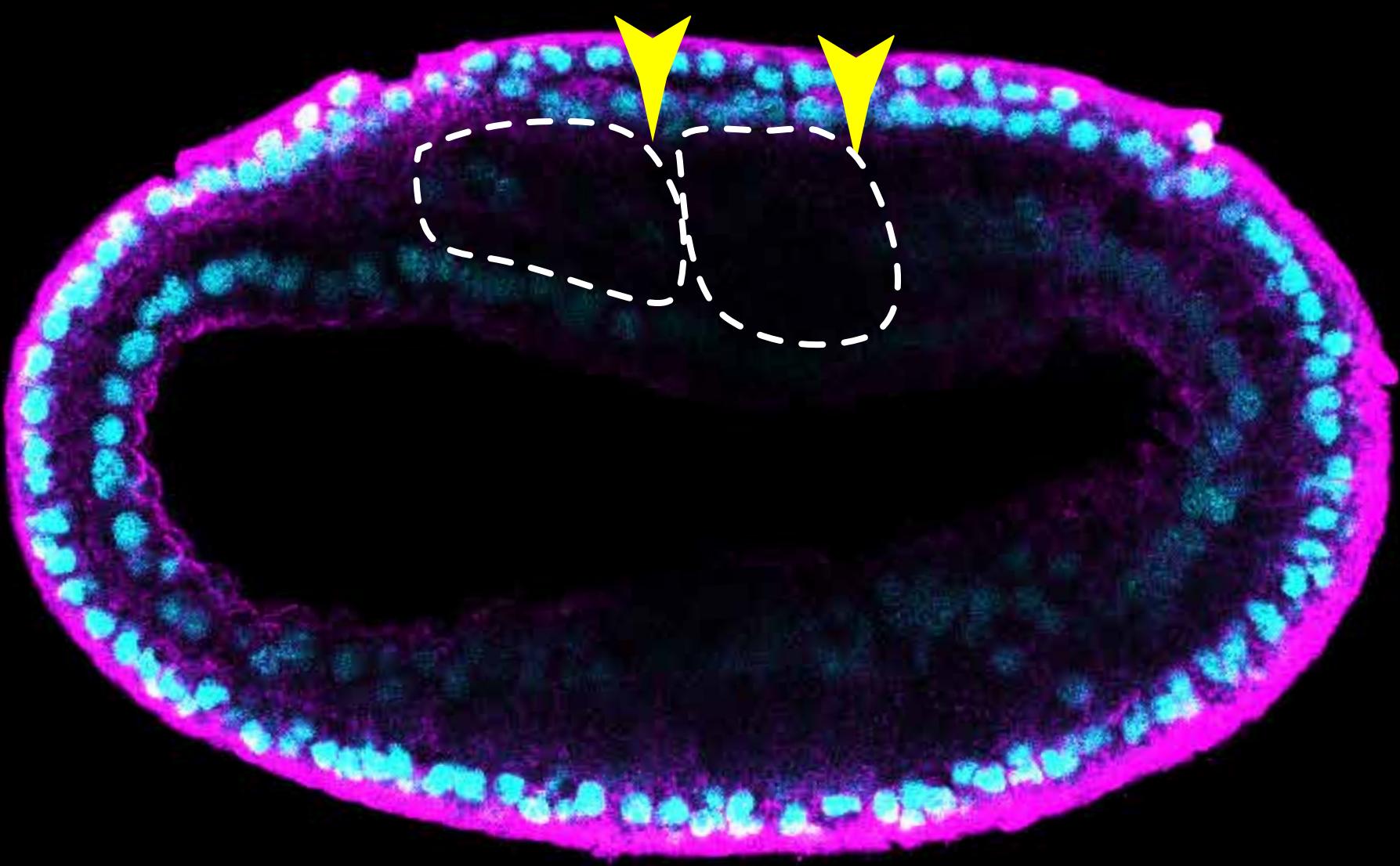
1022 **Supplementary Figure 2** – Detailed highlights of specific structures of  
1023 *Branchiostoma lanceolatum* development during tailbud and larval stages.  
1024 Embryos and larvae are labeled for aPKC (magenta) and stained with the DNA dye  
1025 Hoechst (cyan). Embryos and larvae are in lateral views, the anterior pole is to the  
1026 left and the dorsal side is up. T0 (A), T1(B) and L0 (C) stages are shown. Insets  
1027 correspond to regions highlighted with dotted rectangles and are shown at 2x  
1028 magnification. Abbreviations: an – anus; cc – cephalic coelom; csg – club-shaped  
1029 gland; cv – cerebral vesicle; en – endostyle; np – neuropore; nrt – neural tube; nt –  
1030 notochord; pgs – presumptive 1<sup>st</sup> gill slit; pp – pre-oral pit; ps – 1<sup>st</sup> pigment spot; rd  
1031 – right diverticulum; s2-5 – somite pairs 2 to 5; tf – tail fin. Scale bar: 50 µm.


1032 **Supplementary Figure 3** – Expression of the *mrf1* gene in developing  
1033 *Branchiostoma lanceolatum* reared at different temperatures. Embryos are in  
1034 dorsal views with anterior pole to the left and right side up. (A) 16°C, (B) 19°C and  
1035 (C) 21°C. On each image, the time of development in hours post fertilization (h)  
1036 and the number of fully formed somite pairs (s) are indicated. Scale bars: 50 µm.

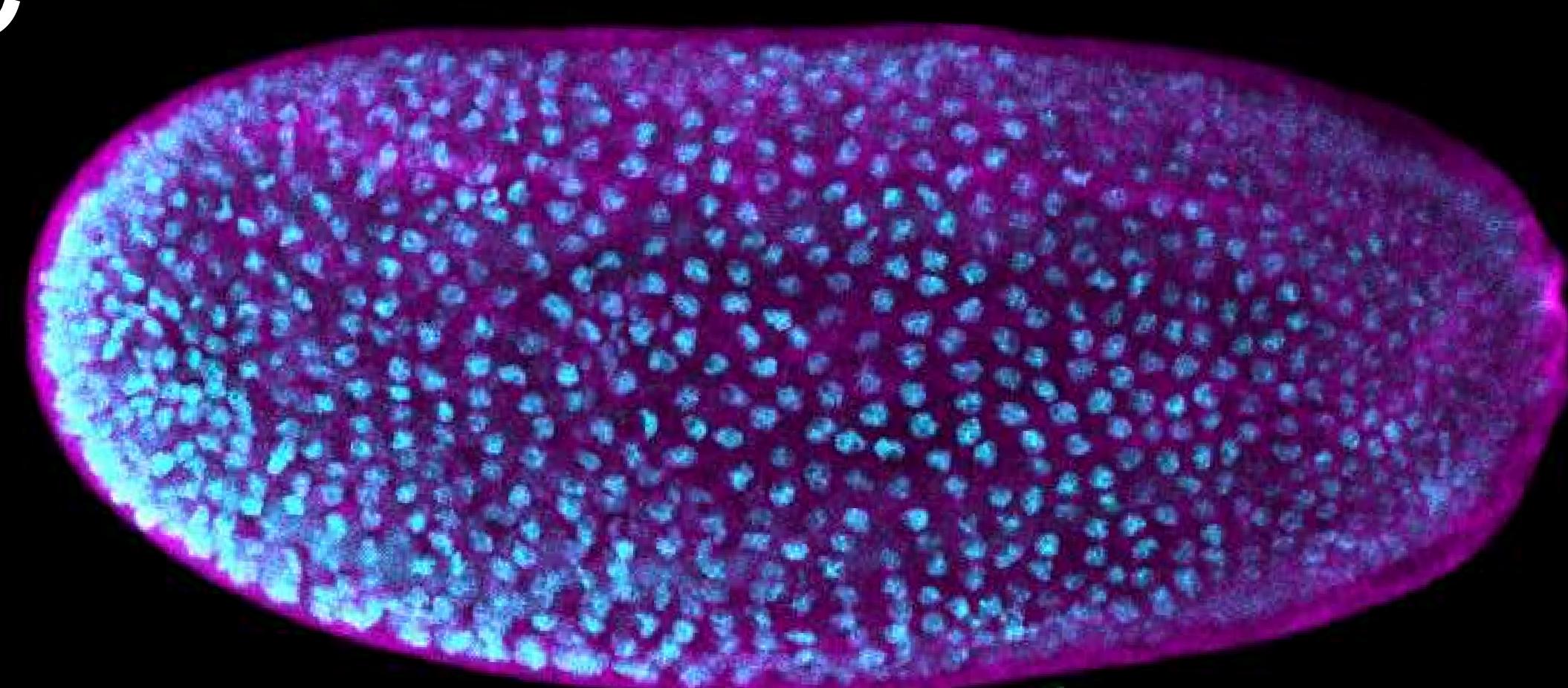
1037 **Supplementary Table 1** – Somite pair counts based on the expression of the *mrf1*  
1038 gene in developing *Branchiostoma lanceolatum* reared at three different  
1039 temperatures (16°C, 19°C and 21°C) (Supplementary Fig. 3), and natural  
1040 logarithmic tendency curves obtained from the three training sets.



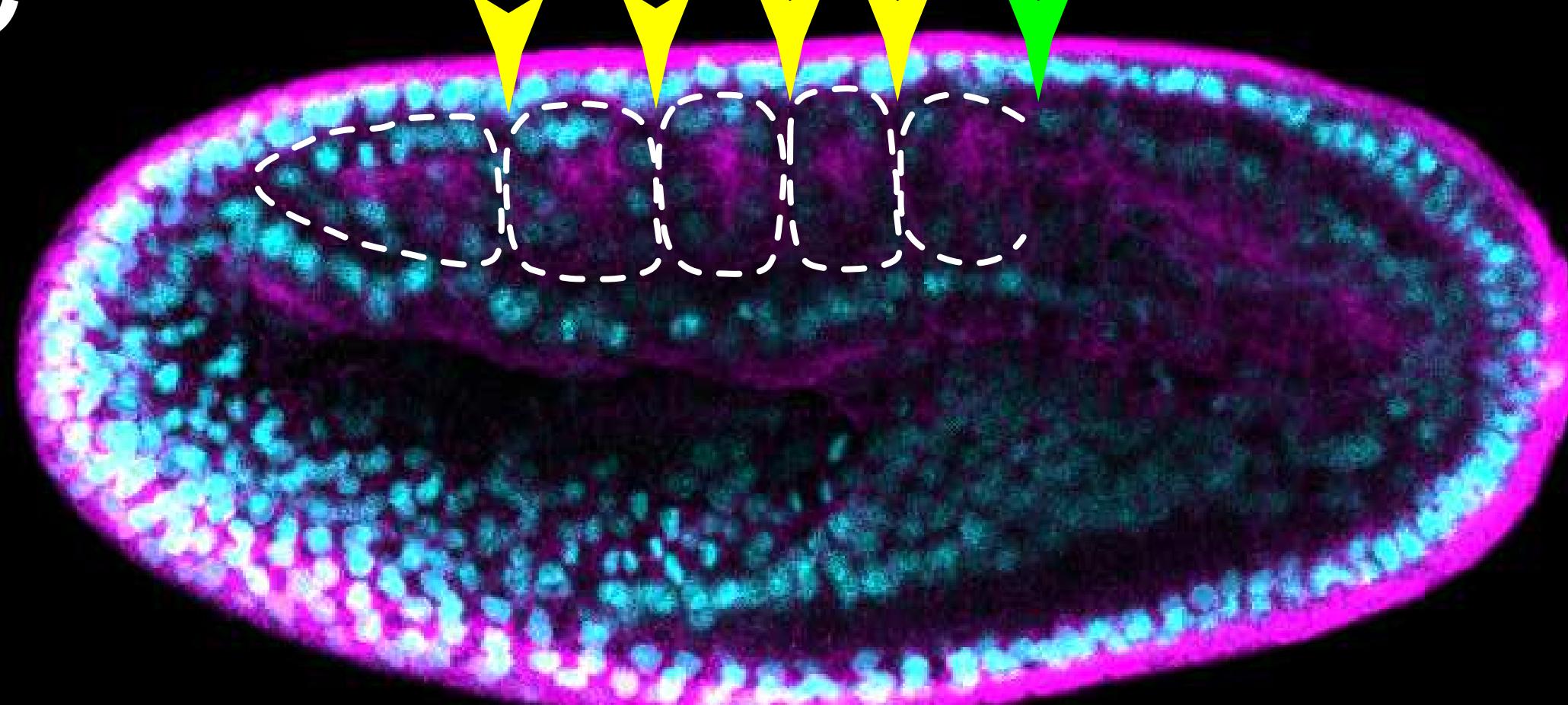

**A****B****B'****C****C'****D****D'****E****E'****F****F'**  
<https://doi.org/10.1101/2020.05.26.112193>  
CC-BY-NC 4.0 International license**G****G'**


A

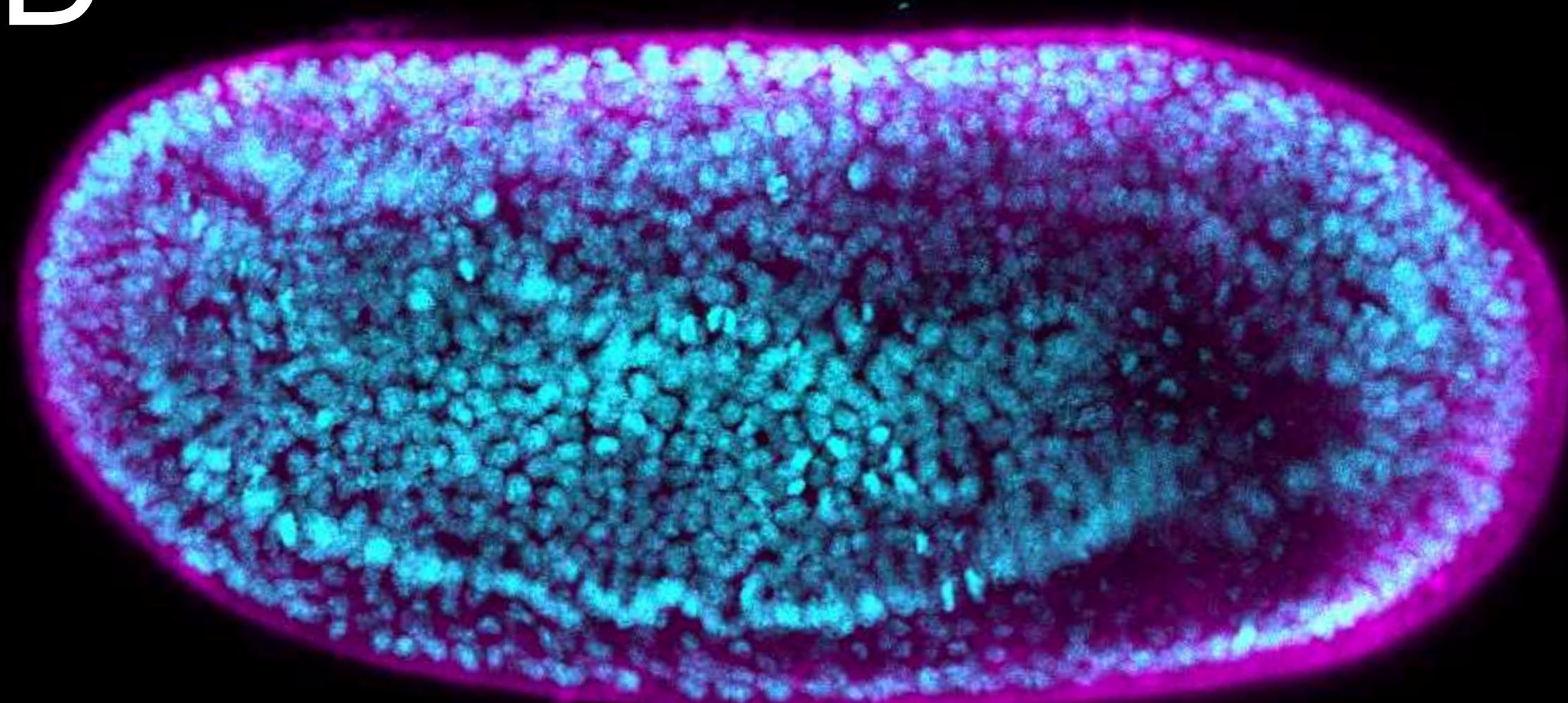



B

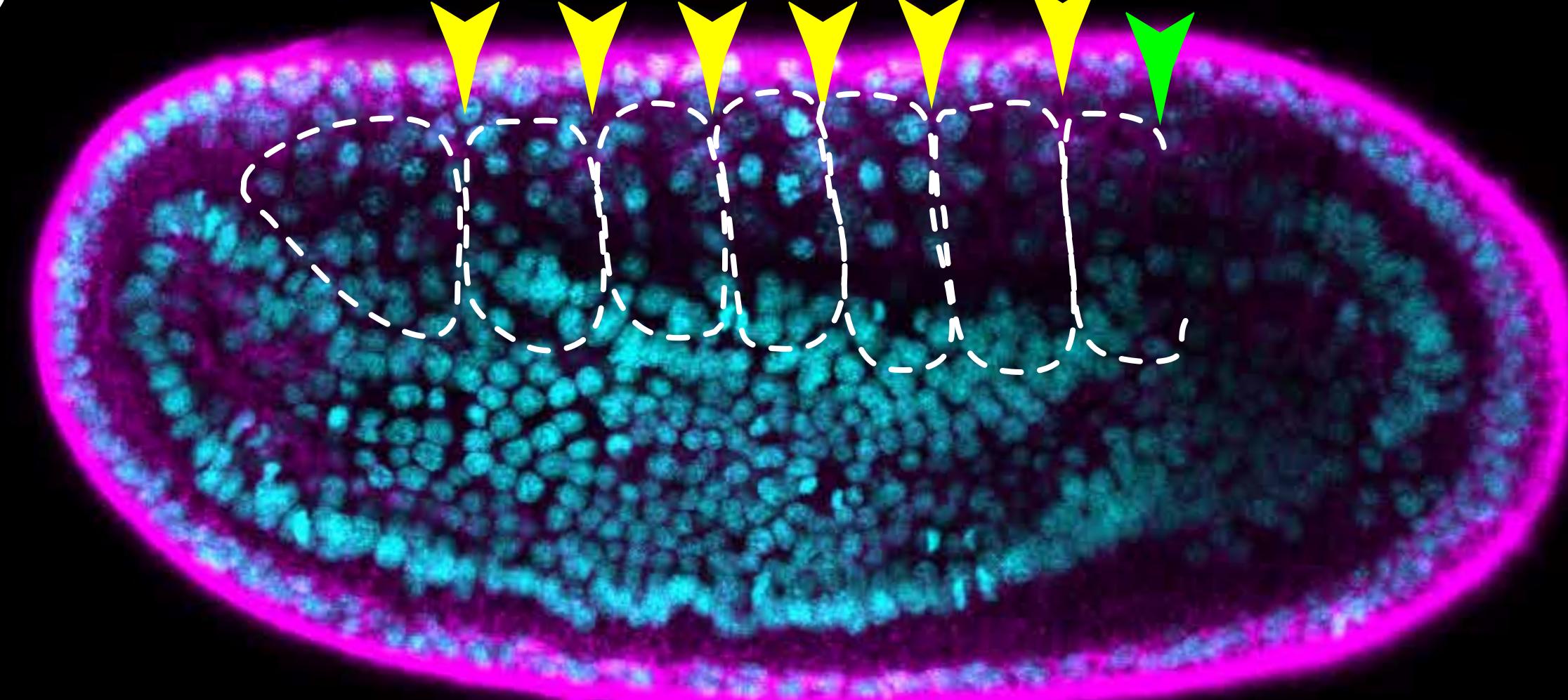



B'

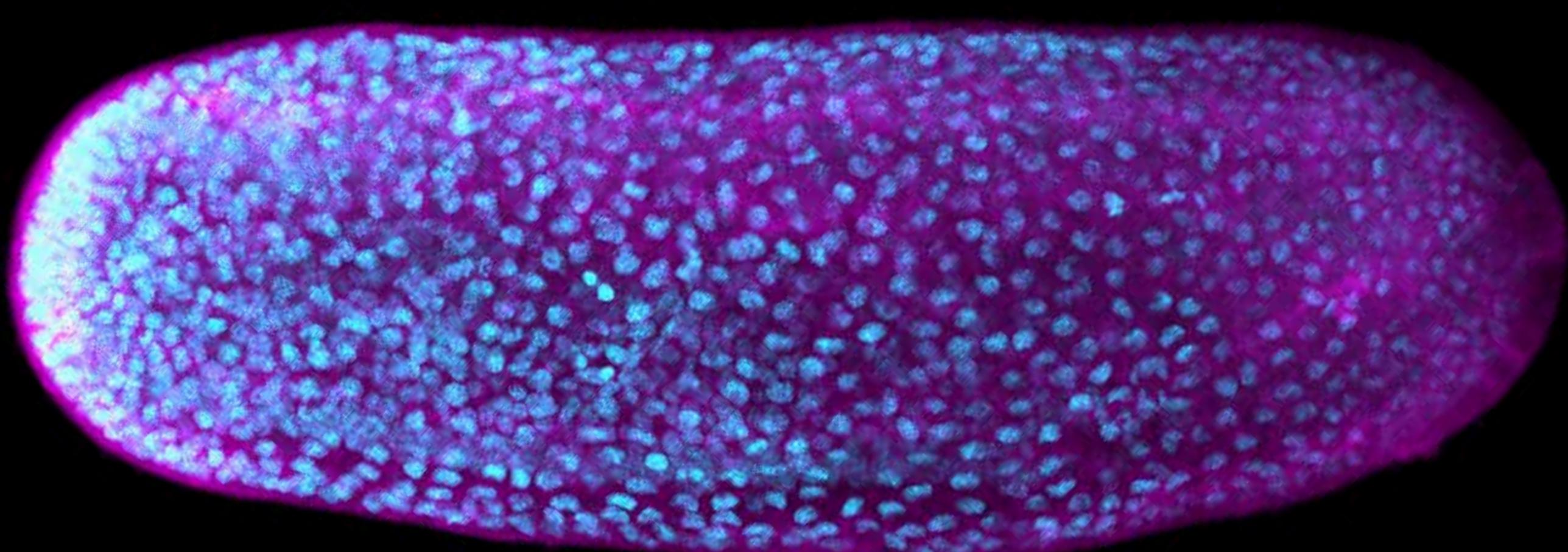



C

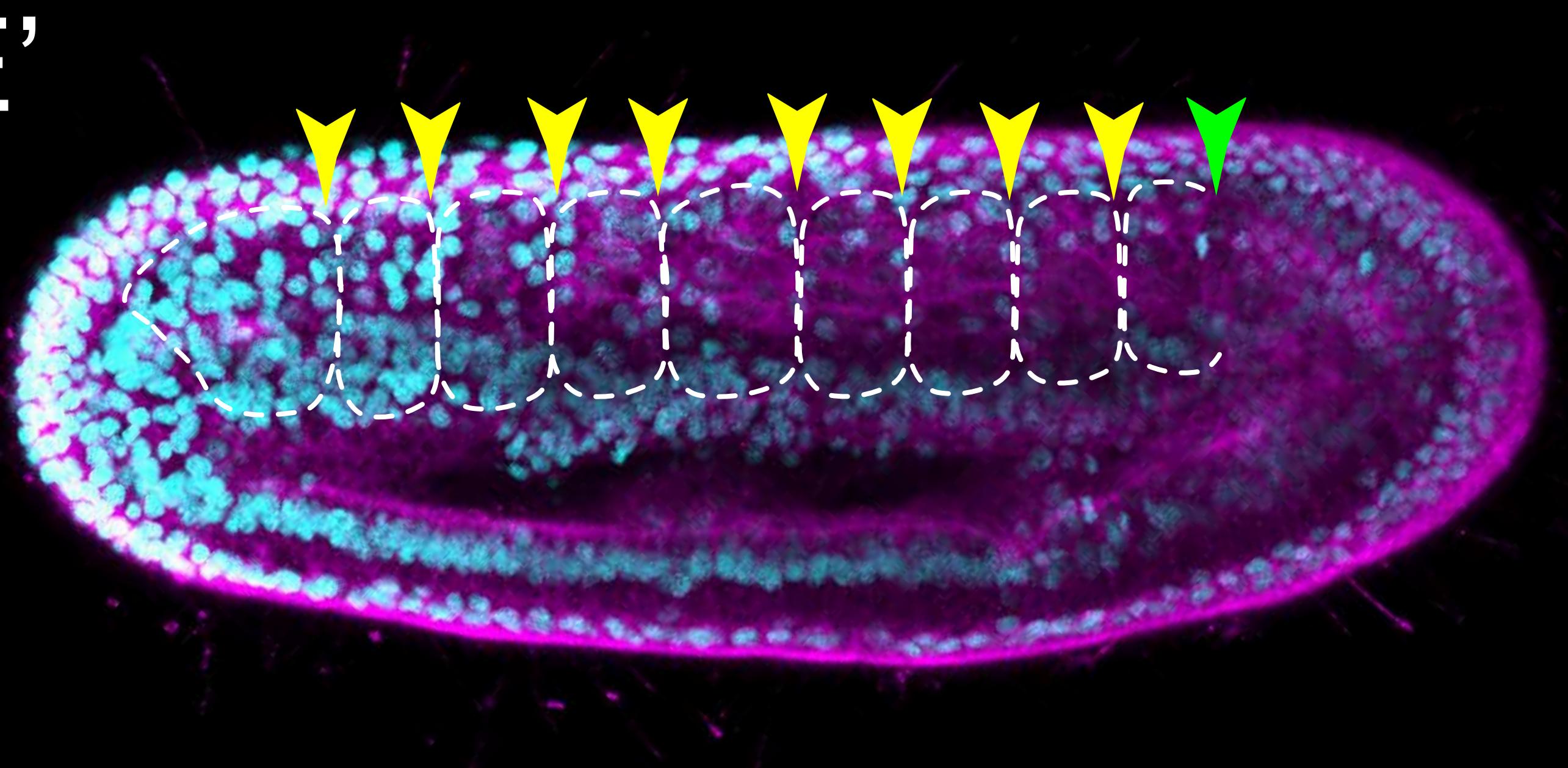



C'

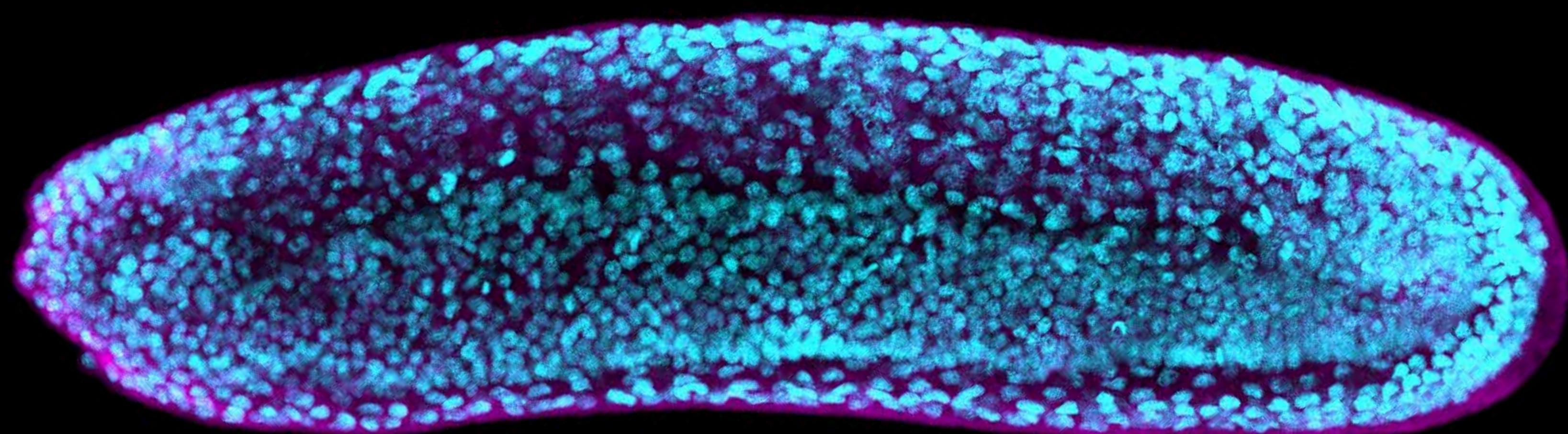



D

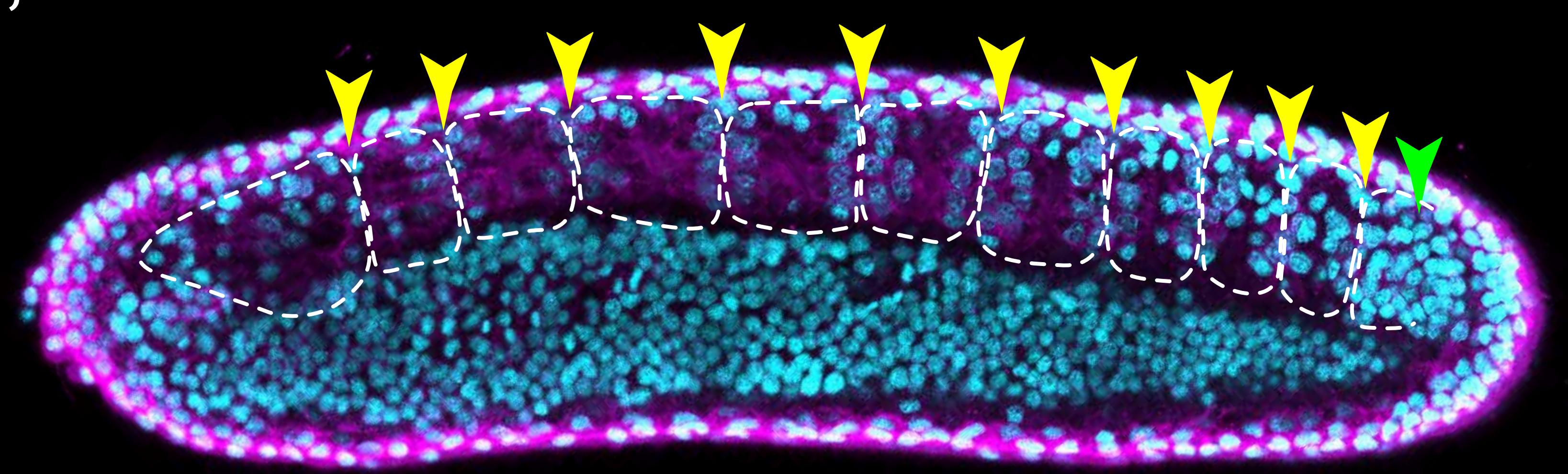


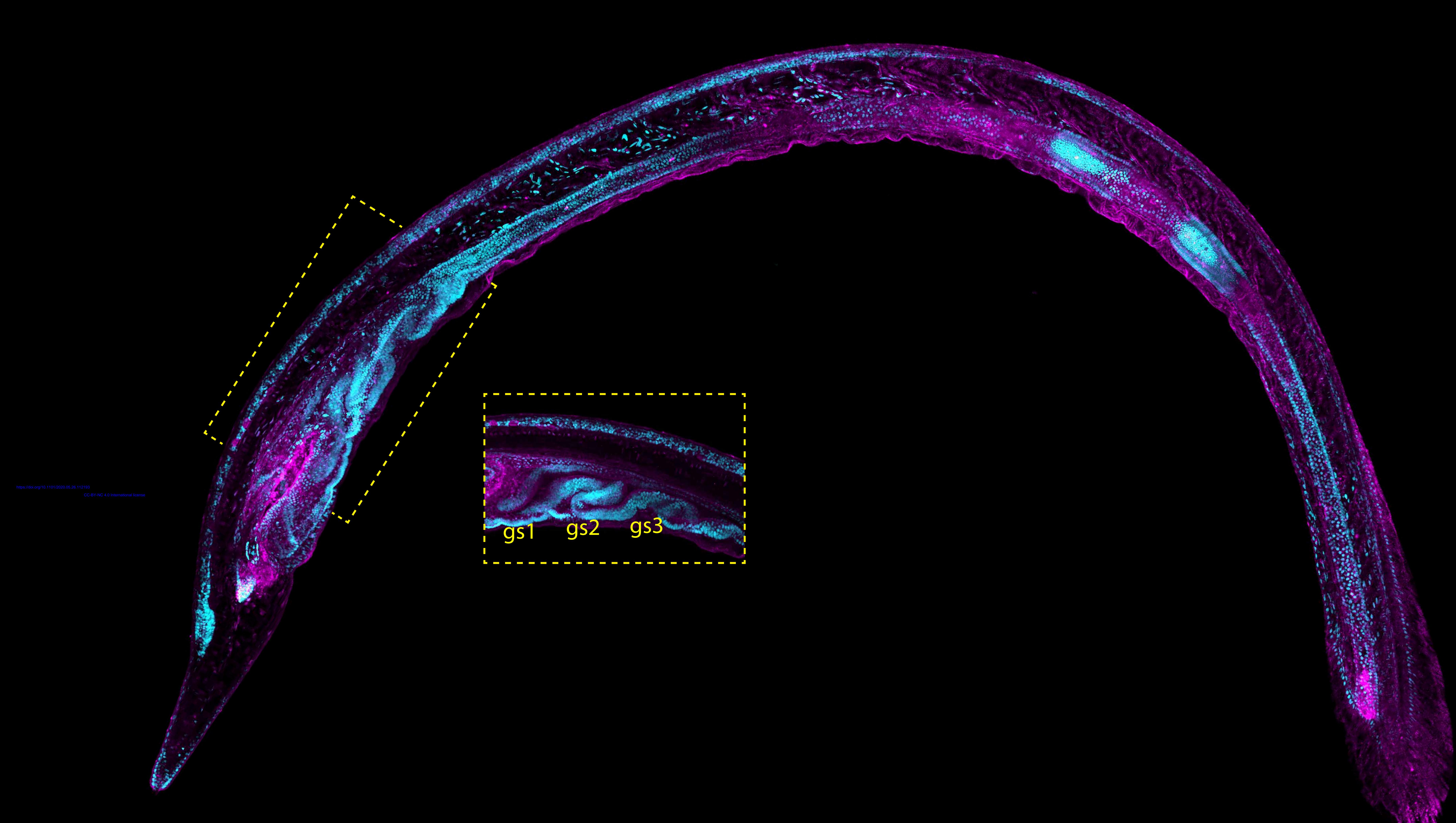
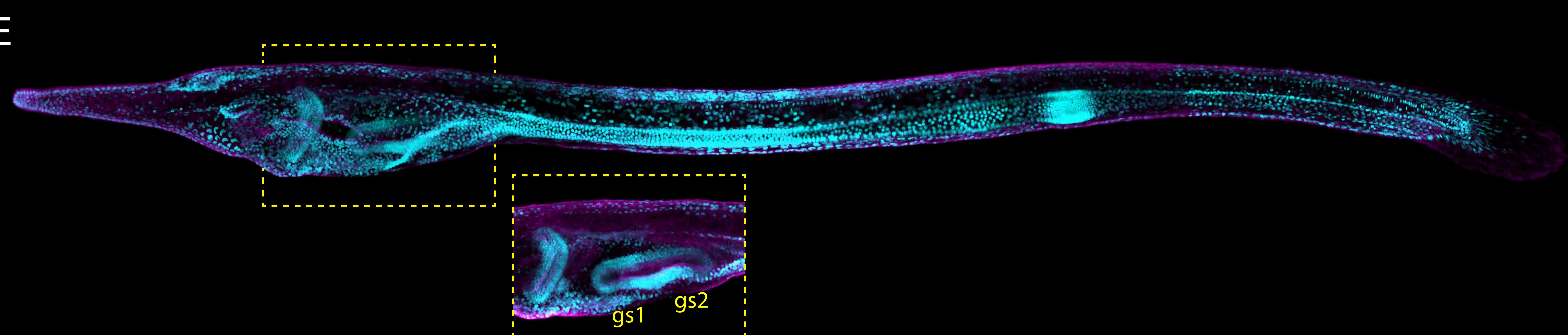
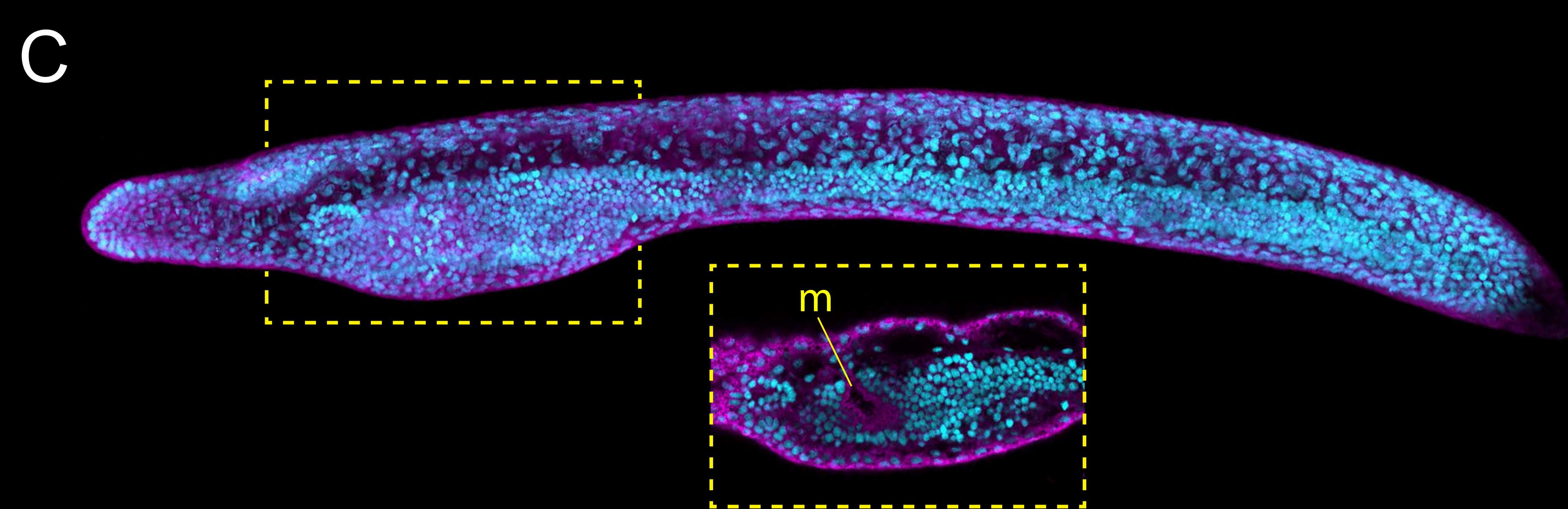

D'

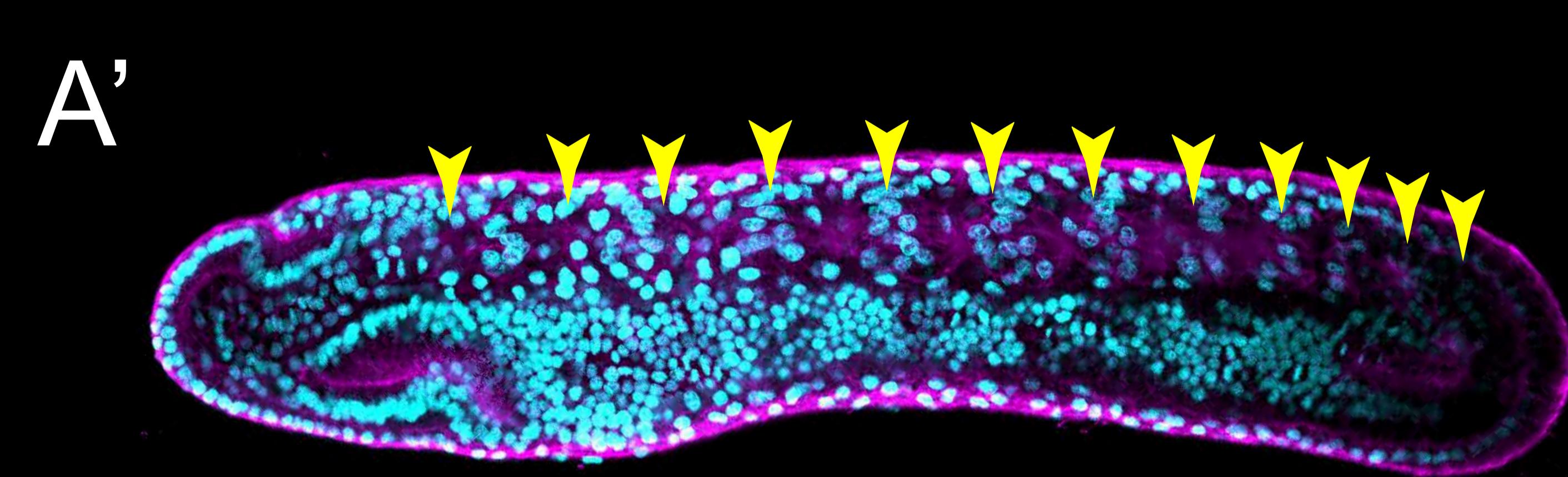


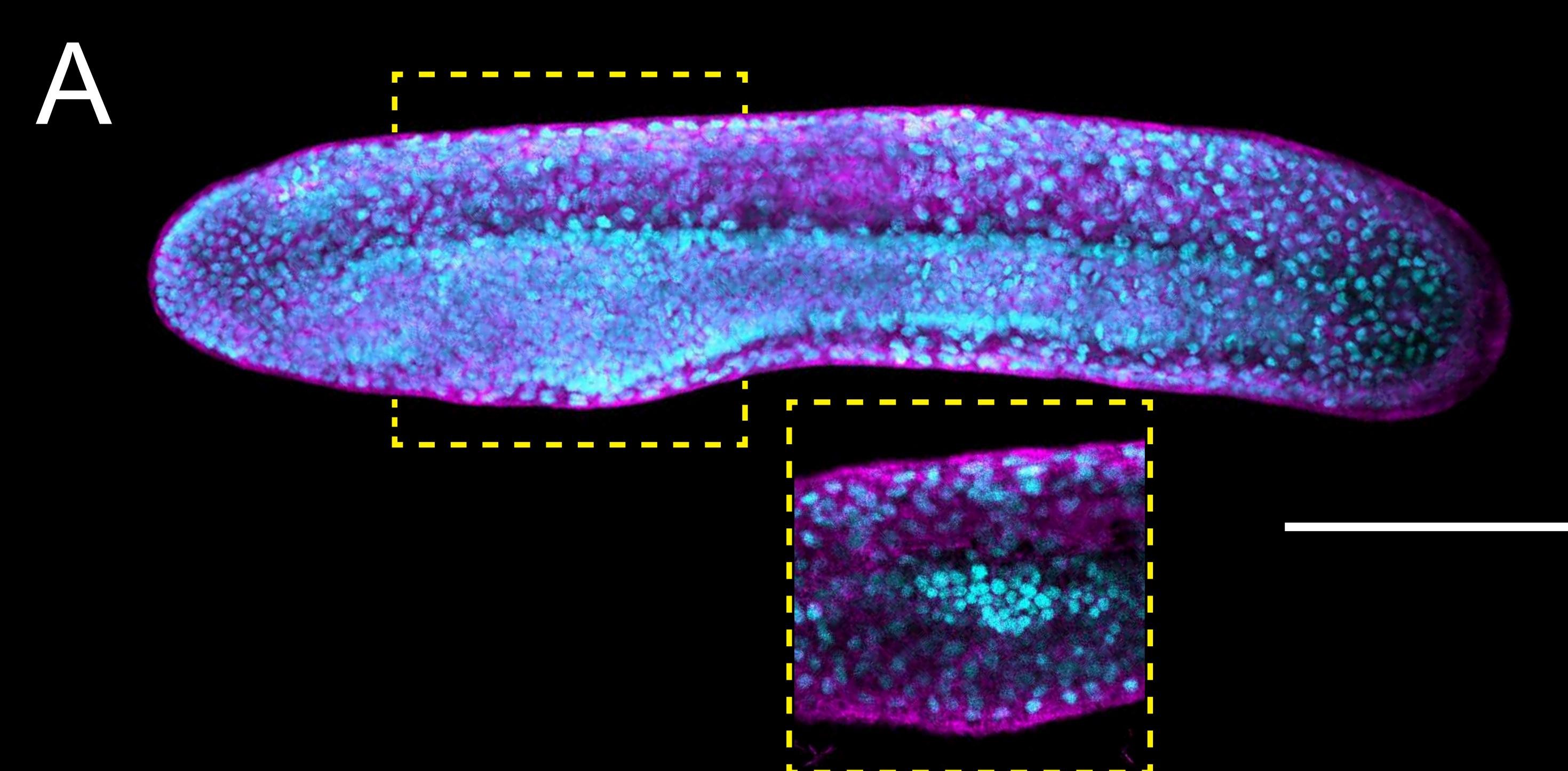

E

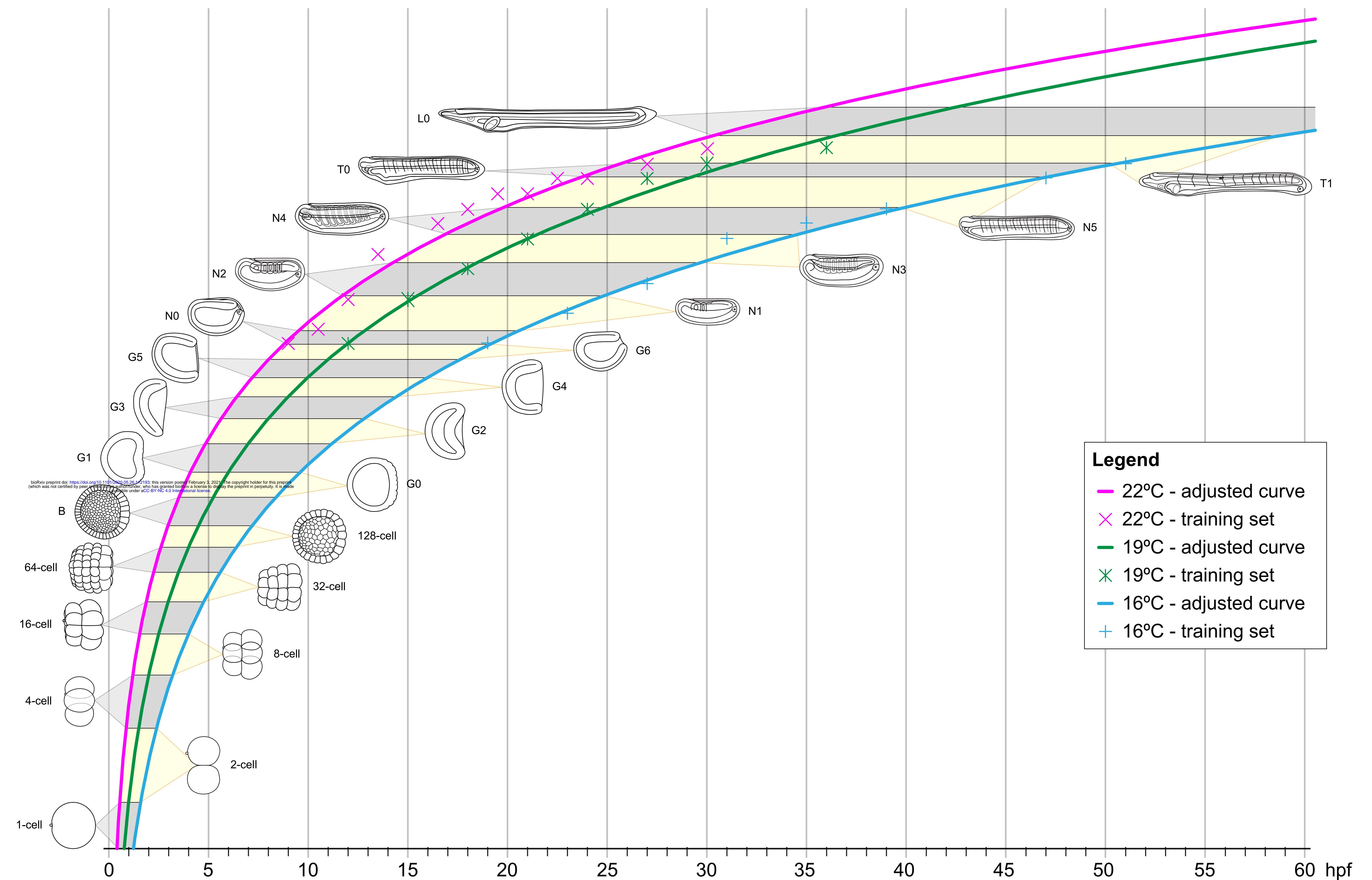


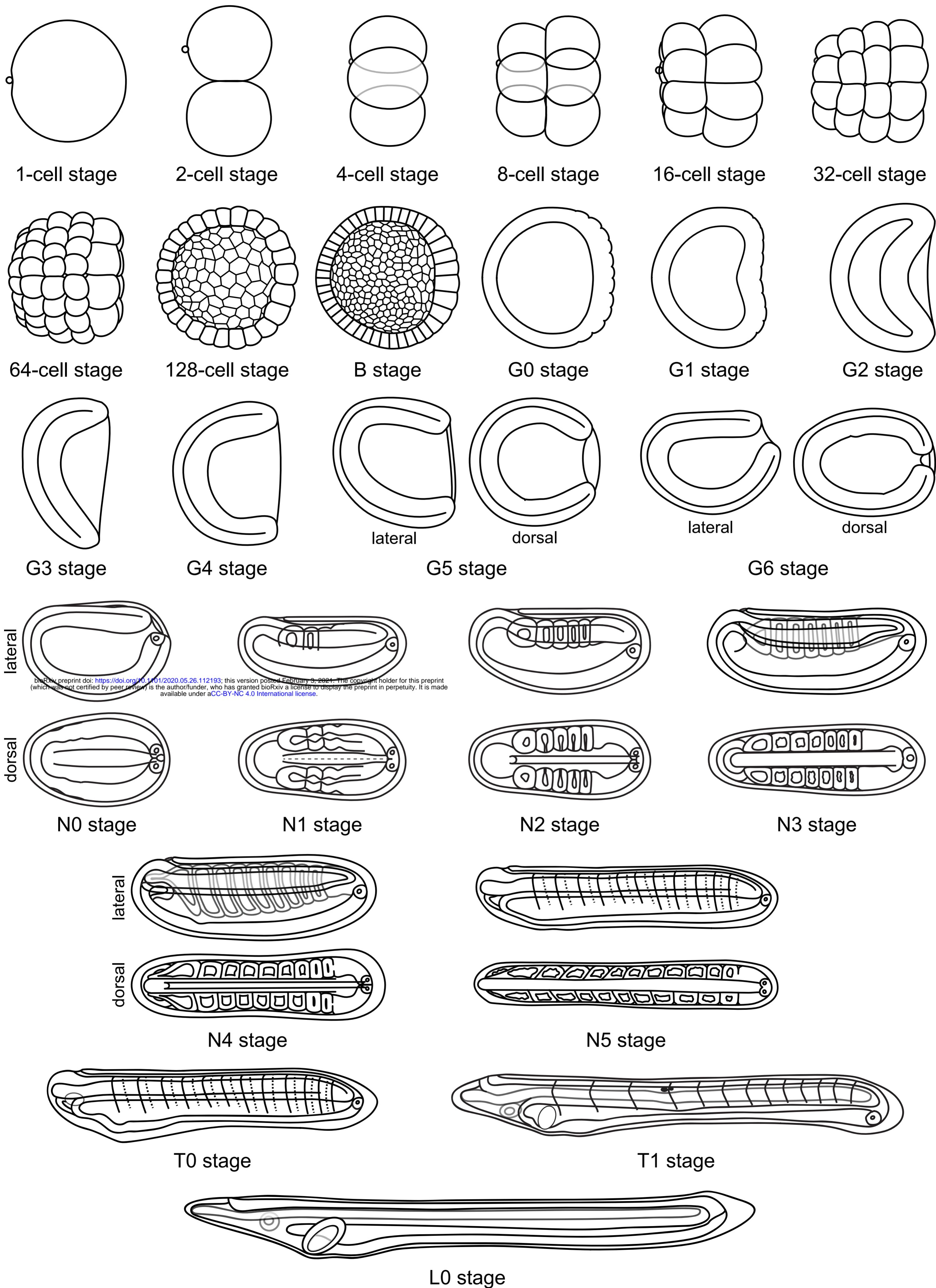

E'

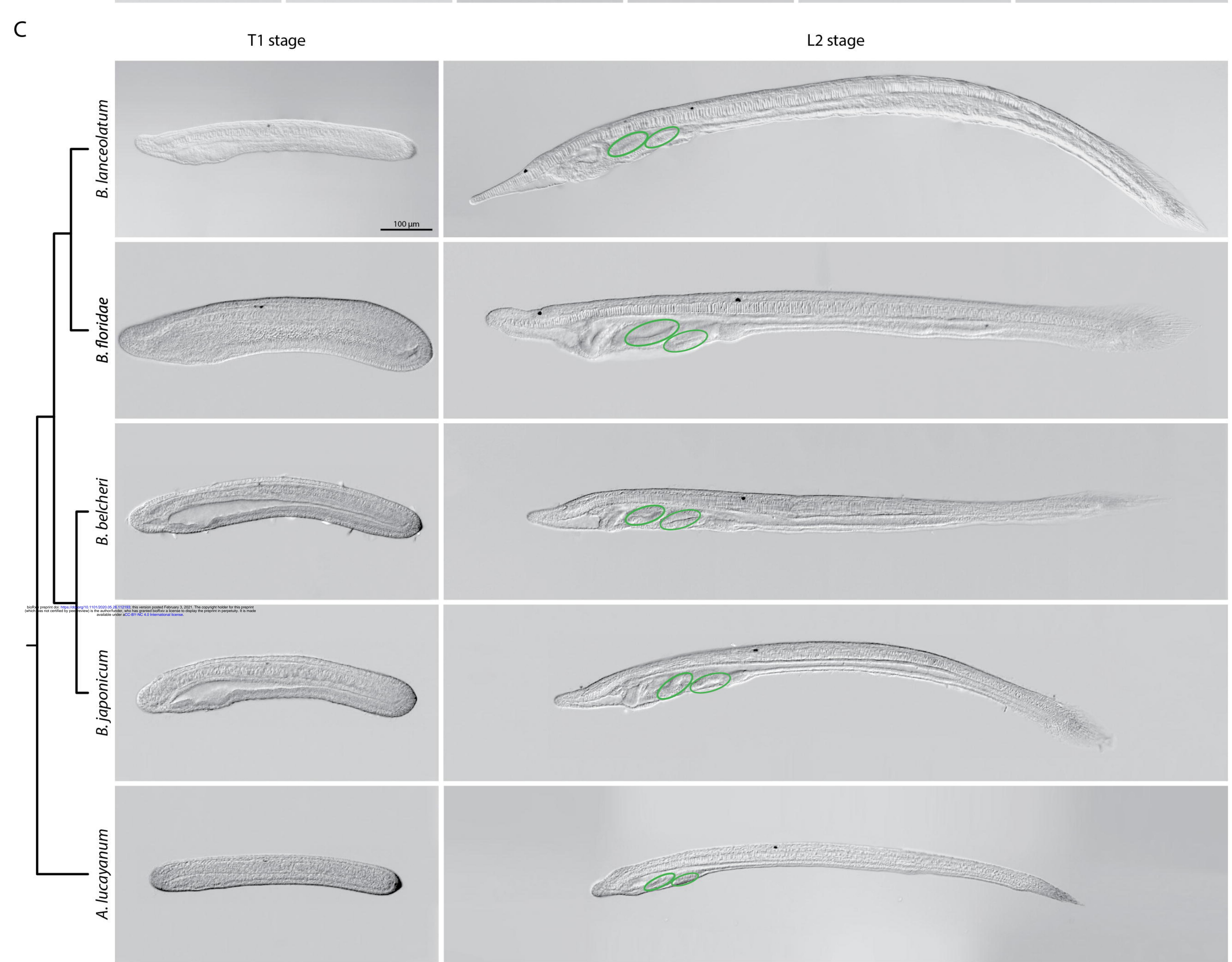
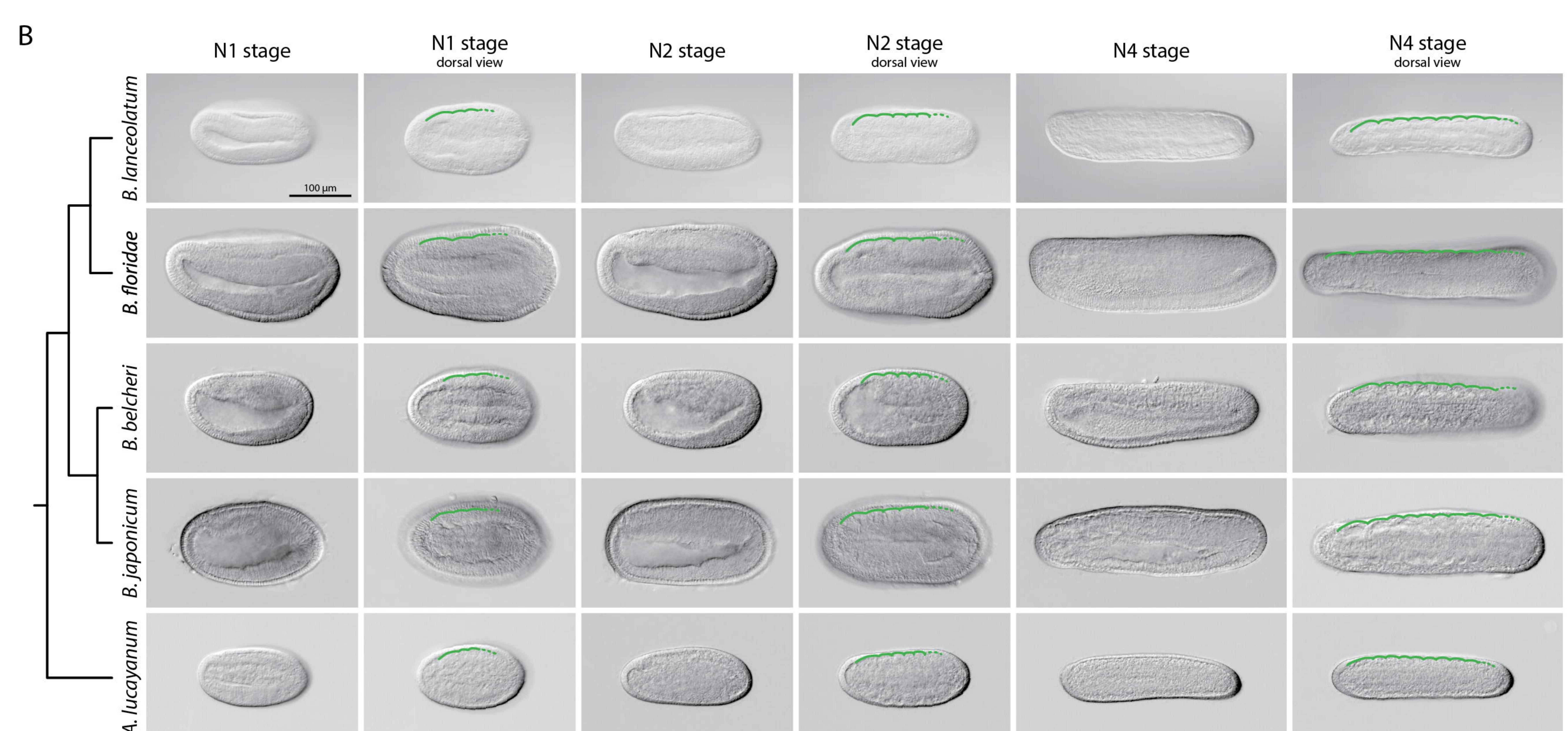
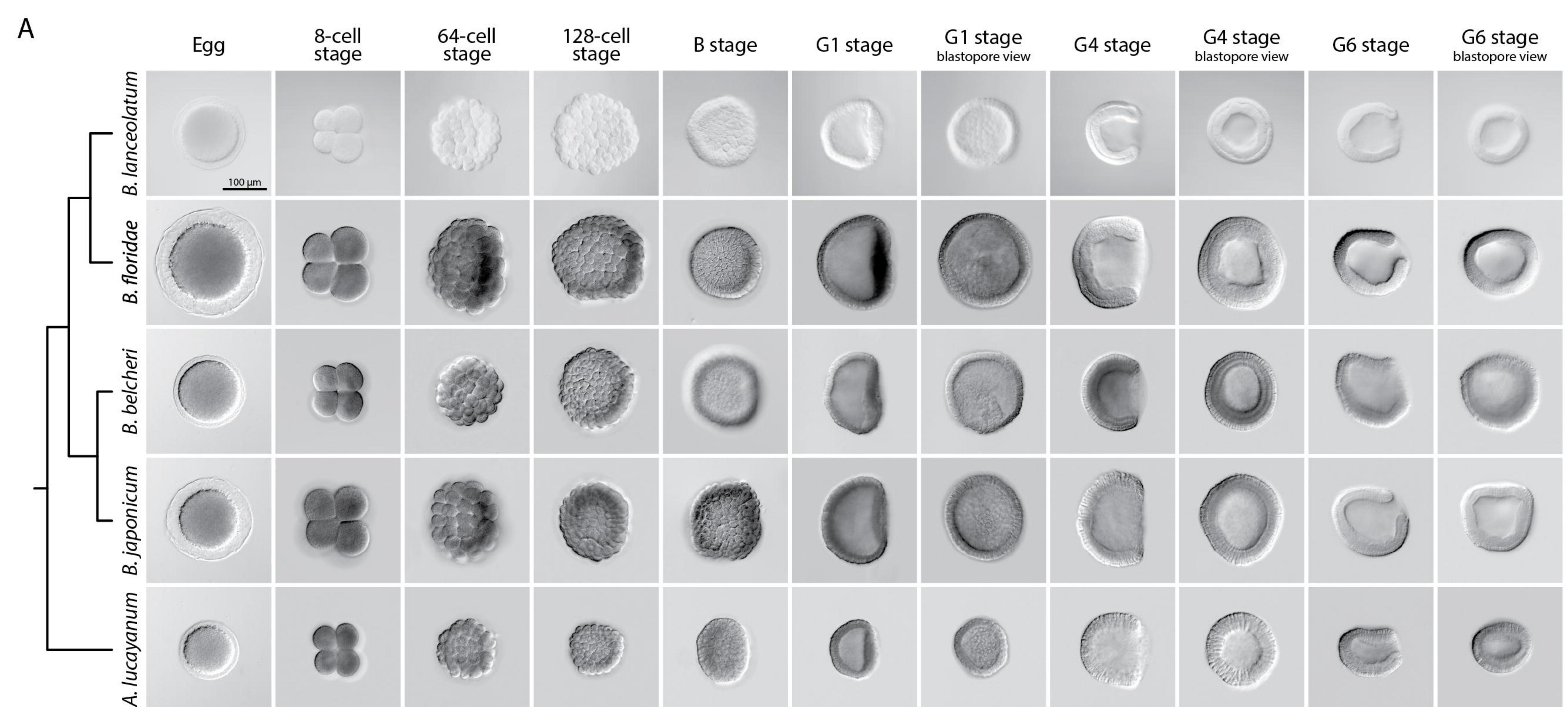










F







F'











