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Abstract

Identifying genetic determinants of reproductive success may highlight mechanisms
underlying fertility and also identify alleles under present-day selection. Using data in
785,604 individuals of European ancestry, we identify 43 genomic loci associated with either
number of children ever born (NEB) or childlessness. These loci span diverse aspects of
reproductive biology across the life course, including puberty timing, age at first birth, sex
hormone regulation and age at menopause. Missense alleles in ARHGAP27 were associated
with increased NEB but reduced reproductive lifespan, suggesting a trade-off between
reproductive ageing and intensity. As NEB is one component of evolutionary fitness, our
identified associations indicate loci under present-day natural selection. Accordingly, we
find that NEB-increasing alleles have increased in frequency over the past two generations.
Furthermore, integration with data from ancient selection scans identifies a unique example
of an allele—FADS1/2 gene locus—that has been under selection for thousands of years and
remains under selection today. Collectively, our findings demonstrate that diverse biological
mechanisms contribute to reproductive success, implicating both neuro-endocrine and
behavioural influences.
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Introduction

Variation in human reproductive behaviour and success is epidemiologically associated with
disease risk and has profound psychological, clinical, societal and economic implications.
This is particularly true for infertility, where efforts to elucidate the underlying biological
mechanisms have been limited by the lack of large, well-phenotyped studies with relevant
infertility outcomes. This situation is mirrored across many reproductive traits and diseases,
such as polycystic ovary syndrome'?, where progress to identify genetic determinants and
underlying mechanisms has lagged behind that of other complex diseases3.

One reason for this is that natural selection limits the frequency of fertility-reducing alleles.
Number of children ever born (NEB) has one of the highest degrees of polygenicity of any
complex trait, consistent with a genetic architecture strongly influenced by negative
selection®. Studying the genetic basis of fertility may illuminate biological mechanisms
underpinning infertility, with the advantage that relevant measures are more readily
available. For example, recent studies have identified genetic determinants for NEB, age at
first sexual intercourse and age at first birth>~’. These have provided several aetiological
insights, such as highlighting a neuro-behavioural role for the estrogen receptor in men® and
identifying biological mechanisms linking reproductive ageing to late-onset diseases>®8°.

Fertility-associated loci may act through a broad array of mechanisms. They may have direct
effects on reproductive biology, or act through traits that contribute to partner selection or
other aspects of behaviour and personality. For example, alleles associated with higher
educational attainment are associated with lower fertility in some populationsot!,
reflecting the link between higher education and older age at childbearing®?. Finally,
fertility-associated loci might represent alleles under selection for some trait entirely
disconnected from reproductive biology. By definition, any variant that is under natural
selection affects fitness. In particular, variants that affect fitness through NEB would be
detected by a genome-wide scan for NEB, although this scan would not capture all
components of fitness.

Our present study substantially builds upon two earlier studies® to identify individual
genetic determinants of NEB. We highlight a number of novel biological mechanisms and
identify a locus that is under both historical and ongoing selection.
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Results

We identified genetic determinants of NEB by performing a genome-wide association study
(GWAS) comprised of 785,604 European ancestry individuals (Online Methods) meta-
analysed across 45 studies (Table $1-S6). SNP array data was imputed to at least 1000
Genomes Project reference panel density across all studies. The distribution of genome-
wide test statistics for NEB showed substantial inflation (Acc= 1.36), however LD score
regression3 indicated that this was attributable to polygenicity rather than population
stratification (LD intercept 1.01; s.e. 0.008). In total, 5,283 variants reached genome-wide
significance (P<5x10%) for association with NEB, which we resolved to 28 statistically
independent signals (Table S7). These include all six signals previously reported for NEB in
overlapping samples of up to 343,072 individuals®®.

The genetic architecture of NEB was only moderately correlated between men and women
(rg=0.74; 95% Cl 0.66-0.82). Therefore, we ran separate GWAS in men (N=306,980) and
women (N=478,624), and identified six additional statistically independent signals (two in
men, four in women). We found evidence of heterogeneity (Prhet<0.05) between sexes at
13/34 NEB loci (greater than expected by chance Ppinomiai=4x107°) and an overall trend for
larger effect estimates in women than men (24/34, Ppinomia=0.02). Two notable examples
were rs58117425 in testis expressed 41 (TEX41) gene which was significant only in men, and
6:152202621_GT_G in the estrogen receptor alpha (ESR1) where the effect on NEB in
women was double that in men (Table S7).

In the absence of well-powered studies of infertility, we performed a GWAS on lifetime
childlessness (CL) in UK Biobank (N=450,082) and assessed the relevance of NEB associated
loci on susceptibility to CL. Effects on CL were modest, with the largest effect at the
rs201815280-CADM2 locus (sex combined OR=1.05, 95% Cl [1.04-1.06], P=6.8x1018]).
Interestingly, the genetic correlation between NEB and CL was less than perfect (rg=-0.90 [-
0.88 to -0.92). Accordingly, of the 16 independent loci identified for CL, eight were distinct
from the NEB signals (Table S7). Sex-stratified analyses revealed one additional female-
specific CL signal (rs7580304, PPP3R1, Table S7). Several loci exhibited more significant
effects on CL than on NEB (Figure S1).

In summary, we identified 43 independent signals; 28 from the sex-combined NEB meta-
analysis, six sex-specific NEB signals, eight additional sex-combined CL signals, and one sex-
specific CL locus. To validate these findings, we performed a lookup of these signals in
34,367 women from the FinnGen study (Methods). Since NEB was not recorded for men in
this study we only considered the 41 signals identified in sex-combined or female-specific
analyses. Despite the small replication sample, 35/41 effects were directionally concordant—
(binomial sign test P=5x10%; Table S7).
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Implicated genes and biological mechanisms

We identified putatively functional genes across all 43 NEB/CL associated loci using a
number of approaches: gene expression integration, non-synonymous variant mapping and
text mining (Online Methods, Tables $8-S15). Results are summarised in Tables $16-17 and
Figure S2. All prioritized genes were more highly expressed at the protein level in central
nervous system cell types than in female reproductive cell types!?, except for ESR1 and
ENO4 (i.e. glandular cells in endometrium and fallopian tube in the case of ENO4, Figure S2).
ENO4 is required for sperm motility and function as well as for male fertility in mice. It is
required for normal assembly of the sperm fibrous sheath, and provides most of the enolase
activity in sperm?>,

To further ascertain which loci might directly implicate reproductive mechanisms, we
integrated GWAS results from other reproductive traits (Figure 2). Surprisingly, the NEB-
increasing missense allele (rs9730, p.Alal17Thr) in ARHGAP27, which encodes a Rho
GTPase, a small family of molecules involved in axon guidance, was associated with a
shorter reproductive lifespan: later age at menarche (P=1x10"!) and earlier menopause
(P=2x107); additional associations were seen with earlier age at first birth (P=5.5x10%),
lower circulating testosterone concentrations in women (both bioavailable [P=2.1x10%] and
total [P=2.1x103)], but higher testosterone concentrations in men (both bioavailable
[P=3.5x10%] and total [P=1.9x10!!]). These associations suggest a life history strategy
involving a shorter but more productive reproductive lifespan. Another NEB signal,
rs4730673 near MDFIC, is correlated with the strongest reported GWAS signal for same-sex
sexual behaviour'® (rs10261857; r> = 0.74). Here, the NEB-increasing allele had a more
significant effect on decreasing the likelihood of CL, and also decreased the likelihood of
same-sex sexual behaviour (Table S7).

NEB-increasing alleles have increased in frequency over the past two generations

We next tested whether NEB-increasing alleles have increased in frequency over time. To
assess this, we computed a genome-wide polygenic score (PGS) for NEB using LDPred
(Online Methods) and tested this as a linear function of birth year in studies independent of
NEB PGS construction, controlling for the effects of study and sex. The standardised NEB
PGS increased by 4.3x10°3 per-year (standard error = 6.4x10%; P=1.3x10*!; FigureS3) in the
HRS and UKHLS cohorts. This increase indicates that the identified loci are associated with
increased NEB not only in our studied individuals, but also in their (unsampled) parents,
since the PRS increasing over time suggests that parents with higher PRS have more
children.
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Overlap between NEB and historical selection signals identifies the FADS1/2 locus

Effect estimates for the 34 genome-wide significant NEB loci ranged from 0.012-0.025
children per allele. The population mean NEB is ~1.8 in UK Biobank, so an effect size of 0.02
per allele implies that a group of 25 people homozygous for a NEB-increasing allele would
have, on average, 46 children, compared to 45 children for a group of 25 people without
that allele. Assuming no allelic effect on pre-reproductive mortality, these effects on NEB
can be directly translated to selection coefficients of 0.67-1.4% per allele, which is within
the range detectable by genome-wide historical selection scans'’°. Accordingly, we
compared our NEB/CL GWAS results with the results of scans testing selection over different
timescales from ~2,000 to ~30,000 years before present!’'820 (Online Methods) and
evaluated overlap using Bayesian co-localization analysis?! (Table $18-519).

The strongest overlap was observed at chr11:61.5Mb, which exhibited a posterior
probability of 96% that the lead variants for ancient selection and NEB represent the same
underlying signal (Figure 3A). This locus contains the genes FADS1 and FADS2, which have
been targeted by selection multiple times in human history??=2°, In particular, the derived
haplotype at this locus has increased from a frequency of <10% 10,000 years ago to 60-75%
in present-day European populations (Figure 3B). While some of this increase is due to
admixture, there is strong evidence of positive selection over the past few thousand years,
even accounting for changes in ancestry'’22-26 Each ‘C’ allele of the lead NEB SNP rs108499,
which tags the positively selected FADS1 haplotype, increased NEB by 0.0134,
corresponding to a selection coefficient of 0.74% (0.0134 divided by mean NEB of 1.8).
Consistent with this, we estimate that within the “White British” subset of UK Biobank, the
derived allele increased in frequency by 0.0088% per-year between the 1938 and 1969 birth
cohorts (linear regression including 10 principal components and collection centre; P=0.27,
Figure 3C) corresponding to a selection coefficient of 1.2% (approximate 95% Cl -0.9-3.2%).
Estimates of historical selection coefficients range from 0.4-0.6% (based on time-serial
analysis of ancient DNA samples) to 3.4-6.9% (based on analyses of present-day haplotype
structure)?426,

FADS1 and FADS2 encode enzymes that catalyse the ®-5 and ®-6 lipid biosynthesis
pathways that synthesize long chain polyunsaturated fatty acids (LC-PUFA) from short chain
precursors. It has been hypothesised that the ancestral allele is advantageous in
populations—for example in the Eurasian Upper Palaeolithic—that have a diet high in meat
and marine fats (with relatively high LC-PUFA contents) and the derived allele is
advantageous in populations that have a diet high in vegetable fats (with relatively low LC-
PUFA contents and thus benefitting from higher FADS1 enzymatic activity)?2-2°. Under this
model, FADS genotype selection in Europe is driven by dietary transitions, in particular, the
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Bronze Age transition to a diet based intensively on agricultural products?>26. However, the
mechanism through which this gene-environment interaction affects fitness, and which
phenotype is under selection, are unclear.

One reason for this uncertainty is that the FADS locus is highly pleiotropic. It is one of the
strongest GWAS signals for circulating lipids?’ and blood metabolites??, and is strongly
associated with blood cell phenotypes, including erythrocyte and platelet sizes and counts
(Table S20). To test the relevance of lipids to ongoing selection, we assessed the dose-
response relationship of all previously reported?® HDL, LDL, total cholesterol or triglyceride
associated variants on NEB using a Mendelian Randomization (MR) framework. We found
no such association (P>0.05 in all MR models), which suggests that the NEB effect at the
FADS locus is not shared across other lipid-associated loci. Assessment of the FADS locus
across a range of reproductive traits highlighted associations between the NEB-increasing
allele and higher circulating sex-hormone binding globulin (SHBG, P=2.3x102°), higher total
testosterone (P=1.9x107) and higher estradiol concentrations (P=4x10"%) in men, and lower
bioavailable testosterone concentrations in women (P=1.5x1073). These data, in addition to
the observation that our associated variants influence FADS1 expression in the brain (Table
$15), raise the possibility that the effect of the FADS locus on NEB could be attributable to
its effects on reproductive pathways, rather than its effects on lipids and consequent
disease morbidity/mortality. We note however that many of the strongest known genetic
determinants for sex hormone levels3? are not significantly associated with NEB in our study.
Ultimately further experimental work is required to fully elucidate the mechanisms linking
NEB-associated variants at this locus to reproductive success. We note that our analyses
include only European ancestry individuals and is heavily weighted by the UK Biobank, which
may not be representative of the UK population,3! and it remains to be seen which of these
effects are consistent across cohorts and populations.

NEB-associated variants in CADM2 exhibit signatures of balancing selection

The most significant NEB-associated variants in the genome, in CADM2, show no evidence of
historical positive selection. However, CADM?2 is reported to exhibit one of the strongest
genomic signals of long-term balancing selection32. Variants in CADM2 are associated with a
range of behavioural and reproductive traits, plausibly explained by a primary effect on risk
taking propensity >3334, Variants that increase risk taking also increase NEB, with risk taking
and behavioural disinhibition also linked to earlier reproductive onset ’. Since these variants
are still segregating and appear to be under balancing rather than positive selection, this
suggests ongoing or time- or environmentally-varying negative consequences of NEB-
increasing CADM2 alleles on fitness, possibly connected to adverse risk-taking behaviours.
Other NEB-associated loci with nominal evidence of balancing selection contain the genes
PTPRD and LINC0O0871 (Table S21).
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Lack of contemporary selection at historical selection signals

We next tested whether there was any evidence of current selection (as measured by
association with NEB/CL) at regions identified by the three genome-wide historical selection
scans (Table S22). Other than the FADS locus, none of the other 53 regions tested exhibited
an association with NEB, suggesting that few of the strong historical selective sweeps in
humans are ongoing. For example, the sweep associated with lactase persistence - one of
the strongest signals of selection in any human population —is not ongoing in the European
ancestry populations in this study. This finding is consistent with evidence from ancient DNA
which suggests that the persistence allele reached its present-day Northern European
frequency of around 60% by the Middle Ages®. Other strong sweeps, such as those
associated with skin pigmentation-decreasing loci, are likely not detected in the NEB GWAS
because the selected variants are now fixed or almost fixed among European ancestry
populations.

Different methods for detecting historical selection in humans are sensitive to selection
across very different timescales — ranging from thousands to millions of years. Our NEB
GWAS can be interpreted as a genome-wide selection scan over the shortest and most
recent timescale —i.e., living generations. The limited overlap between this and the
historical selection scans is consistent with the limited overlap between different historical
scans, and likely reflects a highly dynamic landscape of selection. Selected loci either fix, or
stop being selected and remain at intermediate frequency. The FADS locus is unique in the
sense that the selective sweep — starting at least several thousand years ago — is still
ongoing. At other loci, for example CADM?2, signs of balancing selection suggest that the
direction of effect might vary with environments or allele frequency.

In summary, our study identifies 37 signals that have not been previously reported for NEB
and represent potential targets of ongoing natural selection. Further work should aim to
parse these effects into mechanisms that directly influence reproductive biology, in contrast
to those which affect behaviour or reduce fitness through premature morbidity or mortality.
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Tables and Figures

Figure 1 | Manhattan plots for genome-wide association analyses of NEB and CL
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Figure 2 |Heat map of the effects of the 43 independent signals identified for NEB or CL on other reproductive traits. All associations based
on trait-specific Z-scores aligned to NEB-increasing allele, with 0 (white) denoting no association. SHBG = sex hormone binding globulin.
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Figure 3 | Evidence for historical and ongoing selection at the FADS locus. A: Colocalization of the ancient DNA selection signal'’ (upper
panel) and the NEB GWAS signal (lower panel). B: Estimated frequency (95% confidence intervals) for the derived FADS allele in Europe, based
on direct evidence from ancient DNA. Present-day frequencies in 1000 Genomes European populations shown in blue. C: Frequency (95%
confidence intervals) of the derived FADS allele in UK biobank as a function of birth year from 1938 to 1968.
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Online Methods

Phenotype definitions

Number of children ever born (NEB) is treated as a continuous measure that was either
asked directly or could be created from several survey questions (e.g., pregnancy or birth
histories). A standard question in most surveys asks: How many children have you given
birth to? Or another variant is: How many children do you have? In most cases it was
possible to distinguish between biological, adopted or step-children and when this was
possible, we refer to live born biological children. Individuals were eligible for inclusion in
the analysis if they were assessed for NEB and were at least age 45 for women and age 55
for men, or in other words, had reached the end of their reproductive window. The measure
included both those who had given birth to a child (parous) and those who had not
(nulliparous).

Childlessness (CL) is treated as a binary measure, generally calculated from NEB recoded as 1
referring to childless and 0 if they had children with the same inclusion rules of biological
live born children and age restrictions applied. Detailed measures for both phenotypes per
cohort are described in Table S2).

Participating cohorts and analysis plan

The discovery of genetic variants for reproductive success in human populations is based on
genome-wide association studies from cohort-level data that were quality-controlled and
meta-analyzed by two separate independent centres at the University of Oxford and
University of Cambridge. We follow the QC protocol of the GIANT consortium’s study of
human height3® and employed the software packages QCGWAS3” and EasyQC32, which
allowed us to harmonize the files and identify possible sources of errors in association
results. This procedure entailed that diagnostic graphs and statistics were generated for
each set of GWAS results (i.e., for each file). In the case where apparent errors could not be
amended by stringent QC and correspondence with the local analyst of the respective
cohort, cohorts were excluded from the meta-analysis. (See section below for details on
cohort inclusion and errors).

A total of 45 cohorts participated in our study (Table S1). Table S2 provides an overview of
cohort-specific details, including an adjusted pooled analysis of women and men in the case
of family data (see below). Cohorts who agreed to participate followed an Analysis Plan
posted on the Open Science Framework preregistration site https://osf.io/b4rdb/ on
February 08, 2017.

For autosomal chromosomes and NEB the total number of individuals in the pooled meta-
analysis was 785,604, with a somewhat larger sample for women (39 cohorts) than men (29
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cohorts). Table S3 provides detailed information about the cohorts with X Chromosome
data. For the NEB meta-analysis this included 671,349 individuals (12 cohorts) for the
pooled cohorts, 384,976 for women (12 cohorts) and 286,373 for men (10 cohorts). For CL,
only data from the UK Biobank was used, with 450,082 individuals in the pooled analysis,
245,047 for women and 205,035 for men — both for autosomal chromosomes and X
chromosome.

Sample exclusion criteria
Individuals were eligible for inclusion if they met the following conditions:
a. They were assessed for NEB at least at age 45 for women, age 55 for men;

b. Those who have both given birth to a child (parous) and those who have not
(nulliparous);

All relevant covariates (e. g. year of birth) are available for the individual;

d. They were successfully genotyped genome-wide (recommended individual
genotyping rate > 95%);

e. They passed the cohort-specific standard quality controls, e.g. excluding individuals
who are genetic outliers in the cohort.

f. They were of European ancestry.

Genotyping and Imputation

Table S4 provides an overview of the cohort-specific details on the genotyping platform, pre-
imputation quality control filters applied to the genotype data, imputation software used, the
reference used for imputation and the presence of X chromosome data. We asked cohorts
toinclude all autosomal SNPs imputed from the 1000G panel (at a minimum) to allow analyses
across different genotyping platforms. Cohorts with denser reference panels we asked to
communicate this to our team. Cohorts were asked to provide unfiltered results since filters
on imputed markers and so forth would be applied at the meta-analysis stage.

Association testing models

Analysts ran linear regression models for NEB and logistic regression models for CL in the UK
Biobank study. Analysts were asked to include birth year of the respondent (represented by
birth year minus 1900), its square and cubic to control for non-linear birth cohort effects.
For those with family based data, we suggested controlling for family structure or excluding
relatives. We furthermore asked studies with family data to run a pooled GWAS on both
sexes. Combined analyses that included both men and women also needed to include
interactions of birth year and its polynomials with sex. We asked cohorts to include top
principal components to control for population stratification3® and cohort specific covariates
if appropriate. Some cohorts only used birth year and not the polynomials because of multi-
collinearity issues/convergence of the GWA analysis.
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Analysis of X chromosome

Analysis of X chromosome variants was performed using one of two complementary
approaches, XWAS or SNPtest, the results of which could be combined by meta-analysis. In
XWAS software (http://keinanlab.cb.bscb.cornell.edu/content/xwas) we used the --var-het-

weight command. In SNPtest, we used the -method newml; while this assumes complete X-
inactivation (i.e. a male with one allele is considered the same as a homozygous
female) the effect estimates and standard errors approximate % of those produced by
XWAS.

Quality Control: filters & diagnostic checks

We followed the quality control (QC) protocol reported by the GIANT consortium’s GWAS of
height3®. We used an adapted version of the software package QCGWAS?’, which allows the
inclusion of structural variants, in order to standardize files across cohorts and we used
EasyQC38 to filter variants by QC criteria and to produce diagnostic graphs and statistics as
described below. Where errors could not be amended by combining stringent QC with file-
inspections, queries to cohorts and corrections, cohorts were excluded from the meta-
analysis. See also Supplementary Tables S5-S6 for QC results on autosomal and X
chromosomes for NEB and CL. Specific individual filters were:

a) Missing data. We filtered variants where information on both reference and other allele
were missing, where the estimated effect, p-value, standard error, expected allele
frequency or number of observations were missing.

b) Implausible values. We filtered variants where p-values > 1 or < 0, standard errors = 0 or
= infinite, expected allele frequency >1 or < 0, N <0, call rate > 1 or < 0, an SE of the effect
estimate which is approximately 40% greater than the expected SE based on MAF and
standard deviation and for those with an R? >10% (see Winkler et al38 for an the
approximation for quantitative and Rietveld et al*® for quantitative and binary traits).

c) Quality thresholds. We filtered variants where expected allele frequency =1 or =0
(monomorphic variants), N < 100 to guard against spurious associations due to overfitting of
the model, minor allele count <6 to guard against spurious associations with low frequency-
SNPs and genotyped SNPs which were not in Hardy-Weinberg Equilibrium (HWE), with
significant thresholds of 1072 in case N < 1,000, 10™* in case 1,000 < N < 2,000, 10~° in case
2,000<N<10,000 and no filter in case N>10,000, imputed markers with imputation quality <
40% and SNPs with a call rate < 95%, if discrepancies between reported and expected p-
value based on effect estimates and standard errors are detected (see also next section on
diagnostic graphs).
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d) Data harmonization. We matched the cohort based summary statistics with a 1000
Genome reference panel phase 1 version 3 reference panel provided by Winkler et al®%,
EasyQC drops mismatched variants which cannot be solved straight away such as duplicates,
allele mismatches or missing or invalid alleles. Based on graphical inspections (see below),
we applied cohort specific filters to drop variants with obvious deviations between expected
allele frequency based on the reference panel and observed allele frequency.

Quality Control: Diagnostic graphs

We produced three key diagnostic graphs for visual inspection by the two independent QC
centres in Oxford and Cambridge. If problems were detected which could not be resolved by
more stringent QC we had to remove the cohort from the analysis. The key diagnostic
graphs depicted:

a) An allele frequency (AF) plot to identify errors in allele frequencies and strand
orientations using the 1000 Genome phase 1 version 3 reference panel provided by
Winkler et al8.

b) A PZ plot to assess the consistency of the reported p-values versus the Z score
calculated based on effect sizes and standard errors.

c) APRS plot of predicted versus reported standard error as developed by Winkler et
al*® and implemented by Okbay et al*!.

Quality Control: Filtering results
a) Autosomal chromosomes

Overall, the quality of studies was good (for full results of the QC-filters described above see
Tables S5 and S6 for autosomal SNPs). One cohort needed to be excluded (INGI-Carlantino)
due to the filter on sample size. For autosomal chromosomes and NEB, the remaining 45
cohorts provided 81 files, 39 for women only, 28 for men only and 13 pooled (for family
data). Two studies did not provide imputation quality (KORA F3, N =1.066; and KORA F4, N
=1,111) and contributed only 584,866 and 496,556 SNPs respectively. For the two HPFS
cohorts, results from our last discovery GWAS® based on HapMap 2 reference panels were
recycled with number of SNPs between 2,394,353 and 2,412,487. For all other cohorts, the
number of variants in the analysis range between 6,691,978 for men in LBC 1921 and
20,783,286 for women in EPIC with an average of 10,574,721. For CL, between 25,555,939
and 25,554,098 variants from the UK Biobank entered the GWAS and between 13,539,540
and 13,661,642 survived the QC.

b) X chromosome

For NEB, 12 cohorts provided information on the X chromosome. Overall, we received 27
files, 12 for women, 10 for men and 5 for the pooled analysis in case there were relatives in
the data. On average 325,872 variants survived QC with a minimum of 191,880 in men from
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LBC 1921 to 991,081 for the pooled UK Biobank sample. For CL, the UK Biobank provided
results for between 980,779 and 991,081 variants on the X chromosome after QC.

GWAS meta-analysis, signal selection and replication

Cohort association results (after applying the QC filters) were combined using sample-size
weighted meta-analysis, implemented in METAL*?. Sample-size weighting is based on Z-
scores and can account for different phenotypic measurements among cohorts*3. The two
QC centres agreed in using sample-size weighting to allow cohorts to introduce study-
specific covariates in their cohort-level analysis. Only SNPs that were observed in at least
50% of the participants for a given phenotype-sex combination were passed to the meta-
analysis. SNPs were considered genome-wide significant at p-values smaller than 5x10-8 (a
of 5%, Bonferroni-corrected for a million tests). The meta-analyses were carried out by two
independent analysts. Comparisons were made to ensure concordance of the identified
signals between the two independent analysts. Distance-based clumping (using a 1Mb
window) was used to identify the most significant SNPs in associated regions (termed “lead
SNPs”). This was then supplemented by approximate conditional analysis implemented in
GCTA*45 where we required additional signals to be genome-wide significant in both pre
and post conditional models.

We meta-analysed GWAS results for NEB and CL both in sex-combined and sex-specific
models. To understand the magnitude of the estimated effects, we used an approximation
method to compute unstandardized regression coefficients based on the Z-scores of METAL
output obtained by sample-size-weighted meta-analysis, allele frequency and phenotype
standard deviation.

Replication

Replication was performed using the FinnGen study - a public-private partnership project
combining genotype data from Finnish biobanks and digital health record data from Finnish
health registries (https://www.finngen.fi/en). Six regional and three country-wide Finnish
biobanks participate in FinnGen. Additionally, data from previously established populations
and disease-based cohorts are utilized. Release 4 of Finngen includes 176,899 participants.

In this analysis we included women that participated to Finngen release 4 and were at least
45 years of age at 315t December 2017. This was the last date we had information from
national registries. We also excluded women younger than 16 in 1969 (the start of the
registries). Using these inclusion criteria, we included women born between 1953 and 1973
and children born between 1969 and 2017. We also excluded women that emigrated from
Finland in the study period.

To determine if a woman delivered a child we used the following codes obtains from the
national inpatient registry (HILMO):
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e |[CD-10 codes: 080-084
e |CD-9 code: 6440B, 6450B, 650[0-9]B-659[0-9]B
e |CD-8 codes: 650-662

When multiple codes were used within a 10-month period we counted as a single delivery.

There were 37,741 women, the average (SD) number of children was 1.72 (1.32) and 20.4%
of the women were childless.

Samples were genotyped with lllumina (lllumina Inc., San Diego, CA, USA) and Affymetrix
arrays (Thermo Fisher Scientific, Santa Clara, CA, USA). Genotype calls were made with
GenCall and zCall algorithms for lllumina and AxiomGT1 algorithm for Affymetrix data. Chip
genotyping data produced with previous chip platforms and reference genome builds were
lifted over to build version 38 (GRCh38/hg38) following the protocol described here:
dx.doi.org/10.17504/protocols.io.nqtddwn. In sample-wise quality control, individuals with
ambiguous sex, high genotype missingness (>5%), excess heterozygosity (+-4SD) and non-
Finnish ancestry were removed. In variant-wise quality control variants with high
missingness (>2%), low HWE P-value (<1e-6) and minor allele count, MAC<3 were removed.
Chip genotyped samples were pre-phased with Eagle 2.3.5
(https://data.broadinstitute.org/alkesgroup/Eagle/) with the default parameters, except the
number of conditioning haplotypes was set to 20,000.

High-coverage (25-30x) WGS data (N= 3,775) were generated at the Broad Institute and at
the McDonnell Genome Institute at Washington University; and jointly processed at the
Broad Institute. Variant call set was produced with GATK HaplotypeCaller algorithm by
following GATK best-practices for variant calling. Genotype-, sample- and variant-wise QC
was applied in an iterative manner by using the Hail framework (https://github.com/hail-
is/hail) v0.1 and the resulting high-quality WGS data for 3,775 individuals were phased with
Eagle 2.3.5 as described above. Genotype imputation was carried out by using the
population-specific SISu v3 imputation reference panel with Beagle 4.1 (version
08Jun17.d8b, https://faculty.washington.edu/browning/beagle/b4_1.html) as described in
the following protocol: dx.doi.org/10.17504/protocols.io.nmndc5e. Post-imputation quality-
control involved non-reference concordance analyses, checking expected conformity of the
imputation INFO-values distribution, MAF differences between the target dataset and the
imputation reference panel and checking chromosomal continuity of the imputed genotype
calls.

For principal components analysis, FinnGen data was combined with 1000 genomes data.
Related individuals (<3rd degree) were removed using King software®®. We considered
common (MAF >= 0.05) high quality variants: not in chromosome X, imputation INFO>0.95,
genotype imputed posterior probability>0.95 and missingess<0.01. LD-pruned (r?<0.1)
common variants were used for computing PCA with Plink 1.92.

SAIGE mixed model logistic regression
(https://github.com/weizhouUMICH/SAIGE/releases/tag/0.35.8.8 ) was used for association
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analysis. Age and 10 PCs and genotyping batch were used as covariates. Each genotyping
batch was included as a covariate to avoid convergence issues.

Prioritizing putatively functional genes in GWAS highlighted regions

We used a range of procedures to prioritize the most likely causal gene(s) in NEB and CLN-
associated loci before combining results across the two traits.

Firstly, we used DEPICT v1.1# to identify enrichment for pathways, cell types and tissues, as
well as to prioritize candidate genes. DEPICT is an integrative tool that employs predicted
gene functions and that is agnostic to the outcomes analysed in the GWAS. For both NEB
and CLN, all SNPs with P<1x107 in the pooled analyses were used as input.

Secondly, we used Phenolyzer (v1.1), to prioritize candidate genes by integrating prior
knowledge and phenotype information*. Here we used the regions defined by DEPICT (see
above), reflecting loci reaching P<1x107 in first instance. Phenolyzer takes free text input
and interprets these as disease names by using a word cloud to identify synonyms. It then
qgueries precompiled databases for the disease names to find and score relevant seed genes.
The seed genes are subsequently expanded to include related (predicted) genes based on
several types of relationships, e.g. protein-protein interactions, transcriptional regulation
and biological pathways. Phenolyzer uses machine learning techniques on seed genes and
predicted gene rankings to produce an integrated score for each gene. We used search
terms capturing three broad areas, i.e. (in)fertility, congenital neurological disorders and
psychological traits, based on results from pathway, tissue and cell type enrichment
analyses. Phenolyzer identified 16 and 8 candidate genes for NEB and CLN, respectively for
gene scores >0.1 within the selected DEPICT regions with genome-wide significant lead SNP.
Where more than one gene was prioritized per locus the gene with the highest total score
was reported.

Thirdly, we used in silico sequencing to identify non-synonymous variants with an R? for
LD>0.7 with the lead SNPs of NEB and CL-associated loci.

Finally, we used Summary-data-based Mendelian Randomization (SMR) and heterogeneity
in dependent instruments (HEIDI)* using data from the eQTL consortium in whole
blood>?, and a meta-analysis of eQTL data in brain®.

We integrated findings across all approaches described above and retained genes in loci

that reached genome-wide significance and that were located within 1Mb from a GWAS
lead SNP.

Testing change in polygenic scores over time

To evaluate how NEB-associated alleles may change in frequency over time, we first
repeated our NEB GWAS meta-analysis twice excluding either the Health and Retirement
Study (HRS) and the UK Household Longitudinal Study - Understanding Society (UKHLS).
Polygenic risk scores were then generated from the meta-analysis excluding either HRS or
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UKHLS and used to predict outcomes in the respective study. Polygenic risk scores were
computed using LDPred>? from the meta-analyses, using the LD reference panel from the
respective target studies (HRS or UKHLS). We calculated LDpred weights under the
infinitesimal model, using summary statistics from the sex-combined meta-analysis results
excluding the specific cohort from the calculation. We then performed a linear regression of
the polygenic scores for males and females separately against birth year, controlling for the
first 10 genomic principal components. We excluded birth years with fewer than 90
individuals.

Identifying overlap between NEB hits and previously-identified selection signals

We deployed several methods to assess overlap of our NEB signals with three genome-wide
selection scans. First, the Composite of Multiple Signals test?® combines information from
different statistics to detect selection on the order of the past 50,000 years. Second, an
ancient DNA based scan?’ that uses direct inference of allele frequency from ancient
populations to infer selection over the past 10,000 years. Finally, the Singleton Density
Score®®, which uses patterns of singleton variants to infer very recent selection — on the
order of a few thousand years.

We obtained genome-wide selection scan results from three sources!’*%2°, For the
Composite of Multiple Signals test?%, we used the rankings of CMSesw statistics to obtain an
empirical P-value for each SNP. For the Singleton Density Score '8, we converted normalized
SDS scores to two-tailed P-values of the standard normal distribution. Finally, for the ancient
DNA based selection scan'’, we used the genomic control corrected P-values from the
original scan. For each NEB hit, for each scan, we identified the SNP within 10kb, with a P-
value < 10°® for NEB that had the most significant selection scan signal (SNP1 and PVAL1 in
Table S18-19). We also identified the SNP within 10kb that had the most significant
selection scan signal, regardless of its NEB P-value (SNP2 and PVAL2 in Table $18-19).
Finally, we performed a Bayesian Colocalization analysis using the “coloc” package?! using all
SNPs within 10kb of the lead NEB SNP. This computes posterior probabilities for the
hypotheses: HO No causal SNPs, H1 Causal SNP for selection but not NEB, H2 Causal SNP for
NEB but not selection, H3 One independent causal SNP for each trait, H4 One shared causal
SNP for both traits. We report the hypothesis with the maximum posterior probability
(COLOC in Table S18-19).

We also tested for overlap with a scan for balancing selection using the NCD2 statistic®3 for
the GBR population of 1000 genomes. We used the target frequency of 0.5 for these tests.
For all SNPs, we report the value of the window that overlaps that SNP or, if more than one
window overlaps a SNP, we report the lowest P-value of any window within 10kb. Finally,
we report the lowest P-value for genes within 10kb of each SNP.
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Estimating FADS allele frequencies from ancient DNA

We downloaded combined data from https://reich.hms.harvard.edu/downloadable-

genotypes-present-day-and-ancient-dna-data-compiled-published-papers and restricted to

652 samples west of 40°E, north of 35°S, more recent than 12,000 years before present and
with coverage at rs108499. We binned them into 2000-year bins, and computed estimated
allele frequencies and bootstrap confidence intervals. We also include the European sub-
populations from phase 3 of the 1000 Genomes Project>4.
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