
1 
 

Title: Genome-wide analysis identifies genetic effects on reproductive success and ongoing 

natural selection at the FADS locus. 

 

Iain Mathieson1, ,*, Felix R. Day2, , Nicola Barban3, , Felix C. Tropf4,5,6,7, , David M. Brazel4,5, , 

eQTLGen Consortium, BIOS Consortium, Ahmad Vaez8,9, Natalie van Zuydam10, Bárbara D. 

Bitarello1, Harold Snieder8, Marcel den Hoed10, Ken K. Ong2, Melinda C. Mills4,5, ,*, and John 

R.B. Perry2, ,* on behalf of the Human Reproductive Behaviour Consortium 

 

1 Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 

Philadelphia, United States of America 

2 MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, 

Cambridge, United Kingdom 

3 Institute of Social and Economic Research, University of Essex, Essex, United Kingdom 

4 Leverhulme Centre for Demographic Science, University of Oxford, Oxford, United 

Kingdom 

5 Nuffield College, University of Oxford, Oxford, United Kingdom 

6 École Nationale de la Statistique et de L9administration Économique (ENSAE), Paris, France 

7 Center for Research in Economics and Statistics (CREST), Paris, France 

8 Department of Epidemiology, University of Groningen, University Medical Center 

Groningen, Groningen, The Netherlands 

9 Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran 

10 The Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala 

University and SciLifeLab, Uppsala, Sweden 

 

  Denotes equal contribution 

* Correspondence to Iain Mathieson, mathi@pennmedicine.upenn.edu, Melinda C. Mills 

melinda.mills@nuffield.ox.ac.uk, and John R.B. Perry, john.perry@mrc-epid.cam.ac.uk 

 

 

 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.19.104455doi: bioRxiv preprint 

mailto:mathi@pennmedicine.upenn.edu
mailto:melinda.mills@nuffield.ox.ac.uk
mailto:john.perry@mrc-epid.cam.ac.uk
https://doi.org/10.1101/2020.05.19.104455
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 

Identifying genetic determinants of reproductive success may highlight mechanisms 

underlying fertility and also identify alleles under present-day selection. Using data in 

785,604 individuals of European ancestry, we identify 43 genomic loci associated with either 

number of children ever born (NEB) or childlessness. These loci span diverse aspects of 

reproductive biology across the life course, including puberty timing, age at first birth, sex 

hormone regulation and age at menopause. Missense alleles in ARHGAP27 were associated 

with increased NEB but reduced reproductive lifespan, suggesting a trade-off between 

reproductive ageing and intensity. As NEB is one component of evolutionary fitness, our 

identified associations indicate loci under present-day natural selection. Accordingly, we 

find that NEB-increasing alleles have increased in frequency over the past two generations. 

Furthermore, integration with data from ancient selection scans identifies a unique example 

of an allele—FADS1/2 gene locus—that has been under selection for thousands of years and 

remains under selection today. Collectively, our findings demonstrate that diverse biological 

mechanisms contribute to reproductive success, implicating both neuro-endocrine and 

behavioural influences. 
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Introduction 

Variation in human reproductive behaviour and success is epidemiologically associated with 

disease risk and has profound psychological, clinical, societal and economic implications. 

This is particularly true for infertility, where efforts to elucidate the underlying biological 

mechanisms have been limited by the lack of large, well-phenotyped studies with relevant 

infertility outcomes. This situation is mirrored across many reproductive traits and diseases, 

such as polycystic ovary syndrome1,2, where progress to identify genetic determinants and 

underlying mechanisms has lagged behind that of other complex diseases3. 

 

One reason for this is that natural selection limits the frequency of fertility-reducing alleles. 

Number of children ever born (NEB) has one of the highest degrees of polygenicity of any 

complex trait, consistent with a genetic architecture strongly influenced by negative 

selection4. Studying the genetic basis of fertility may illuminate biological mechanisms 

underpinning infertility, with the advantage that relevant measures are more readily 

available. For example, recent studies have identified genetic determinants for NEB, age at 

first sexual intercourse and age at first birth5–7. These have provided several aetiological 

insights, such as highlighting a neuro-behavioural role for the estrogen receptor in men5 and 

identifying biological mechanisms linking reproductive ageing to late-onset diseases5,6,8,9.  

 

Fertility-associated loci may act through a broad array of mechanisms. They may have direct 

effects on reproductive biology, or act through traits that contribute to partner selection or 

other aspects of behaviour and personality. For example, alleles associated with higher 

educational attainment are associated with lower fertility in some populations10,11, 

reflecting the link between higher education and older age at childbearing12. Finally, 

fertility-associated loci might represent alleles under selection for some trait entirely 

disconnected from reproductive biology. By definition, any variant that is under natural 

selection affects fitness. In particular, variants that affect fitness through NEB would be 

detected by a genome-wide scan for NEB, although this scan would not capture all 

components of fitness.  

 

Our present study substantially builds upon two earlier studies5,6 to identify individual 

genetic determinants of NEB. We highlight a number of novel biological mechanisms and 

identify a locus that is under both historical and ongoing selection. 
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Results 

We identified genetic determinants of NEB by performing a genome-wide association study 

(GWAS) comprised of 785,604 European ancestry individuals (Online Methods) meta-

analysed across 45 studies (Table S1-S6). SNP array data was imputed to at least 1000 

Genomes Project reference panel density across all studies. The distribution of genome-

wide test statistics for NEB showed substantial inflation (λGC = 1.36), however LD score 

regression13 indicated that this was attributable to polygenicity rather than population 

stratification (LD intercept 1.01; s.e. 0.008). In total, 5,283 variants reached genome-wide 

significance (P<5x10-8) for association with NEB, which we resolved to 28 statistically 

independent signals (Table S7). These include all six signals previously reported for NEB in 

overlapping samples of up to 343,072 individuals5,6. 

 

The genetic architecture of NEB was only moderately correlated between men and women 

(rg=0.74; 95% CI 0.66-0.82). Therefore, we ran separate GWAS in men (N=306,980) and 

women (N=478,624), and identified six additional statistically independent signals (two in 

men, four in women). We found evidence of heterogeneity (Phet<0.05) between sexes at 

13/34 NEB loci (greater than expected by chance Pbinomial=410-9) and an overall trend for 

larger effect estimates in women than men (24/34, Pbinomial=0.02). Two notable examples 

were rs58117425 in testis expressed 41 (TEX41) gene which was significant only in men, and 

6:152202621_GT_G in the estrogen receptor alpha (ESR1) where the effect on NEB in 

women was double that in men (Table S7). 

 

In the absence of well-powered studies of infertility, we performed a GWAS on lifetime 

childlessness (CL) in UK Biobank (N=450,082) and assessed the relevance of NEB associated 

loci on susceptibility to CL. Effects on CL were modest, with the largest effect at the 

rs201815280-CADM2 locus (sex combined OR=1.05, 95% CI [1.04-1.06], P=6.8x10-18]). 

Interestingly, the genetic correlation between NEB and CL was less than perfect (rg= -0.90 [-

0.88 to -0.92). Accordingly, of the 16 independent loci identified for CL, eight were distinct 

from the NEB signals (Table S7). Sex-stratified analyses revealed one additional female-

specific CL signal (rs7580304, PPP3R1, Table S7). Several loci exhibited more significant 

effects on CL than on NEB (Figure S1). 

 

In summary, we identified 43 independent signals; 28 from the sex-combined NEB meta-

analysis, six sex-specific NEB signals, eight additional sex-combined CL signals, and one sex-

specific CL locus. To validate these findings, we performed a lookup of these signals in 

34,367 women from the FinnGen study (Methods). Since NEB was not recorded for men in 

this study we only considered the 41 signals identified in sex-combined or female-specific 

analyses. Despite the small replication sample, 35/41 effects were directionally concordant–
(binomial sign test P=5x10-6; Table S7).  
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Implicated genes and biological mechanisms 

 

We identified putatively functional genes across all 43 NEB/CL associated loci using a 

number of approaches: gene expression integration, non-synonymous variant mapping and 

text mining (Online Methods, Tables S8-S15). Results are summarised in Tables S16-17 and 

Figure S2. All prioritized genes were more highly expressed at the protein level in central 

nervous system cell types than in female reproductive cell types14, except for ESR1 and 

ENO4 (i.e. glandular cells in endometrium and fallopian tube in the case of ENO4, Figure S2). 

ENO4 is required for sperm motility and function as well as for male fertility in mice. It is 

required for normal assembly of the sperm fibrous sheath, and provides most of the enolase 

activity in sperm15.  

 

To further ascertain which loci might directly implicate reproductive mechanisms, we 

integrated GWAS results from other reproductive traits (Figure 2). Surprisingly, the NEB-

increasing missense allele (rs9730, p.Ala117Thr) in ARHGAP27, which encodes a Rho 

GTPase, a small family of molecules involved in axon guidance, was associated with a 

shorter reproductive lifespan: later age at menarche (P=1x10-11) and earlier menopause 

(P=2x10-5); additional associations were seen with earlier age at first birth (P=5.5x10-8), 

lower circulating testosterone concentrations in women (both bioavailable [P=2.1x10-4] and 

total [P=2.1x10-3)], but higher testosterone concentrations in men (both bioavailable 

[P=3.5x10-4] and total [P=1.9x10-11]). These associations suggest a life history strategy 

involving a shorter but more productive reproductive lifespan.  Another NEB signal, 

rs4730673 near MDFIC, is correlated with the strongest reported GWAS signal for same-sex 

sexual behaviour16 (rs10261857; r2 = 0.74). Here, the NEB-increasing allele had a more 

significant effect on decreasing the likelihood of CL, and also decreased the likelihood of 

same-sex sexual behaviour (Table S7). 

 

NEB-increasing alleles have increased in frequency over the past two generations 

 

We next tested whether NEB-increasing alleles have increased in frequency over time. To 

assess this, we computed a genome-wide polygenic score (PGS) for NEB using LDPred 

(Online Methods) and tested this as a linear function of birth year in studies independent of 

NEB PGS construction, controlling for the effects of study and sex. The standardised NEB 

PGS increased by 4.310-3 per-year (standard error = 6.410-4; P=1.310-11; FigureS3) in the 

HRS and UKHLS cohorts. This increase indicates that the identified loci are associated with 

increased NEB not only in our studied individuals, but also in their (unsampled) parents, 

since the PRS increasing over time suggests that parents with higher PRS have more 

children. 
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Overlap between NEB and historical selection signals identifies the FADS1/2 locus 

 

Effect estimates for the 34 genome-wide significant NEB loci ranged from 0.012-0.025 

children per allele. The population mean NEB is ~1.8 in UK Biobank, so an effect size of 0.02 

per allele implies that a group of 25 people homozygous for a NEB-increasing allele would 

have, on average, 46 children, compared to 45 children for a group of 25 people without 

that allele. Assuming no allelic effect on pre-reproductive mortality, these effects on NEB 

can be directly translated to selection coefficients of 0.67-1.4% per allele, which is within 

the range detectable by genome-wide historical selection scans17–19. Accordingly, we 

compared our NEB/CL GWAS results with the results of scans testing selection over different 

timescales from ~2,000 to ~30,000 years before present17,18,20 (Online Methods) and 

evaluated overlap using Bayesian co-localization analysis21 (Table S18-S19).  

 

The strongest overlap was observed at chr11:61.5Mb, which exhibited a posterior 

probability of 96% that the lead variants for ancient selection and NEB represent the same 

underlying signal (Figure 3A). This locus contains the genes FADS1 and FADS2, which have 

been targeted by selection multiple times in human history22–25. In particular, the derived 

haplotype at this locus has increased from a frequency of <10% 10,000 years ago to 60-75% 

in present-day European populations (Figure 3B). While some of this increase is due to 

admixture, there is strong evidence of positive selection over the past few thousand years, 

even accounting for changes in ancestry17,22–26, Each 8C9 allele of the lead NEB SNP rs108499, 

which tags the positively selected FADS1 haplotype, increased NEB by 0.0134, 

corresponding to a selection coefficient of 0.74% (0.0134 divided by mean NEB of 1.8). 

Consistent with this, we estimate that within the <White British= subset of UK Biobank, the 

derived allele increased in frequency by 0.0088% per-year between the 1938 and 1969 birth 

cohorts (linear regression including 10 principal components and collection centre; P=0.27, 

Figure 3C) corresponding to a selection coefficient of 1.2% (approximate 95% CI -0.9-3.2%). 

Estimates of historical selection coefficients range from 0.4-0.6% (based on time-serial 

analysis of ancient DNA samples) to 3.4-6.9% (based on analyses of present-day haplotype 

structure)24,26.  

 

FADS1 and FADS2 encode enzymes that catalyse the -5 and -6 lipid biosynthesis 

pathways that synthesize long chain polyunsaturated fatty acids (LC-PUFA) from short chain 

precursors. It has been hypothesised that the ancestral allele is advantageous in 

populations–for example in the Eurasian Upper Palaeolithic–that have a diet high in meat 

and marine fats (with relatively high LC-PUFA contents) and the derived allele is 

advantageous in populations that have a diet high in vegetable fats (with relatively low LC-

PUFA contents and thus benefitting from higher FADS1 enzymatic activity)22–25. Under this 

model, FADS genotype selection in Europe is driven by dietary transitions, in particular, the 
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Bronze Age transition to a diet based intensively on agricultural products25,26. However, the 

mechanism through which this gene-environment interaction affects fitness, and which 

phenotype is under selection, are unclear. 

 

One reason for this uncertainty is that the FADS locus is highly pleiotropic. It is one of the 

strongest GWAS signals for circulating lipids27 and blood metabolites28, and is strongly 

associated with blood cell phenotypes, including erythrocyte and platelet sizes and counts 

(Table S20). To test the relevance of lipids to ongoing selection, we assessed the dose-

response relationship of all previously reported29 HDL, LDL, total cholesterol or triglyceride 

associated variants on NEB using a Mendelian Randomization (MR) framework. We found 

no such association (P>0.05 in all MR models), which suggests that the NEB effect at the 

FADS locus is not shared across other lipid-associated loci. Assessment of the FADS locus 

across a range of reproductive traits highlighted associations between the NEB-increasing 

allele and higher circulating sex-hormone binding globulin (SHBG, P=2.3x10-20), higher total 

testosterone (P=1.9x10-5) and higher estradiol concentrations (P=4x10-4) in men, and lower 

bioavailable testosterone concentrations in women (P=1.5x10-3). These data, in addition to 

the observation that our associated variants influence FADS1 expression in the brain (Table 

S15), raise the possibility that the effect of the FADS locus on NEB could be attributable to 

its effects on reproductive pathways, rather than its effects on lipids and consequent 

disease morbidity/mortality. We note however that many of the strongest known genetic 

determinants for sex hormone levels30 are not significantly associated with NEB in our study. 

Ultimately further experimental work is required to fully elucidate the mechanisms linking 

NEB-associated variants at this locus to reproductive success. We note that our analyses 

include only European ancestry individuals and is heavily weighted by the UK Biobank, which 

may not be representative of the UK population,31 and it remains to be seen which of these 

effects are consistent across cohorts and populations. 

 

NEB-associated variants in CADM2 exhibit signatures of balancing selection 

 

The most significant NEB-associated variants in the genome, in CADM2, show no evidence of 

historical positive selection. However, CADM2 is reported to exhibit one of the strongest 

genomic signals of long-term balancing selection32. Variants in CADM2 are associated with a 

range of behavioural and reproductive traits, plausibly explained by a primary effect on risk 

taking propensity 5,33,34. Variants that increase risk taking also increase NEB, with risk taking 

and behavioural disinhibition also linked to earlier reproductive onset 7. Since these variants 

are still segregating and appear to be under balancing rather than positive selection, this 

suggests ongoing or time- or environmentally-varying negative consequences of NEB-

increasing CADM2 alleles on fitness, possibly connected to adverse risk-taking behaviours. 

Other NEB-associated loci with nominal evidence of balancing selection contain the genes 

PTPRD and LINC00871 (Table S21). 
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Lack of contemporary selection at historical selection signals 

 

We next tested whether there was any evidence of current selection (as measured by 

association with NEB/CL) at regions identified by the three genome-wide historical selection 

scans (Table S22). Other than the FADS locus, none of the other 53 regions tested exhibited 

an association with NEB, suggesting that few of the strong historical selective sweeps in 

humans are ongoing. For example, the sweep associated with lactase persistence - one of 

the strongest signals of selection in any human population – is not ongoing in the European 

ancestry populations in this study. This finding is consistent with evidence from ancient DNA 

which suggests that the persistence allele reached its present-day Northern European 

frequency of around 60% by the Middle Ages35. Other strong sweeps, such as those 

associated with skin pigmentation-decreasing loci, are likely not detected in the NEB GWAS 

because the selected variants are now fixed or almost fixed among European ancestry 

populations. 

 

Different methods for detecting historical selection in humans are sensitive to selection 

across very different timescales – ranging from thousands to millions of years. Our NEB 

GWAS can be interpreted as a genome-wide selection scan over the shortest and most 

recent timescale – i.e., living generations. The limited overlap between this and the 

historical selection scans is consistent with the limited overlap between different historical 

scans, and likely reflects a highly dynamic landscape of selection. Selected loci either fix, or 

stop being selected and remain at intermediate frequency. The FADS locus is unique in the 

sense that the selective sweep – starting at least several thousand years ago – is still 

ongoing.  At other loci, for example CADM2, signs of balancing selection suggest that the 

direction of effect might vary with environments or allele frequency. 

 

In summary, our study identifies 37 signals that have not been previously reported for NEB 

and represent potential targets of ongoing natural selection. Further work should aim to 

parse these effects into mechanisms that directly influence reproductive biology, in contrast 

to those which affect behaviour or reduce fitness through premature morbidity or mortality.  
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Tables and Figures 

Figure 1 |Manhattan plots for genome-wide association analyses of NEB and CL 
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Figure 2 |Heat map of the effects of the 43 independent signals identified for NEB or CL on other reproductive traits. All associations based 

on trait-specific Z-scores aligned to NEB-increasing allele, with 0 (white) denoting no association. SHBG = sex hormone binding globulin.
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Figure 3 | Evidence for historical and ongoing selection at the FADS locus. A: Colocalization of the ancient DNA selection signal17 (upper 

panel) and the NEB GWAS signal (lower panel). B: Estimated frequency (95% confidence intervals) for the derived FADS allele in Europe, based 

on direct evidence from ancient DNA. Present-day frequencies in 1000 Genomes European populations shown in blue. C: Frequency (95% 

confidence intervals) of the derived FADS allele in UK biobank as a function of birth year from 1938 to 1968. 
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Online Methods 

 

Phenotype definitions 

Number of children ever born (NEB) is treated as a continuous measure that was either 

asked directly or could be created from several survey questions (e.g., pregnancy or birth 

histories). A standard question in most surveys asks: How many children have you given 

birth to? Or another variant is: How many children do you have? In most cases it was 

possible to distinguish between biological, adopted or step-children and when this was 

possible, we refer to live born biological children. Individuals were eligible for inclusion in 

the analysis if they were assessed for NEB and were at least age 45 for women and age 55 

for men, or in other words, had reached the end of their reproductive window. The measure 

included both those who had given birth to a child (parous) and those who had not 

(nulliparous).  

 

Childlessness (CL) is treated as a binary measure, generally calculated from NEB recoded as 1 

referring to childless and 0 if they had children with the same inclusion rules of biological 

live born children and age restrictions applied. Detailed measures for both phenotypes per 

cohort are described in Table S2).  

 

Participating cohorts and analysis plan 

The discovery of genetic variants for reproductive success in human populations is based on 

genome-wide association studies from cohort-level data that were quality-controlled and 

meta-analyzed by two separate independent centres at the University of Oxford and 

University of Cambridge. We follow the QC protocol of the GIANT consortium9s study of 
human height36 and employed the software packages QCGWAS37 and EasyQC38, which 

allowed us to harmonize the files and identify possible sources of errors in association 

results. This procedure entailed that diagnostic graphs and statistics were generated for 

each set of GWAS results (i.e., for each file). In the case where apparent errors could not be 

amended by stringent QC and correspondence with the local analyst of the respective 

cohort, cohorts were excluded from the meta-analysis. (See section below for details on 

cohort inclusion and errors).  

A total of 45 cohorts participated in our study (Table S1). Table S2 provides an overview of 

cohort-specific details, including an adjusted pooled analysis of women and men in the case 

of family data (see below). Cohorts who agreed to participate followed an Analysis Plan 

posted on the Open Science Framework preregistration site https://osf.io/b4r4b/ on 

February 08, 2017. 

 

For autosomal chromosomes and NEB the total number of individuals in the pooled meta-

analysis was 785,604, with a somewhat larger sample for women (39 cohorts) than men (29 
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cohorts). Table S3 provides detailed information about the cohorts with X Chromosome 

data. For the NEB meta-analysis this included 671,349 individuals (12 cohorts) for the 

pooled cohorts, 384,976 for women (12 cohorts) and 286,373 for men (10 cohorts). For CL, 

only data from the UK Biobank was used, with 450,082 individuals in the pooled analysis, 

245,047 for women and 205,035 for men – both for autosomal chromosomes and X 

chromosome.  

 

Sample exclusion criteria 

Individuals were eligible for inclusion if they met the following conditions: 

a. They were assessed for NEB at least at age 45 for women, age 55 for men; 

b. Those who have both given birth to a child (parous) and those who have not 

(nulliparous); 

c. All relevant covariates (e. g. year of birth) are available for the individual; 

d. They were successfully genotyped genome-wide (recommended individual 

genotyping rate > 95%); 

e. They passed the cohort-specific standard quality controls, e.g. excluding individuals 

who are genetic outliers in the cohort. 

f. They were of European ancestry. 

 

Genotyping and Imputation 

Table S4 provides an overview of the cohort-specific details on the genotyping platform, pre-

imputation quality control filters applied to the genotype data, imputation software used, the 

reference used for imputation and the presence of X chromosome data.  We asked cohorts 

to include all autosomal SNPs imputed from the 1000G panel (at a minimum) to allow analyses 

across different genotyping platforms. Cohorts with denser reference panels we asked to 

communicate this to our team. Cohorts were asked to provide unfiltered results since filters 

on imputed markers and so forth would be applied at the meta-analysis stage.  

 

Association testing models 

Analysts ran linear regression models for NEB and logistic regression models for CL in the UK 

Biobank study. Analysts were asked to include birth year of the respondent (represented by 

birth year minus 1900), its square and cubic to control for non-linear birth cohort effects. 

For those with family based data, we suggested controlling for family structure or excluding 

relatives. We furthermore asked studies with family data to run a pooled GWAS on both 

sexes.  Combined analyses that included both men and women also needed to include 

interactions of birth year and its polynomials with sex. We asked cohorts to include top 

principal components to control for population stratification39 and cohort specific covariates 

if appropriate. Some cohorts only used birth year and not the polynomials because of multi-

collinearity issues/convergence of the GWA analysis. 
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Analysis of X chromosome  

Analysis of X chromosome variants was performed using one of two complementary 

approaches, XWAS or SNPtest, the results of which could be combined by meta-analysis. In 

XWAS software (http://keinanlab.cb.bscb.cornell.edu/content/xwas) we used the --var-het-

weight command. In SNPtest, we used the -method newml; while this assumes complete X-

inactivation (i.e. a  male  with  one allele  is  considered the  same  as  a  homozygous  

female)  the  effect estimates and  standard errors approximate ½ of those produced by 

XWAS. 

 

Quality Control: filters & diagnostic checks 

We followed the quality control (QC) protocol reported by the GIANT consortium9s GWAS of 

height36. We used an adapted version of the software package QCGWAS37, which allows the 

inclusion of structural variants, in order to standardize files across cohorts and we used 

EasyQC38 to filter variants by QC criteria and to produce diagnostic graphs and statistics as 

described below. Where errors could not be amended by combining stringent QC with file-

inspections, queries to cohorts and corrections, cohorts were excluded from the meta-

analysis. See also Supplementary Tables S5-S6 for QC results on autosomal and X 

chromosomes for NEB and CL. Specific individual filters were: 

 

a) Missing data. We filtered variants where information on both reference and other allele 

were missing, where the estimated effect, p-value, standard error, expected allele 

frequency or number of observations were missing. 

 

b) Implausible values. We filtered variants where p-values > 1 or < 0, standard errors = 0 or  

= infinite, expected allele frequency > 1 or < 0, N < 0, call rate > 1 or < 0, an SE of the effect 

estimate which is approximately 40% greater than the expected SE based on MAF and 

standard deviation and for those with an �2 >10% (see Winkler et al38 for an the 

approximation for quantitative and Rietveld et al40 for quantitative and binary traits). 

 

c) Quality thresholds. We filtered variants where expected allele frequency = 1 or = 0 

(monomorphic variants), N < 100 to guard against spurious associations due to overfitting of 

the model, minor allele count <6 to guard against spurious associations with low frequency-

SNPs and genotyped SNPs which were not in Hardy-Weinberg Equilibrium (HWE), with 

significant thresholds of 10−3 in case N < 1,000, 10−4 in case 1,000 ≤ N < 2,000, 10−5 in case 

2,000≤N<10,000 and no filter in case N>10,000, imputed markers with imputation quality < 
40% and SNPs with a call rate < 95%, if discrepancies between reported and expected p-

value based on effect estimates and standard errors are detected (see also next section on 

diagnostic graphs). 
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d) Data harmonization. We matched the cohort based summary statistics with a 1000 

Genome reference panel phase 1 version 3 reference panel provided by Winkler et al38. 

EasyQC drops mismatched variants which cannot be solved straight away such as duplicates, 

allele mismatches or missing or invalid alleles. Based on graphical inspections (see below), 

we applied cohort specific filters to drop variants with obvious deviations between expected 

allele frequency based on the reference panel and observed allele frequency.  

 

Quality Control: Diagnostic graphs 

We produced three key diagnostic graphs for visual inspection by the two independent QC 

centres in Oxford and Cambridge. If problems were detected which could not be resolved by 

more stringent QC we had to remove the cohort from the analysis. The key diagnostic 

graphs depicted: 

a) An allele frequency (AF) plot to identify errors in allele frequencies and strand 

orientations using the 1000 Genome phase 1 version 3 reference panel provided by 

Winkler et al38. 

b) A PZ plot to assess the consistency of the reported p-values versus the Z score 

calculated based on effect sizes and standard errors. 

c) A PRS plot of predicted versus reported standard error as developed by Winkler et 

al38 and implemented by Okbay et al41. 

 

Quality Control: Filtering results 

a) Autosomal chromosomes 

Overall, the quality of studies was good (for full results of the QC-filters described above see 

Tables S5 and S6 for autosomal SNPs). One cohort needed to be excluded (INGI-Carlantino) 

due to the filter on sample size. For autosomal chromosomes and NEB, the remaining 45 

cohorts provided 81 files, 39 for women only, 28 for men only and 13 pooled (for family 

data). Two studies did not provide imputation quality (KORA F3, N =1.066; and KORA F4, N 

=1,111) and contributed only 584,866 and 496,556 SNPs respectively. For the two HPFS 

cohorts, results from our last discovery GWAS6 based on HapMap 2 reference panels were 

recycled with number of SNPs between 2,394,353 and 2,412,487. For all other cohorts, the 

number of variants in the analysis range between 6,691,978 for men in LBC 1921 and 

20,783,286 for women in EPIC with an average of 10,574,721. For CL, between 25,555,939 

and 25,554,098 variants from the UK Biobank entered the GWAS and between 13,539,540 

and 13,661,642 survived the QC. 

 

b) X chromosome 

For NEB, 12 cohorts provided information on the X chromosome. Overall, we received 27 

files, 12 for women, 10 for men and 5 for the pooled analysis in case there were relatives in 

the data. On average 325,872 variants survived QC with a minimum of 191,880 in men from 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.19.104455doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.19.104455
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

LBC 1921 to 991,081 for the pooled UK Biobank sample. For CL, the UK Biobank provided 

results for between 980,779 and 991,081 variants on the X chromosome after QC. 

 

GWAS meta-analysis, signal selection and replication 

Cohort association results (after applying the QC filters) were combined using sample-size 

weighted meta-analysis, implemented in METAL42. Sample-size weighting is based on Z-

scores and can account for different phenotypic measurements among cohorts43. The two 

QC centres agreed in using sample-size weighting to allow cohorts to introduce study-

specific covariates in their cohort-level analysis.  Only SNPs that were observed in at least 

50% of the participants for a given phenotype-sex combination were passed to the meta-

analysis. SNPs were considered genome-wide significant at p-values smaller than 5×10-8 (α 
of 5%, Bonferroni-corrected for a million tests). The meta-analyses were carried out by two 

independent analysts. Comparisons were made to ensure concordance of the identified 

signals between the two independent analysts. Distance-based clumping (using a 1Mb 

window) was used to identify the most significant SNPs in associated regions (termed <lead 
SNPs=). This was then supplemented by approximate conditional analysis implemented in 

GCTA44,45, where we required additional signals to be genome-wide significant in both pre 

and post conditional models. 

 

We meta-analysed GWAS results for NEB and CL both in sex-combined and sex-specific 

models. To understand the magnitude of the estimated effects, we used an approximation 

method to compute unstandardized regression coefficients based on the Z-scores of METAL 

output obtained by sample-size-weighted meta-analysis, allele frequency and phenotype 

standard deviation. 

 

Replication 

Replication was performed using the FinnGen study - a public-private partnership project 

combining genotype data from Finnish biobanks and digital health record data from Finnish 

health registries (https://www.finngen.fi/en). Six regional and three country-wide Finnish 

biobanks participate in FinnGen. Additionally, data from previously established populations 

and disease-based cohorts are utilized. Release 4 of Finngen includes 176,899 participants. 

In this analysis we included women that participated to Finngen release 4 and were at least 

45 years of age at 31st December 2017. This was the last date we had information from 

national registries. We also excluded women younger than 16 in 1969 (the start of the 

registries). Using these inclusion criteria, we included women born between 1953 and 1973 

and children born between 1969 and 2017. We also excluded women that emigrated from 

Finland in the study period.  

To determine if a woman delivered a child we used the following codes obtains from the 

national inpatient registry (HILMO): 
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• ICD-10 codes: O80-O84 

• ICD-9 code: 6440B, 6450B, 650[0-9]B-659[0-9]B 

• ICD-8 codes: 650-662 
 

When multiple codes were used within a 10-month period we counted as a single delivery. 

There were 37,741 women, the average (SD) number of children was 1.72 (1.32) and 20.4% 

of the women were childless. 

Samples were genotyped with Illumina (Illumina Inc., San Diego, CA, USA) and Affymetrix 

arrays (Thermo Fisher Scientific, Santa Clara, CA, USA). Genotype calls were made with 

GenCall and zCall algorithms for Illumina and AxiomGT1 algorithm for Affymetrix data. Chip 

genotyping data produced with previous chip platforms and reference genome builds were 

lifted over to build version 38 (GRCh38/hg38) following the protocol described here: 

dx.doi.org/10.17504/protocols.io.nqtddwn. In sample-wise quality control, individuals with 

ambiguous sex, high genotype missingness (>5%), excess heterozygosity (+-4SD) and non-

Finnish ancestry were removed. In variant-wise quality control variants with high 

missingness (>2%), low HWE P-value (<1e-6) and minor allele count, MAC<3 were removed. 

Chip genotyped samples were pre-phased with Eagle 2.3.5 

(https://data.broadinstitute.org/alkesgroup/Eagle/) with the default parameters, except the 

number of conditioning haplotypes was set to 20,000. 

High-coverage (25-30x) WGS data (N= 3,775) were generated at the Broad Institute and at 

the McDonnell Genome Institute at Washington University; and jointly processed at the 

Broad Institute. Variant call set was produced with GATK HaplotypeCaller algorithm by 

following GATK best-practices for variant calling. Genotype-, sample- and variant-wise QC 

was applied in an iterative manner by using the Hail framework (https://github.com/hail-

is/hail) v0.1 and the resulting high-quality WGS data for 3,775 individuals were phased with 

Eagle 2.3.5 as described above. Genotype imputation was carried out by using the 

population-specific SISu v3 imputation reference panel with Beagle 4.1 (version 

08Jun17.d8b, https://faculty.washington.edu/browning/beagle/b4_1.html) as described in 

the following protocol: dx.doi.org/10.17504/protocols.io.nmndc5e. Post-imputation quality-

control involved non-reference concordance analyses, checking expected conformity of the 

imputation INFO-values distribution, MAF differences between the target dataset and the 

imputation reference panel and checking chromosomal continuity of the imputed genotype 

calls. 

For principal components analysis, FinnGen data was combined with 1000 genomes data. 

Related individuals (<3rd degree) were removed using King software46. We considered 

common (MAF >= 0.05) high quality variants: not in chromosome X, imputation INFO>0.95, 

genotype imputed posterior probability>0.95 and missingess<0.01. LD-pruned (r2<0.1) 

common variants were used for computing PCA with Plink 1.92. 

SAIGE mixed model logistic regression 

(https://github.com/weizhouUMICH/SAIGE/releases/tag/0.35.8.8 ) was used for association 
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analysis. Age and 10 PCs and genotyping batch were used as covariates. Each genotyping 

batch was included as a covariate to avoid convergence issues. 

 

Prioritizing putatively functional genes in GWAS highlighted regions 

We used a range of procedures to prioritize the most likely causal gene(s) in NEB and CLN-

associated loci before combining results across the two traits. 

Firstly, we used DEPICT v1.147 to identify enrichment for pathways, cell types and tissues, as 

well as to prioritize candidate genes. DEPICT is an integrative tool that employs predicted 

gene functions and that is agnostic to the outcomes analysed in the GWAS. For both NEB 

and CLN, all SNPs with P<1x10-5 in the pooled analyses were used as input.  

Secondly, we used Phenolyzer (v1.1), to prioritize candidate genes by integrating prior 

knowledge and phenotype information48. Here we used the regions defined by DEPICT (see 

above), reflecting loci reaching P<1x10-5 in first instance. Phenolyzer takes free text input 

and interprets these as disease names by using a word cloud to identify synonyms. It then 

queries precompiled databases for the disease names to find and score relevant seed genes. 

The seed genes are subsequently expanded to include related (predicted) genes based on 

several types of relationships, e.g. protein-protein interactions, transcriptional regulation 

and biological pathways. Phenolyzer uses machine learning techniques on seed genes and 

predicted gene rankings to produce an integrated score for each gene. We used search 

terms capturing three broad areas, i.e. (in)fertility, congenital neurological disorders and 

psychological traits, based on results from pathway, tissue and cell type enrichment 

analyses. Phenolyzer identified 16 and 8 candidate genes for NEB and CLN, respectively for 

gene scores >0.1 within the selected DEPICT regions with genome-wide significant lead SNP. 

Where more than one gene was prioritized per locus the gene with the highest total score 

was reported.  

Thirdly, we used in silico sequencing to identify non-synonymous variants with an R2 for 

LD>0.7 with the lead SNPs of NEB and CL-associated loci. 

Finally, we used Summary-data-based Mendelian Randomization (SMR) and heterogeneity 

in dependent instruments (HEIDI)49 using data from the eQTL consortium in whole 

blood50, and a meta-analysis of eQTL data in brain51. 

We integrated findings across all approaches described above and retained genes in loci 

that reached genome-wide significance and that were located within 1Mb from a GWAS 

lead SNP. 

 

Testing change in polygenic scores over time 

To evaluate how NEB-associated alleles may change in frequency over time, we first 

repeated our NEB GWAS meta-analysis twice excluding either the Health and Retirement 

Study (HRS) and the UK Household Longitudinal Study - Understanding Society (UKHLS). 

Polygenic risk scores were then generated from the meta-analysis excluding either HRS or 
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UKHLS and used to predict outcomes in the respective study. Polygenic risk scores were 

computed using LDPred52 from the meta-analyses, using the LD reference panel from the 

respective target studies (HRS or UKHLS). We calculated LDpred weights under the 

infinitesimal model, using summary statistics from the sex-combined meta-analysis results 

excluding the specific cohort from the calculation. We then performed a linear regression of 

the polygenic scores for males and females separately against birth year, controlling for the 

first 10 genomic principal components. We excluded birth years with fewer than 90 

individuals.  

 

Identifying overlap between NEB hits and previously-identified selection signals 

We deployed several methods to assess overlap of our NEB signals with three genome-wide 

selection scans. First, the Composite of Multiple Signals test20 combines information from 

different statistics to detect selection on the order of the past 50,000 years. Second, an 

ancient DNA based scan17 that uses direct inference of allele frequency from ancient 

populations to infer selection over the past 10,000 years. Finally, the Singleton Density 

Score18, which uses patterns of singleton variants to infer very recent selection – on the 

order of a few thousand years. 

We obtained genome-wide selection scan results from three sources17,18,20. For the 

Composite of Multiple Signals test20, we used the rankings of CMSGW statistics to obtain an 

empirical P-value for each SNP. For the Singleton Density Score 18, we converted normalized 

SDS scores to two-tailed P-values of the standard normal distribution. Finally, for the ancient 

DNA based selection scan17, we used the genomic control corrected P-values from the 

original scan. For each NEB hit, for each scan, we identified the SNP within 10kb, with a P-

value < 10-6 for NEB that had the most significant selection scan signal (SNP1 and PVAL1 in 

Table S18-19). We also identified the SNP within 10kb that had the most significant 

selection scan signal, regardless of its NEB P-value (SNP2 and PVAL2 in Table S18-19). 

Finally, we performed a Bayesian Colocalization analysis using the <coloc= package21 using all 

SNPs within 10kb of the lead NEB SNP.  This computes posterior probabilities for the 

hypotheses: H0 No causal SNPs, H1 Causal SNP for selection but not NEB, H2 Causal SNP for 

NEB but not selection, H3 One independent causal SNP for each trait, H4 One shared causal 

SNP for both traits. We report the hypothesis with the maximum posterior probability 

(COLOC in Table S18-19). 

 

We also tested for overlap with a scan for balancing selection using the NCD2 statistic53 for 

the GBR population of 1000 genomes. We used the target frequency of 0.5 for these tests. 

For all SNPs, we report the value of the window that overlaps that SNP or, if more than one 

window overlaps a SNP, we report the lowest P-value of any window within 10kb. Finally, 

we report the lowest P-value for genes within 10kb of each SNP. 
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Estimating FADS allele frequencies from ancient DNA 

We downloaded combined data from https://reich.hms.harvard.edu/downloadable-

genotypes-present-day-and-ancient-dna-data-compiled-published-papers and restricted to 

652 samples west of 40E, north of 35S, more recent than 12,000 years before present and 

with coverage at rs108499. We binned them into 2000-year bins, and computed estimated 

allele frequencies and bootstrap confidence intervals. We also include the European sub-

populations from phase 3 of the 1000 Genomes Project54. 
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