

1 **ITPK1 is an InsP₆/ADP phosphotransferase that controls systemic**
2 **phosphate homeostasis in *Arabidopsis***

3 Esther Riemer¹, Debabrata Laha^{2,#}, Robert K. Harmel^{3,#}, Philipp Gaugler^{1,#}, Verena Pries¹,
4 Michael Frei¹, Mohammad-Reza Hajirezaei⁴, Nargis P. Laha¹, Lukas Krusenbaum¹, Robin
5 Schneider¹, Henning J. Jessen⁵, Adolfo Saiardi², Dorothea Fiedler³, Gabriel Schaaf^{1*}, Ricardo
6 F.H. Giehl^{4*}

7 ORCID IDs:

8 DL: 0000-0002-7823-5489, RKH: 0000-0003-4413-7730, NPL: 0000-0002-7744-1408, HJJ: 0000-
9 0002-1025-9484, AS: 0000-0002-4351-0081, DF: 0000-0002-0798-946X, GS: 0000-0001-9022-4515,
10 RFHG: 0000-0003-1006-3163

11 ¹ Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische
12 Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany.

13 ² Medical Research Council Laboratory for Molecular Cell Biology (MRC-LMCC), University
14 College London, London WC1E 6BT, United Kingdom.

15 ³ Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany and Department
16 of Chemistry, Humboldt Universität zu Berlin, 12489 Berlin, Germany.

17 ⁴ Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant
18 Research, 06466 Gatersleben, Germany.

19 ⁵ Department of Chemistry and Pharmacy and CIBSS-Centre for Integrative Biological Signalling
20 Studies, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany.

21

22 [#] These authors contributed equally to this work.

23 *To whom correspondence and material requests should be addressed: gabriel.schaaf@uni-bonn.de
24 and giehl@ipk-gatersleben.de.

25

26

27 **ABSTRACT**

28 In plants, phosphate (P_i) homeostasis is regulated by the interaction of P_i starvation response
29 transcription factors (PHRs) with stand-alone SPX proteins, which act as sensors for inositol
30 pyrophosphates (PP-InsPs). Recently, ITPK1 was shown to generate the PP-InsP $InsP_7$ from
31 $InsP_6$ *in vitro*, but the importance of this activity in P_i signaling remained unknown. Here, we
32 show that uncontrolled P_i accumulation in ITPK1-deficient plants is accompanied by impaired
33 P_i -dependent $InsP_7$ and $InsP_8$ synthesis. Reciprocal grafting demonstrates that P_i starvation
34 responses are mainly controlled by ITPK1 activity in shoots. Nuclear magnetic resonance
35 assays and PAGE analyses with recombinant protein reveal that besides $InsP_6$
36 phosphorylation, ITPK1 is also able to catalyze ATP synthesis using 5- $InsP_7$ but not any other
37 $InsP_7$ isomer as a P-donor when ATP is low. Additionally, we show that the dynamic changes
38 in $InsP_7$ and $InsP_8$ to cellular P_i are conserved from land plant species to human cells,
39 suggesting that P_i -dependent PP-InsP synthesis is a common component of P_i signaling across
40 kingdoms. Together, our study demonstrates how P_i -dependent changes in nutritional and
41 energetic states modulate ITPK1 activities to fine-tune the synthesis of PP-InsPs.

42

43

44

45

46

47

48

49 INTRODUCTION

50 In order to maintain cellular P_i homeostasis, plants have evolved complex sensing and
51 signaling mechanisms that adjust whole-plant P_i demand with external P_i availability.
52 Although many molecular players involved in these responses have been identified, the exact
53 mechanism of P_i sensing in complex organisms, such as plants, still remains largely unknown.
54 In the model species *Arabidopsis thaliana*, the MYB transcription factors PHOSPHATE
55 STARVATION RESPONSE 1 (PHR1) and its closest paralog PHR1-LIKE1 (PHL1) control
56 the expression of the majority of P_i starvation-induced (PSI) genes and influence numerous
57 metabolic and developmental adaptations induced by P_i deficiency^{1, 2}. In agreement with their
58 regulatory function, a subset of P_i deficiency-induced genes is deregulated in *phr1 phl1*
59 mutants. However, since *PHR1* itself is not transcriptionally regulated by P_i deficiency, the
60 existence of a post-translational control of PHR1 has been proposed¹. Emerging evidence
61 indicates that a class of stand-alone SPX proteins negatively regulate the activity of PHR
62 transcription factors in different plant species^{3, 4, 5, 6, 7, 8}. According to these studies, when
63 plants have access to sufficient P_i , SPX proteins bind with high affinity to PHRs, thereby
64 preventing binding of these transcription factors to DNA. Under low P_i , the affinity of SPX
65 proteins towards PHRs is decreased, thus allowing these transcription factors to activate their
66 transcriptional targets⁴.

67 The *in vivo* interaction of PHR1 and SPX1 is influenced by P_i ^{3, 4, 5}, suggesting that this
68 mechanism could represent a direct link between P_i perception and downstream signaling
69 events. However, the dissociation constants for P_i itself in a SPX-PHR complex ranged from
70 10 mM to 20 mM^{3, 4, 5}, while P_i levels of only 60 μ M to 80 μ M have been recorded in the
71 cytosol of plant cells⁹. A later study, demonstrated that SPX domains can actually act as
72 receptors for inositol pyrophosphates (PP-InsPs) and isothermal titration calorimetry
73 experiments revealed that 5PP-InsP₅ (hereafter referred to as 5-InsP₇) interacted more strongly

74 with SPX domains than P_i^{10} . In these assays, interaction of rice OsPHR2 and OsSPX4 was
75 promoted at 5- $InsP_7$ concentrations as low as 20 μM^{10} . Although the isomeric nature of plant
76 $InsP_7$ in vegetative tissues remains unknown, it has been proposed that the activity of PHRs is
77 regulated by direct interaction with PP- $InsPs$. In support of this hypothesis, an *Arabidopsis*
78 mutant for *INOSITOL PENTAKISPHOSPHATE 2-KINASE (IPK1)*, which is compromised in
79 the synthesis of the PP- $InsP$ precursor inositol hexakisphosphate ($InsP_6$), exhibits constitutive
80 PSR and increased P_i accumulation when grown on sufficient P_i availability^{11, 12}. More
81 recently, other mutants with compromised synthesis of PP- $InsPs$ have been shown to exhibit
82 disturbed PSR and P_i over-accumulation phenotypes^{13, 14, 15}, and it was observed that the
83 levels of different inositol polyphosphates ($InsPs$) are significantly altered in P_i -deficient
84 plants^{13, 14}. Interestingly, polyacrylamide gel electrophoresis (PAGE) analyses revealed that
85 $InsP_8$ levels increase in P_i -sufficient plants and decrease as plants are exposed to P_i
86 deficiency¹⁴, suggesting that the enzymes involved in the synthesis of PP- $InsPs$ could act as
87 regulators of P_i homeostasis in plants. This regulation was first discovered in the yeast
88 *Saccharomyces cerevisiae* in which cellular levels of PP- $InsPs$ decrease when exposed to P_i -
89 deficient medium^{10, 16}. However, the biosynthetic pathway resulting in P_i -dependent PP- $InsP$
90 synthesis still remains largely unresolved and it also remains unclear if this response is
91 conserved in the plant lineage and across kingdoms.

92 In plants, synthesis of $InsP_8$ is mediated by VIH1 and VIH2¹⁷, a class of bifunctional
93 kinase/phosphatase enzymes¹⁵ sharing homology to the yeast and animal Vip1/PPIP5Ks^{17, 18,}
94¹⁹. Although *vih1* and *vih2* single mutants do not exhibit impaired P_i accumulation¹³, deletion
95 of both VIHs results in severe growth defects and P_i overaccumulation^{14, 15}. Since plant
96 genomes do not encode homologues of the metazoan and yeast $InsP_6$ kinases IP6K/Kcs1, it
97 has since long remained elusive how plants synthesize $InsP_7$. Using a yeast complementation
98 assay, we recently identified *Arabidopsis* ITPK1 and ITPK2 as novel plant $InsP_6$ kinases and

99 demonstrated that ITPK1 generates the symmetric InsP₇ isomer 5-InsP₇, the major form
100 identified in seed extracts²⁰. More recently, we further showed that InsP₇ and InsP₈ levels are
101 compromised in TPK1-deficient plants, demonstrating that ITPK1 functions as an InsP₆
102 kinase *in planta*²¹. Considering that InsP₇ is the precursor for InsP₈ synthesis, the next
103 challenge is to determine how InsP₇ levels respond to the plant's P_i status. A recent study
104 reported that InsP₇ levels increase in shoots of P_i-deficient *Arabidopsis* plants as determined
105 by HPLC analysis of [³²P]-P_i-labeled plant extracts¹³. However, this response is opposite to
106 what has been described in yeast¹⁶ and mammalian cells²² and is inconsistent with increased
107 InsP₈ levels detected by PAGE in P_i-sufficient *Arabidopsis* plants¹⁴. Considering that ³²P-
108 labeling entails complicated molecule assignment and does not provide a mass assay of the
109 inositol backbone but a readout for pyrophosphate moiety turnover, these results await
110 confirmation via alternative approaches. Importantly, it remains unclear whether ITPK1 and
111 ITPK2 contribute to PP-InsP synthesis in a P_i- and/or cellular energy status-dependent manner
112 and how the proposed regulatory activity of InsP₈ to suppress PSR might be deactivated once
113 plants experience P_i deficiency.

114 Here, we combine strong anion exchange chromatography (SAX)-HPLC analyses of [³H]-
115 inositol-labeled seedlings and PAGE to investigate P_i-dependent changes in the levels of
116 InsP₆, InsP₇ and InsP₈ across diverse species and several *Arabidopsis* mutants. We
117 demonstrate that specifically in shoots, PP-InsPs decrease during P_i starvation and strongly
118 increase after P_i resupply. P_i-dependent regulation of PP-InsPs was also highly conserved
119 from diverse plant species to human cells. We find that ITPK1 is critical for the synthesis of
120 PP-InsPs involved in the regulation of P_i homeostasis. In addition, we demonstrate that
121 ITPK1-mediated conversion of InsP₆ to 5-InsP₇ requires high ATP concentrations and that
122 ITPK1 has ADP phosphotransferase activity under conditions of decreased adenylate energy
123 charge. These results provide a further link between P_i-dependent changes in nutritional and

124 energetic states with the synthesis of regulatory PP-InsPs. Finally, our study demonstrates that
125 ITPK1 activity in shoots regulates PSR responses in a PHR1/PHL1-dependent manner,
126 revealing that ITPK1 is a critical component of the systemic P_i sensing and signaling
127 mechanism in plants.

128

129 **RESULTS**

130 **Loss of ITPK1 but not ITPK2 affects P_i homeostasis in *Arabidopsis***

131 Previously, it has been reported that shoot P_i concentrations are significantly changed in a
132 number of InsP biosynthesis mutants grown in hydroponics¹³. We assessed the growth of
133 several of these mutants on soil and compared total P_i levels in shoots (measured with ICP-
134 OES) with that of WT and the P_i -overaccumulator *pho2-1*. We confirmed that *ipk1-1* and
135 *itpk1* plants accumulated significantly more total P_i in shoots, reaching levels comparable to
136 those detected in *pho2-1* (Fig. 1a and 1b). To a much lesser degree, shoot P_i levels were also
137 significantly increased in shoots of *mips1* and *vih2-4* plants, whereas P_i concentrations in all
138 other mutants assessed, including *itpk2-2*, were similar to their respective WTs. A full
139 elemental analysis indicated that the concentrations of other nutrients were largely unaffected
140 in shoots of *itpk1* plants as compared to WT (Suppl. Fig. 1). Total P_i levels were also
141 significantly increased in flowers and seeds of *itpk1* plants, although the relative changes were
142 less marked as those detected in rosette leaves (Suppl. Fig. 2). Excessive P_i accumulation
143 could be almost completely complemented in transgenic lines expressing the genomic *ITPK1*
144 fragment in the *itpk1* background (Fig. 1c and 1d), showing that P_i overaccumulation
145 phenotype was indeed associated with the loss of ITPK1.

146 To investigate whether P_i accumulation is dependent on external P_i availability, we cultivated
147 plants on agar plates supplemented with sufficient or insufficient P_i . A root phenotypical

148 analysis revealed that under sufficient P_i supply *itpk1* plants had shorter roots than WT plants,
149 a phenotype that was also largely rescued in the recomplemented lines (Fig. 1e and 1f)²¹. The
150 short-root phenotype of *itpk1* plants was also observed when plants were exposed to low P_i
151 supply in agar plates (Fig. 1e and 1f) or cultivated in hydroponics (Suppl. Fig. 3), and was
152 likely not associated with P_i overaccumulation, as the length of primary roots of *pho2-1* plants
153 was similar to WT (Suppl. Fig. 3). Furthermore, we found that increased total P_i accumulation
154 of *itpk1* plants was not detected in roots, while in shoots it was dependent on P_i availability
155 (Fig. 1g and 1h). The shoot P_i overaccumulation phenotype of *itpk1* has been associated with
156 defective down-regulation of PSRs in roots¹³. Our qPCR analysis confirmed that the
157 expression of many PSI genes was up-regulated in *itpk1* roots but only when plants were
158 grown under sufficient P_i or when P_i -deficient plants were resupplied with P_i for 6 hours
159 (Suppl. Fig. 4). Together, these results demonstrate that loss of ITPK1 but not ITPK2 affects
160 the regulation of PSR in plants.

161

162 **ITPK1 is required for P_i -dependent synthesis of PP-InsPs**

163 Recently, two studies have raised strong evidence for the role of InsP₈ in controlling P_i
164 homeostasis in plants^{14, 15}. To further investigate which InsPs respond to rapid changes in the
165 plant's P_i status, we first performed SAX-HPLC analyses of extracts from [³H]-inositol-
166 labeled WT seedlings. Of all InsPs detected, only one InsP₃ isomer, InsP₆ and the PP-InsPs
167 InsP₇ and InsP₈ decreased in response to P_i starvation and increased again when P_i was
168 resupplied to P_i -starved seedlings for 6 hours (Fig. 2a and 2b). Notably for InsP₈, P_i resupply
169 increased levels beyond those detected in seedlings continuously grown with sufficient P_i
170 (Fig. 2b).

171 In order to increase the throughput of InsP₆, InsP₇ and InsP₈ analysis and to allow assessing
172 fully developed plants under more physiological conditions, we grew plants in hydroponics
173 with aerated solution. Highly anionic InsPs and PP-InsPs extracted from plant tissues were
174 purified by titanium dioxide (TiO₂)-based pulldown followed by separation via PAGE and
175 subsequent visualization by Toluidine Blue and 4',6-diamidino-2-phenylindole (DAPI) based
176 on previously established protocols^{23, 24, 25}. In agreement with our HPLC analyses, InsP₆,
177 InsP₇ and InsP₈ signals in shoots of WT plants were strongly decreased when plants were
178 deprived of P_i for 4 days (Fig. 2c and 2d). However, only InsP₇ and especially InsP₈ level
179 were quickly restored by refeeding plants with P_i for 12 hours. Compared to WT, InsP₇ and
180 InsP₈ levels were significantly lower in shoots of *itpk1* plants especially after P_i resupply (Fig.
181 2c and 2d). These results confirmed that ITPK1 functions as a cellular InsP₆ kinase *in planta*
182 and suggested that an ITPK1-dependent InsP₇ pool is required and rate limiting for the
183 efficient synthesis of InsP₈ under conditions of high P_i availability. In contrast to *itpk1*, PP-
184 InsP levels were not compromised in the *itpk2-2* mutant (Suppl. Fig. 5a), further suggesting
185 that ITPK1 can compensate for the loss of ITPK2. Notably, in roots of both WT and *itpk1*
186 plants, InsP₇ and InsP₈ were barely detected by PAGE (Fig. 2e).

187 To further address the role of different InsPs in PSR, we analyzed the *itpk4-1* mutant, which
188 was recently reported to display reduced levels of InsP₅[1/3-OH], InsP₆ and InsP₇¹³. Whereas
189 HPLC analysis of [³H]-inositol-labeled seedlings confirmed the reported defects in InsP₅ [1/-
190 OH] synthesis²¹, our PAGE analyses did not detect any changes in InsP₆, InsP₇ nor InsP₈
191 levels in this mutant as compared to WT irrespective of the imposed P_i regime (Suppl. Fig. 5b
192 and 5c). Thus, the undisturbed synthesis of PP-InsPs in *itpk4-1* plants may explain why this
193 mutant shows no PSR phenotypes (Fig. 1b)¹³.

194 Considering that only InsP₇ and InsP₈ responded to P_i, we then investigated the accumulation
195 of these PP-InsPs in the P_i overaccumulator mutant *pho2-1*. We found that, compared to WT,

196 *pho2-1* plants accumulated much higher levels of InsP₇ and InsP₈, even when grown on low P_i
197 for 4 days (Fig. 2f). Notably, elemental analysis revealed that P_i levels in shoots of *pho2-1*
198 plants exposed to low P_i were still significantly higher than those detected in WT plants
199 grown under sufficient P_i (Fig. 2g). Together, these results indicate that the synthesis of PP-
200 InsPs is dependent on the internal, cellular P_i levels rather than external P_i availability.

201

202 **Synthesis of InsP₇ and InsP₈ relies on ITPK1 and VIH2 and on InsP₆**
203 **compartmentalization**

204 As suggested in previous studies, the presence of InsP₇ and InsP₈ is likely central for P_i
205 sensing in cells, as they promote the interaction of PHR with SPX proteins^{10, 14, 15}.
206 Intriguingly, our elemental analysis revealed that total P_i levels in shoots were not altered to
207 the same degree in *vih2-4*, although previous HPLC analyses of [³H]-inositol-labeled
208 seedlings indicated that InsP₈ levels are strongly decreased in this mutant¹⁷. We further
209 confirmed by PAGE the strong decrease of InsP₈ in shoots of P_i-resupplied *vih2-4* plants (Fig.
210 3a and 3b). PAGE analysis also detected a significant increase in InsP₇ levels in *vih2-4* shoots
211 after P_i resupply (Fig. 3a and 3b), suggesting that a certain InsP₇ pool is regulated by VIH2-
212 dependent conversion to InsP₈ and that an increase of this pool in *vih2* mutant plants appears
213 to partially compensate for the loss of InsP₈ in regulating P_i signaling.

214 *ITPK1*, *VIH1* and *VIH2* are not only expressed in shoots but also in roots^{13, 15}. However, since
215 little to no InsP₇ and InsP₈ could be detected by PAGE in roots of Arabidopsis and rice plants
216 (Fig. 2e and Suppl. Fig. 6), we wondered whether the availability of cytosolic InsP₆ could
217 determine the amount of InsP₇ and InsP₈ that can be synthesized. To test this hypothesis, we
218 assessed these PP-InsPs in shoots and roots of *mrp5*, a mutant defective in vacuolar loading of
219 InsP₆²⁶. In contrast to WT, we could detect InsP₇ and InsP₈ both in shoots and in roots of

220 *mrp5* plants (Fig. 3c and 3d). Lack of *MRP5* resulted in higher levels of InsP_7 and InsP_8 as
221 compared to WT but InsP_8 was still clearly responsive to P_i starvation and P_i resupply in this
222 mutant. However, increased levels of these PP-InsPs in roots did not significantly affect P_i
223 accumulation in *mrp5* shoots (Fig. 1b). Altogether, these results demonstrate that P_i -
224 dependent synthesis of InsP_7 and InsP_8 relies on stepwise phosphorylation reactions mediated
225 by ITPK1 and VIHs, and on the cytosolic/nucleoplasmic availability of InsP_6 .

226

227 **ITPK1 has InsP_6 kinase and ATP synthase activities**

228 Recently, we demonstrated that recombinant ITPK1 phosphorylates InsP_6 *in vitro* at position
229 5 thereby generating 5- InsP_7 , which is the main InsP_7 isomer detected in seeds²⁰. Considering
230 that ITPK1 is required for the robust increase in InsP_8 when P_i -deficient plants are resupplied
231 with P_i (Fig. 2c and 2d), we asked whether ITPK1 is able to function as an InsP_7 kinase. As
232 shown in Suppl. Fig. 7a, neither of the natural occurring isomers, 1- InsP_7 and 5- InsP_7 , appears
233 to be a substrate for ITPK1 kinase activity suggesting that the ITPK1-dependent increase in
234 InsP_8 after P_i resupply is caused by an increase in a rate limiting pool of InsP_7 . To further
235 investigate the enzymatic properties of ITPK1, we performed nuclear magnetic resonance
236 (NMR) assays with the recombinant protein taking advantage of [¹³C₆]-labelled InsP_6 . First,
237 InsP_6 kinase reaction conditions were analyzed with respect to magnesium ion (Mg^{2+})
238 concentration and temperature dependencies as well as to quenching efficiency by EDTA
239 (Suppl. Fig. 7b-d). Using 2.5 mM ATP, optimal enzyme activity was observed with as little as
240 2.5 mM Mg^{2+} and conversion could be fully quenched by a surplus of EDTA exceeding the
241 Mg^{2+} concentration by 1.36 mM. Even though the protein behaved well at 37°C and increased
242 kinase activities were observed at this elevated temperature (Suppl. Fig. 7d), we decided to
243 carry out subsequent experiments at 25°C to more closely reflect temperatures in unstressed
244 plants. Subsequent kinetic analysis revealed that ITPK1 exhibits a surprisingly high K_M for

245 ATP of approximately 520 μ M (Fig. 4a and 4b). Unlike VIHs, the kinase activity of ITPK1
246 was largely insensitive to P_i and was also not affected by the non-metabolizable P_i analog
247 phosphite (Suppl. Fig. 8). When $InsP_5$ [2-OH] was presented as substrate to ITPK1, no
248 conversion could be detected (Suppl. Fig. 7e), suggesting that ITPK1 has no IPK-like activity
249 to generate $InsP_6$ from $InsP_5$ [2-OH]. Furthermore, in contrast to $InsP_6$ kinases of the
250 IP6K/Kcs1 family, no activity was observed when 1- $InsP_7$ was used as a substrate (Suppl.
251 Fig. 7f and 7g), thus confirming our PAGE analysis (Suppl. Fig. 7a).

252 The characterization of structurally and sequence-unrelated mammalian $InsP_6$ kinases of the
253 IP6K family has demonstrated that these enzymes can shift their activities from kinase to
254 ADP phosphotransferase at low ATP-to-ADP ratios^{27, 28}. This prompted us to assess if also
255 ITPK1 possesses such activity. *In vitro* reactions with unlabeled 5- $InsP_7$ and subsequent
256 PAGE analyses revealed that ITPK1 indeed mediates 5- $InsP_7$ hydrolysis and that this activity
257 only occurs in the presence of ADP (Fig. 4c). A similar activity using any other $InsP_7$ isomer
258 as phosphoryl donor could not be detected (Fig. 4d), suggesting a high degree of substrate
259 specificity not only for ITPK1-mediated kinase activity but also for the reverse reaction (i.e.,
260 $InsP_7$ dephosphorylation / ATP synthesis). To determine the kinetic parameters of this
261 reaction, we subsequently incubated ITPK1 with [¹³C₆]-labelled 5- $InsP_7$ in the presence of
262 ADP and detected the formation of ATP and $InsP_6$ (Suppl. Fig. 9a and 9b). No ATP formation
263 was detected when the enzyme was incubated without 5- $InsP_7$ (Suppl. Fig. 10c). Interestingly,
264 the velocity of the reverse reaction was almost two times faster than the forward reaction,
265 whereas the K_M for ADP and ATP was relatively similar for ITPK1 (Fig. 4b, 4e and 4f).
266 Taken together, these results demonstrate that ITPK1-mediated $InsP_6$ kinase and ADP
267 phosphotransferase activities are regulated by adenylate energy charge. In agreement with
268 results obtained in agar plate-grown seedlings¹⁵, we observed that ATP levels and ATP/ADP
269 ratios dropped significantly in response to P_i deficiency in shoots of hydroponically-grown

270 WT plants but rapidly increased after P_i resupply (Suppl. Fig. 10). Thus, the P_i -dependent
271 changes in energy status of plants may ultimately regulate the synthesis of $InsP_7$ by shifting
272 the activity of ITPK1.

273

274

275 **ITPK1 activity in shoots controls PHR1- and PHL1-regulated PSRs**

276 To directly address whether ITPK1-dependent synthesis of PP- $InsPs$ in shoots or roots is
277 responsible for P_i accumulation, we performed grafting experiments. As expected, shoot P_i
278 overaccumulation was also detected when roots and shoots of *itpk1* plants were self-grafted
279 (Fig. 5a). However, shoot P_i was almost back to WT levels when Col-0 shoots were grafted
280 onto *itpk1* roots, while remaining approximately 75% higher when *itpk1* shoots were grafted
281 onto Col-0 roots (Fig. 5a). Shoot dry weight or shoot levels of other nutrients were not
282 significantly altered by the different graft combinations (Suppl. Fig. 11). These results suggest
283 that ITPK1 activity in shoots is more determinant for the regulation of PSR and P_i
284 accumulation.

285 We then addressed the putative involvement of ITPK1 in P_i signaling by analyzing the genetic
286 interaction between ITPK1 and the transcription factors PHR1 and PHL1, which together
287 control most of the transcriptional responses induced by P_i starvation². Shoot growth was not
288 significantly altered in homozygous double or triple mutants as compared to single or double
289 mutants (Fig. 5b and 5c). Although *phr1 itpk1* and *phr1 phl1 itpk1* plants still accumulated
290 significantly more P_i than *phr1* and *phr1 phl1*, respectively, the relative increments were
291 smaller than in the presence of functional PHR1 and PHL1 (Fig. 5d). In turn, the short-root
292 phenotype caused by *ITPK1* mutation could not be restored by knocking out these
293 transcription factors (Suppl. Fig. 12). While most P_i starvation-induced transcriptional

294 responses were also suppressed in the triple mutant, absence of ITPK1 maintained *PHT1;8*
295 up-regulated in the *phr1 phl1* background (Fig. 5e) potentially suggesting a PHR1/PHL1-
296 independent regulation of *PHT1;8* expression. Finally, PAGE analysis revealed that InsP₈
297 levels remained very low when these two transcriptional regulators were knocked out (Fig. 5f
298 and 5g). In contrast, P_i resupply-induced InsP₇ accumulation was largely independent of
299 PHR1 and PHL1. Collectively, these observations demonstrate that ITPK1-dependent PP-
300 InsP synthesis in shoots is required for undisturbed coordination of systemic P_i signaling by
301 PHR1 and PHL1.

302 **P_i-dependent synthesis of PP-InsPs is conserved across species**

303 Next, we assessed whether P_i-dependent regulation of InsP₇ and InsP₈ is evolutionarily
304 conserved across species. Similar to *Arabidopsis*, we observed that both InsP₇ and InsP₈ levels
305 decreased strongly in response to P_i-deficiency in shoots of hydroponically-grown rice plants
306 and were quickly restored by refeeding plants with P_i (Fig. 6a and 6b). Notably, in this
307 species, a clear InsP₇ signal could be observed as soon as 30 min after P_i resupply and
308 appeared before substantial changes in InsP₈ could be detected by PAGE. We also detected
309 increased accumulation of PP-InsPs in P_i-replete and P_i-refed gametophores of the moss
310 *Physcomitrella patens* (Fig. 6c-6e), suggesting that P_i-dependent InsP₇ and InsP₈ synthesis is
311 also conserved in non-vascular land plants.

312 Since we recently showed that purified recombinant human ITPK1 is also able to catalyze 5-
313 InsP₇ synthesis²⁰, we assessed P_i-dependent synthesis of PP-InsPs in the human HCT116 cell
314 line. We found that while InsP₆ levels remained largely unaffected by P_i conditions, both
315 InsP₇ and InsP₈ decreased in cells after removing P_i from the culture and sharply increased
316 again after P_i resupply (Fig. 6f). Altogether, these results indicate that P_i-dependent synthesis
317 of InsP₇ and InsP₈ seems to be evolutionary conserved across a range of different
318 multicellular species.

319

320 **DISCUSSION**

321 Previously, isothermal titration calorimetry experiments demonstrated that 5-InsP₇ interacted
322 more strongly with SPX domains than P_i and that 5-InsP₇ concentrations as low as 20 μM can
323 effectively promote the interaction of OsSPX4 with OsPHR2¹⁰, suggesting that InsP₇ can
324 affect P_i signaling. The finding that an *itpk1* mutant in Arabidopsis over-accumulates P_i and
325 constitutively express P_i starvation-induced genes under sufficient P_i (Fig. 1b; Suppl. Figs. 2
326 and 4)¹³ provided further evidence that ITPK1 function is required for proper regulation of P_i
327 homeostasis. In this work, we demonstrate that InsP₇ and InsP₈ most closely mirror P_i levels
328 in different organisms as they decrease in response to P_i deficiency and quickly increase after
329 P_i resupply (Fig. 2a-2c; Fig. 6). In *A. thaliana*, we show that both InsP₇ and InsP₈ levels are
330 compromised in shoots of *itpk1* plants, especially when P_i-deficient plants are resupplied with
331 P_i (Fig. 2c and 2d). Since we detected only InsP₆ kinase but no InsP₇ kinase activity with
332 purified recombinant ITPK1 (Fig. 4c; Suppl. Fig. 7a)²⁰, the decreased InsP₈ levels in *itpk1*
333 plants likely resulted from the diminished 5-InsP₇ available for the subsequent
334 phosphorylation at the C1 position by VIH1 and VIH2. Our results also indicate that ITPK1
335 can shift its activity and become an ADP phosphotransferase that specifically hydrolyses 5-
336 InsP₇ when adenylate energy charges are low, such as in P_i-deficient cells (Fig. 4; Suppl. Fig.
337 10). Thus, our results with ITPK1 and those of Zhu et al.¹⁵ with VIH1 and VIH2 provide a
338 detailed view on how changes in cellular P_i status alter the activity of these enzymes to
339 efficiently produce and eliminate the signaling molecules InsP₇ and InsP₈ in plants (Fig. 7).

340 Although both ITPK1 and ITPK2 possess InsP₆ kinase activity²⁰, PSR seems only disturbed in
341 *itpk1* but not *itpk2* mutants (Fig. 1b)¹³. PP-InsPs are not significantly altered in *itpk2* seedlings
342 (Suppl. Fig. 5a)²¹, suggesting that ITPK1 can fully compensate for the loss of ITPK2.

343 Furthermore, since only *ITPK2* transcription is induced by P_i deficiency (Suppl. Fig. 13), it is
344 likely that *ITPK1* and *ITPK2* play independent roles in P_i signaling. In a previous study, the
345 putative role of InsP_7 in plant P_i signaling was excluded because HPLC analysis of [^{32}P]- P_i -
346 labeled plants showed that InsP_7 levels were similarly compromised in *itpk1* and *itpk4*
347 plants¹³, whereas only *itpk1* displays obvious PSR defects (Fig. 1b)¹³. However, our PAGE
348 analyses showed that InsP_7 and InsP_8 levels are not compromised in the *itpk4-1* mutant
349 (Suppl. Fig. 5b and 5c). Therefore, a role for InsP_7 and/or InsP_8 cannot be excluded based on
350 the comparison of *itpk1* and *itpk4-1*. Meanwhile, two recent studies raised compelling
351 evidence that InsP_8 acts as a signaling molecule to regulate P_i homeostasis in *Arabidopsis*, as
352 *vih1 vih2* double mutants exhibit constitutive up-regulation of PSI genes and strong P_i
353 hyperaccumulation^{14, 15}. Here, we show that a P_i -dependent accumulation of InsP_8 and InsP_7
354 appears to be conserved in land plants, including dicotyledonous and monocotyledonous
355 vascular species as well as non-vascular species (Fig. 2a-2c; Fig. 6a-e). Of note, our PAGE
356 results from independent experiments demonstrate that InsP_8 is more sensitive to P_i than
357 InsP_7 . However, InsP_7 levels were clearly reduced when plants were exposed to more
358 prolonged periods of P_i starvation (Fig. 6a, 6b and 6e). Furthermore, we also found that not
359 only InsP_7 but also InsP_8 is induced by P_i in human HCT116 cells (Fig. 6f). P_i -dependent
360 regulation of InsP_8 in human cells has likely also an impact on P_i homeostasis, as this PP- InsP
361 was recently shown to be functionally dominant over 5- InsP_7 and 1- InsP_7 in the regulation of
362 the cellular P_i exporter protein Xenotropic and Polytropic Retrovirus Receptor 1 (XPR1)²⁹.

363 In *Arabidopsis*, InsP_8 levels are strongly reduced while InsP_7 significantly increased in the
364 *vih1 vih2* double mutant¹⁵, suggesting that InsP_7 itself plays only a relatively minor role in P_i
365 signaling. However, considering the evidence for the involvement of InsP_8 in other cellular
366 processes^{17, 30, 31}, it might well be that the severe growth defects of *vih1 vih2* plants^{14, 15} are
367 not solely related to disturbed P_i homeostasis. Here, we analyzed the *vih2-4* single mutant,

368 which grows similarly to the WT (Fig. 1a), and found that whereas InsP₈ levels in *vih2-4*
369 plants were as low as in *itpk1*, strong P_i overaccumulation was only observed for *itpk1* plants
370 (Fig. 1b; Fig. 3a and 3b). Since InsP₈ reduction in *vih2-4* plants is accompanied by increased
371 InsP₇ levels (Fig. 3a and 3b), it is likely that, under certain circumstances, InsP₇ may partially
372 compensate for the loss of InsP₈. Noteworthy, also InsP₇ is involved in other cellular
373 processes, such as auxin perception, as 5-InsP₇ can bind to the auxin receptor complex²¹.
374 Importantly, the role of ITPK1 in auxin perception is largely independent of its function in P_i
375 homeostasis²¹, suggesting that different tissue-specific InsP₇ pools may regulate diverse
376 signaling pathways. This assumption is supported by the fact that the auxin-associated short-
377 root phenotype of *itpk1* plants cannot be complemented with P_i nor attenuated by disrupting
378 PHR1 and PHL1 (Fig. 1e and 1f; Suppl. Figs. 3 and 12). However, to directly assess the
379 contribution of InsP₇ to different physiological processes, it would be necessary to develop a
380 strategy to specifically disrupt InsP₇ synthesis without altering InsP₈ levels.

381 The genetic analysis of *phrl itpk1* and *phrl phl1 itpk1* multiple mutants demonstrated that, in
382 the absence of PHRs, *ITPK1* mutation did not anymore mis-regulate the expression of P_i
383 starvation-induced genes nor result in uncontrolled P_i accumulation under sufficient P_i (Fig.
384 5d and 5e). These results place ITPK1 upstream of PHRs and further support that P_i-
385 dependent synthesis of InsP₇ by ITPK1 and of InsP₈ by VIHs is critical for undisturbed P_i
386 signaling in plants. Our grafting experiment further demonstrated that P_i overaccumulation in
387 *itpk1* was mainly due to missing ITPK1 activity in shoots rather than in roots (Fig. 5a), thus
388 pointing to a major role of PP-InsPs in P_i signaling in shoots. This result was somewhat
389 surprising, since *ITPK1*, *VIH1* and *VIH2* are expressed in shoots and roots^{13, 15, 17}. However, in
390 line with earlier indications from [³²P]-P_i-labeling¹³, our PAGE analyses also detected much
391 higher InsP₇ and InsP₈ levels in shoots than in roots of both Arabidopsis and rice plants (Fig.
392 2c and 2e; Suppl. Fig. 6). However, accumulation of these PP-InsPs in roots could be induced

393 by disturbing MRP5-mediated InsP₆ loading into the vacuole (Fig. 3d). Nonetheless, it
394 remains unknown whether InsP₆ availability to ITPK1 in leaves is also regulated by P_i.
395 Whereas ITPK1 is located both in the nucleus and in the cytoplasm¹³, VIH1 and VIH2 are
396 reported to display cytoplasmic localizations¹⁵. Given that SPXs act as receptors for PP-
397 InsPs^{10, 14, 32, 33, 34}, ligand availability controls the interaction between SPXs and PHRs. To
398 affect P_i signaling, PP-InsPs most likely have to cross the nuclear envelope, especially
399 because SPX1, SPX2 and SPX3 are localized in the nucleus^{4, 35}. Alternatively, they may also
400 interact with proteins located in the cytoplasm, such as SPX4³⁶.

401 The emerging model is that in the presence of low levels of PP-InsPs ligands, as when plants
402 suffer from P_i deficiency (Fig. 2a-2d; Fig 6a-6e), SPX receptors are unable to bind to PHRs.
403 Consequently, these transcription factors are free to bind to the P1BS motifs present in the
404 promoters of several P_i-responsive genes^{1, 2}. Our findings that InsP₇ and InsP₈ levels quickly
405 increase after P_i resupply in different plant species (Fig. 2a-2d; Fig. 6a-6e) provide insights
406 into how this mechanism can be reversed once P_i-starved plants regain access to P_i. It is likely
407 that the increased ligand levels shortly overlap with high abundance of SPX proteins,
408 allowing for the formation of SPX - PHR complexes and the subsequent quick inhibition of
409 PHR-dependent transcriptional responses.

410 Our PAGE analyses demonstrate that InsP₇ and InsP₈ levels dynamically reflect the P_i status
411 in different organisms, indicating that PP-InsPs synthesis and degradation (or simply
412 turnover) must be tightly controlled. P_i-dependent accumulation of InsP₈ has been proposed to
413 rely on the bifunctional activity of the diphosphoinositol pentakisphosphate kinases VIH1 and
414 VIH2^{14, 15}. The relative kinase and phosphatase activities of this type of bifunctional enzymes
415 can be shifted according to cellular ATP and P_i levels. Indeed, purified Vip1 from yeast
416 exhibited kinase activity and, hence, increased InsP₈ synthesis at higher ATP concentrations,
417 whereas at low ATP levels the protein functioned mainly as an InsP₈ phosphatase¹⁵. In this

418 context, the phosphatase activity of diphosphoinositol pentakisphosphate kinases is further
419 inhibited by P_i itself^{15, 22}. However, unlike VIHs, ITPK1 does not harbor the bifunctional
420 kinase domain - phosphatase domain architecture but only the atypical ‘ATP-grasp fold’
421 ATP-binding site. Here, we demonstrate with independent approaches that ITPK1-mediated
422 $InsP_6$ conversion to $5\text{-}InsP_7$ depends on ATP availability (Fig. 4). Our NMR-based kinetic
423 assays also revealed that *Arabidopsis* ITPK1 has a high K_M of approximately 523 μM for
424 ATP (Fig. 4b), which is similar to the K_M recorded for mammalian IP6Ks^{27, 28}, suggesting that
425 ITPK1-dependent InsP synthesis will be compromised at low cellular adenylate energy
426 charge.

427 In metazoans and yeast, PP-InsPs act as energy sensors and metabolic messengers^{37, 38}, and
428 fluctuations in ATP levels have been shown to correlate with changes in intracellular
429 concentrations of $InsP_7$ ³⁹. In our conditions, we observed that, compared to P_i -deficient
430 plants, ATP levels and ATP/ADP ratios are significantly higher in plants grown continuously
431 with sufficient P_i or shortly after P_i is resupplied to P_i -deficient plants (Suppl. Fig. 10).
432 Previous reports have indeed shown that in plants, yeast and human cells ATP levels drop in
433 response to P_i starvation^{15, 22, 40, 41}. Interestingly, we found that ITPK1 has also a high K_M for
434 ADP and, in the presence of this adenine nucleotide, converted $5\text{-}InsP_7$ to $InsP_6$ generating
435 ATP in the process (Fig. 4c, 4d and 4e; Suppl. Fig. 9a). This activity is reminiscent of the
436 ATP synthase activity recorded for mammalian IP6K-type $InsP_6$ kinases^{27, 28} and even for the
437 human diphosphoinositol pentakisphosphate kinase PPIP5K2⁴². Our kinetic analyses
438 demonstrated that the enzyme has comparable K_M values for ATP and ADP and similar V_{max}
439 values, i.e. similar efficiencies for the forward and reverse reactions (Fig. 4b and 4f),
440 suggesting that relative adenylate energy charge determines whether ITPK1 phosphorylates
441 $InsP_6$ or synthesizes ATP from $5\text{-}InsP_7$. Consequently, ITPK1 activity would allow cells to,
442 for example, rapidly remove the signaling molecule $InsP_7$ in low P_i conditions, when ATP

443 levels and ATP/ADP ratios decrease. This type of deactivation of InsP₇/InsP₈ signaling could
444 bypass the requirement for dedicated PP-InsP hydrolases which are likely to slow down quick
445 dynamic changes in PP-InsPs to induce jasmonate-related responses during wound response
446 or insect attack¹⁷, or when P_i becomes suddenly available (Fig. 2a-2d; Fig. 6). While
447 activation of the reverse reaction is unlikely to significantly alter global cellular ATP pools,
448 localized ATP synthesis could quickly suppress InsP₇-mediated P_i signaling and, at the same
449 time, might buffer the adenylate energy charge in the vicinity of ITPK1 under conditions of
450 low energy or low P_i supply. Thus, adenylate charge-driven changes in the activities of ITPK1
451 and VIHs may represent one underlying mechanism by which the cellular P_i status is
452 transduced into specific PP-InsPs levels to regulate downstream signaling events.

453 **METHODS**

454 ***Arabidopsis thaliana*: plant materials and growth conditions**

455 Seeds of *Arabidopsis thaliana* T-DNA insertion lines *itpk1* (SAIL_65_D03), *itpk2-2*
456 (SAIL_1182_E03), *itpk3* (SALK_120653), *itpk4-1* (SAIL_33_G08), *ipk1-1*
457 (SALK_065337C), *vih2-4* (GK-080A07), *mips1* (SALK_023626), *mips2* (SALK_031685),
458 *mips3* (SALK_120131), *mrp5* (GK-068B10), *pho2-1* (EMS mutant described previously⁴³)
459 and *phr1* (SALK_067629) were obtained from The European Arabidopsis Stock Centre
460 (<http://arabidopsis.info/>). The *phr1 phl1* double mutant used in this study was described
461 previously¹². To generate the *phr1 itpk1* double and the *phr1 phl1 itpk1* triple mutant, we
462 crossed *itpk1* (-/-) with, respectively, *phr1* (-/-) and the homozygous *phr1 phl1* mutant. F2 and
463 F3 plants were genotyped by PCR using the primers indicated in Suppl. Table 1 to identify
464 homozygous lines. Transgenic lines expressing the genomic *ITPK1* fragment in the *itpk1*
465 background were generated as described previously²¹.

466 For sterile culture, Arabidopsis seeds were surface sterilized in 70% (v/v) ethanol and 0.05%
467 (v/v) Triton X-100 for 15 min and washed twice with 96% (v/v) ethanol. Sterilized seeds were

468 sown onto modified half-strength Murashige and Skoog (MS) medium⁴⁴ containing 0.5%
469 sucrose, 1 mM MES pH 5.5 and solidified with 1% (w/v) Difco agar (Becton Dickinson).
470 After 7 days of preculture, seedlings were transferred to vertical plates containing fresh solid
471 media supplemented with either sufficient P_i (625 μ M P_i) or low P_i (5 μ M P_i). Plants were
472 grown under axenic conditions in a growth cabinet under the following regime: 10/14 h
473 light/dark; light intensity 120 μ mol m⁻² s⁻¹ (fluorescent lamps); temperature 22°C/18°C.
474 For hydroponic culture, Arabidopsis seeds were pre-cultured on rock wool moistened with tap
475 water. After 1 week, tap water was replaced by half-strength nutrient solution containing 2
476 mM NH₄NO₃, 1 mM KH₂PO₄, 1 mM MgSO₄, 1 mM KCl, 250 μ M K₂SO₄, 250 μ M CaCl₂,
477 100 μ M Na-Fe-EDTA, 30 μ M H₃BO₃, 5 μ M MnSO₄, 1 μ M ZnSO₄, 1 μ M CuSO₄ and 0.7 μ M
478 NaMoO₄ (pH adjusted to 5.8 by KOH). After 7 days, nutrient solution was changed to full-
479 strength and replaced once a week (first 3 weeks), twice a week in the fourth week, and every
480 2 days in the following weeks. Aeration was provided to roots from the third week onwards.
481 To induce P_i deficiency, KH₂PO₄ was replaced by KCl and P_i resupply was performed by
482 refeeding P_i-starved plants with 1 mM KH₂PO₄ for 12 h. Plants were grown hydroponically
483 in a growth chamber under the above-mentioned conditions except that the light intensity was
484 200 μ mol photons m⁻² s⁻¹ and supplied by halogen lamps.
485 Phenotypic characterization in soil substrate was performed by germinating seeds directly in
486 pots filled with peat-based substrate (Klasmann-Deilmann GmbH, Germany). The pots were
487 placed inside a conditioned growth chamber with a 22°C/18°C and 16-h/8-h light/dark regime
488 at a light intensity of 120 μ mol photons m⁻² s⁻¹ supplied by fluorescent lamps. Plants were
489 bottom watered at regular intervals. Seedlings were thinned after 1 week to leave only two
490 plants per pot. Whole shoots or different plant parts were harvested as indicated in the legend
491 of figures.

492

493 **Cultivation of rice in hydroponics**

494 Rice plants (cv. Nipponbare) were cultivated in hydroponics inside a glasshouse with natural
495 light supplemented with high pressure sodium vapor lamps to ensure a minimum light
496 intensity of $300 \mu\text{mol m}^{-2} \text{ s}^{-1}$, and $30^\circ\text{C}/25^\circ\text{C}$ day (16 h)/night (8 h) temperature. Seeds were
497 germinated in darkness at 20°C for 3 days and then transferred to meshes floating on a
498 solution containing 0.5 mM CaCl_2 and $10 \mu\text{M Na-Fe-EDTA}$, which was exchanged every
499 third day. After 10 days, homogenous seedlings were transplanted into 60-L tanks filled with
500 half-strength nutrient solution⁴⁵. Ten days later, the nutrient solution was changed to full-
501 strength and exchanged every 10 days. During the whole growing period, the pH value was
502 adjusted to 5.5 every second day. P_i starvation was imposed for 10 days before starting P_i
503 resupply.

504

505 **Cultivation of *Physcomitrella patens***

506 *Physcomitrella patens* was grown on Knop medium⁴⁶ solidified with 0.8% agar (A7921,
507 Sigma). Light was provided by fluorescent lamps ($60 \mu\text{mol m}^{-2} \text{ s}^{-1}$) under a regime of 16 h
508 light and 8 h darkness at constant 20°C . P_i treatments were achieved by transferring pre-
509 cultivated plants to fresh Knop solid media containing $1.8 \text{ mM KH}_2\text{PO}_4$ (+ P_i) or 1.8 mM KCl
510 (- P_i) for 30 days. At the end of P_i starvation period, part of the plants was resupplied with 1.8
511 $\text{mM KH}_2\text{PO}_4$ and harvested after 24 h or 96 h.

512

513 **Cultivation of HCT116 cells**

514 Mammalian cells were cultivated as described²³. Briefly, HCT116 cells were grown in
515 DMEM media supplemented with 10% fetal bovine serum (FBS) and 0.45% glucose in a
516 humidified atmosphere with 5% CO_2 . Phosphate starvation was induced with DMEM without
517 sodium phosphate supplemented with 10% dialyzed FBS. Cells were washed twice in the
518 phosphate-free medium before incubation with DMEM media with or without phosphate.
519 Analysis of InsPs from HCT116 cell lines was performed as previously described²³.

520

521 **Grafting experiment**

522 Seedlings to be grafted were germinated on plates containing half-strength MS (Duchefa),
523 0.04 mg L⁻¹ 6-benzylaminopurine (Sigma), 0.02 mg L⁻¹ indole acetic acid (Sigma), and 10 g
524 L⁻¹ Difco agar (Becton Dickinson). Five-day-old seedlings were grafted on the plate by the
525 90-degree blunt end technique with an ultra-fine micro knife (Fine Scientific Tools, USA)
526 without collars. The grafted seedlings remained on the plate for 2 weeks to allow the
527 formation of the graft union. Successfully unified seedlings were transplanted directly to peat-
528 based soil and whole shoots harvested for elemental analysis 2 weeks later.

529

530 **RNA isolation and quantitative real-time PCR**

531 Root and shoots tissues were collected by excision and immediately frozen in liquid N₂. Total
532 RNA was extracted with RNeasy Plant Mini Kit (Macherey-Nagel GmbH & Co KG,
533 Germany). Quantitative reverse transcriptase PCR reactions were conducted with the
534 CFX384TM Real-Time System (Biorad, Germany) and the Go Taq qPCR Master Mix
535 SybrGreen I (Promega) using the primers listed in Supplementary Table 1. *UBQ2* was used as
536 reference gene to normalize relative expression levels of all tested genes. Relative expression
537 was calculated according to published instructions⁴⁷.

538

539 **Elemental analysis**

540 Whole shoots were dried at 65°C and digested in concentrated HNO₃ in
541 polytetrafluoroethylene tubes under pressurized system (UltraCLAVE IV, MLS). Elemental
542 analysis of plant samples from hydroponics or pot experiments was performed by inductively
543 coupled plasma optical emission spectrometry (ICP-OES; iCAP 700, Thermo Fisher
544 Scientific), whereas samples from agar plate-grown plants were analyzed by sector field high-

545 resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS; ELEMENT 2,
546 Thermo Fisher Scientific). Element standards were prepared from certified reference materials
547 from CPI International.

548

549 **Titanium dioxide bead extraction and PAGE**

550 InsPs purification and analysis was performed based on a previously established protocol^{23, 24,}
551 ²⁵. All steps until dilution were performed at 4°C. TiO₂ beads (Titanium (IV) oxide rutile,
552 Sigma Aldrich) were weighted to 10 mg for each sample and washed once in water and once
553 in 1 M perchloric acid (PA). Liquid N₂ frozen plant material was homogenized using a pestle
554 and immediately resuspended in 800 µl ice-cold PA. Samples were kept on ice for 10 min
555 with short intermediate vortexing, then centrifuged for 10 min at 20,000×g at 4°C using a
556 refrigerated bench top centrifuge. The supernatants were transferred into fresh 1.5 mL tubes
557 and centrifuged again for 10 min at 20,000×g. To absorb InsPs onto the beads the
558 supernatants were resuspended in the pre-washed TiO₂ beads and rotated at 4°C for 30-60
559 min. Afterwards, beads were pelleted by centrifuging at 8000 g for 1 min and washed twice in
560 PA. The supernatants were discarded. To elute inositol polyphosphates, beads were
561 resuspended in 200 µl 10% ammonium hydroxide and then rotated 5 min at room
562 temperature. After centrifuging, the supernatants were transferred into fresh 1.5-mL tubes.
563 The elution process was repeated and the second supernatants were added to the first. Eluted
564 samples were vacuum evaporated at 45°C to dry completely. InsPs were resuspended in 20
565 µL ultrapure water and separated by 33% polyacrylamide gel electrophoresis and visualized
566 by Toluidine Blue staining, followed by 4',6-diamidino-2-phenylindole (DAPI) staining.

567

568 **ITPK1 *in vitro* kinase and ATP synthase assay**

569 Recombinant *A. thaliana* ITPK1 was purified based on the previously established protocol⁴⁸.
570 The InsP₆ kinase assay was performed by incubating 10.17 μM enzyme in a reaction mixture
571 containing 5 mM MgCl₂, 20 mM HEPES (pH 7.5), 1 mM DTT, 5 mM phosphocreatine, 0.33
572 units creatine kinase, 12.5 mM ATP and 1 mM InsP₆ (Sichem) at 25°C for 6h. The ability of
573 the enzyme to hydrolyze 5-InsP₇ was assayed in a reaction mixture containing 3 μg enzyme,
574 2.5 mM MgCl₂, 50 mM NaCl, 20 mM HEPES (pH 6.8), 1 mM DTT, 1 mg/mL BSA, 8 mM
575 ADP and 1 mM 5-InsP₇ at 25°C for 6h. Reactions were separated by 33% polyacrylamide gel
576 electrophoresis and visualized by Toluidine Blue staining.

577

578 **NMR-based enzyme assays**

579 Full-length recombinant *A. thaliana* ITPK1 in H₂O was used in all assays. 0.2-0.8 μM of
580 ITPK1 was incubated in reaction buffer containing 20 mM HEPES pH* 7.0, 50 mM NaCl, 1
581 mM DTT, 5 mM creatine phosphate, 1 U/ml creatine kinase, 2.5 mM MgCl₂ (if not indicated
582 otherwise) and 175 μM of [¹³C₆]InsP₅ [2-OH], [¹³C₆]InsP₆, [¹³C₆]5-InsP₇ or [¹³C₆]1-InsP₇ in
583 D₂O. If not indicated otherwise, the reaction buffer also included 2.5 mM ATP or 2.5 mM
584 ADP.

585 For single time-point analysis of enzyme activity, 2.25-0.375 ng (0.2-0.3 μM) ITPK1 were
586 used. 150 μL reactions were incubated at 25°C (except when 37°C is specified), quenched
587 with 400 μl of 20 mM EDTA (pH* 6.0 in D₂O) and 11 μL of 5 M NaCl was added for
588 analysis. For real-time monitoring of enzyme activity, 36 ng (0.8 μM) ITPK1 were used. 600
589 μL reactions were maintained at 25°C in an NMR spectrometer and measured consecutively
590 with 85 sec spectra.

591 Samples were measured as previously described⁴⁹ on Bruker AV-III spectrometers (Bruker
592 Biospin, Rheinstetten, Germany) using cryogenically cooled 5 mm TCI-triple resonance
593 probe equipped with one-axis self-shielded gradients and operating at 600 MHz for proton

594 nuclei, 151 MHz for carbon nuclei, and 244 MHz for P nuclei. The software to control the
595 spectrometer was topspin 3.5 pl6. Temperature was calibrated using d₄-methanol and the
596 formula of Findeisen et al.⁵⁰.

597

598 **InsPs extraction from seedlings and HPLC analyses**

599 Seedlings were grown vertically on half-strength MS medium supplemented with 1 % sucrose
600 and 7 g L⁻¹ Phytagel (P8169, Sigma), pH 5.7 for 12 days (8 h light at 22°C, 16 h darkness at
601 20°C). Seedlings were transferred to 3 mL half-strength MS liquid media without sucrose and
602 with 625 µM P_i (+P) or 5 µM P_i (-P). Seedlings were labeled by adding 30 µCi mL⁻¹ of [³H]-
603 *myo*-inositol (30 to 80 Ci mmol⁻¹ and 1 mCi mL⁻¹; American Radiolabeled Chemicals) and
604 further cultivated for 5 days. For P_i-resupply, 620 µM KH₂PO₄ was added to the media and
605 the plants were grown for another 6 h before harvest. Afterwards seedlings were washed two
606 times with ultrapure water, frozen in liquid N₂ and the InsPs were extracted as described
607 previously (Azevedo and Saiardi, 2006). Inositol polyphosphates were resolved by strong
608 anion exchange chromatography HPLC (using a partisphere SAX 4.63 x 125 mm column;
609 HiChrom) at a flow rate of 0.5 mL min⁻¹ with a gradient of the following buffers: buffer A (1
610 mM EDTA) and buffer B (1 mM EDTA and 1.3 M (NH₄)₂HPO₄, pH 3.8, with H₃PO₄). The
611 gradient was as follows: 0-2 min, 0 % buffer B; 2-7 min, up to 10 % buffer B; 7-68 min, up to
612 84 % buffer B; 68-82 min, up to 100 % buffer B; 82-100 min, 100 % buffer B, 100-101 min,
613 down to 0 % buffer B; 101-125 min, 0 % buffer B. Fractions were collected each minute,
614 mixed with scintillation cocktail (Perkin-Elmer; ULTIMA-FLO AP), and analyzed by
615 scintillation counting. To account for differences in fresh weight and extraction efficiencies
616 between samples, values shown are normalized activities based on the total activity of each
617 sample. ‘Total’ activities for normalization were calculated by counting fractions from 26 min
618 (InsP₃) until the end of the run.

619

620 **Analysis of ATP and ADP**

621 Adenosine nucleotides were specifically determined according to Haink and Deussen⁵¹ with
622 some modifications. 100 mg frozen leaf material from *Arabidopsis* plants were homogenized
623 in liquid N₂ and extracted with methanol/chloroform⁵². An aliquot of extracted samples was
624 used for derivatization. Twenty μ L of extract was added to 205 μ L of a buffer containing 62
625 mM sodium citrate and 76 mM potassium dihydrogenphosphate for which pH was adjusted to
626 5.2 with potassium hydroxide. To this mixture, 25 μ L chloracetaldehyde (Sigma-Aldrich,
627 Germany) was added and the whole solution was incubated for 40 min at 80°C followed by
628 cooling and centrifugation for 1 min at 14000 rpm. Two blanks containing all reagents except
629 plant extract were used as control. For quantification, external standards (ATP, ADP, AMP)
630 were established with different concentrations. Separation of adenosine nucleotides was
631 performed on a newly developed UPLC-based method using ultra pressure reversed phase
632 chromatography (Acquity H-Class, Waters GmbH, Eschborn, Germany). The UPLC system
633 consisted of a quaternary solvent manager, a sample manager-FTN, a column manager and a
634 fluorescent detector (PDA λ Detector). The separation was carried out on a C18 reversed
635 phase column (YMC Triart, 1.9 μ m, 2.0x100 mm ID, YMC Chromatography, Germany) with
636 a flow rate of 0.6 ml per min and duration of 7 min. The column was heated at 37°C during
637 the whole run. The detection wavelengths were 280 nm for excitation and 410 nm as
638 emission. The gradient was accomplished with two solutions. Eluent A was 5.7 mM
639 tetrabutylammonium bisulfate (TBAS) and 30.5 mM KH₂PO₄, pH adjusted to 5.8. Eluent B
640 was a mixture of pure acetonitrile and TBAS in a ratio of 2:1. The column was equilibrated
641 with eluent A (90%) and eluent B (10 %) for at least 30 minutes. The gradient was produced
642 as follow: 90% A and 10% B for 2 min, changed to 40% A and 60% B and kept for 2.3 min,
643 changed to 10% A and 90% B for 1.1 min and reversed to 90% A and 10% B for another 1.6
644 min.

645

646 **Statistical analysis**

647 To analyze the significant differences among multiple groups, one-way analysis of variance
648 followed by Tukey's test at $P < 0.05$ was adopted. The statistical significance between two
649 groups was assessed by two-tailed Student's *t*-test. All statistical tests were performed using
650 SigmaPlot 11.0 software.

651

652 **References**

- 653 1. Rubio V, *et al.* A conserved MYB transcription factor involved in phosphate
654 starvation signaling both in vascular plants and in unicellular algae. *Gene Dev* **15**,
655 2122-2133 (2001).
- 656 2. Bustos R, *et al.* A central regulatory system largely controls transcriptional activation
657 and repression responses to phosphate starvation in Arabidopsis. *Plos Genet* **6**, -
658 (2010).
- 659 3. Lv QD, *et al.* SPX4 negatively regulates phosphate signaling and homeostasis through
660 its interaction with PHR2 in rice. *Plant Cell* **26**, 1586-1597 (2014).
- 661 4. Puga MI, *et al.* SPX1 is a phosphate-dependent inhibitor of PHOSPHATE
662 STARVATION RESPONSE 1 in Arabidopsis. *Proc Natl Acad Sci USA* **111**, 14947-
663 14952 (2014).
- 664 5. Wang ZY, *et al.* Rice SPX1 and SPX2 inhibit phosphate starvation responses through
665 interacting with PHR2 in a phosphate-dependent manner. *Proc Natl Acad Sci USA*
666 **111**, 14953-14958 (2014).
- 667 6. Qi WJ, Manfield IW, Muench SP, Baker A. AtSPX1 affects the AtPHR1-DNA-
668 binding equilibrium by binding monomeric AtPHR1 in solution. *Biochem J* **474**,
669 3675-3687 (2017).
- 670 7. Zhong Y, *et al.* Rice SPX6 negatively regulates the phosphate starvation response
671 through suppression of the transcription factor PHR2. *New Phytol* **219**, 135-148
672 (2018).
- 673 8. Liu F, *et al.* OsSPX1 suppresses the function of OsPHR2 in the regulation of
674 expression of OsPT2 and phosphate homeostasis in shoots of rice. *Plant J* **62**, 508-517
675 (2010).
- 676 9. Pratt J, Boisson AM, Gout E, Bligny R, Douce R, Aubert S. Phosphate (Pi) starvation
677 effect on the cytosolic pi concentration and pi exchanges across the tonoplast in plant
678 cells: An in vivo ^{31}P -nuclear magnetic resonance study using methylphosphonate as a
679 Pi analog. *Plant Physiol* **151**, 1646-1657 (2009).
- 680 10. Wild R, *et al.* Control of eukaryotic phosphate homeostasis by inositol polyphosphate
681 sensor domains. *Science* **352**, 986-990 (2016).

- 682 11. Stevenson-Paulik J, Bastidas RJ, Chiou ST, Frye RA, York JD. Generation of phytate-
683 free seeds in *Arabidopsis* through disruption of inositol polyphosphate kinases. *Proc
684 Natl Acad Sci USA* **102**, 12612-12617 (2005).
- 685 12. Kuo HF, Chang TY, Chiang SF, Wang WD, Charng YY, Chiou TJ. *Arabidopsis*
686 inositol pentakisphosphate 2-kinase, AtIPK1, is required for growth and modulates
687 phosphate homeostasis at the transcriptional level. *Plant J* **80**, 503-515 (2014).
- 688 13. Kuo HF, *et al.* *Arabidopsis* inositol phosphate kinases IPK1 and ITPK1 constitute a
689 metabolic pathway in maintaining phosphate homeostasis. *Plant J* **95**, 613-630 (2018).
- 690 14. Dong J, *et al.* Inositol pyrophosphate InsP8 acts as an intracellular phosphate signal in
691 *Arabidopsis*. *Mol Plant* **12**, 1463-1473 (2019).
- 692 15. Zhu J, *et al.* Two bifunctional inositol pyrophosphate kinases/phosphatases control
693 plant phosphate homeostasis. *eLife* **8**, (2019).
- 694 16. Lonetti A, Szijgyarto Z, Bosch D, Loss O, Azevedo C, Saiardi A. Identification of an
695 evolutionarily conserved family of inorganic polyphosphate endopolyphosphatases. *J
696 Biol Chem* **286**, 31966-31974 (2011).
- 697 17. Laha D, *et al.* VIH2 regulates the synthesis of inositol pyrophosphate InsP8 and
698 jasmonate-dependent defenses in *Arabidopsis*. *Plant Cell* **27**, 1082-1097 (2015).
- 699 18. Desai M, *et al.* Two inositol hexakisphosphate kinases drive inositol pyrophosphate
700 synthesis in plants. *Plant J* **80**, 642-653 (2014).
- 701 19. Dollins DE, *et al.* Vip1 is a kinase and pyrophosphatase switch that regulates inositol
702 diphosphate signaling. *Proc Natl Acad Sci USA*, 201908875 (2020).
- 703 20. Laha D, *et al.* *Arabidopsis* ITPK1 and ITPK2 have an evolutionarily conserved phytic
704 acid kinase activity. *ACS Chem Biol* **14**, 2127-2133 (2019).
- 705 21. Laha NP, *et al.* ITPK1-dependent inositol polyphosphates regulate auxin responses in
706 *Arabidopsis thaliana*. *bioRxiv*, 2020.2004.2023.058487 (2020).
- 707 22. Gu C, *et al.* The significance of the bifunctional kinase/phosphatase activities of
708 diphosphoinositol pentakisphosphate kinases (PPIP5Ks) for coupling inositol
709 pyrophosphate cell signaling to cellular phosphate homeostasis. *J Biol Chem* **292**,
710 4544-4555 (2017).
- 711 23. Wilson MSC, Bulley SJ, Pisani F, Irvine RF, Saiardi A. A novel method for the
712 purification of inositol phosphates from biological samples reveals that no phytate is
713 present in human plasma or urine. *Open Biol* **5**, (2015).
- 714 24. Losito O, Szijgyarto Z, Resnick AC, Saiardi A. Inositol pyrophosphates and their
715 unique metabolic complexity: analysis by gel electrophoresis. *Plos One* **4**, (2009).
- 716 25. Wilson MS, Saiardi A. Inositol phosphates purification using titanium dioxide beads.
717 *Bio Protoc* **8**, (2018).
- 718 26. Nagy R, *et al.* The *Arabidopsis* ATP-binding cassette protein AtMRP5/AtABCC5 is a
719 high affinity inositol hexakisphosphate transporter involved in guard cell signaling and
720 phytate storage. *J Biol Chem* **284**, 33614-33622 (2009).

- 721 27. Voglmaier SM, *et al.* Purified inositol hexakisphosphate kinase is an ATP synthase:
722 diphosphoinositol pentakisphosphate as a high-energy phosphate donor. *Proc Natl
723 Acad Sci U S A* **93**, 4305-4310 (1996).
- 724 28. Wunderberg T, Grabinski N, Lin HY, Mayr GW. Discovery of InsP₆-kinases as InsP₆-
725 dephosphorylating enzymes provides a new mechanism of cytosolic InsP₆ degradation
726 driven by the cellular ATP/ADP ratio. *Biochem J* **462**, 173-184 (2014).
- 727 29. Li X, *et al.* Control of XPR1-dependent cellular phosphate efflux by InsP₈ is an
728 exemplar for functionally-exclusive inositol pyrophosphate signaling. *Proc Natl Acad
729 Sci U S A* **117**, 3568-3574 (2020).
- 730 30. Couso I, *et al.* Synergism between inositol polyphosphates and TOR kinase signaling
731 in nutrient sensing, growth control, and lipid metabolism in Chlamydomonas. *Plant
732 Cell* **28**, 2026-2042 (2016).
- 733 31. Laha D, *et al.* Inositol polyphosphate binding specificity of the jasmonate receptor
734 complex. *Plant Physiol* **171**, 2364-2370 (2016).
- 735 32. Wilson MS, Jessen HJ, Saiardi A. The inositol hexakisphosphate kinases IP6K1 and -
736 2 regulate human cellular phosphate homeostasis, including XPR1-mediated
737 phosphate export. *J Biol Chem* **294**, 11597-11608 (2019).
- 738 33. Ried MK, *et al.* Inositol pyrophosphates promote the interaction of SPX domains with
739 the coiled-coil motif of PHR transcription factors to regulate plant phosphate
740 homeostasis. *bioRxiv*, 2019.2012.2013.875393 (2019).
- 741 34. Azevedo C, Saiardi A. Eukaryotic phosphate homeostasis: The inositol pyrophosphate
742 perspective. *Trends Biochem Sci* **42**, 219-231 (2017).
- 743 35. Duan K, Yi KK, Dang L, Huang HJ, Wu W, Wu P. Characterization of a sub-family
744 of Arabidopsis genes with the SPX domain reveals their diverse functions in plant
745 tolerance to phosphorus starvation. *Plant J* **54**, 965-975 (2008).
- 746 36. Osorio MB, *et al.* SPX4 acts on PHR1-dependent and -independent regulation of shoot
747 phosphorus status in Arabidopsis. *Plant Physiol* **181**, 332-352 (2019).
- 748 37. Shears SB. Diphosphoinositol polyphosphates: metabolic messengers? *Mol
749 Pharmacol* **76**, 236-252 (2009).
- 750 38. Wilson MSC, Livermore TM, Saiardi A. Inositol pyrophosphates: between signalling
751 and metabolism. *Biochem J* **452**, 369-379 (2013).
- 752 39. Szijgyarto Z, Garedew A, Azevedo C, Saiardi A. Influence of inositol pyrophosphates
753 on cellular energy dynamics. *Science* **334**, 802-805 (2011).
- 754 40. Choi J, Rajagopal A, Xu YF, Rabinowitz JD, O'Shea EK. A systematic genetic screen
755 for genes involved in sensing inorganic phosphate availability in *Saccharomyces
756 cerevisiae*. *Plos One* **12**, (2017).
- 757 41. Desfougeres Y, Wilson MSC, Laha D, Miller GJ, Saiardi A. ITPK1 mediates the lipid-
758 independent synthesis of inositol phosphates controlled by metabolism. *Proc Natl
759 Acad Sci U S A* **116**, 24551-24561 (2019).

- 760 42. An Y, Jessen HJ, Wang H, Shears SB, Kireev D. Dynamics of substrate processing by
761 PPIP5K2, a versatile catalytic machine. *Structure* **27**, 1022-1028 e1022 (2019).
- 762 43. Delhaize E, Randall PJ. Characterization of a phosphate-accumulator mutant of
763 *Arabidopsis thaliana*. *Plant Physiol* **107**, 207-213 (1995).
- 764 44. Gruber BD, Giehl RFH, Friedel S, von Wirén N. Plasticity of the *Arabidopsis* root
765 system under nutrient deficiencies. *Plant Physiol* **163**, 161-179 (2013).
- 766 45. Yoshida S. *Laboratory manual for physiological studies of rice*. IRRI (1976).
- 767 46. Reski R, Abel WO. Induction of budding on chloronemata and caulinemata of the
768 moss, *Physcomitrella patens*, using isopentenyladenine. *Planta* **165**, 354-358 (1985).
- 769 47. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-
770 PCR. *Nucleic Acids Res* **29**, e45 (2001).
- 771 48. Schaaf G, Betts L, Garrett TA, Raetz CR, Bankaitis VA. Crystallization and
772 preliminary X-ray diffraction analysis of phospholipid-bound Sfh1p, a member of the
773 *Saccharomyces cerevisiae* Sec14p-like phosphatidylinositol transfer protein family.
774 *Acta Crystallogr Sect F Struct Biol Cryst Commun* **62**, 1156-1160 (2006).
- 775 49. Harmel RK, Puschmann R, Nguyen Trung M, Saiardi A, Schmieder P, Fiedler D.
776 Harnessing ¹³C-labeled myo-inositol to interrogate inositol phosphate messengers by
777 NMR. *Chem Sci* **10**, 5267-5274 (2019).
- 778 50. Findeisen M, Brand T, Berger S. A ¹H-NMR thermometer suitable for cryoprobes.
779 *Magn Reson Chem* **45**, 175-178 (2007).
- 780 51. Haink G, Deussen A. Liquid chromatography method for the analysis of adenosine
781 compounds. *J Chromatogr B Analyt Technol Biomed Life Sci* **784**, 189-193 (2003).
- 782 52. Ghaffari MR, *et al.* The metabolic signature of biomass formation in barley. *Plant Cell*
783 *Physiol* **57**, 1943-1960 (2016).
- 784

785 **Acknowledgments**

786 This work was funded by grants from the Deutsche Forschungsgemeinschaft (DFG, German
787 Research Council) (HE 8362/1-1 to R.F.H.G.; SCHA 1274/4-1, SCHA 1274/5-1, Research
788 Training Group GRK 2064 and under Germany's Excellence Strategy, EXC-2070-
789 390732324, PhenoRob to G.S.; CIBSS – EXC 2189 – 390939984 as well as JE 572/4-1 to
790 H.J.J.; and LA 4541/1-1, Postdoctoral Research Fellowship, to D.L.) and from the Medical
791 Research Council (MRC) MC_UU_00012/4 to A.S. We thank Annett Bieber, Jacqueline
792 Fuge, Nicole Schäfer and Yudelsy A. Tandron Moya (Leibniz Institute of Plant Genetics and

793 Crop Plant Research) for excellent technical assistance, and Nicolaus von Wirén for critically
794 reading the article. We thank Saikat Bhattacharjee (RCB, India) for providing seeds of
795 published *Arabidopsis thaliana* mutants.

796

797 **Author contributions**

798 G.S. and R.F.H.G. conceived the study. D.L., R.K.H., M.F., G.S., and R.F.H.G. designed
799 experiments. E.R., D.L., R.K.H., P.G., V.P., M.F., N.P.L., L.K., R.S., and R.F.H.G.
800 performed experiments. M.-R.H. performed UPLC analysis of ATP and ADP. H.J.J.
801 synthesized various InsP isomers. A.S., D.F., G.S., and R.F.H.G. supervised experimental
802 work. R.F.H.G. and G.S. wrote the manuscript with critical inputs from all authors.

803

804 **Conflict of interest**

805 Conflicts of interest: No conflicts of interest declared.

806 **Figure legends**

807 **Fig. 1. Role of distinct InsP kinases in plant P_i accumulation.**

808 **a-b** Photographs of 3-week-old *Arabidopsis* plants grown on peat-substrate (**a**), and total P_i
809 levels in shoots (**b**) of WT (Col-0) and the indicated mutants. Data represent means \pm SD ($n =$
810 6-9 plants). Scale bars = 2 cm. **c-d** *ITPK1* expression (**c**) and shoot P_i levels (**d**) in 3-week-old
811 WT (Col-0), *itpk1* and three independent *itpk1* lines transformed with *ITPK1* genomic DNA.
812 Data represent means \pm SD ($n = 3$ biological replicates in **c** and $n = 8-9$ plants in **d**). **e-h** Loss
813 of *ITPK1* results in P_i overaccumulation only in shoots but P_i-independent root growth
814 repression. Phenotypes (**e**), primary root length (**f**) and total P_i concentrations in shoots (**g**) or
815 roots (**h**) of plants grown in agar plates with sufficient (625 μ M P_i) or deficient P_i supply (5

816 $\mu\text{M P}_i$) for 7 days. Bars show means \pm SD ($n = 6$ replicates with 3 plants each). Different
817 letters indicate significant differences according to Tukey's test ($P < 0.05$).
818

819 **Fig. 2. InsP_7 and InsP_8 levels in shoots respond to P_i availability in an ITPK1-dependent
820 manner.**

821 **a-b** HPLC profiles of 17-day-old *Arabidopsis* WT (Col-0) seedlings radiolabeled with [^3H]-
822 *myo*-inositol. Seedlings were grown either with P_i (+P) or without P_i (-P) or resupplied with P_i
823 for 6 h prior to harvest (Pi RS 6h). Full, normalized spectra (**a**) and zoom-in view of the same
824 profile (**b**). The experiment was repeated two times with similar results, and representative
825 results from one experiment are shown. **c-e** PAGE of InsP levels in shoots (**c**), quantification
826 of PAGE signals from shoots (**d**) and PAGE of roots (**e**) of WT (Col-0) and *itpk1* plants.
827 Plants were grown in hydroponics in P_i -sufficient solution (+P), exposed for 4 days to P_i
828 starvation (-P) or resupplied with P_i for 12 hours (Pi RS 12h). InsPs were eluted from TiO_2
829 beads, separated by PAGE and visualized by Toluidine blue and DAPI. Data represent means
830 \pm SE ($n = 3-4$ biological replicates). * $P < 0.05$, ** $P < 0.01$ and *** $P < 0.001$ according to
831 pairwise comparison with Student's *t*-test. **f-g** InsP_7 and InsP_8 levels are strongly increased in
832 the shoots of the P_i -overaccumulating mutant *pho2-1*. PAGE of shoots (**f**) and shoot P_i levels
833 in response to P_i deficiency and P_i resupply (**g**). Plants were cultivated as described in **c-e**.
834 Data represent means \pm SE ($n = 4$). Different letters indicate significant differences according
835 to Tukey's test ($P < 0.05$).
836

837 **Fig. 3. ITPK1- and VIH2-dependent synthesis of PP-InsPs and dependency on InsP_6
838 compartmentation.**

839 **a-b** Loss of VIH2 increases InsP_7 levels in shoots. InsP detection in shoots of *Arabidopsis*
840 WT, *itpk1* and *vih2-4* plants (**a**) and quantification of PAGE signals (**b**) 12 h after P_i resupply
841 to P_i -starved plants in hydroponics. Data represent means \pm SE ($n = 4$ biological replicates).

842 * $P < 0.05$, ** $P < 0.01$ and *** $P < 0.001$ according to pairwise comparison with Student's t -
843 test. **c-d** Impaired InsP₆ transport into the vacuole increases InsP₇ and InsP₈ levels in shoots
844 and roots. InsP determination in shoots (**c**) and roots (**d**) of WT (Col-0) and *mrp5*. Plants were
845 grown in hydroponics in P_i -sufficient solution (+P), exposed for 4 days to P_i starvation (-P) or
846 resupplied with P_i for 12 hours (Pi RS 12h).

847

848 **Fig. 4. In vitro characterization of ITPK1 activity.**

849 **a-b** NMR analysis of InsP₆ kinase activity of recombinant *Arabidopsis* ITPK1. Time-
850 dependent conversion of InsP₆ to 5-InsP₇ (**a**) and reaction velocity determined at varying ATP
851 concentrations (**b**). K_M and V_{max} were obtained after fitting of the data against the Michaelis-
852 Menten model. **c-d** In the presence of ADP, recombinant *Arabidopsis* ITPK1 mediates 5-
853 InsP₇ hydrolysis (**c**) but not the hydrolysis of other InsP₇ isomers (**d**). InsPs were separated via
854 PAGE and visualized by Toluidine Blue staining. The identity of bands was determined by
855 migration compared to InsP₆ and 5-InsP₇ standards and TiO₂-purified *mrp5* seed extract. InsP₆
856 kinase reaction served as positive control for the reverse reactions. Purified His₈-MBP tag
857 (MBP) served as negative control for ITPK1. Arrowhead in **c**, indicates the presence of a
858 small ATP band just above ADP. **e-f** NMR analysis of reverse reaction of recombinant
859 *Arabidopsis* ITPK1. Accumulation of InsP₆ and conversion of 5-InsP₇ (**e**) and reaction
860 velocity determined at varying ADP concentrations (**f**). K_M and V_{max} were obtained after
861 fitting of the data against the Michaelis-Menten model.

862

863 **Fig. 5. P_i starvation responses are mainly regulated by ITPK1 activity in shoots.**

864 **a** Total P_i concentration in shoots of self-grafted or reciprocally grafted WT (Col-0) and *itpk1*.
865 Plants were grafted on agar plates and left recovering for 2 weeks. Positive grafts were
866 transferred to peat-based substrate for another 2 weeks. Data represent means \pm SD ($n = 5-7$
867 plants). **b-d** Genetic interplay between PHR1/PHL1 and ITPK1 in P_i sensing. Phenotype (**b**),

868 shoot dry weight (**c**) and shoot P_i levels (**d**) of 3-week-old WT and indicated mutants grown
869 on peat-based substrate. Data represent means \pm SD ($n = 6$ plants). In **a**, **c** and **d**, letters
870 indicate significant differences according to Tukey's test ($P < 0.05$). **e** ITPK1-dependent
871 expression of P_i deficiency-induced genes in roots of the indicated P_i-sufficient plants. Data
872 represent means \pm SE ($n = 4$ replicates). **f-g** PHR1- and PHL1-dependent synthesis of InsPs as
873 revealed by PAGE (**f**) and relative quantification of signals (**g**) in indicated double and triple
874 mutants grown in hydroponics with P_i-sufficient solution (+P), exposed to 4 days of P_i
875 starvation (-P) or resupplied with P_i for 12 hours (Pi RS 12h). Data represent means \pm SE ($n =$
876 4 biological replicates). * $P < 0.05$, ** $P < 0.01$ and *** $P < 0.001$ according to pairwise
877 comparison with Student's *t*-test.

878

879 **Fig. 6. P_i-dependent regulation of InsP₈ levels is conserved in multicellular organisms.**

880 **a-b** Time-course analysis of InsPs in response to P_i starvation and P_i resupply in rice shoots.
881 PAGE (**a**) and relative quantification of bands (**b**) of rice plants cv. Nipponbare grown in
882 hydroponics. Data represent means \pm SE ($n = 4$ biological replicates). Different letters
883 indicate significant differences according to Tukey's test ($P < 0.05$). **c-e** Phenotype (**c**), total
884 P_i levels (**d**) and PAGE of P_i-dependent synthesis of InsP₇ and InsP₈ (**e**) in gametophores of
885 *Physcomitrella patens*. Plants were cultivated on sufficient P_i (+P), starved of P_i for 30 days (-
886 P) or resupplied with P_i for the indicated time. Data represent means \pm SD ($n = 3$ biological
887 replicates). Different letters indicate significant differences according to Tukey's test ($P <$
888 0.05). **f** PAGE analysis of wild-type HCT116 cell extracts during P_i starvation and resupply.
889 Cells were starved in P_i-free media for 18 h and resupplied with P_i for 3.5 h. Cells were
890 harvested at the same time. The experiment was repeated twice with similar results.

891

892 **Fig. 7. Model for ITPK1-dependent generation and removal of InsP₇ and its link with**
893 **VIHs and P_i signaling.**

894 In P_i -deficient cells, low ATP levels stimulate ITPK1 to catalyze P_i transfer from $InsP_7$ to
895 ADP, thereby generating ATP and decreasing $InsP_7$. Decreased ATP and P_i levels also
896 activate the pyrophosphatase activity of VIHs to break down $InsP_8$. The removal of PP- $InsPs$
897 destabilizes the association between PHRs and SPXs, allowing PHRs to induce P_i starvation
898 responses. When cells regain sufficient P_i , which increase ATP levels, ITPK1-mediated $InsP_6$
899 kinase activity is stimulated and the reverse reaction towards $InsP_7$ is inhibited. $InsP_7$
900 generated by ITPK1 serves then as substrate for $InsP_8$ production via the kinase domain of
901 VIHs. As a consequence of increased PP- $InsPs$, SPX proteins recruit PHRs to repress P_i
902 starvation responses.

903

904 **Supplementary Figure 1. Shoot elemental analysis of WT, *itpk1* and recomplemented**
905 **lines.**

906 Dry weight of whole shoots (**a**) and shoot concentrations of the macronutrients calcium (**b**),
907 potassium (**c**), magnesium (**d**) and sulfur (**e**), and the micronutrients iron (**f**), and zinc (**g**) of 3-
908 week-old plants grown on peat-substrate. Data represent the mean \pm SD ($n = 8-9$ plants).
909 Different letters indicate significant differences according to Tukey's test ($P < 0.05$).

910

911 **Supplementary Figure 2. ITPK1-dependent P overaccumulation in different plant**
912 **organs.**

913 Total P_i levels in different parts of WT (Col-0) and *itpk1* plants grown on peat-based. Data
914 represent means \pm SD ($n = 5$ independent plants). Letters indicate significant
915 differences according to Tukey's test ($P < 0.05$). Young siliques = green siliques with a length
916 of 0.8 cm to 1.5 cm.

917

918 **Supplementary Figure 3. Root phenotype of *itpk1* plants grown in hydroponics and of**
919 ***pho2-1* grown in agar.**

920 **a** Phenotype of 5-week-old WT and *itpk1* plants grown in hydroponics with sufficient P_i.
921 Representative plants are shown. **b** Phenotype of WT and *pho2-1* plants grown in agar plates.
922 Seven-day-old seedlings germinated on half-strength solid MS agar media containing 625 μM
923 P_i were transferred to +P (625 μM P_i) or -P (5 μM P_i) and grown for additional 7 days.

924

925 **Supplementary Figure 4. Expression of PSI genes in *itpk1* plants under different P_i**
926 **conditions.**

927 Expression analysis of representative P_i starvation-induced genes in *itpk1* relative to WT (Col-
928 0). In **a** and **b**, the expression of P_i uptake- and signaling-related genes is shown, respectively.
929 Seven-day-old seedlings germinated on half-strength solid MS agar media containing 625 μM
930 P_i were transferred to same agar media containing either sufficient (625 μM) or deficient (5
931 μM) P_i levels for 4 days. For P_i refeeding, P_i-deficient plants were transferred back to P_i-
932 containing media for 6 hours. Data represents means ± SE (n = 4 biological replicates). * P <
933 0.05, **P < 0.01 and ***P < 0.001 according to pairwise comparison with Student's *t*-test
934 (*itpk1* versus Col-0).

935

936 **Supplementary Figure 5. P_i-dependent InsP₇ and InsP₈ synthesis is not altered in *itpk2-2***
937 **and *itpk4-1* mutant.**

938 InsP detection in shoots of WT and *itpk2-2* (**a**) and *itpk4-1* plants (**b**) and relative
939 quantification of PAGE signals for *itpk4-1* (**c**). Plants were grown in hydroponics under
940 sufficient P_i (+P), after 4 days of P_i deficiency (-P) or after resupply of P_i to P_i-deficient plants
941 for 12 h (RS 12h). Data represent means ± SE (n = 3 biological replicates).

942

943 **Supplementary Figure 6. Pi-dependent regulation of InsP levels in roots and shoots of**
944 **rice plants.**

945 PAGE analysis of rice plants cv. Nipponbare grown in hydroponics under the indicated Pi
946 conditions. Shown are representative gels from root and shoot samples.

947

948 **Supplementary Figure 7. ITPK1 activity on InsP₅ [2-OH] and InsP₇ isomers and control**
949 **experiments for the kinase activity.**

950 **a** ITPK1 has no kinase activity on InsP₇ isomers. 1-InsP₇, 5-InsP₇ or InsP₆ were incubated
951 with recombinant *Arabidopsis* ITPK1 as indicated in presence of 12.5 mM ATP. InsPs were
952 separated via PAGE and visualized by Toluidine Blue staining. The identity of bands was
953 determined by migration compared to the substrates in absence of enzyme (-). Purified His₈-
954 MBP tag (MBP) served as negative control for ITPK1. **b-d** Control experiments for NMR
955 analyses. InsP₆ was incubated with recombinant *Arabidopsis* ITPK1 at 25 °C in the presence
956 of 2.5 mM ATP. Enzymatic activity was determined after 24 h in the presence of varying
957 EDTA concentrations (**b**), after 1.5 h at changing Mg²⁺ concentrations (**c**) and temperature
958 (**d**). The conversion was determined by NMR spectroscopy after quenching with an excess of
959 EDTA. **e-f** 2D ¹H-¹³C-HMBC spectra. Recombinant *Arabidopsis* ITPK1 was incubated with
960 InsP₅ (**e**) or 1-InsP₇ (**f**) at 25°C in the presence of an ATP recycling system for 24 h. The
961 reaction mixture analyzed by HSQC NMR spectroscopy. **g** Overview of the reaction shown in
962 (**f**) as analyzed by ³¹P NMR spectroscopy after 24 h. A small, unidentified signal potentially
963 reflecting ATP is marked with a question mark.

964

965 **Supplementary Figure 8. Dependency of ITPK1 kinase activity on Pi.**

966 InsP₆ was incubated with recombinant *Arabidopsis* ITPK1 at 25°C in the presence of 2.5 mM
967 ATP and the indicated concentrations of Pi or its non-metabolizable analog phosphite (Phi).

968 The conversion was determined by NMR spectroscopy after quenching with an excess of
969 EDTA. The experiment was repeated three times.

970

971 **Supplementary Figure 9. Recombinant *Arabidopsis* ITPK1 can hydrolyze 5-InsP₇ in the**
972 **presence of ADP.**

973 **a** ³¹P NMR spectroscopy analysis of recombinant *Arabidopsis* ITPK1 incubated with 5-InsP₇
974 at 25°C in the presence of ADP. After 24 h the mixture was analyzed by. **b** ³¹P NMR analysis
975 of ATP in ATP synthase reaction buffer. **c** ³¹P NMR spectroscopy analysis of recombinant
976 *Arabidopsis* ITPK1 incubated with ADP without 5-InsP₇ at 25°C and analyzed after 24 h. A
977 small, unidentified signal potentially reflecting ATP is marked with a question mark.

978

979 **Supplementary Figure 10. Effect of P_i availability and resupply on shoot ATP levels.**

980 Concentration of ATP (**a**) and ATP/ADP ratios (**b**) in shoots of Col-0 plants grown in
981 hydroponics with P_i-sufficient solution (+P), exposed to 4 days of P_i starvation (-P) or
982 resupplied with P_i for 12 hours (Pi RS 12h). Data represent means ± SE (n = 6–7 biological
983 replicates). * P < 0.05 and **P < 0.01 for the indicated pairwise comparisons with Student's
984 t-test.

985

986 **Supplementary Figure 11. Shoot ITPK1 function is more determinant for P_i**
987 **accumulation in plants.**

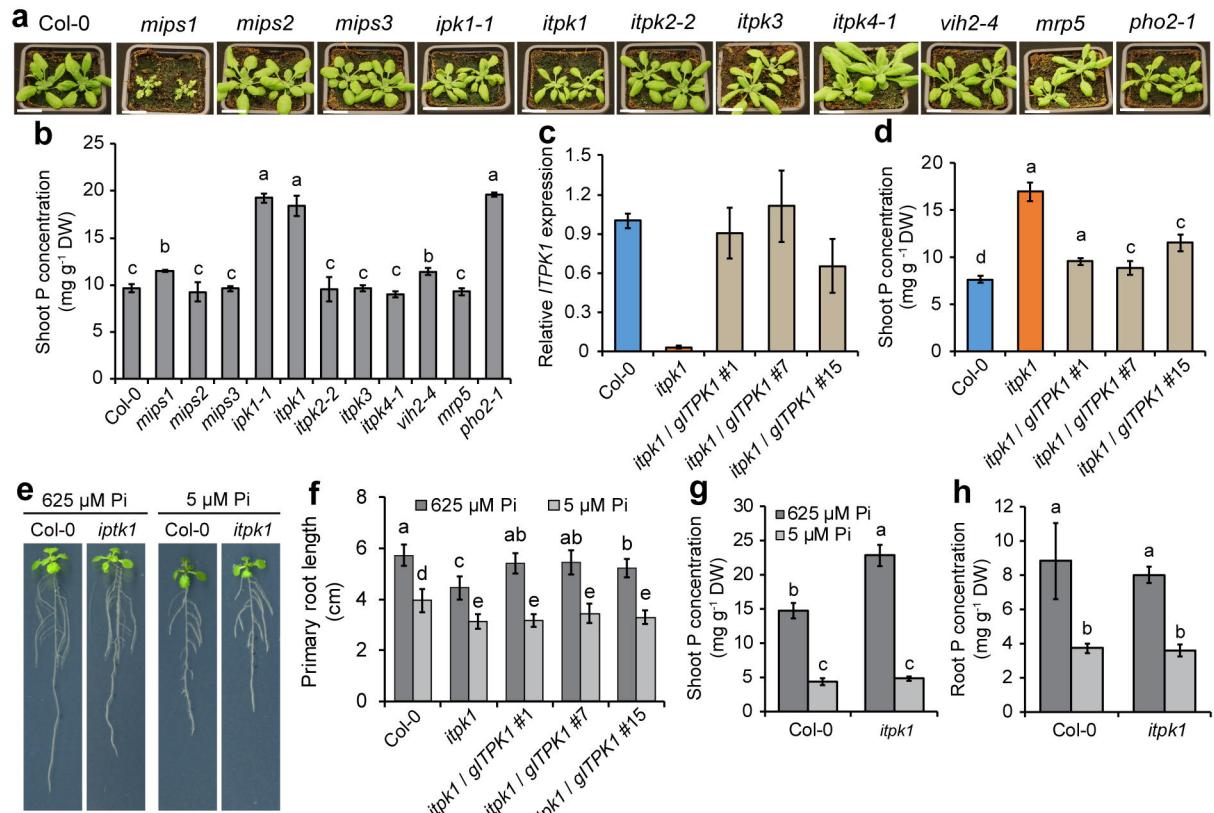
988 Shoot dry weight and shoot concentrations of the macronutrients potassium (K), calcium (Ca),
989 magnesium (Mg) and the micronutrient iron (Fe) of self-grafted or reciprocally grafted WT
990 (Col-0) and *itpk1*. Plants were grafted on agar plates and left recovering for 2 weeks. Positive
991 grafts were transferred to peat-based substrate for another 2 weeks. Data represent means ±
992 SD (n = 5–7 plants). Different letters indicate significant differences according to Tukey's test
993 (P < 0.05). n.s., not significant.

994

995 **Supplementary Figure 12. ITPK1-dependent root phenotype in the absence of PHR1**
996 **and PHL1.**

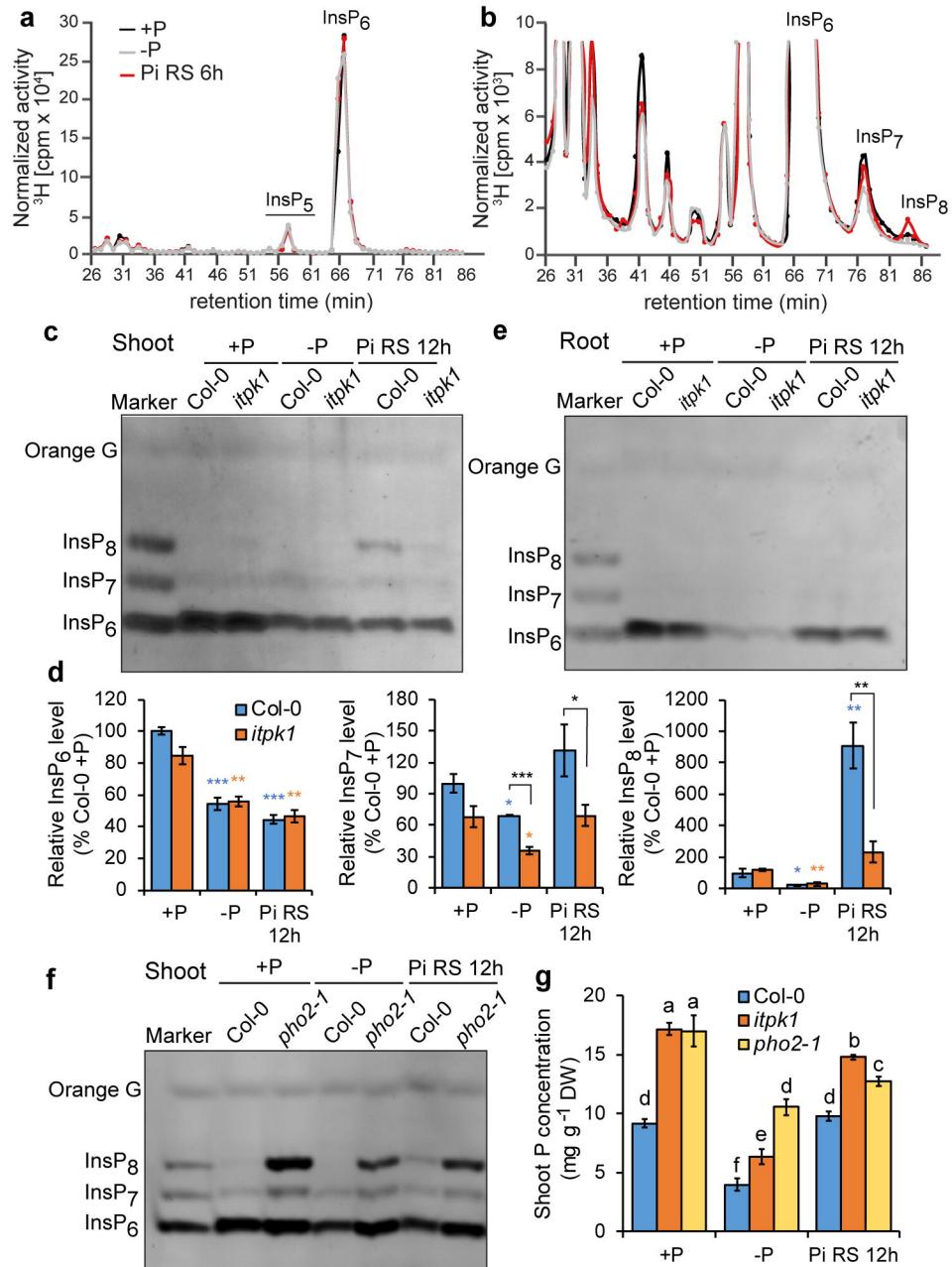
997 Seven-day-old seedlings germinated on half-strength solid MS agar media containing 625 μ M
998 P_i were transferred to +P (625 μ M P_i) and grown for additional 7 days. Shown are
999 representative images of the indicated mutants grown side-by-side on the same agar plate.

1000

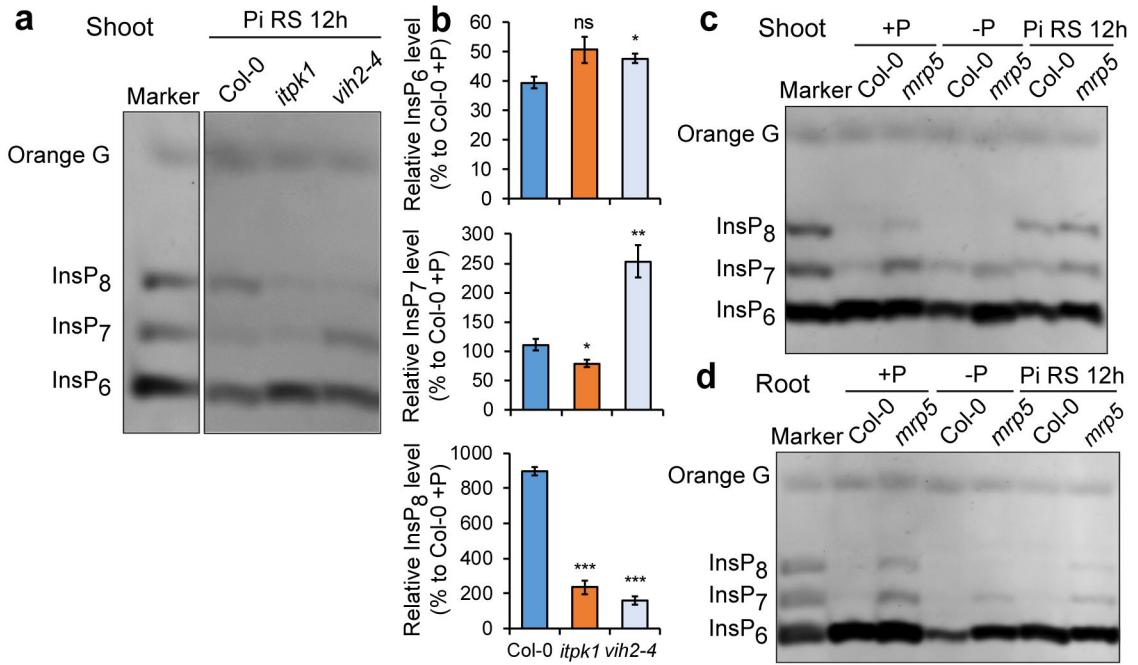

1001 **Supplementary Figure 13. P_i -dependent transcriptional regulation of InsP-related genes**
1002 **in Col-0 roots.**

1003 Seven-day-old Col-0 seedlings germinated on half-strength solid MS agar media were
1004 transferred to the indicated treatments for 4 days. +P, 625 μ M P_i ; -P, 5 μ M P_i ; P_i RS, P_i -
1005 starved plants were transferred back to P_i -containing media for 6 hours. Data represent mean
1006 \pm SE ($n = 3$ biological replicates).

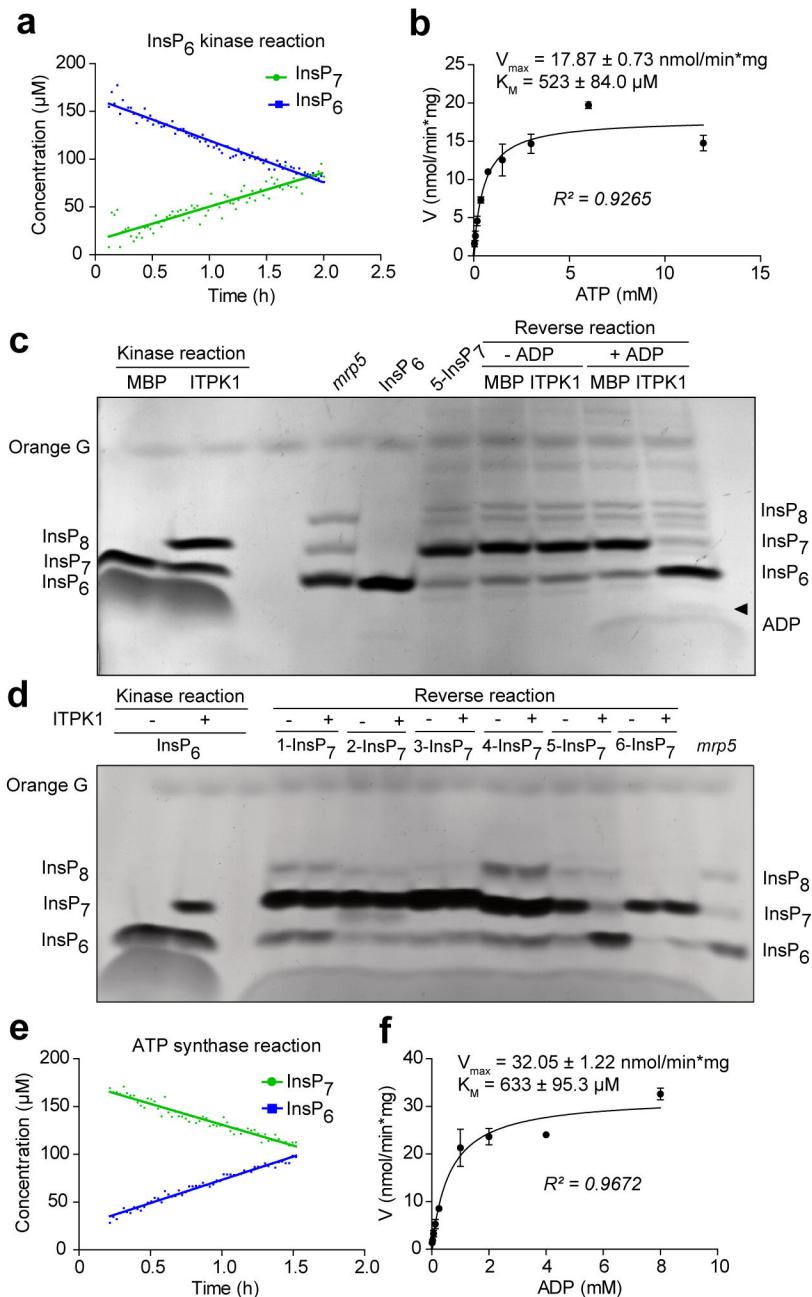
1007


1008

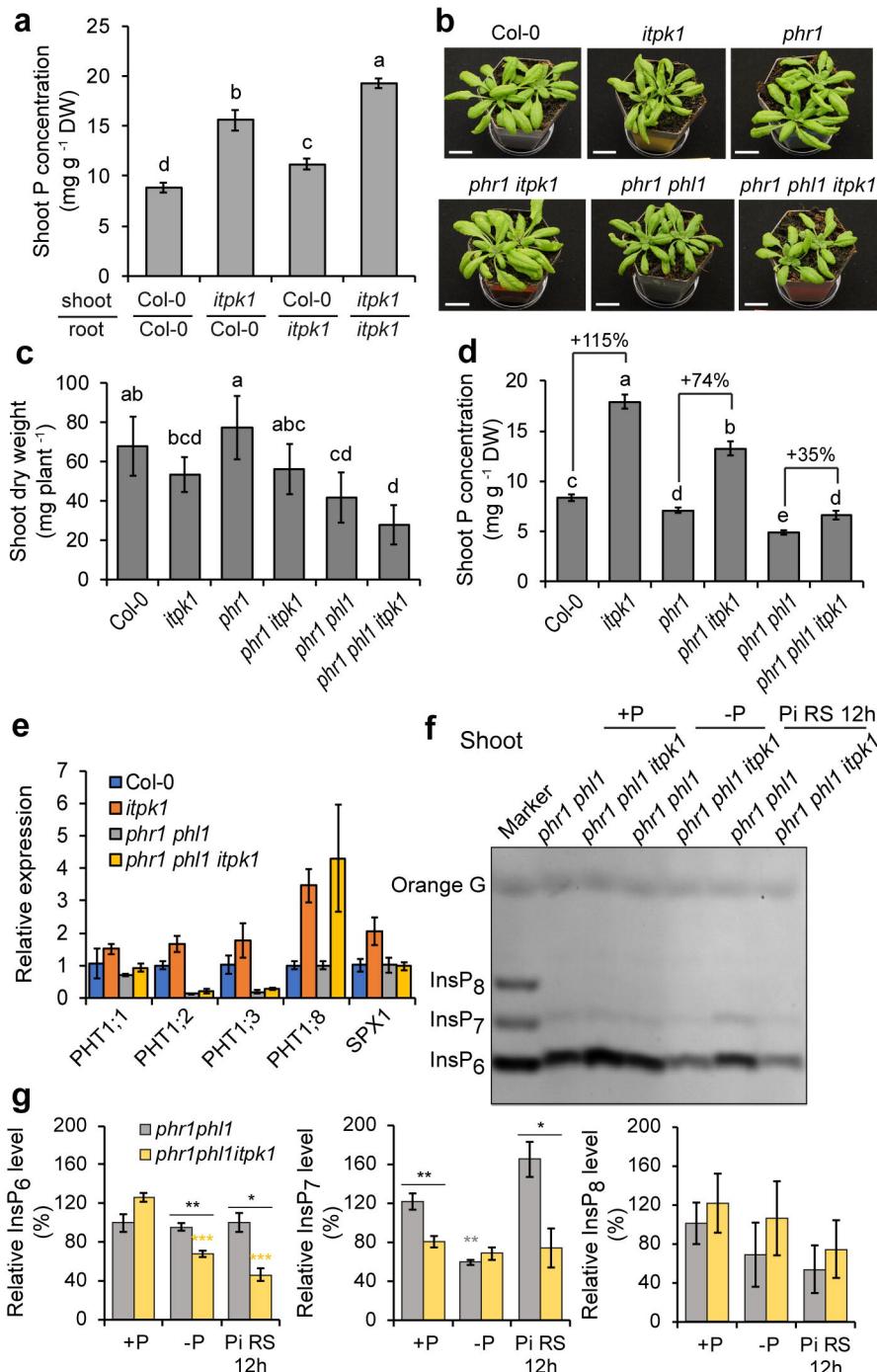
1009


Fig. 1. Role of distinct InsP kinases in plant Pi accumulation.

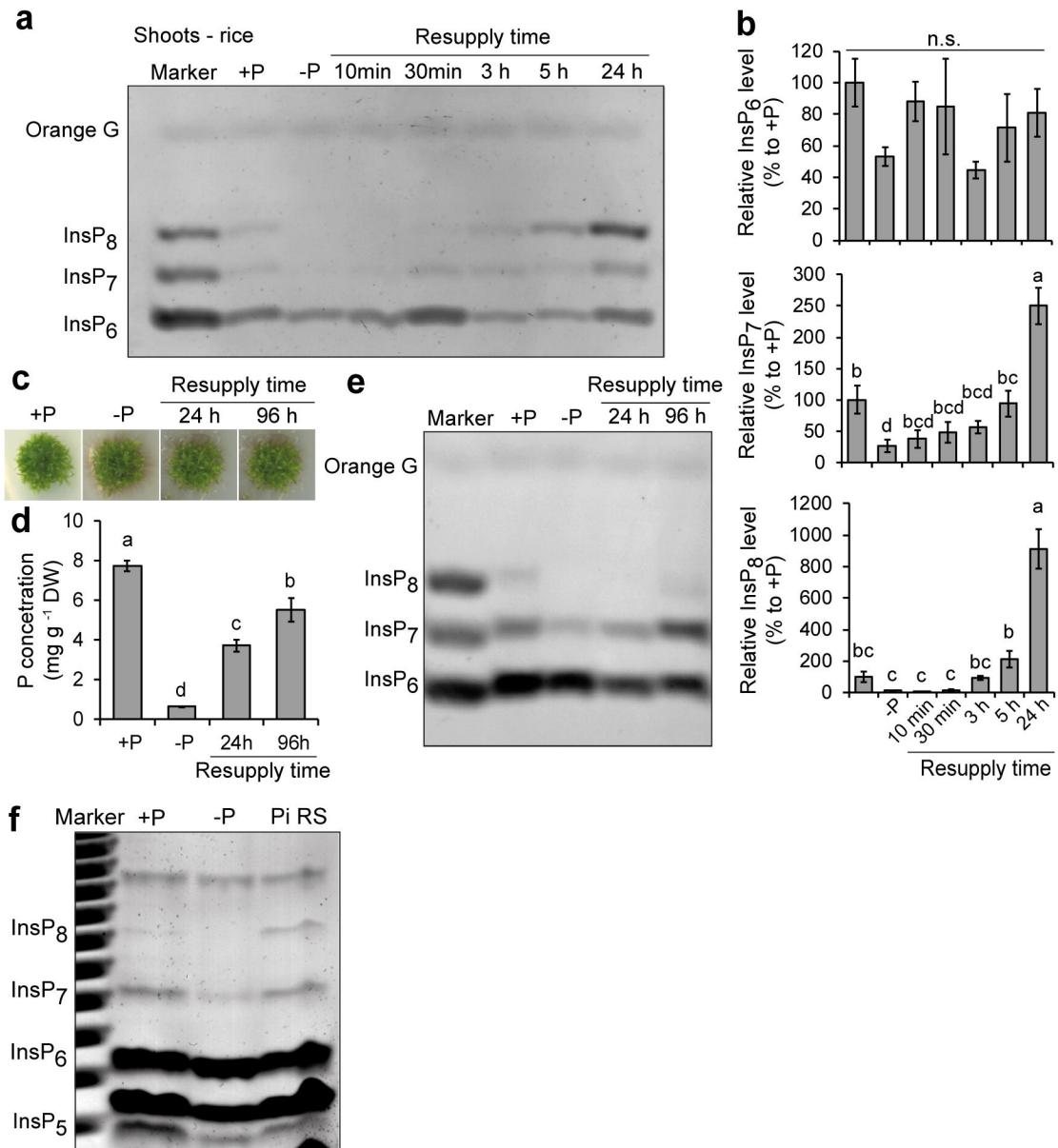
a-b Photographs of 3-week-old *Arabidopsis* plants grown on peat-substrate (**a**), and total Pi levels in shoots (**b**) of WT (Col-0) and the indicated mutants. Data represent means \pm SD ($n = 6$ -9 plants). Scale bars = 2 cm. **c-d** *ITPK1* expression (**c**) and shoot Pi levels (**d**) in 3-week-old WT (Col-0), *itpk1* and three independent *itpk1* lines transformed with *ITPK1* genomic DNA. Data represent means \pm SD ($n = 3$ biological replicates in **c** and $n = 8$ -9 plants in **d**). **e-h** Loss of *ITPK1* results in Pi overaccumulation only in shoots but Pi-independent root growth repression. Phenotypes (**e**), primary root length (**f**) and total Pi concentrations in shoots (**g**) or roots (**h**) of plants grown in agar plates with sufficient (625 μ M Pi) or deficient Pi supply (5 μ M Pi) for 7 days. Bars show means \pm SD ($n = 6$ replicates with 3 plants each). Different letters indicate significant differences according to Tukey's test ($P < 0.05$).


Fig. 2. InsP₇ and InsP₈ levels in shoots respond to P_i availability in an ITPK1-dependent manner.

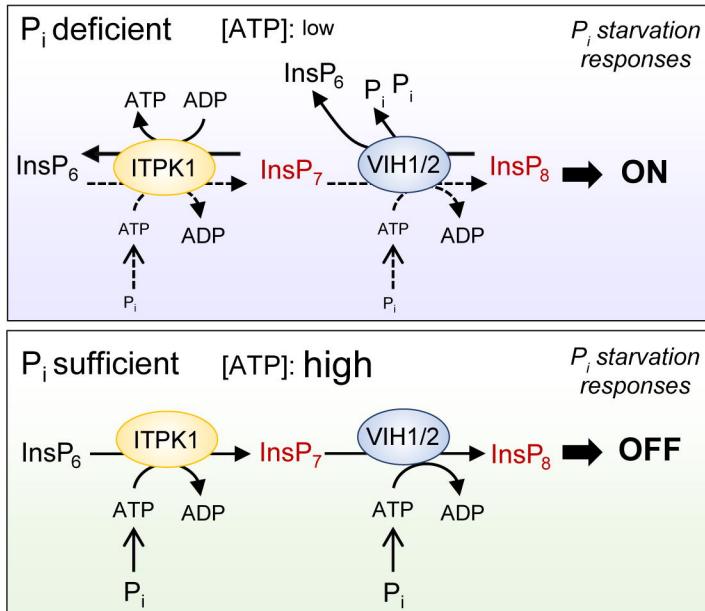
a-b HPLC profiles of 17-day-old *Arabidopsis* WT (Col-0) seedlings radiolabeled with [^3H]-myo-inositol. Seedlings were grown either with P_i (+P) or without P_i (-P) or resupplied with P_i for 6 h prior to harvest (Pi RS 6h). Full, normalized spectra (**a**) and zoom-in view of the same profile (**b**). The experiment was repeated two times with similar results, and representative results from one experiment are shown. **c-e** PAGE of InsP levels in shoots (**c**), quantification of PAGE signals from shoots (**d**) and PAGE of roots (**e**) of WT (Col-0) and *itpk1* plants. Plants were grown in hydroponics in P_i-sufficient solution (+P), exposed for 4 days to P_i starvation (-P) or resupplied with P_i for 12 hours (Pi RS 12h). InsPs were eluted from TiO₂ beads, separated by PAGE and visualized by Toluidine blue and DAPI. Data represent means ± SE ($n = 3-4$ biological replicates). * $P < 0.05$, ** $P < 0.01$ and *** $P < 0.001$ according to pairwise comparison with Student's *t*-test. **f-g** InsP₇ and InsP₈ levels are strongly increased in the shoots of the P_i-overaccumulating mutant *pho2-1*. PAGE of shoots (**f**) and shoot P_i levels in response to P_i deficiency and P_i resupply (**g**). Plants were cultivated as described in **c-e**. Data represent means ± SE ($n = 4$). Different letters indicate significant differences according to Tukey's test ($P < 0.05$).


Fig. 3. ITPK1- and VIH2-dependent synthesis of PP-InsPs and dependency on InsP₆ compartmentation.

a-b Loss of VIH2 increases InsP₇ levels in shoots. InsP detection in shoots of *Arabidopsis* WT, *itpk1* and *vih2-4* plants (**a**) and quantification of PAGE signals (**b**) 12 h after P_i resupply to P_i-starved plants in hydroponics. Data represent means \pm SE ($n = 4$ biological replicates). * $P < 0.05$, ** $P < 0.01$ and *** $P < 0.001$ according to pairwise comparison with Student's *t*-test. **c-d** Impaired InsP₆ transport into the vacuole increases InsP₇ and InsP₈ levels in shoots and roots. InsP determination in shoots (**c**) and roots (**d**) of WT (Col-0) and *mrp5*. Plants were grown in hydroponics in P_i -sufficient solution (+P), exposed for 4 days to P_i starvation (-P) or resupplied with P_i for 12 hours (Pi RS 12h).


Fig. 4. *In vitro* characterization of ITPK1 activity.

a-b NMR analysis of InsP₆ kinase activity of recombinant *Arabidopsis* ITPK1. Time-dependent conversion of InsP₆ to 5-InsP₇ (**a**) and reaction velocity determined at varying ATP concentrations (**b**). K_M and V_{max} were obtained after fitting of the data against the Michaelis-Menten model. **c-d** In the presence of ADP, recombinant *Arabidopsis* ITPK1 mediates 5-InsP₇ hydrolysis (**c**) but not the hydrolysis of other InsP₇ isomers (**d**). InsPs were separated via PAGE and visualized by Toluidine Blue staining. The identity of bands was determined by migration compared to InsP₆ and 5-InsP₇ standards and TiO₂-purified *mrp5* seed extract. InsP₆ kinase reaction served as positive control for the reverse reactions. Purified His₈-MBP tag (MBP) served as negative control for ITPK1. Arrowhead in **c**, indicates the presence of a small ATP band just above ADP. **e-f** NMR analysis of reverse reaction of recombinant *Arabidopsis* ITPK1. Accumulation of InsP₆ and conversion of 5-InsP₇ (**e**) and reaction velocity determined at varying ADP concentrations (**f**). K_M and V_{max} were obtained after fitting of the data against the Michaelis-Menten model.


Fig. 5. P_i starvation responses are mainly regulated by ITPK1 activity in shoots.

a Total P_i concentration in shoots of self-grafted or reciprocally grafted WT (Col-0) and *itpk1*. Plants were grafted on agar plates and left recovering for 2 weeks. Positive grafts were transferred to peat-based substrate for another 2 weeks. Data represent means \pm SD ($n = 5$ -7 plants). **b-d** Genetic interplay between PHR1/PHL1 and ITPK1 in P_i sensing. Phenotype (**b**), shoot dry weight (**c**) and shoot P_i levels (**d**) of 3-week-old WT and indicated mutants grown on peat-based substrate. Data represent means \pm SD ($n = 6$ plants). In **a**, **c** and **d**, letters indicate significant differences according to Tukey's test ($P < 0.05$). **e** ITPK1-dependent expression of P_i deficiency-induced genes in roots of the indicated P_i-sufficient plants. Data represent means \pm SE ($n = 4$ replicates). **f-g** PHR1- and PHL1-dependent synthesis of InsPs as revealed by PAGE (**f**) and relative quantification of signals (**g**) in indicated double and triple mutants grown in hydroponics with P_i-sufficient solution (+P), exposed to 4 days of P_i starvation (-P) or resupplied with P_i for 12 hours (Pi RS 12h). Data represent means \pm SE ($n = 4$ biological replicates). * $P < 0.05$, ** $P < 0.01$ and *** $P < 0.001$ according to pairwise comparison with Student's *t*-test.

Fig. 6. Pi-dependent regulation of InsPs levels is conserved in multicellular organisms.

a-b Time-course analysis of InsPs in response to Pi starvation and Pi resupply in rice shoots. PAGE (**a**) and relative quantification of bands (**b**) of rice plants cv. Nipponbare grown in hydroponics. Data represent means \pm SE ($n = 4$ biological replicates). Different letters indicate significant differences according to Tukey's test ($P < 0.05$). **c-e** Phenotype (**c**), total Pi levels (**d**) and PAGE of Pi-dependent synthesis of InsP₇ and InsP₈ (**e**) in gametophores of *Physcomitrella patens*. Plants were cultivated on sufficient Pi (+P), starved of Pi for 30 days (-P) or resupplied with Pi for the indicated time. Data represent means \pm SD ($n = 3$ biological replicates). Different letters indicate significant differences according to Tukey's test ($P < 0.05$). **f** PAGE analysis of wild-type HCT116 cell extracts during Pi starvation and resupply. Cells were starved in Pi-free media for 18 h and resupplied with Pi for 3.5 h. Cells were harvested at the same time. The experiment was repeated twice with similar results.

Fig. 7. Model for ITPK1-dependent generation and removal of InsP₇ and its link with VIHs and P_i signaling.
 In P_i-deficient cells, low ATP levels stimulate ITPK1 to catalyze P_i transfer from InsP₇ to ADP, thereby generating ATP and decreasing InsP₇. Decreased ATP and P_i levels also activate the pyrophosphatase activity of VIHs to break down InsP₈. The removal of PP-InsPs destabilizes the association between PHRs and SPXs, allowing PHRs to induce P_i starvation responses. When cells regain sufficient P_i, which increase ATP levels, ITPK1-mediated InsP₆ kinase activity is stimulated and the reverse reaction towards InsP₇ is inhibited. InsP₇ generated by ITPK1 serves then as substrate for InsP₈ production via the kinase domain of VIHs. As a consequence of increased PP-InsPs, SPX proteins recruit PHRs to repress P_i starvation responses.