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Abstract 

Indirect genetic effects from relatives may result in misleading quantifications of heritability, but can also 

be of interest in their own right. In this paper we propose Trio-GCTA, a model for separating direct and 

indirect genetic effects when genome-wide single nucleotide polymorphism data have been collected 

from parent-offspring trios. The model is applicable to phenotypes obtained from any of the family 

members. We discuss appropriate parameter interpretations and apply the method to four exemplar 

phenotypes; offspring birth weight, offspring temperament, maternal relationship satisfaction, and 

paternal body-mass index, using real data from the Norwegian Mother, Father and Child Cohort Study 

(MoBa). 
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Introduction 

Most human traits exhibit some degree of heritability (Polderman et al., 2015). Some phenotypes are 

characteristics not only of individuals, but also depend on the influence of other individuals. While direct 

genetic effects refer to how the phenotype of an individual depends on their own genotype, indirect 

genetic effects refer to how it depends on the genotypes of others (McAdam, Garant, & Wilson, 2014). In 

this paper we describe a model for separating direct genetic effects from the indirect genetic effects of 

family members when genome-wide single nucleotide polymorphism (SNP) data have been collected 

from parent-offspring trios. 

As parents transmit half their complement chromosomes to their children, the genomes of parents and 

offspring are correlated. Because the same genetic variants can have both direct and indirect effects, 

failing to account for the indirect genetic effects of relatives when attempting to measure heritability can 

result in misleading quantifications of the importance of direct genetic effects (Eaves, Pourcain, Smith, 

York, & Evans, 2014; Young, Benonisdottir, Przeworski, & Kong, 2019). 

Indirect genetic effects can also be of interest in their own right. With respect to the focal individual (i.e., 

the individual whose phenotype is the focus of study), indirect genetic effects are part of the 

environment and may be of great interest when trying to understand causes of individual differences. In 

this paper we are concerned with indirect genetic effects underlying intra-familial dynamics. This can 

include instances where heritable characteristics of parents affect offspring development. For example, 

maternal influence offspring health through the intrauterine environment (Evans, Moen, Hwang, Lawlor, 

& Warrington, 2019), or where parents affect offspring development by providing an advantageous 

rearing environment. It also includes instances where heritable characteristics of the offspring evoke 

responses in their parents. For example, when child behavior influences the mental wellbeing of their 

parents. 

The quantitative genetics literature distinguishes between two approaches to modelling indirect genetic 

effects. Trait-based models specify indirect genetic effects on the phenotype of the focal individual 

mediated by the phenotypes of other individuals. Variance-partitioning models avoid specification of the 

phenotypes that underlie the indirect genetic effects, instead quantifying the total contributions from 

these effects while being agnostic as to the underlying mechanisms (Bijma, 2014). 

The emergence of large-scale genotype data in population-based cohorts has provided new 

opportunities for developing methods to separate direct and indirect genetic effects. This was leveraged 

by Eaves et al. (2014) who proposed a variance-partitioning method for separating indirect maternal 

genetic effects from direct effects with respect to an offspring phenotype, relying on genome-wide SNP 

data from mother-offspring pairs. In the current manuscript we extend the work of Eaves et al. (2014) to 

separate direct and indirect genetics effects within parent-offspring trios. We discuss alternative 

interpretations of variance components depending on the role of the focal individual, useful restricted 

model specifications and apply the method to four etiologically diverse exemplar phenotypes (offspring 

birthweight, offspring temperament, maternal partner relationship satisfaction and paternal body mass 

index) using real data from the Norwegian Mother, Father and Child Cohort Study (Magnus et al., 2016). 
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Model formulation 

Yang et al. (2010) introduced a method for quantifying additive genetic variance contributions from all 

measured SNPs using a linear mixed effects model. Extensions of this methodology include formulations 

for quantifying dominance genetic effects (Zhu et al., 2015), gene-environment interactions (Yang, Lee, 

Goddard, & Visscher, 2013), parent-of-origin effects (Laurin et al., 2018), maternal effects (Eaves et al., 

2014) and avoiding bias from environmental effects (Young et al., 2018). The current approach (Trio-

GCTA) uses parent-offspring trios to quantify the importance of direct and indirect genetic effects within 

the nuclear family. We refer to the individual whose phenotype is under study as the focal individual, 

noting that the method is applicable regardless of who is the <owner= of the phenotype.  

In order to formulate a model for direct and indirect genetic effects, we assume that phenotypic 

measures have been obtained from a focal individual in � parent-offspring trios, and that genotypes for 

the same � SNPs are available for all individuals. We represent the three � × � matrices of maternal, 

paternal and offspring standardized genotype dosages (Zhu et al., 2015) by ��, �þ and �ý, respectively, 

arranged so that row � corresponds to the same parent-offspring trio. A linear model for the phenotypes 

can then be formulated as � = �� + ���� + �þ�þ + �ý�ý + �, 
where � is a � × 1 vector of continuous phenotypes, � is a � × � matrix of measured covariates with � × 1 vector of coefficients �, ��, �þ and �ý are � × 1 vectors of additive random genetic effects 

associated with the maternal, paternal and offspring standardized genotype dosages, respectively, and � 

is a � × 1 vector of residual effects. 

The genetic and residual effects are assumed to follow a multivariate normal distribution, where the 

different types of genetic effects may be dependent but individual SNP effects are independent. The 

residual effects are assumed to be independent of the genetic effects and across individuals 

[���þ�ý� ]~N
( 
   
 [����] ,

[  
   
  ��2� � �þ�� � �ý�� � ��þ�� � �þ2� � �ýþ� � ��ý�� � �ýþ� � �ý2� � �� � � ��2�]  

   
  

) 
   
 . 

The expected covariance structure of the phenotype across all individuals is given by: 

Cov(�) = ��2� ����′ + �þ2� �þ�þ′ + �ý2� �ý�ý′ + �ý�� (�ý��′ + ���ý′ ) + �ýþ� (�ý�þ′ + �þ�ý′ )+ �þ�� (�þ��′ + ���þ′ ) + ��2�. ��2 , �þ2 and �ý2 are the variances of the maternal, paternal and offspring genetic effects, respectively, �ý�  is the covariance between the offspring and maternal genetic effects, �ýþ  is the covariance between 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.15.097840doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.15.097840
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

the offspring and paternal genetic effects, �þ� is the covariance between the paternal and maternal 

genetic effects and ��2 is the residual variance. When mating is random, the covariance between the 

maternal and paternal effects are not expected to contribute to the variance of the phenotype and the 

total variance decomposition is therefore Var(��) = ��2 + �þ2 + �ý2 + �ý� + �ýþ + ��2. 
Depending on the role of the focal individual, the model parameters have different interpretations. If it is 

an aspect of the offspring phenotype that is under study, ��2  and �þ2 corresponds to variance 

attributable to indirect genetic maternal and paternal effects, respectively, whereas �ý2 is the variance 

due to direct genetic effects. The components  �ý�  and �ýþ  are the covariances between the direct 

offspring genetic effect and the indirect maternal and paternal genetic effects, respectively. These 

parameters quantify the extent to which the same variants contribute to direct and indirect genetic 

effects. With respect to the offspring, the maternal and paternal genetic effects form part of the 

environment so these covariance terms may therefore also be interpreted as measuring variability due 

to gene-environment correlations. The component �þ� is the covariance between the indirect maternal 

and paternal effects and is a measure of the extent to which the same variants contribute to indirect 

genetic effects.  Sex-dependent expression of genetic effects has been studied with respect to a variety 

of phenotypes using family designs (Neale & Cardon, 2013). A weak correlation between maternal and 

paternal effects would indicate a qualitative sex difference, wherein mothers and fathers influence their 

offspring through different heritable traits (alternatively it could be that ostensibly the same trait is 

under the influence of different genetic factors when expressed in mothers and fathers). A correlation of 

unity but different magnitude between the maternal and paternal effect would indicate a quantitative 

sex difference, wherein mothers and fathers influence the offspring by the same heritable traits, but to a 

quantitatively different extent. Sex-dependent expression of parental effects can therefore potentially 

reveal insights into differences in maternal and paternal effects on the offspring. ��2 is the residual 

variance of the phenotype. 

If it is an aspect of a maternal phenotype that is under study, ��2  is the variance due to direct genetic 

effects, whereas �þ2 and �ý2 measure variability due to indirect genetic effects. The paternal and offspring 

genetic effects are environmental from the perspective of the mother. Although the underlying 

mechanisms may be distinct, a maternal phenotype may depend on interactions with both their partner 

and offspring. �þ� and �ý�  are the covariance between the direct maternal genetic effect, and the 

indirect paternal and offspring genetic effects, respectively. If the same genetic variants contribute to 

direct and indirect genetic effects, these covariance terms are expected to differ from zero. Assuming 

that mating is random, a genetic correlation between the direct maternal and indirect paternal effect is 

not expected to affect the phenotypic variance, because maternal and paternal genotypes are 

independent. However, as the offspring and maternal genotypes are correlated, a genetic correlation 

between the direct maternal and indirect offspring effect implies a gene-environment correlation that 

will either increase or decrease the phenotypic variance depending on the sign of �ý�. �ýþ  is the 

covariance between the indirect paternal and offspring effects and is a measure of the extent to which 

the same additive genetic effects contribute to the indirect genetic effects. ��2 is the residual variance of 
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the phenotype. These interpretations are conversely the same if it is a paternal phenotype that is under 

study. 

Special cases 

Several other models of potential interest can be obtained as special cases of the general model 

described above. Young et al. (2018) introduced relatedness disequilibrium regression (RDR) as a method 

to avoid environmental bias in heritability estimates by modelling parental genetic nurturing effects in 

addition the direct genetic effects. The RDR model can be specified by setting �� = �ý2, ��~� = ��22 =�þ22 = �þ�2  and ��,� = �ý�2 = �ýþ2 , where ��  is the variance due to direct genetic effects, ��~�  is the 

variance due to parental genetic effects and ��,� is the covariance between the direct and the parental 

genetic effects. Therefore, the RDR model can also be seen as assuming the maternal and paternal 

genetic effects are the same and of equal magnitude. If maternal or paternal effects are not of specific 

interest on their own, this will likely be a more effective way of accounting for indirect parental effects, 

as only four variance parameters are required compared to seven under the general model. Eaves et al. 

(2014) proposed a method (M-GCTA) for jointly estimating the variance explained by direct genetic 

effects, indirect maternal genetic effects and their covariance with respect to an offspring phenotype. 

The M-GCTA model can be obtained with the constraints �þ2 = �ýþ = �þ� = 0. For many research 

questions, especially those related to pre- and peri-natal phenotypes, this may be a sufficient model. The 

original GCTA model (Yang, Lee, Goddard, & Visscher, 2011) can be obtained by omitting all indirect 

genetic effects from the model. 

In the applications below we explore further interpretations of the model parameters when the focal 

individual has different roles. In the supplementary material we provide a simulation study 

demonstrating that parameters can be recovered when a trait is generated as a function of correlated 

direct and indirect genetic effects. 

Applications 

We applied the Trio-GCTA method to a set of phenotypes measured in parent-offspring trios 

participating in the Norwegian Mother, Father and Child Cohort Study (MoBa) (Magnus et al., 2016). 

MoBa is a population-based pregnancy cohort study conducted by the Norwegian Institute of Public 

Health. Participants were recruited from all over Norway from 1999-2008. The women consented to 

participation in 41% of the pregnancies. The cohort comprises 114,500 children, 95,200 mothers and 

75,200 fathers. The current study is based on version 11 of the quality-assured data files. Information 

was also obtained via a linkage to The Medical Birth Registry (MBR), a national health registry containing 

information about all births in Norway. 

Blood samples were obtained from both parents during pregnancy and from mothers and children 

(umbilical cord) at birth. The project Better Health by Harvesting Biobanks (HARVEST) sampled 11,000 

parent-offspring trios for genotyping from MoBa’s biobank at random. Genotyping was performed using 

llumina HumanCoreExome-12 v.1.1 and HumanCoreExome-24 v.1.0 arrays. The pre-imputation quality 

control and imputation procedure is described in Helgeland et al. (2019). Post-imputation, four and a half 
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million SNPs with imputation info score > 0.9 and minor allele frequency > 0.05 were retained for 

analyses. 

Example 1: Birth weight (offspring phenotype) 

Both offspring and maternal genes are likely to be involved in determining birth weight as the 

intrauterine environment is provided by the mother.  Both traditional family (Lunde, Melve, Gjessing, 

Skjærven, & Irgens, 2007; Magnus, 1984) and molecular genetic designs (Warrington et al., 2019) have 

previously indicated substantial portions of variance in birth weight determined by both direct offspring 

and indirect maternal genetic effects. We applied the current method to birth weight measures from 

8154 trios in order to obtain a comparison to previous findings. The current method further allows the 

correlation between maternal and offspring genetic effects to be estimated. 

Example 2: Infant temperament (offspring phenotype) 

The Infant Characteristics Questionnaire was developed for assessing parental perceptions of infant 

difficult temperament (Bates, Freeland, & Lounsbury, 1979). Using a twin design, Silberg et al. (2005) 

found that they could account for as much as 75% of the variability in difficult temperament with direct 

additive genetic effects. Prenatal maternal characteristics such as depression and anxiety have also been 

suggested to affect infant temperament, but findings are mixed (Erickson, Gartstein, & Dotson, 2017). 

The importance of such prenatal factors can possibly be measured via maternal genetic effects. We 

analyzed a summated score of maternal reports to 10 items related to infant difficult temperament at 

age 6 months from 7291 trios. 

Example 3: Relationship satisfaction (maternal phenotype) 

Maternal reports of relationship satisfaction between mothers and fathers have been found to decrease 

on average following the birth of a child (Dyrdal, Røysamb, Nes, & Vittersø, 2011). A possible explanation 

for this decrease is that relationship satisfactions to some degree depend on aspects of the infant 

phenotype. We therefore investigated whether maternal reports of relationship satisfaction six months 

after birth are influenced by offspring genotype. Measures of relationship satisfaction were obtained by 

summation of the ten items comprising the Relationship Satisfaction scale (Røysamb, Vittersø, & Tambs, 

2014) in 7187 trios.  

Example 4: Body mass index (paternal phenotype) 

Body mass index (BMI) in adulthood has both genetic and environmental components of causation. Yang 

et al. (2015) found that 27% of variability in BMI could be accounted for by direct genetic effects based 

on a detailed analysis of genome-wide SNP data. We analyzed paternal BMI obtained from maternal 

ratings of their partner’s weight and height in 7829 trios. If any maternal biases are inherent in these 

ratings, including an indirect maternal genetic effect may allow us to still obtain valid estimates of the 

contributions from direct genetic effects. 

A box-cox transformation and a scaling to zero mean and unit variance was applied to all phenotype 

measures. We included gender as a covariate in analyses of offspring phenotypes. All models were fit 
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using the OpenMx package (Version 2.13; Neale et al., 2016) in R (Version 3.6.0; R Core Team, 2014). R 

code for fitting the model can be found in the supplementary material. 

Table 1. Parameter estimates and standard errors from the fitted models. 

Phenotype Focal ��2  �þ2 �ý2 �ý�  �ýþ  �þ� ��2 

Birth weight Offspring 0.08 (0.05) 0.00* 0.12 (0.06) 0.01 (0.05) -0.01 (0.03) 0.05 (0.03) 0.78 (0.05) 

Temperament Offspring 0.04 (0.05) 0.00* 0.12 (0.07) -0.01 (0.05) -0.02 (0.04) -0.01 (0.04) 0.86 (0.05) 

Relationship 

satisfaction  

Mother 0.08 (0.05) 0.03 (0.06) 0.10 (0.07) -0.02 (0.05) 0.01 (0.05) 0.06 (0.04) 0.81 (0.06) 

BMI Father 0.04 (0.05) 0.32 (0.05) 0.00* -0.02 (0.03) -0.06 (0.04) 0.07 (0.04) 0.71 (0.05) 

The second column indicates the focal individual in the analysis; * = Parameter is estimated at boundary 

and no standard error could be computed. 

Results from applying the full model to the four phenotypes are presented in table 1. For all phenotypes 

except maternal relationship satisfaction, direct effects accounted for the largest portion of genetic 

influences. For birth weight and temperament, direct effects are estimated as the offspring genetic 

effects �ý2, accounting for 12% of the variance for both phenotypes. For maternal relationship 

satisfaction direct genetic effects (��2 ) accounted for 8% of the variance, whereas for paternal BMI, 

direct genetic effects (�þ2) accounted for 32% of the variance.  

The strongest indications for indirect genetic effects were found for offspring birth weight - where 8% of 

the variability in birth weight could be ascribed to maternal genetic effects (��2 ) – and maternal 

relationship satisfaction, where 10% of the variability in relationship satisfaction could be ascribed to 

offspring genetic effects (�ý2) – a larger fraction than that due to direct genetic effects. 

As the results indicate both direct and indirect genetic effects for offspring birth weight and maternal 

relationship satisfaction, it is of further interest to analyze the covariance between these components. 

The genetic correlation between maternal and offspring effects for birth weight was small, estimated as �ý� (���ý)⁄ = 0.07. A stronger, negative genetic correlation of �ý� (���ý)⁄ = 20.27, was estimated 

between maternal and offspring effects with respect to maternal reported relationship satisfaction. 

Overall, these results are consistent with the general findings from twin studies, pointing to direct 

additive genetic effects as the major systematic source of variation for most traits (McAdams et al., 

2014; Polderman et al., 2015). We also found indications for indirect genetic effects, most markedly for 

offspring birth weight and maternal relationship satisfaction. With respect to birth weight, these results 

are in line with previous findings. The weak genetic correlation further suggests that different genes may 

be involved in these effects. With respect to maternal relationship satisfaction, these findings are novel 

and may motivate further studies into the role of how relationship satisfaction may depend on infant 

characteristics. The negative genetic correlation may imply that some genes may have the opposite 

effects in mothers and offspring. 

Considering the relatively large uncertainty associated with the parameter estimates, the results from 

the applications should be interpreted with caution. We emphasize that our analyses are not intended as 

a comprehensive study of the causes of variation for the phenotypes we examined, but rather are meant 
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to illustrate how the proposed model can be used to investigate a diverse range of research questions.. 

Some of the solutions also gave meaningless results for the joint distributions of the genetic effects, with 

parameter estimates at the boundary or implied correlations greater than one. This is likely an indication 

that there is not enough data to support the model complexity, or that the model is misspecified.  For a 

more detailed analysis it would likely be preferable to fit alternative nested models as described above, 

and test whether simpler models are equally supported by the data. Considerably larger sample sizes 

may be necessary to justify reliable inferences about the model parameters (Visscher et al., 2014; Yang, 

Zeng, Goddard, Wray, & Visscher, 2017). However, such sample sizes are increasingly available. 

Discussion 

We proposed a new method, Trio-GCTA, for resolving direct and indirect genetic effects within parent-

offspring trios when genome-wide SNP data is available. The model formulation is invariant to which of 

the family members is the focal individual in the analysis; only the interpretation of parameters (in terms 

of direct and indirect genetic effects) changes in different cases. We illustrated this by applying the 

method to four exemplar phenotypes using real data on offspring, maternal and paternal phenotypes. 

Results from the applications highlighted the potential of the method for clarifying intra-familial 

dynamics. 

An advantage of the proposed method is the ability to gain insights into the dynamics of intra-familial 

processes without requiring specification of the specific traits that mediate the indirect genetic effects. 

Variance-partitioning of direct and indirect genetic effects may therefore serve as a useful first step, 

potentially motivating more detailed studies of specific processes. Trait-based models (Bijma, 2014), 

including explicit formulations of the hypothesized mediating variables may potentially provide better 

understanding of such mechanisms. However, in addition to the computational challenges, such 

specifications would also contradict one of the initial motivations for the GCTA model which avoid bias 

from common environmental effects by relying on measures obtained from unrelated individuals (Yang 

et al., 2011). 

There are several issues related to estimating genetic variance parameters from genome-wide SNP data. 

Yang et al. (2017) emphasized that genetic variance parameters based on measured (or imputed) 

genome-wide SNPs differ from population parameters because they are dependent on the specific set of 

SNPs included in the analysis. They addressed several issues relating to estimating genetic variance 

parameters from genome-wide SNP data, and these considerations apply also to the method proposed in 

the current paper. There are likely further challenges that are specifically related to the use of parent-

offspring trios and the method we have proposed here. First, the full model has seven variance 

parameters, which will likely require large sample sizes in order to obtain reliable estimates. Second, we 

have assumed that mating is random, and it is currently unclear how assortative mating could affect 

inferences under different models of intra-familial interactions. Third, although the distinction between 

direct and indirect genetic effects of parents and offspring may be an adequate description of many 

phenotypes, other relatives such as siblings may also play important roles in determining individual 

differences. 
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We believe the proposed method will provide a useful tool for researchers interested in the complexity 

of intra-familial dynamics, allowing investigations of research questions that may otherwise be difficult 

to study. 
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