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Abstract17

Capture-recapture methods are a common tool in ecological statistics, which have18

been extended to spatial capture-recapture models for data accompanied by location19

information. However, standard formulations of these models can be unwieldy and20

computationally intractable for large spatial scales, many individuals, and/or activity21

center movement. We provide a cumulative series of methods that yield dramatic im-22

provements in Markov chain Monte Carlo (MCMC) estimation for two examples. These23

include removing unnecessary computations, integrating out latent states, vectorizing24

declarations, and restricting calculations to the locality of individuals. Our approaches25

leverage the flexibility provided by the nimble R package. In our first example, we26

demonstrate an improvement in MCMC efficiency (the rate of generating effectively27

independent posterior samples) by a factor of 100. In our second example, we reduce28

the computing time required to generate 10,000 posterior samples from 4.5 hours down29

to five minutes, and realize an increase in MCMC efficiency by a factor of 25. We30

also explain how these approaches can be applied generally to other spatially-indexed31

hierarchical models. R code is provided for all examples, as well as an executable32

web-appendix.33

Keywords:34

Mark-recapture, MCMC, nimble, Sampling efficiency, Spatial capture-recapture.35

1 Introduction36

Capture-recapture methods are primary tools for estimating abundance and demographic37

parameters in populations. These methods model longitudinal encounter histories of in-38

dividuals in a population. Spatial capture-recapture (SCR) models account for individual39

and trap-specific capture probabilities depending on individuals’ latent centers of activity40
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and space-use in relation to the explicit location of traps or other detectors (Efford, 2004;41

Borchers and Efford, 2008). Closed SCR models provide more precise and robust estimates42

of population densities than non-spatial models, and also enable estimation of the spatial43

distribution of individuals and associated parameters .44

Despite their popularity, SCR models encounter numerous computational challenges45

which pose serious obstacles for their practical use (Gardner et al., 2018). For large study46

areas with many detectors, determining the probability of a capture history becomes very47

computationally costly because it involves calculations for all detectors, which is problematic48

for large-scale studies (Milleret et al., 2018b). Modeling the movement of activity centers49

often induces inefficient MCMC updating, as do methods for imposing spatial constraints50

on activity center locations. And data augmentation of never-observed individuals can lead51

to unnecessary calculations.52

Bayesian hierarchical models, such as SCR models, are often formulated using the BUGS53

modeling language (Lunn et al., 2009) and estimated using Markov chain Monte Carlo54

(MCMC; Brooks et al., 2011). Mainstream MCMC software includes WinBUGS, JAGS55

(Plummer, 2003), and Stan (Stan Development Team, 2014). Recently, the nimble R pack-56

age has been developed, offering new degrees of customization for MCMC (de Valpine et al.,57

2017). Custom-written distributions and the flexibility of nimble’s MCMC system have58

provided substantial improvements in non-spatial capture-recapture models (Turek et al.,59

2016) and the study of MCMC algorithms (Turek et al., 2017).60

We use nimble to demonstrate several generally applicable techniques for improving61

MCMC efficiency of (1) a simple but computationally-intense SCR model (Milleret et al.,62

2019), and (2) an open robust-design SCR model (Ergon and Gardner, 2014). We increase63

MCMC efficiency by vectorizing calculations, applying custom MCMC sampling strategies,64

implementing model-specific likelihood calculations, disabling unnecessary model calcula-65

tions, and restricting trap calculations to the locality of each individual. Using these tech-66

niques, we achieve efficiency gains of a factor of 100 in the first example and a factor of 2567
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in the second example.68

2 Materials and Methods69

We consider two example SCR models which both present computational challenges. The70

first (“Wolverine”) considers a simple closed SCR model for data from non-invasive genetic71

sampling of wolverines on a large spatial scale in Norway (Gulo gulo, Milleret et al., 2019).72

The second (“Vole”) is a more complex SCR model on a smaller spatial scale, modeling an73

open population of field voles with activity-center movements (Microtus agrestis, Ergon and74

Gardner, 2014). We first describe each model, followed by the strategies used to improve75

MCMC efficiency. Finally, we describe the metric used to measure MCMC efficiency.76

2.1 Wolverine Model77

This example has a spatial extent over 200,000 km2. The data, collected throughout Norway,78

consist of 453 detections from 196 individually identified female wolverines using noninvasive79

genetic sampling and search encounter methods (Milleret et al., 2019). The search area was80

discretized to a detector grid with a 2km resolution, and only searched grid cells were included81

in the analysis. This resulted in 17,266 unique detectors, with binary-valued detections of82

individuals within grid cells. Data and additional details are available at the dryad repository83

(Milleret et al., 2018a).84

The Wolverine model combines a spatial point process model of individual activity centers85

(ACs), data augmentation to model the true population size, and an observation model for86

detection probabilities and capture histories. Define the AC of individual i as si = (sxi , s
y
i ),87

where sxi and s
y
i follow independent uniform prior distributions spanning the study area. As88

some regions are unsuitable habitat (i.e., water), AC locations must be constrained. We use89

a habitat mask by defining a binary matrix H over the study area, where Hx,y = 1 indicates90

that cell (x, y) is suitable habitat. AC locations are then constrained as 1 ∼ Bernoulli(Hsxi ,s
y
i
),91
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where 1 is a unit data value.92

For data augmentation (Royle, 2009), we add Naug virtual individuals. The augmented93

matrix y has dimension (Nobs + Naug) × R, with R = 17, 266 detectors and Nobs = 19694

unique individuals. Define binary variables zi with independent zi ∼ Bernoulli(φ) prior95

distributions, representing inclusion in the population. For the Nobs sighted individuals,96

zi = 1 is observed data, while the remaining zi are unobserved. Total population size N is97

estimated as N =
∑Nobs+Naug

i=1 zi, using the prior distribution φ ∼ Uniform(0, 1) to induce a98

flat prior on N (Royle et al., 2007).99

The probability of detecting individual i at detector r is pi,r = p0 exp(−
1

2σ2 ‖si − xr‖
2),100

where xr is the location of detector r and p0 and σ are the maximal and scale of decay101

for detection probability. Detections are modeled as yi,r ∼ Bernoulli(pi,r zi). The complete102

Wolverine model definition is given in (1), where indices r take the range 1, . . . , R.103

φ ∼ Uniform(0, 1)

p0 ∼ Uniform(0, 1)

σ ∼ Uniform(0, 50)

N =
∑Nobs+Naug

i=1 zi

i = 1, . . . , (Nobs +Naug) :

sxi ∼ Uniform(xmin, xmax)

s
y
i ∼ Uniform(ymin, ymax)

1 ∼ Bernoulli(Hsxi ,s
y
i
)

zi ∼ Bernoulli(φ)

si = (sxi , s
y
i )

pi,r = p0 · exp(−
1

2σ2 ‖si − xr‖
2)

yi,r ∼ Bernoulli(pi,r zi)

(1)

We use four refinements of the model and MCMC sampling, with the goal to improve104

MCMC efficiency: (1) Vectorize computations and put the habitat mask into a custom105

distribution, (2) jointly sample AC components, (3) restrict calculations to local detectors106

and sparse representation of data, and (4) skip unnecessary calculations when zi = 0. We107

next describe each of these techniques, and nimble code corresponding to each cumulative108
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refinement appears in Appendix A.109

2.1.1 Vectorized Computations110

Vectorization refers to carrying out a set of matching model computations more efficiently,111

as is possible in nimble but neither WinBUGS or JAGS. nimble supports vectorized model112

declarations, reducing the total nodes in the model and potentially improving MCMC effi-113

ciency. We vectorized both detection probabilities and data likelihoods for each individual114

across the R detectors. For the vector of detection probabilities pi,1:R, we used a vectorized115

model declaration. For the vectorized data likelihood of yi,1:R, we used a custom likelihood116

function for the entire (length-R) observation history of one individual.117

This technique is only beneficial when the entire joint likelihood of yi,1:R is always calcu-118

lated simultaneously, as is the case here for updates of p0, σ, or zi. In a different model, this119

technique could result in inefficiencies if any MCMC updates require likelihood calculation120

for only a subset of yi,1:R.121

2.1.2 Joint Sampling of AC Locations122

We apply joint (block) sampling of the sxi and s
y
i coordinates of each AC. nimble allows the123

assignment of block samplers to arbitrary variables, applying multi-dimensional Metropolis-124

Hastings sampling. This results in computational savings since an MCMC update of si125

requires only one calculation of all (length-R) relevant detection probabilities and data like-126

lihoods. In contrast, independent updates of the sxi and s
y
i components will require two127

likelihood evaluations, one for each component.128

2.1.3 Local Detector Evaluations and Sparse Observation Matrix129

We move detection probability calculations inside the vectorized likelihood, and additionally130

restrict these calculations to detectors within a maximum realistic radius (dmax) of the AC131

si. In advance, we identify the set of detectors located within dmax from each cell of the132
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habitat matrix. The modified distribution identifies the grid cell containing si, and the set133

of detectors within dmax from it. Calculations of pir are then restricted to this set of detectors.134

We also convert to a sparse representation of the detection matrix y. In this representa-135

tion, each row contains the detector identification numbers (values of r) that detected one136

individual. The number of columns is therefore equal to the maximum number of detec-137

tions of any particular individual. This sparse representation allows for a smaller model and138

equivalent, but more efficient, likelihood calculations.139

2.1.4 Skip Unnecessary Calculations140

Calculations can be avoided when any zi = 0, that is, an augmented virtual individual is not141

currently included in the population. In that case, neither the distances to each detector nor142

the detection probabilities need be calculated. We modify the custom likelihood again, to143

accept zi as an argument. When zi = 1, the calculations take place as before. When zi = 0,144

the likelihood is one if the individual was never observed – always the case for augmented145

individuals – which can be calculated without any distances or detection probabilities. This146

modification can save substantial computation, especially when Naug is large, that being the147

conservative approach.148

2.2 Vole Robust-Design Model149

Our second example considers a robust-design SCR model of field voles in the Kielder For-150

est of northern England (Microtus agrestis, Ergon and Gardner, 2014), with four primary151

sampling occasions and nested secondary trapping sessions. A total of 158 unique individ-152

uals are considered to have static ACs within primary occasions, but to disperse between153

primary occasions. See Ergon and Gardner (2014, Appendix S2) for further details, (Ergon154

and Lambin, 2013) for the data, and Appendix B.1 for the original JAGS code.155

The Vole model contains individual survival between primary sampling occasions, disper-156

sal of ACs between primary occasions, and spatial capture-recapture from capture histories.157
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Define the AC of individual i on primary occasion k as si,k = (sxi,k, s
y
i,k). On first capture,158

the components sxi,Fi
and s

y
i,Fi

are given uniform prior distributions spanning the mean loca-159

tion of captures during that occasion. The dispersal between primary occasions k and k+ 1160

uses a uniformly-distributed dispersal angle θik, and an exponentially-distributed dispersal161

distance dik with rate parameter λGi
, where Gi is the sex of individual i (1: female; 2: male),162

and λ1 and λ2 are sex-specific parameters. Thus, the AC components are related across163

primary occasions as sxi,k+1 = sxi,k + dik cos(θik) and s
y
i,k+1 = s

y
i,k + dik sin(θik).164

The survival model uses binary indicator variables, where zi,k = 1 indicates individual165

i is alive on occasion k. We condition on the first observation in primary occasion Fi, as166

zi,Fi
= 1. The survival process follows as zi,k+1 ∼ Bernoulli((φGi

)Tk zi,k), where survival167

probability depends on sex and temporal duration. Gi gives the sex of individual i, Tk is168

the time (in months) between occasions k and k + 1, and φ1 and φ2 are sex-specific survival169

rates. When φGi
is a function of a continuous covariate, the model is only invariant to the170

choice of time unit of Tk when using a loglog (log-hazard) link (Ergon et al., 2018).171

The observation model uses hazard rates to calculate trap capture probabilities. For172

individual i, on secondary trapping session j of primary occasion k, the capture hazard rate173

hijkr = bijk ·exp
(

−
(

‖si,k−xr‖

σGi

)κGi
)

, where the location of trap r is xr, and each κj and σj are174

sex-specific observation parameters. Baseline hazard is bijk = λ0 (β1)
I(TODjk=2) (β2)

I(Gi=2),175

using indicator function I(·), time of day TODjk (1: evening; 2: morning), and baseline176

hazard rate λ0. β1 is the effect of morning trapping sessions, and β2 is that of males.177

Total capture hazard rate is hijk∗ =
∑R

r=1 hijkr. Probability of “no capture” is πijk0 =178

exp (−hijk∗ zi,k), which is unity when zi,k = 0. Probability of capture is πijkr = (1− πijk0)
hijkr

hijk∗
179

in trap r, accounting for competing risks among traps and satisfying
∑R

r=0 πijkr = 1.180

The “ones trick” is used to induce the correct likelihood calculation. Observation data181

y is a 3-dimensional array, where yijk = 0 indicates that individual i was not captured in182

trapping session j of primary occasion k, and yijk = r indicates a capture in trap r. The183

complete Vole model definition is given in (2), where all indices j take the range of the184
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number of secondary trapping sessions in the relevant primary occasion k, and all indices r185

assume the range 1, . . . , R.186

β1, β2 ∼ Uniform(0.1, 10)

p ∼ Uniform(0.01, 0.99)

λ0 = − log(1− p)

g = 1, 2 :

κg ∼ Uniform(0, 50)

σg ∼ Uniform(0.1, 20)

λg ∼ Uniform(0, 100)

φg ∼ Uniform(0, 1)

i = 1, . . . , Nobs :

sxi,Fi
∼ Uniform(xi

min, x
i
max)

sxi,Fi
∼ Uniform(yimin, y

i
max)

zi,Fi
= 1

k = Fi, . . ., L− 1 :

θik ∼ Uniform(0, 2π)

dik ∼ Exponential(λGi
)

sxi,k+1 = sxi,k + dik cos(θik)

s
y
i,k+1 = s

y
i,k + dik sin(θik)

zi,k+1 ∼ Bernoulli((φGi
)Tk zi,k)

k = Fi, . . ., L :

sik = (sxi,k, s
y
i,k)

bijk = λ0 (β1)
I(TODjk=2) (β2)

I(Gi=2)

hijkr = bijk · exp

(

−

(

‖sik − xr‖

σGi

)κGi
)

hijk∗ =
∑R

r=1hijkr

πijk0 = exp (−hijk∗ zik)

πijkr = (1− πijk0)
hijkr

hijk∗

1 ∼ Bernoulli(πi j k yijk)

(2)

We apply three cumulative refinements to the model and MCMC sampling: (1) Jointly187

sample correlated dimensions and marginalize over zi indicator variables, (2) use a custom188

bivariate dispersal distribution, and (3) restrict trap calculation to the vicinity of each AC.189
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Next we describe these techniques, and nimble code corresponding to each appears in Ap-190

pendix B.191

2.2.1 Joint Sampling and Marginalization192

We apply joint samplers for updating two pairs of parameters: {κ1, σ1} and {κ2, σ2}, as these193

pairs each determine the trap hazard rates for one sex. Trial runs confirm that these pairs194

exhibit high posterior correlation, so we expect block samplers will improve mixing.195

Next, we integrate (marginalize) over the latent zi,k indicator variables to directly cal-196

culate the unconditional likelihood of capture histories. This reduces the model size and197

the dimension of sampling, and can improve MCMC mixing since parameter updates are198

no longer conditional on the “current” values of each zi,k. This is done in nimble using a199

custom likelihood. This calculation is a finite summation over the possible zi,k states, similar200

to the filtering employed in Turek et al. (2016, Section 2.3.2). When individuals are known201

to be alive (up to the final capture), the likelihood is survival multiplied by the probability202

of the observed capture history. Subsequent to the final capture, forward-filtering is used to203

calculate the likelihood of the remaining non-capture events, accounting for uncertainty in204

survival.205

2.2.2 Custom Dispersal Distribution206

We originally modeled dispersal distances and angles as random variables subject to MCMC207

sampling, a standard approach for movement models. This results in high computational208

cost because any proposed update to dispersal distance or angle (especially for early primary209

occasions) results in a large chain of calculations to determine the updated ACs, detection210

probabilities, and detection likelihoods for all subsequent occasions. Specifically, say we make211

an MCMC proposal for modifying d11, the dispersal distance for the first individual, between212

the first and second primary occasions. This MCMC update will require re-evaluating each213

s1,2, s1,3, . . . , s1,L, up through the AC of the final primary occasion. Further, detection214

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.07.081182doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/


probabilities and data likelihoods for each AC also need be recalculated.215

We reparameterize this model using a custom distribution of activity center locations that216

is induced by the distributions of turning angle and distance, as si,k+1 ∼ Dispersal(sik, λGi
).217

This distribution is centered around the current AC and is mathematically equivalent to218

the original {d, θ} parameterization. Now, updates of si,k do not induce a large chain of219

ensuing calculations, but rather, only the likelihoods corresponding to si,k and si,k+1 must220

be calculated. The custom distribution is given by p(sik+1 | sik, λGi
) ∝

(

1
d

)

· λGi
e−λd,221

where d = ‖sik+1 − sik‖, and omitting constants of proportionality which are not necessary222

for sampling. We recognize λGi
e−λd as the exponential density for the dispersal distance d.223

The factor of
(

1
d

)

results from the Jacobian term in the change-of-variables between polar224

and Cartesian coordinates. From an implementation standpoint, these density calculations225

take place on a logarithmic scale. This technique can be similarly applied when using other226

distributions for dispersal distance, by substituting in the density of the alternate dispersal227

distribution.228

2.2.3 Local Trap Calculations229

During MCMC sampling, the capture hazard rate hijkr and associated likelihood terms are230

calculated for all traps, regardless of an individual’s current AC. This is inefficient, since231

when si,k is “far” from a trap r, then hijkr will be extremely low, and a capture in trap r is232

exceedingly unlikely. Its contribution to hijk∗ =
∑R

r=1 hijkr is negligible, as is the probability233

of capture in trap r. The original BUGS modeling language lacks the ability to conditionally234

disable calculations, and hence all the capture hazard rates must always be computed.235

We introduce logic such that hijkr is only calculated for traps within a distance dmin of236

the individual’s AC. For traps located further, we assign hijkr a small positive value. This237

will not affect the sum hijk∗, but still allows for a non-zero probability of capture. Here, we238

let hijkr = 10−14 for traps outside a radius dmin = 40 from each individual’s AC.239

We introduce a discretized grid over the study area, and pre-compute indices of traps240
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within a radius dmin from each grid cell. Using this, a custom nimble function returns the241

indices of “local traps” nearest to any si,k, and subsequently calculates hazard rates only for242

the “local” traps. This is similar to the local trap calculations used in the previous example,243

but implementations are different on account of the discretized habitat mask used there.244

2.3 MCMC Efficiency245

We define MCMC efficiency as the number of effectively independent posterior samples246

produced per second of MCMC runtime (excluding upfront time of model building and247

compilation). Distinct model parameters will typically mix at different rates, thus having248

distinct posterior effective sample sizes (ESS), and therefore a distinct measure of efficiency.249

In addition to presenting the MCMC runtimes and MCMC efficiency of all model parameters,250

we also summarize performance using the minimum and mean efficiencies among all model251

parameters. This definition of efficiency captures the tradeoff between quality of mixing252

and computational speed. Some algorithms may mix slowly (producing a low ESS) but253

execute sufficiently fast that they achieve high efficiency. Other algorithms may mix quickly254

(producing a high ESS) but require significantly longer execution time and thus achieve low255

efficiency.256

3 Results257

Here we describe the performance resulting from each formulation or sampling strategy of258

the Wolverine and Vole example models. All algorithm runtimes, ESS estimates, and MCMC259

efficiencies reflect independent chains of 10,000 posterior samples. We do not present the260

posterior inferences (e.g., posterior mean, median, etc.), as they are qualitatively identical261

to the original published analyses.262
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3.1 Wolverine Model263

We assess performance of the Wolverine model using total population size (N), probability264

of detection (p0), and scale factor (σ). Results for the four stages of iterative improvement265

described in Section 2.1 will be denoted as Nimble1 (vectorization), Nimble2 (joint sampling),266

Nimble3 (evaluating local detectors), and Nimble4 (skipping unnecessary calculations).267

As in Milleret et al. (2019), the JAGS model was unable to complete, crashing after268

30 days. Transitioning to nimble considerably reduced memory usage and runtime, as269

we fit the Nimble1 model in 26 hours. ESS values were in the range of 100 to 200 for270

all parameters, indicating high posterior auto-correlation. In combination with the long271

runtime, this produced MCMC efficiencies on the order of 10−3 for all parameters. The272

addition of joint sampling in the Nimble2 version decreased runtime to 20 hours. Parameter273

ESS values were similar to the Nimble1 model, giving a small improvement in efficiency.274

We observed major improvement in the Nimble3 version, using the local trap evalua-275

tions and a sparse representation of the observation matrix. MCMC runtime reduced to 30276

minutes, by a factor of 40 relative to the Nimble2 model. As we expect, ESS values were277

unchanged, and the resulting MCMC efficiencies were in the range of 0.1 to 0.3 (Figure 1).278

The Nimble4 version, disabling unnecessary model calculations, reduced MCMC runtime279

by an additional factor of two, down to 16 minutes. Accordingly, MCMC efficiencies increased280

by nearly a factor of two. Relative to the initial Nimble1 formulation, we have achieved281

increases in both the minimum and mean efficiencies of 100-fold. Concretely, while it was282

not even possible to fit the original version of this model using JAGS, the initial Nimble1283

formulation would require 3.5 days to generate 1,000 ESS for all parameters, and the final284

Nimble4 model can accomplish the same in 51 minutes.285

Figure 2 presents the minimum and mean efficiencies across all model parameters for286

each formulation of the Wolverine model, and all results for the Wolverine example appear287

in Table 4. An executable version of the Nimble4 Wolverine model is available at the web-288

appendix http://danielturek.github.io/public/scr/wolverine_example.html.289

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.07.081182doi: bioRxiv preprint 

http://danielturek.github.io/public/scr/wolverine_example.html
https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.2 Vole Robust-Design Model290

The Vole model contains a total of 11 hyper-parameters, which we use to assess MCMC291

efficiency. Results for the three stages of iterative improvement described in Section 2.2292

will be denoted as Nimble1 (marginalization), Nimble2 (customizing dispersal distribution),293

and Nimble3 (evaluating local detectors). The original formulation of the model, running294

in JAGS, required over 4.5 hours to generate 10,000 posterior samples, and resulted in a295

minimum MCMC efficiency of 0.002, and a mean efficiency of 0.04.296

The Nimble1 version introduced joint sampling of correlated parameters, and a custom297

likelihood to remove the zij latent states. This reduced the total model size from 4,460298

nodes down to 3,562, while the number of unobserved nodes undergoing MCMC sampling299

was reduced from 1,437 down to 1,067. This model yielded an MCMC runtime of 15 minutes.300

ESS values were higher than those of JAGS, particularly for the jointly-sampled σi and κi301

parameters. MCMC efficiency was therefore higher for all parameters (Figure 3), while the302

average efficiency increased by a factor of 7.5 relative to JAGS.303

The Nimble2 model introduced a custom bivariate dispersal distribution for individual304

ACs. This reduced the total model size from 3,562 nodes to 2,452, and the number of nodes305

for MCMC sampling from 1,067 to 697. Runtime decreased by a factor of two, to seven306

minutes, and all parameter MCMC efficiencies increased.307

Using local trap calculations in the Nimble3 model reduced MCMC runtime further, to308

five minutes. Overall, relative to the initial analysis appearing in Ergon and Gardner (2014),309

these strategies reduced MCMC runtime by more than a factor of 50, and increased both310

minimum and mean MCMC efficiencies 25-fold. Concretely, the original model fitted in311

JAGS would require over seven days to produce 1,000 ESS for all parameters, whereas the312

Nimble3 formulation requires less than 6 hours to accomplish the same.313

Figure 4 presents the minimum and mean efficiencies across all model parameters for314

each formulation of the Vole model, and all results for the Vole example appear in Table 4.315
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4 Discussion316

SCR models are now commonplace given the abundance of geolocated ecological data, but317

remain computationally challenging. Indeed, large numbers of individuals, expansive study318

areas, and/or movement between seasons can render some problems intractable, without319

employing custom approaches.320

The techniques demonstrated here produce posterior results identical (within Monte321

Carlo error) to the original versions, with the exception of local trap evaluations. This322

attributed a small trap hazard rate (or probability of detection) outside a radius dmin from323

each individual AC. The choice of dmin is important: large values will produce identical in-324

ferences but offer no computational gain, while small values offer a large computational gain325

but may introduce bias. The choice of dmin is subjective, and will require expert opinion326

(or trial runs) to determine an appropriate value. Smaller values of dmin may be used for327

exploratory analyses, but a conservative higher value should be used to minimize any biases328

in the final inference.329

We are aware that conditioning on the primary occasion of first capture, as in the Vole330

example, may induce bias into parameter estimates (Efford and Schofield, 2019, Appendix331

E). Simulations in Ergon and Gardner (2014) suggest minimal bias in mortality estimates,332

although the scale parameter in the observation model may be inflated. Thus, care should be333

taken when applying this model to other data. That said, our purpose has been to investigate334

efficiency of estimation methods rather than statistical properties (such as bias or goodness335

of fit) of paticular models. Indeed, the ability to perform inference more efficiently will336

support a deeper exploration of alternative models structures.337

Many software packages are available for fitting SCR models, making these analyses faster338

and more accessible to practitioners (e.g., secr, or oSCR, among others). The prevalence339

of specialized software underscores the complex nature of SCR problems, and furthermore340

that no single software package could be general enough to approach all SCR problems.341

nimble does not attempt to provide “canned” algorithms for SCR, or any other particular342
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application, but rather a flexible programming environment suitable for customized (and343

highly efficient) analysis of complex data.344

We have made use of the nimble software package for R, to demonstrate techniques for345

improving the performance of SCR model fitting using MCMC. The techniques demonstrated346

are not exhaustive, but rather suggest the potential performance gains made possible using347

nimble, where we observed between one and two orders of magnitude improvement. These348

approaches can provide significant computational gain, permitting large-scale spatial and349

temporal analyses to support major conservation and management decisions, and the ability350

to fit increasingly complex models to large datasets. More broadly, similar techniques are351

also applicable to the analysis of general spatially-indexed hierarchical model structures.352
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Parameter
N p0 σ

Nimble1 0.005 0.004 0.003
Nimble2 0.006 0.005 0.003
Nimble3 0.284 0.247 0.192
Nimble4 0.390 0.394 0.362

Table 1: MCMC efficiency values for the Wolverine example, for all parameters and model
formulations. Results are averaged over three independent chains.

Parameter
φ1 φ2 β1 β2 λ0 λ1 λ2 κ1 κ2 σ1 σ2

JAGS 0.23 0.05 0.11 0.003 0.002 0.02 0.03 0.002 0.004 0.002 0.003
Nimble1 2.21 0.99 0.74 0.033 0.017 0.16 0.21 0.013 0.065 0.010 0.050
Nimble2 4.49 1.09 1.55 0.054 0.034 0.28 0.25 0.032 0.097 0.022 0.091
Nimble3 5.70 1.43 2.24 0.096 0.062 0.39 0.28 0.055 0.162 0.048 0.140

Table 2: MCMC efficiency values for the Vole example, for all parameters and model formu-
lations. Results are averaged over five independent chains.
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Figure 1: MCMC efficiency for the Wolverine example, for all parameters and model for-
mulations. Efficiency values are averaged over three independent chains, error bars showing
standard deviation.
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Figure 2: Minimum and mean MCMC efficiency among the three model parameters for the
Wolverine example. Values are averaged over three independent chains, error bars showing
standard deviation.
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Figure 3: MCMC efficiency for the Vole example, for all parameters and model formulations.
Efficiency values are averaged over five independent chains, error bars showing standard
deviation.
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Figure 4: Minimum and mean MCMC efficiency among the eleven model parameters for the
Vole example. Values are averaged over five independent chains, error bars showing standard
deviation.
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A Wolverine Example: Model Code410

A.1 Vectorized Computations Code411

dHabitat <- nimbleFunction(412

run = function(x = double(0), sxy = double(1), lower = double(1),413

upper = double(1), habitat = double(2), log = double()) {414

if(sxy[1] < lower[1]) return(-Inf) # x-coordinates415

if(sxy[1] > upper[1]) return(-Inf) # x-coordinates416

if(sxy[2] < lower[2]) return(-Inf) # y-coordinates417

if(sxy[2] > upper[2]) return(-Inf) # y-coordinates418

returnType(double())419

if(habitat[trunc(sxy[2])+1, trunc(sxy[1])+1] == 0) return(-Inf) else return(0)420

}421

)422

423

dBernoulliVector <- nimbleFunction(424

run = function(x = double(1), prob = double(1),425

trials = double(1), log = integer(0)) {426

returnType(double(0))427

logProb <- sum(dbinom(x, prob = prob, size = trials, log = TRUE))428

return(logProb)429

}430

)431

432

code <- nimbleCode({433

for(i in 1:n.individuals) {434

sxy[i,1] ~ dunif(0, x.max)435

sxy[i,2] ~ dunif(0, y.max)436

ones[i] ~ dHabitat(sxy = sxy[i,1:2], lower = lowerCoords[1:2],437

upper = upperCoords[1:2], habitat = habitat.mx[1:y.max,1:x.max])438

}439

psi ~ dunif(0,1)440

for (i in 1:n.individuals) {441

z[i] ~ dbern(psi)442

}443

sigma ~ dunif(0, 50)444

alpha <- -1 / (2 * sigma^2)445

p0 ~ dunif(0, 1)446

for(i in 1:n.individuals) {447

d2[i, 1:n.detectors] <- (sxy[i,1] - detector.xy[1:n.detectors,1])^2 +448

(sxy[i,2] - detector.xy[1:n.detectors,2])^2449

p[i, 1:n.detectors] <- p0 * exp(alpha * d2[i,1:n.detectors])450

y[i, 1:n.detectors] ~ dBernoulliVector(prob = p[i,1:n.detectors]*z[i],451

trials = trials[1:n.detectors])452
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}453

N <- sum(z[1:n.individuals])454

})455
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A.2 Local Detector Evaluations and Sparse Observation Matrix456

Code457

dBernoulliVector2 <- nimbleFunction(458

run = function(x = double(1), pZero = double(0),459

sxy = double(1), sigma = double(0),460

nbDetections = double(0), yDets = double(1),461

detector.xy = double(2), trials = double(1),462

detectorIndex = double(2), nDetectorsLESS = double(1),463

ResizeFactor = double(0, default = 1),464

maxNBDets = double(0), habitatID = double(2),465

log = integer(0, default = 0)){466

returnType(double(0))467

nDetectors <- length(trials)468

sxyID <- habitatID[trunc(sxy[2]/ResizeFactor)+1, trunc(sxy[1]/ResizeFactor)+1]469

index <- detectorIndex[sxyID,1:nDetectorsLESS[sxyID]]470

n.detectors <- length(index)471

y <- nimNumeric(length = nDetectors, value = 0, init = TRUE)472

if(nbDetections > 0){473

for(r in 1:nbDetections){474

y[yDets[r]] <- x[r]475

if(sum(yDets[r]==index)==0){476

if(log == 0) return(0.0)477

else return(-Inf)478

}479

}480

}481

alpha <- -1.0 / (2.0 * sigma * sigma)482

logProb <- 0.0483

count <- 1484

index1 <- c(index,0)485

for(r in 1:nDetectors){486

if(index1[count] == r){487

d2 <- pow(detector.xy[r,1] - sxy[1], 2) + pow(detector.xy[r,2] - sxy[2], 2)488

p <- pZero * exp(alpha * d2)489

logProb <- logProb + dbinom(y[r], prob = p, size = trials[r], log = TRUE)490

count <- count + 1491

}492

}493

if(log)return(logProb)494

return(exp(logProb))495

})496

497

code <- nimbleCode({498

for(i in 1:n.individuals) {499

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.07.081182doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/


sxy[i,1] ~ dunif(0, x.max)500

sxy[i,2] ~ dunif(0, y.max)501

ones[i] ~ dHabitat(sxy = sxy[i,1:2], lower = lowerCoords[1:2],502

upper = upperCoords[1:2], habitat = habitat.mx[1:y.max,1:x.max])503

}504

psi ~ dunif(0,1)505

for (i in 1:n.individuals) {506

z[i] ~ dbern(psi)507

}508

sigma ~ dunif(0, 50)509

p0 ~ dunif(0, 1)510

for(i in 1:n.individuals) {511

y[i,1:n.detectors] ~512

dBernoulliVector2(pZero = p0*z[i], sxy = sxy[i,1:2], sigma = sigma,513

nbDetections[i], yDets = yDets[i,1:nMaxDetectors],514

detector.xy = detector.xy[1:n.detectors,1:2],515

trials = trials[1:n.detectors],516

detectorIndex = detectorIndex[1:n.cells,1:maxNBDets],517

nDetectorsLESS = nDetectorsLESS[1:n.cells],518

ResizeFactor = ResizeFactor, maxNBDets = maxNBDets,519

habitatID = habitatIDDet[1:y.maxDet,1:x.maxDet])520

}521

N <- sum(z[1:n.individuals])522

})523

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.07.081182doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/


A.3 Skip Local Calculations Code524

dBernoulliVector3 <- nimbleFunction(525

run = function(x = double(1), pZero = double(0),526

sxy = double(1), sigma = double(0),527

nbDetections = double(0), yDets = double(1),528

detector.xy = double(2), trials = double(1),529

detectorIndex = double(2), nDetectorsLESS = double(1),530

ResizeFactor = double(0, default = 1),531

maxNBDets = double(0), habitatID = double(2),532

indicator = double(0, default = 1.0),533

log = integer(0, default = 0)) {534

returnType(double(0))535

nDetectors <- length(trials)536

if(indicator == 0){537

if(nbDetections == 0){538

if(log == 0) return(1.0)539

else return(0.0)540

} else {541

if(log == 0) return(0.0)542

else return(-Inf)543

}544

}545

sxyID <- habitatID[trunc(sxy[2]/ResizeFactor)+1, trunc(sxy[1]/ResizeFactor)+1]546

index <- detectorIndex[sxyID,1:nDetectorsLESS[sxyID]]547

n.detectors <- length(index)548

y <- nimNumeric(length = nDetectors, value = 0, init = TRUE)549

if(nbDetections > 0){550

for(r in 1:nbDetections){551

y[yDets[r]] <- x[r]552

if(sum(yDets[r]==index)==0){553

if(log == 0) return(0.0)554

else return(-Inf)555

}556

}557

}558

alpha <- -1.0 / (2.0 * sigma * sigma)559

logProb <- 0.0560

count <- 1561

index1 <- c(index,0)562

for(r in 1:nDetectors){563

if(index1[count] == r){564

d2 <- pow(detector.xy[r,1] - sxy[1], 2) + pow(detector.xy[r,2] - sxy[2], 2)565

p <- pZero * exp(alpha * d2)566

logProb <- logProb + dbinom(y[r], prob = p, size = trials[r], log = TRUE)567

count <- count + 1568
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}569

}570

if(log)return(logProb)571

return(exp(logProb))572

})573

574

code <- nimbleCode({575

for(i in 1:n.individuals) {576

sxy[i,1] ~ dunif(0, x.max)577

sxy[i,2] ~ dunif(0, y.max)578

ones[i] ~ dHabitat(sxy = sxy[i,1:2], lower = lowerCoords[1:2],579

upper = upperCoords[1:2], habitat = habitat.mx[1:y.max,1:x.max])580

}581

psi ~ dunif(0,1)582

for (i in 1:n.individuals) {583

z[i] ~ dbern(psi)584

}585

sigma ~ dunif(0, 50)586

p0 ~ dunif(0, 1)587

for(i in 1:n.individuals) {588

y[i, 1:nMaxDetectors] ~ dBernoulliVector3(pZero = p0, sxy = sxy[i,1:2],589

sigma = sigma, nbDetections[i], yDets = yDets[i,1:nMaxDetectors],590

detector.xy = detector.xy[1:n.detectors,1:2],591

trials = trials[1:n.detectors],592

detectorIndex = detectorIndex[1:n.cells,1:maxNBDets],593

nDetectorsLESS = nDetectorsLESS[1:n.cells],594

ResizeFactor = ResizeFactor, maxNBDets = maxNBDets,595

habitatID = habitatIDDet[1:y.maxDet,1:x.maxDet],596

indicator = z[i])597

}598

N <- sum(z[1:n.individuals])599

})600

601
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B Vole Example: Model Code602

B.1 JAGS Code603

code <- nimbleCode({604

for(sex in 1:2){605

kappa[sex] ~ dunif(0,50)606

sigma[sex] ~ dunif(0.1,20)607

}608

for(sex in 1:2){609

for(TOD in 1:2){610

lambda[TOD, sex] <- lambda0 * pow(beta[1],(TOD-1)) * pow(beta[2],(sex-1))611

}612

}613

PL ~ dunif(0.01,0.99)614

lambda0 <- -log(1-PL)615

beta[1] ~ dunif(0.1,10)616

beta[2] ~ dunif(0.1,10)617

for(sex in 1:2){618

Phi[sex] ~ dunif(0,1)619

for(k in 1:(n.prim-1)){620

phi[sex,k] <- pow(Phi[sex], dt[k])621

}622

}623

for(sex in 1:2){624

dmean[sex] ~ dunif(0,100)625

dlambda[sex] <- 1/dmean[sex]626

}627

for(i in 1:N[1]){628

z[i,first[i]] ~ dbern(1)629

S[i,1,first[i]] ~ dunif(xlow[i], xupp[i]) # Prior for the first x coordinate630

S[i,2,first[i]] ~ dunif(ylow[i], yupp[i]) # Prior for the first y coordinate631

g[i,first[i],1] <- 0632

for(r in 1:R){ # trap633

D[i,r,first[i]] <- sqrt(pow(S[i,1,first[i]]-X[r,1],2) +634

pow(S[i,2,first[i]]-X[r,2],2))635

g[i,first[i],r+1] <- exp(-pow(D[i,r,first[i]]/sigma[gr[i]], kappa[gr[i]]))636

}637

G[i,first[i]] <- sum(g[i,first[i],1:(R+1)]) # Total trap exposure638

for(j in 1:J[i,first[i]]){639

P[i,j,first[i]] <- 1 - exp(-lambda[tod[first[i],j],gr[i]]*G[i,first[i]])640

PPII[i,first[i],j] <- step(H[i,j,first[i]]-2) *641

(g[i,first[i],H[i,j,first[i]]] /642

(G[i,first[i]]+ 0.0001)) *643

P[i,j,first[i]] +644
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(1-step(H[i,j,first[i]]-2)) * (1-P[i,j,first[i]])645

Ones[i,j,first[i]] ~ dbern(PPII[i,first[i],j])646

}647

}648

for(i in (N[1]+1):N[2]){649

z[i,first[i]] ~ dbern(1)650

S[i,1,first[i]] ~ dunif(xlow[i], xupp[i]) # Prior for the first x coordinate651

S[i,2,first[i]] ~ dunif(ylow[i], yupp[i]) # Prior for the first y coordinate652

## First primary session:653

g[i,first[i],1] <- 0654

for(r in 1:R){ # trap655

D[i,r,first[i]] <- sqrt(pow(S[i,1,first[i]]-X[r,1],2) +656

pow(S[i,2,first[i]]-X[r,2],2))657

g[i,first[i],r+1] <- exp(-pow(D[i,r,first[i]]/sigma[gr[i]], kappa[gr[i]]))658

}659

G[i,first[i]] <- sum(g[i,first[i],1:(R+1)]) # Total trap exposure660

for(j in 1:J[i,first[i]]){661

P[i,j,first[i]] <- 1 - exp(-lambda[tod[first[i],j],gr[i]]*G[i,first[i]])662

PPII[i,first[i],j] <- step(H[i,j,first[i]]-2) *663

(g[i,first[i],H[i,j,first[i]]] /664

(G[i,first[i]]+ 0.0001)) *665

P[i,j,first[i]] +666

(1-step(H[i,j,first[i]]-2))*(1-P[i,j,first[i]])667

Ones[i,j,first[i]] ~ dbern(PPII[i,first[i],j])668

}669

for(k in (first[i]+1):K[i]){ # primary session670

theta[i,k-1] ~ dunif(-3.141593,3.141593) # Prior for dispersal direction671

z[i,k] ~ dbern(Palive[i,k-1])672

Palive[i,k-1] <- z[i,k-1]*phi[gr[i],k-1] # Pr(alive in primary session k)673

d[i,k-1] ~ dexp(dlambda[gr[i]])674

S[i,1,k] <- S[i,1,k-1] + d[i,k-1]*cos(theta[i,k-1])675

S[i,2,k] <- S[i,2,k-1] + d[i,k-1]*sin(theta[i,k-1])676

g[i,k,1] <- 0677

for(r in 1:R){ # trap678

D[i,r,k] <- sqrt(pow(S[i,1,k]-X[r,1],2) + pow(S[i,2,k]-X[r,2],2))679

g[i,k,r+1] <- exp(-pow(D[i,r,k]/sigma[gr[i]], kappa[gr[i]]))680

}681

G[i,k] <- sum(g[i,k,1:(R+1)]) # Total trap exposure682

for(j in 1:J[i,k]){683

P[i,j,k] <- (1 - exp(-lambda[tod[k,j],gr[i]]*G[i,k]))*z[i,k]684

PPII[i,k,j] <- step(H[i,j,k]-2) *685

(g[i,k,H[i,j,k]] /686

(G[i,k] + 0.0001))*P[i,j,k] +687

(1-step(H[i,j,k]-2))*(1-P[i,j,k])688

Ones[i,j,k] ~ dbern(PPII[i,k,j])689

}690

}691
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}692

})693
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B.2 Joint Sampling and Marginalization Code694

dLikelihood <- nimbleFunction(695

run = function(x = double(2), first = double(), last = double(),696

J = double(1), lambda = double(1), tod = double(2),697

g = double(2), G = double(1), z = double(1),698

phi = double(1), log = double()) {699

pAlive <- 1700

pDead <- 0701

lp <- 0702

for(k in first:last) {703

if(z[k] == 1) { # known to be alive704

if(k > first) # survived705

lp <- lp + log(phi[k-1])706

for(j in 1:J[k]) {707

pNoCaptureGivenAlive <- exp(-lambda[tod[k,j]] * G[k])708

if(x[j,k] == 1) { # not captured709

lp <- lp + log(pNoCaptureGivenAlive)710

} else { # captured711

lp <- lp + log(1-pNoCaptureGivenAlive) +712

log(g[k, x[j,k]-1]) - log(G[k])713

}714

}715

} else { # could be dead or alive716

pTheseNonSightings <- 1717

for(j in 1:J[k]) {718

pNoCaptureGivenAlive <- exp(-lambda[tod[k,j]] * G[k])719

pTheseNonSightings <- pTheseNonSightings * pNoCaptureGivenAlive720

}721

pAlive_new <- phi[k-1] * pAlive722

pDead_new <- (1-phi[k-1]) * pAlive + pDead723

L <- pAlive_new * pTheseNonSightings + pDead_new724

pAlive <- (pAlive_new * pTheseNonSightings) / L725

pDead <- pDead_new / L726

lp <- lp + log(L)727

}728

}729

returnType(double())730

if(log) return(lp) else return(exp(lp))731

}732

)733

734

code <- nimbleCode({735

PL ~ dunif(0.01, 0.99)736

lambda0 <- -log(1-PL)737

for(sex in 1:2) {738
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kappa[sex] ~ dunif(0, 50)739

sigma[sex] ~ dunif(0.1, 20)740

beta[sex] ~ dunif(0.1, 10)741

for(TOD in 1:2) {742

lambda[TOD, sex] <- lambda0 * beta[1]^(TOD-1) * beta[2]^(sex-1)743

}744

Phi[sex] ~ dunif(0, 1)745

for(k in 1:(nPrimary-1)) {746

phi[sex, k] <- Phi[sex]^dt[k]747

}748

dmean[sex] ~ dunif(0, 100)749

dlambda[sex] <- 1/dmean[sex]750

}751

for(i in 1:nInd) {752

S[i, 1, first[i]] ~ dunif(xlow[i], xupp[i])753

S[i, 2, first[i]] ~ dunif(ylow[i], yupp[i])754

for(k in first[i]:last[i]) {755

D[i, k, 1:R] <- sqrt((S[i, 1, k] - X[1:R, 1])^2 + (S[i, 2, k] - X[1:R, 2])^2)756

g[i, k, 1:R] <- exp(-(D[i, k, 1:R]/sigma[gr[i]])^kappa[gr[i]])757

G[i, k] <- sum(g[i, k, 1:R])758

}759

for(k in first[i]:(last[i]-1)) {760

theta[i, k] ~ dunif(-3.141593, 3.141593) # dispersal direction761

d[i, k] ~ dexp(dlambda[gr[i]])762

S[i, 1, k+1] <- S[i, 1, k] + d[i, k] * cos(theta[i, k])763

S[i, 2, k+1] <- S[i, 2, k] + d[i, k] * sin(theta[i, k])764

}765

H[i, 1:nSecondary, 1:nPrimary] ~ dLikelihood(766

first = first[i], last = last[i], J = J[i,1:nPrimary],767

lambda = lambda[1:2,gr[i]], tod = tod[1:nPrimary,1:nSecondary],768

g = g[i,1:nPrimary,1:R], G = G[i,1:nPrimary],769

z = z[i,1:nPrimary], phi = phi[gr[i],1:(nPrimary-1)])770

}771

})772
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B.3 Custom Dispersal Distribution Code773

dDispersal <- nimbleFunction(774

run = function(x = double(1), S = double(1), lam = double(), log = double()) {775

dist <- sqrt(sum((x-S)^2))776

lp <- dexp(dist, rate = lam, log = TRUE) - log(dist)777

returnType(double())778

if(log) return(lp) else return(exp(lp))779

}780

)781

782

code <- nimbleCode({783

PL ~ dunif(0.01, 0.99)784

lambda0 <- -log(1-PL)785

for(sex in 1:2) {786

kappa[sex] ~ dunif(0, 50)787

sigma[sex] ~ dunif(0.1, 20)788

beta[sex] ~ dunif(0.1, 10)789

for(TOD in 1:2) {790

lambda[TOD, sex] <- lambda0 * beta[1]^(TOD-1) * beta[2]^(sex-1)791

}792

Phi[sex] ~ dunif(0, 1)793

for(k in 1:(nPrimary-1)) {794

phi[sex, k] <- Phi[sex]^dt[k]795

}796

dmean[sex] ~ dunif(0, 100)797

dlambda[sex] <- 1/dmean[sex]798

}799

for(i in 1:nInd) {800

S[i, 1, first[i]] ~ dunif(xlow[i], xupp[i])801

S[i, 2, first[i]] ~ dunif(ylow[i], yupp[i])802

for(k in first[i]:last[i]) {803

D[i, k, 1:R] <- sqrt((S[i, 1, k] - X[1:R, 1])^2 + (S[i, 2, k] - X[1:R, 2])^2)804

g[i, k, 1:R] <- exp(-(D[i, k, 1:R]/sigma[gr[i]])^kappa[gr[i]])805

G[i, k] <- sum(g[i, k, 1:R])806

}807

for(k in first[i]:(last[i]-1)) {808

S[i, 1:2, k+1] ~ dDispersal(S[i, 1:2, k], dlambda[gr[i]])809

}810

H[i, 1:nSecondary, 1:nPrimary] ~ dLikelihood(811

first = first[i], last = last[i], J = J[i,1:nPrimary],812

lambda = lambda[1:2,gr[i]], tod = tod[1:nPrimary,1:nSecondary],813

g = g[i,1:nPrimary,1:R], G = G[i,1:nPrimary],814

z = z[i,1:nPrimary], phi = phi[gr[i],1:(nPrimary-1)])815

}816

})817
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B.4 Local Trap Calculations Code818

makeGrid <- function(xmin=0, ymin=0, xmax, ymax, resolution=1, buffer=0) {819

makeVals <- function(min, max, buf, res) {820

unique(c(rev(seq(min, min-buf, by = -res)), seq(min, max+buf, by = res)))821

}822

xvals <- makeVals(xmin, xmax, buffer, resolution)823

yvals <- makeVals(ymin, ymax, buffer, resolution)824

grid <- expand.grid(xvals, yvals)825

colnames(grid) <- c(’x’, ’y’)826

## unique ids:827

mult <- diff(range(grid$y/resolution)) + 1828

ids <- grid$x/resolution * mult + grid$y/resolution829

offset <- 1 - min(ids)830

require(nimble)831

makeIDdef <- substitute(832

nimbleFunction(833

run = function(xy = double(1)) {834

id <- xy[1]/RES * MULT + xy[2]/RES + OFFSET835

returnType(double())836

return(id)837

}838

),839

list(RES = resolution,840

MULT = mult,841

OFFSET = offset))842

makeID <- eval(makeIDdef)843

ids2 <- apply(grid, 1, function(xy) makeID(xy))844

sorted <- sort(ids2, index.return = TRUE)845

gridReordered <- grid[sorted$ix, ]846

gridReordered$id <- sorted$x847

return(list(grid = gridReordered, makeID = makeID))848

}849

850

xr <- range(constants$X[, 1])851

yr <- range(constants$X[, 2])852

buffer <- 40853

exposureRadius <- 40854

resolution <- 7855

makeGridReturn <- makeGrid(xmin=xr[1], xmax = xr[2],856

ymin=yr[1], ymax = yr[2],857

buffer = buffer,858

resolution = resolution)859

grid <- makeGridReturn$grid860

makeID <- makeGridReturn$makeID861

862
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findLocalTraps <- function(grid, traps, exposureRadius) {863

trtrapsBool <- apply(grid, 1, function(row) {864

apply(traps, 1, function(tp) {865

sqrt(sum((row[1:2]-tp)^2)) <= exposureRadius866

})867

})868

trapsBool <- t(trtrapsBool)869

trapsInd <- apply(trapsBool, 1, which)870

numsTraps <- sapply(trapsInd, length)871

localTraps <- array(as.numeric(NA), c(dim(grid)[1], max(numsTraps)+1))872

for(i in seq_along(trapsInd)) {873

n <- numsTraps[i]874

localTraps[i,1] <- n875

if(n > 0) localTraps[i, 2:(n+1)] <- trapsInd[[i]]876

}877

localTraps878

}879

880

## n = localTraps[i,1] gives the number of local traps881

## localTraps[i, 2:(n+1)] gives the indices of the local traps882

localTraps <- findLocalTraps(grid, constants$X, exposureRadius)883

884

getNumLocalTraps6 <- nimbleFunction(885

run = function(idarg = double(), localTrapNumbers = double(1), LTD1arg = double()) {886

if(idarg < 1) { return(0) }887

if(idarg > LTD1arg) { return(0) }888

n <- localTrapNumbers[idarg]889

returnType(double())890

return(n)891

}892

)893

894

getLocalTrapIndices6 <- nimbleFunction(895

run = function(MAXNUM = double(), localTraps = double(2),896

n = double(), idarg = double()) {897

indices <- numeric(MAXNUM, 0)898

if(n > 0) {899

indices[1:n] <- localTraps[idarg, 2:(n+1)]900

}901

returnType(double(1))902

return(indices)903

}904

)905

906

calcLocalTrapDists6 <- nimbleFunction(907

run = function(MAXNUM = double(), n = double(),908

localTrapInd = double(1), S = double(1), X = double(2)) {909
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Ds <- numeric(MAXNUM, 0)910

if(n > 0) {911

Ds[1:n] <- sqrt((S[1] - X[localTrapInd[1:n],1])^2 +912

(S[2] - X[localTrapInd[1:n],2])^2)913

}914

returnType(double(1))915

return(Ds)916

}917

)918

919

calcLocalTrapExposure6 <- nimbleFunction(920

run = function(R = double(), n = double(), Ds = double(1),921

localTrapInd = double(1), sigma = double(), kappa = double()) {922

g <- numeric(R, 0.00000000000001) ## small value923

if(n > 0) {924

g[localTrapInd[1:n]] <- exp(-(Ds[1:n]/sigma)^kappa)925

}926

returnType(double(1))927

return(g)928

}929

)930

931

code <- nimbleCode({932

PL ~ dunif(0.01, 0.99)933

lambda0 <- -log(1-PL)934

for(sex in 1:2) {935

kappa[sex] ~ dunif(0, 50)936

sigma[sex] ~ dunif(0.1, 20)937

beta[sex] ~ dunif(0.1, 10)938

for(TOD in 1:2) {939

lambda[TOD, sex] <- lambda0 * beta[1]^(TOD-1) * beta[2]^(sex-1)940

}941

Phi[sex] ~ dunif(0, 1)942

for(k in 1:(nPrimary-1)) {943

phi[sex, k] <- Phi[sex]^dt[k]944

}945

dmean[sex] ~ dunif(0, 100)946

dlambda[sex] <- 1/dmean[sex]947

}948

for(i in 1:nInd) {949

S[i, 1, first[i]] ~ dunif(xlow[i], xupp[i])950

S[i, 2, first[i]] ~ dunif(ylow[i], yupp[i])951

Sdiscrete[i, 1, first[i]] <- round(S[i, 1, first[i]]/7) * 7 ## resolution = 7952

Sdiscrete[i, 2, first[i]] <- round(S[i, 2, first[i]]/7) * 7 ## resolution = 7953

for(k in first[i]:last[i]) {954

id[i, k] <- makeID(Sdiscrete[i,1:2,k])955

nLocalTraps[i, k] <-956

38

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.07.081182doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/


getNumLocalTraps6(idarg=id[i,k], localTrapNumbers =957

localTraps[1:LTD1,1], LTD1arg = LTD1)958

localTrapIndices[i, k, 1:maxTraps] <-959

getLocalTrapIndices6(MAXNUM = maxTraps,960

localTraps = localTraps[1:LTD1,1:LTD2],961

n = nLocalTraps[i, k], idarg = id[i,k])962

Ds[i, k, 1:maxTraps] <-963

calcLocalTrapDists6(MAXNUM = maxTraps, n = nLocalTraps[i,k],964

localTrapInd = localTrapIndices[i,k,1:maxTraps],965

S = S[i,1:2,k], X = X[1:R,1:2])966

g[i, k, 1:R] <- calcLocalTrapExposure6(967

R = R, n = nLocalTraps[i,k], Ds = Ds[i,k,1:maxTraps],968

localTrapInd = localTrapIndices[i,k,1:maxTraps],969

sigma = sigma[gr[i]], kappa = kappa[gr[i]])970

G[i, k] <- sum(g[i, k, 1:R])971

}972

for(k in first[i]:(last[i]-1)) {973

S[i, 1:2, k+1] ~ dDispersal(S[i, 1:2, k], dlambda[gr[i]])974

Sdiscrete[i, 1:2, k+1] <- round(S[i, 1:2, k+1]/7) * 7975

}976

H[i, 1:nSecondary, 1:nPrimary] ~ dLikelihood(977

first = first[i], last = last[i], J = J[i,1:nPrimary],978

lambda = lambda[1:2,gr[i]], tod = tod[1:nPrimary,1:nSecondary],979

g = g[i,1:nPrimary,1:R], G = G[i,1:nPrimary],980

z = z[i,1:nPrimary], phi = phi[gr[i],1:(nPrimary-1)])981

}982

})983
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