bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1 Efficient Estimation of Large-Scale Spatial

: Capture-Recapture Models

3 Running Headline: Efficient Estimation of SCR Models

" Daniel Turek'!, Cyril Milleret?, Torbjgrn Ergon®, Henrik Brgseth?®, and

; Perry de Valpine®

6 "Corresponding author
. 'Williams College, Department of Mathematics & Statistics, Williamstown,
5 MA 01267, USA, dbtl@williams.edu

s 2Norwegian University of Life Sciences, Environmental Sciences and Natural

10 Resource Management, NO-1432 As, Norway

1 3Centre for Ecological and Evolutionary Synthesis, Department of
12 Biosciences, University of Oslo, Oslo, Norway

15 4Norwegian Institute for Nature Research, Department of Terrestrial
1 Ecology, NO-7485 Trondheim, Norway

s °University of California Berkeley, Department of Environmental Science,

16 Policy & Management, Berkeley, CA 94720, USA

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

17 Abstract

18 Capture-recapture methods are a common tool in ecological statistics, which have
19 been extended to spatial capture-recapture models for data accompanied by location
20 information. However, standard formulations of these models can be unwieldy and
21 computationally intractable for large spatial scales, many individuals, and/or activity
2 center movement. We provide a cumulative series of methods that yield dramatic im-
2 provements in Markov chain Monte Carlo (MCMC) estimation for two examples. These
2 include removing unnecessary computations, integrating out latent states, vectorizing
25 declarations, and restricting calculations to the locality of individuals. Our approaches
26 leverage the flexibility provided by the nimble R package. In our first example, we
27 demonstrate an improvement in MCMC efficiency (the rate of generating effectively
28 independent posterior samples) by a factor of 100. In our second example, we reduce
20 the computing time required to generate 10,000 posterior samples from 4.5 hours down
30 to five minutes, and realize an increase in MCMC efficiency by a factor of 25. We
31 also explain how these approaches can be applied generally to other spatially-indexed
32 hierarchical models. R code is provided for all examples, as well as an executable
33 web-appendix.

3 Keywords:

35 Mark-recapture, MCMC, nimble, Sampling efficiency, Spatial capture-recapture.

s+ 1 Introduction

57 Capture-recapture methods are primary tools for estimating abundance and demographic
;s parameters in populations. These methods model longitudinal encounter histories of in-
» dividuals in a population. Spatial capture-recapture (SCR) models account for individual

» and trap-specific capture probabilities depending on individuals’ latent centers of activity

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s and space-use in relation to the explicit location of traps or other detectors (Efford, [2004;
» Borchers and Efford, 2008). Closed SCR models provide more precise and robust estimates
i3 of population densities than non-spatial models, and also enable estimation of the spatial
w distribution of individuals and associated parameters .

15 Despite their popularity, SCR models encounter numerous computational challenges
s which pose serious obstacles for their practical use (Gardner et al., |2018). For large study
s areas with many detectors, determining the probability of a capture history becomes very
i computationally costly because it involves calculations for all detectors, which is problematic
w for large-scale studies (Milleret et al., 2018b). Modeling the movement of activity centers
so often induces inefficient MCMC updating, as do methods for imposing spatial constraints
s1on activity center locations. And data augmentation of never-observed individuals can lead
s to unnecessary calculations.

53 Bayesian hierarchical models, such as SCR models, are often formulated using the BUGS
s« modeling language (Lunn et al., |2009) and estimated using Markov chain Monte Carlo
55 (MCMC; Brooks et al., 2011). Mainstream MCMC software includes WinBUGS, JAGS
ss (Plummer, 2003), and Stan (Stan Development Team, 2014). Recently, the nimble R pack-
57 age has been developed, offering new degrees of customization for MCMC (de Valpine et al.,
ss [2017). Custom-written distributions and the flexibility of nimble’s MCMC system have
so provided substantial improvements in non-spatial capture-recapture models (Turek et al.,
o0 2016 and the study of MCMC algorithms (Turek et al., |2017)).

61 We use nimble to demonstrate several generally applicable techniques for improving
&2 MCMC efficiency of (1) a simple but computationally-intense SCR model (Milleret et al.,
3 2019), and (2) an open robust-design SCR model (Ergon and Gardner, 2014). We increase
s« MCMC efficiency by vectorizing calculations, applying custom MCMC sampling strategies,
s implementing model-specific likelihood calculations, disabling unnecessary model calcula-
s tions, and restricting trap calculations to the locality of each individual. Using these tech-

ez niques, we achieve efficiency gains of a factor of 100 in the first example and a factor of 25

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

e in the second example.

» 2 Materials and Methods

7 We consider two example SCR models which both present computational challenges. The
7 first (“Wolverine”) considers a simple closed SCR model for data from non-invasive genetic
72 sampling of wolverines on a large spatial scale in Norway (Gulo gulo, Milleret et al., 2019).
73 The second (“Vole”) is a more complex SCR model on a smaller spatial scale, modeling an
7+ open population of field voles with activity-center movements (Microtus agrestis, Ergon and
s Gardner, 2014). We first describe each model, followed by the strategies used to improve

76 MCMC efficiency. Finally, we describe the metric used to measure MCMC efficiency.

7z 2.1 Wolverine Model

7 This example has a spatial extent over 200,000 km?. The data, collected throughout Norway,
70 consist of 453 detections from 196 individually identified female wolverines using noninvasive
o genetic sampling and search encounter methods (Milleret et al., 2019). The search area was
a1 discretized to a detector grid with a 2km resolution, and only searched grid cells were included
&2 in the analysis. This resulted in 17,266 unique detectors, with binary-valued detections of
&z individuals within grid cells. Data and additional details are available at the dryad repository
e (Milleret et al., 2018a).

8 The Wolverine model combines a spatial point process model of individual activity centers
ss (ACs), data augmentation to model the true population size, and an observation model for
& detection probabilities and capture histories. Define the AC of individual i as s; = (s¥, s?),
s where s? and s! follow independent uniform prior distributions spanning the study area. As
o some regions are unsuitable habitat (i.e., water), AC locations must be constrained. We use

o a habitat mask by defining a binary matrix H over the study area, where H, , = 1 indicates

o that cell (z,y) is suitable habitat. AC locations are then constrained as 1 ~ Bernoulli(H: o),

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

o2 where 1 is a unit data value.

03 For data augmentation (Royle, 2009)), we add Ny virtual individuals. The augmented
s matrix y has dimension (Nobs + Nawg) X R, with R = 17,266 detectors and Nops = 196
s unique individuals. Define binary variables z; with independent z; ~ Bernoulli(¢) prior
o distributions, representing inclusion in the population. For the N sighted individuals,
ov 2; = 1 is observed data, while the remaining z; are unobserved. Total population size N is
o estimated as N = S hers*News o yging the prior distribution ¢ ~ Uniform(0,1) to induce a
o flat prior on N (Royle et al., |2007)).

100 The probability of detecting individual i at detector r is p;, = poexp(—52 [|8;i — &, [|?),
1w where x, is the location of detector r and py and ¢ are the maximal and scale of decay
12 for detection probability. Detections are modeled as y;, ~ Bernoulli(p;, z;). The complete

103 Wolverine model definition is given in , where indices r take the range 1,..., R.

¢ ~ Uniform(0, 1)
po ~ Uniform(0, 1)
o ~ Uniform(0, 50)
N — ZNoi)s‘i‘Naug 2
1= 1,..., (Nobs+Naug) .

ST~ UnifOrm<xmin7 xmax) (1)

Sl SN R

~ Uniform(¢min, Ymax)
~ Bernoulli(Hsf,Sg)
z; ~ Bernoulli(¢)

T Z/)

S

—_

i i

Piy = Do - exp(—5 |8 — @, [|%)

Yir ~ Bernoulli(p; , 2;)

Si:<8

104 We use four refinements of the model and MCMC sampling, with the goal to improve
s MCMC efficiency: (1) Vectorize computations and put the habitat mask into a custom
s distribution, (2) jointly sample AC components, (3) restrict calculations to local detectors
7 and sparse representation of data, and (4) skip unnecessary calculations when z; = 0. We

s next describe each of these techniques, and nimble code corresponding to each cumulative

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

0o refinement appears in Appendix [A]

mw 2.1.1 Vectorized Computations

m Vectorization refers to carrying out a set of matching model computations more efficiently,
n2 as is possible in nimble but neither WinBUGS or JAGS. nimble supports vectorized model
us declarations, reducing the total nodes in the model and potentially improving MCMC effi-
us ciency. We vectorized both detection probabilities and data likelihoods for each individual
s across the R detectors. For the vector of detection probabilities p; 1.z, we used a vectorized
us model declaration. For the vectorized data likelihood of ¥; 1.z, we used a custom likelihood
u7 function for the entire (length-R) observation history of one individual.

118 This technique is only beneficial when the entire joint likelihood of y; 1.r is always calcu-
no lated simultaneously, as is the case here for updates of pg, o, or z;. In a different model, this
120 technique could result in inefficiencies if any MCMC updates require likelihood calculation

11 for only a subset of y; 1.r.

122 2.1.2 Joint Sampling of AC Locations

123 We apply joint (block) sampling of the s¥ and s? coordinates of each AC. nimble allows the
124 assignment of block samplers to arbitrary variables, applying multi-dimensional Metropolis-
s Hastings sampling. This results in computational savings since an MCMC update of s;
16 requires only one calculation of all (length-R) relevant detection probabilities and data like-
17 lihoods. In contrast, independent updates of the s and s! components will require two

128 likelihood evaluations, one for each component.

129 2.1.3 Local Detector Evaluations and Sparse Observation Matrix

1o We move detection probability calculations inside the vectorized likelihood, and additionally
1 restrict these calculations to detectors within a maximum realistic radius (dpayx) of the AC

12 8;. In advance, we identify the set of detectors located within d., from each cell of the

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

133 habitat matrix. The modified distribution identifies the grid cell containing s;, and the set
134 of detectors within d,,,, from it. Calculations of p;, are then restricted to this set of detectors.
135 We also convert to a sparse representation of the detection matrix y. In this representa-
135 tion, each row contains the detector identification numbers (values of r) that detected one
137 individual. The number of columns is therefore equal to the maximum number of detec-
s tions of any particular individual. This sparse representation allows for a smaller model and

139 equivalent, but more efficient, likelihood calculations.

uw 2.1.4 Skip Unnecessary Calculations

1 Calculations can be avoided when any z; = 0, that is, an augmented virtual individual is not
12 currently included in the population. In that case, neither the distances to each detector nor
13 the detection probabilities need be calculated. We modify the custom likelihood again, to
us accept z; as an argument. When z; = 1, the calculations take place as before. When z; = 0,
us the likelihood is one if the individual was never observed — always the case for augmented
us individuals — which can be calculated without any distances or detection probabilities. This
117 modification can save substantial computation, especially when N, is large, that being the

ug conservative approach.

w 2.2 Vole Robust-Design Model

150 Our second example considers a robust-design SCR model of field voles in the Kielder For-
151 est of northern England (Microtus agrestis, Ergon and Gardner, 2014), with four primary
12 sampling occasions and nested secondary trapping sessions. A total of 158 unique individ-
153 uals are considered to have static ACs within primary occasions, but to disperse between
15« primary occasions. See Ergon and Gardner (2014, Appendix S2) for further details, (Ergon
155 and Lambin, 2013)) for the data, and Appendix for the original JAGS code.

156 The Vole model contains individual survival between primary sampling occasions, disper-

157 sal of ACs between primary occasions, and spatial capture-recapture from capture histories.

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

155 Define the AC of individual 4 on primary occasion k as s;; = (i}, sf’k) On first capture,
159 the components si . and SZ , are given uniform prior distributions spanning the mean loca-
1o tion of captures during that occasion. The dispersal between primary occasions k£ and k£ + 1
11 uses a uniformly-distributed dispersal angle 6;;, and an exponentially-distributed dispersal
162 distance d;; with rate parameter Ag,, where G; is the sex of individual ¢ (1: female; 2: male),
13 and A\; and A\, are sex-specific parameters. Thus, the AC components are related across
164 primary occasions as sj, . = s7; + di cos(f;,) and 5?,k+1 = si{k + dyi. sin(G).

165 The survival model uses binary indicator variables, where z; ; = 1 indicates individual
166 1 is alive on occasion k. We condition on the first observation in primary occasion Fj, as
w2z, = 1. The survival process follows as z; ;41 ~ Bernoulli((¢g,)™ 2;x), where survival
18 probability depends on sex and temporal duration. G; gives the sex of individual ¢, T} is
160 the time (in months) between occasions k and k + 1, and ¢; and ¢, are sex-specific survival
o rates. When ¢¢, is a function of a continuous covariate, the model is only invariant to the
1 choice of time unit of Ty when using a loglog (log-hazard) link (Ergon et al., 2018).

172 The observation model uses hazard rates to calculate trap capture probabilities. For
3 individual 7, on secondary trapping session j of primary occasion k, the capture hazard rate
e Nijlr = byji-€Xp (— (%)KG‘), where the location of trap r is @,, and each ~; and o; are
175 sex-specific observation parameters. Baseline hazard is by, = Ao (81)/TOP=2) (y)1(Gi=2),
17 using indicator function I(-), time of day TODj, (1: evening; 2: morning), and baseline
w7 hazard rate A\g. [is the effect of morning trapping sessions, and s is that of males.

178 Total capture hazard rate is h;jp, = Zle hijir. Probability of “no capture” is k0 =

Rijker
Rijiox

119 €XP (—Rijk« Zi k), Which is unity when z; , = 0. Probability of capture is 75, = (1 — 7jk0)
10 in trap r, accounting for competing risks among traps and satisfying Zf:o Tijkr = 1.

181 The “ones trick” is used to induce the correct likelihood calculation. Observation data
1,2y is a 3-dimensional array, where y;;;, = 0 indicates that individual ¢ was not captured in
183 trapping session j of primary occasion k, and y,;;; = 7 indicates a capture in trap r. The

18« complete Vole model definition is given in , where all indices j take the range of the

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1ss. number of secondary trapping sessions in the relevant primary occasion k, and all indices r

16 assume the range 1,..., R.

B1, P2 ~ Uniform(0.1,10)
p ~ Uniform(0.01,0.99)
Ao = —log(1 —p)

g=1,2:

kg ~ Uniform(0, 50)
4 ~ Uniform(0.1, 20)
Ag ~ Uniform(0, 100)
¢4 ~ Uniform(0, 1)
1=1,..., Nops :
s7 i, ~ Uniform(a,, @74

Si,Fi ~ Unlform(ymim yrinax)
zip, =1
k=F,..., L—1:
O;x ~ Uniform(0, 27) (2)
di, ~ Exponential(\g,)
Sikr1 = Sig T dir, cos(Oi)
szkﬂ = szk + dix sin(6;)
Zikr1 ~ Bernoulli((pg,)™ 2x)
k=F,..., L:
Sik = (Si g kaz)
bisk = Ao (B1)/TOP=2) (8,)1(Gi=2)

A kG;
Bt = by - exp <_ (M))
oG,

hijie = Sor hijir
Tijk0 = €XP <_hz’jk* sz)
Tijir = (1 — Tijk0) %
1 ~ Bernoulli(7; gy,)
187 We apply three cumulative refinements to the model and MCMC sampling: (1) Jointly

188 sample correlated dimensions and marginalize over z; indicator variables, (2) use a custom

180 bivariate dispersal distribution, and (3) restrict trap calculation to the vicinity of each AC.

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1o Next we describe these techniques, and nimble code corresponding to each appears in Ap-

191 pendix .

12 2.2.1 Joint Sampling and Marginalization

103 We apply joint samplers for updating two pairs of parameters: {k1,01} and {k2, 03}, as these
14 pairs each determine the trap hazard rates for one sex. Trial runs confirm that these pairs
105 exhibit high posterior correlation, so we expect block samplers will improve mixing.

196 Next, we integrate (marginalize) over the latent z;; indicator variables to directly cal-
17 culate the unconditional likelihood of capture histories. This reduces the model size and
108 the dimension of sampling, and can improve MCMC mixing since parameter updates are
1o 1o longer conditional on the “current” values of each z;j. This is done in nimble using a
20 custom likelihood. This calculation is a finite summation over the possible z; , states, similar
20 to the filtering employed in Turek et al. (2016, Section 2.3.2). When individuals are known
200 to be alive (up to the final capture), the likelihood is survival multiplied by the probability
203 of the observed capture history. Subsequent to the final capture, forward-filtering is used to
204 calculate the likelihood of the remaining non-capture events, accounting for uncertainty in

205 survival.

206 2.2.2 Custom Dispersal Distribution

207 We originally modeled dispersal distances and angles as random variables subject to MCMC
28 sampling, a standard approach for movement models. This results in high computational
200 cost because any proposed update to dispersal distance or angle (especially for early primary
210 occasions) results in a large chain of calculations to determine the updated ACs, detection
o probabilities, and detection likelihoods for all subsequent occasions. Specifically, say we make
22 an MCMC proposal for modifying d;q, the dispersal distance for the first individual, between
213 the first and second primary occasions. This MCMC update will require re-evaluating each

24 8192, 813, ..., S1,1, up through the AC of the final primary occasion. Further, detection

10

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

215 probabilities and data likelihoods for each AC also need be recalculated.

216 We reparameterize this model using a custom distribution of activity center locations that
27 is induced by the distributions of turning angle and distance, as s; ;41 ~ Dispersal(s;k, Ag;).
28 This distribution is centered around the current AC and is mathematically equivalent to
20 the original {d, 8} parameterization. Now, updates of s;; do not induce a large chain of
20 ensuing calculations, but rather, only the likelihoods corresponding to s;; and s; ;41 must
a1 be calculated. The custom distribution is given by p(Sixt1| S, Ag;) o< (3) - Ag, e,
22 where d = ||S;x+1 — Si||, and omitting constants of proportionality which are not necessary

A a5 the exponential density for the dispersal distance d.

23 for sampling. We recognize Ag, e~
24 The factor of (Cll) results from the Jacobian term in the change-of-variables between polar
»s and Cartesian coordinates. From an implementation standpoint, these density calculations
26 take place on a logarithmic scale. This technique can be similarly applied when using other

27 distributions for dispersal distance, by substituting in the density of the alternate dispersal

28 distribution.

29 2.2.3 Local Trap Calculations

20 During MCMC sampling, the capture hazard rate h;;,, and associated likelihood terms are
o calculated for all traps, regardless of an individual’s current AC. This is inefficient, since
22 when s, is “far” from a trap r, then h;;, will be extremely low, and a capture in trap r is
23 exceedingly unlikely. Its contribution to h k. = Zle hijrr is negligible, as is the probability
24 of capture in trap r. The original BUGS modeling language lacks the ability to conditionally
235 disable calculations, and hence all the capture hazard rates must always be computed.

236 We introduce logic such that A, is only calculated for traps within a distance dyin of
27 the individual’'s AC. For traps located further, we assign hj;r a small positive value. This
28 will not affect the sum £y, but still allows for a non-zero probability of capture. Here, we
29 let hyjr, = 107 for traps outside a radius dy;, = 40 from each individual’'s AC.

240 We introduce a discretized grid over the study area, and pre-compute indices of traps

11

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2 within a radius dy,;, from each grid cell. Using this, a custom nimble function returns the
22 indices of “local traps” nearest to any s; x, and subsequently calculates hazard rates only for
23 the “local” traps. This is similar to the local trap calculations used in the previous example,

24 but implementations are different on account of the discretized habitat mask used there.

» 2.3 MCMC Efficiency

26 We define MCMC efficiency as the number of effectively independent posterior samples
27 produced per second of MCMC runtime (excluding upfront time of model building and
2 compilation). Distinct model parameters will typically mix at different rates, thus having
20 distinct posterior effective sample sizes (ESS), and therefore a distinct measure of efficiency.
0 In addition to presenting the MCMC runtimes and MCMC efficiency of all model parameters,
1 we also summarize performance using the minimum and mean efficiencies among all model
2 parameters. This definition of efficiency captures the tradeoff between quality of mixing
»3 and computational speed. Some algorithms may mix slowly (producing a low ESS) but
4 execute sufficiently fast that they achieve high efficiency. Other algorithms may mix quickly
25 (producing a high ESS) but require significantly longer execution time and thus achieve low

6 efficiency.

» 3 Results

s Here we describe the performance resulting from each formulation or sampling strategy of
0 the Wolverine and Vole example models. All algorithm runtimes, ESS estimates, and MCMC
x0 efficiencies reflect independent chains of 10,000 posterior samples. We do not present the
261 posterior inferences (e.g., posterior mean, median, etc.), as they are qualitatively identical

»%2 to the original published analyses.

12

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

w 3.1 Wolverine Model

26¢ We assess performance of the Wolverine model using total population size (IV), probability
25 of detection (pg), and scale factor (o). Results for the four stages of iterative improvement
% described in Section 2.1 will be denoted as Nimblel (vectorization), Nimble2 (joint sampling),
27 Nimble3 (evaluating local detectors), and Nimble4 (skipping unnecessary calculations).

268 As in Milleret et al. (2019), the JAGS model was unable to complete, crashing after
%0 30 days. Transitioning to nimble considerably reduced memory usage and runtime, as
o0 we fit the Nimblel model in 26 hours. ESS values were in the range of 100 to 200 for
on all parameters, indicating high posterior auto-correlation. In combination with the long
o runtime, this produced MCMC efficiencies on the order of 1072 for all parameters. The
213 addition of joint sampling in the Nimble2 version decreased runtime to 20 hours. Parameter
an - ESS values were similar to the Nimblel model, giving a small improvement in efficiency.

215 We observed major improvement in the Nimble3 version, using the local trap evalua-
a6 tions and a sparse representation of the observation matrix. MCMC runtime reduced to 30
o7 minutes, by a factor of 40 relative to the Nimble2 model. As we expect, ESS values were
zs unchanged, and the resulting MCMC efficiencies were in the range of 0.1 to 0.3 (Figure [1).
279 The Nimble4 version, disabling unnecessary model calculations, reduced MCMC runtime
20 by an additional factor of two, down to 16 minutes. Accordingly, MCMC efficiencies increased
21 by nearly a factor of two. Relative to the initial Nimblel formulation, we have achieved
22 increases in both the minimum and mean efficiencies of 100-fold. Concretely, while it was
23 not even possible to fit the original version of this model using JAGS, the initial Nimblel
20 formulation would require 3.5 days to generate 1,000 ESS for all parameters, and the final
255 Nimble4 model can accomplish the same in 51 minutes.

286 Figure [2| presents the minimum and mean efficiencies across all model parameters for
257 each formulation of the Wolverine model, and all results for the Wolverine example appear
s in Table d. An executable version of the Nimble4 Wolverine model is available at the web-

280 appendix http://danielturek.github.io/public/scr/wolverine_example.htmll

13

http://danielturek.github.io/public/scr/wolverine_example.html
https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

» 3.2 Vole Robust-Design Model

21 The Vole model contains a total of 11 hyper-parameters, which we use to assess MCMC
2 efficiency. Results for the three stages of iterative improvement described in Section
203 will be denoted as Nimblel (marginalization), Nimble2 (customizing dispersal distribution),
204 and Nimble3 (evaluating local detectors). The original formulation of the model, running
25 in JAGS, required over 4.5 hours to generate 10,000 posterior samples, and resulted in a
26 minimum MCMC efficiency of 0.002, and a mean efficiency of 0.04.

207 The Nimblel version introduced joint sampling of correlated parameters, and a custom
28 likelihood to remove the z;; latent states. This reduced the total model size from 4,460
209 nodes down to 3,562, while the number of unobserved nodes undergoing MCMC sampling
300 was reduced from 1,437 down to 1,067. This model yielded an MCMC runtime of 15 minutes.
so ESS values were higher than those of JAGS, particularly for the jointly-sampled o; and ;
22 parameters. MCMC efficiency was therefore higher for all parameters (Figure [3)), while the
303 average efficiency increased by a factor of 7.5 relative to JAGS.

304 The Nimble2 model introduced a custom bivariate dispersal distribution for individual
s ACs. This reduced the total model size from 3,562 nodes to 2,452, and the number of nodes
36 for MCMC sampling from 1,067 to 697. Runtime decreased by a factor of two, to seven
;07 minutes, and all parameter MCMC efficiencies increased.

308 Using local trap calculations in the Nimble3 model reduced MCMC runtime further, to
20 five minutes. Overall, relative to the initial analysis appearing in Ergon and Gardner (2014)),
s these strategies reduced MCMC runtime by more than a factor of 50, and increased both
su minimum and mean MCMC efficiencies 25-fold. Concretely, the original model fitted in
sz JAGS would require over seven days to produce 1,000 ESS for all parameters, whereas the
a3 Nimble3 formulation requires less than 6 hours to accomplish the same.

314 Figure 4| presents the minimum and mean efficiencies across all model parameters for

a5 each formulation of the Vole model, and all results for the Vole example appear in Table

14

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2 4 Discussion

sz SCR models are now commonplace given the abundance of geolocated ecological data, but
sis remain computationally challenging. Indeed, large numbers of individuals, expansive study
a0 areas, and/or movement between seasons can render some problems intractable, without
20 employing custom approaches.

321 The techniques demonstrated here produce posterior results identical (within Monte
2 Carlo error) to the original versions, with the exception of local trap evaluations. This
23 attributed a small trap hazard rate (or probability of detection) outside a radius d, from
s each individual AC. The choice of d,,;, is important: large values will produce identical in-
w5 ferences but offer no computational gain, while small values offer a large computational gain
26 but may introduce bias. The choice of d,;, is subjective, and will require expert opinion
27 (or trial runs) to determine an appropriate value. Smaller values of dy,;, may be used for
w8 exploratory analyses, but a conservative higher value should be used to minimize any biases
39 in the final inference.

330 We are aware that conditioning on the primary occasion of first capture, as in the Vole
s example, may induce bias into parameter estimates (Efford and Schofield, 2019, Appendix
32 E). Simulations in Ergon and Gardner (2014) suggest minimal bias in mortality estimates,
;3 although the scale parameter in the observation model may be inflated. Thus, care should be
;2 taken when applying this model to other data. That said, our purpose has been to investigate
15 efficiency of estimation methods rather than statistical properties (such as bias or goodness
16 of fit) of paticular models. Indeed, the ability to perform inference more efficiently will
;37 support a deeper exploration of alternative models structures.

338 Many software packages are available for fitting SCR models, making these analyses faster
10 and more accessible to practitioners (e.g., secr, or oSCR, among others). The prevalence
a0 of specialized software underscores the complex nature of SCR problems, and furthermore
s that no single software package could be general enough to approach all SCR problems.

2 nimble does not attempt to provide “canned” algorithms for SCR, or any other particular

15

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

u3 application, but rather a flexible programming environment suitable for customized (and
s highly efficient) analysis of complex data.

35 We have made use of the nimble software package for R, to demonstrate techniques for
ss improving the performance of SCR model fitting using MCMC. The techniques demonstrated
w7 are not exhaustive, but rather suggest the potential performance gains made possible using
us nimble, where we observed between one and two orders of magnitude improvement. These
s approaches can provide significant computational gain, permitting large-scale spatial and
0 temporal analyses to support major conservation and management decisions, and the ability
1 to fit increasingly complex models to large datasets. More broadly, similar techniques are

32 also applicable to the analysis of general spatially-indexed hierarchical model structures.

= Acknowledgements

s We would like to thank Pierre Dupont and Richard Bischof for their help with the Wolverine
5 example analysis. This work was partly funded by the Norwegian Environment Agency

36 (Miljodirektoratet), the Swedish Environmental Protection Agency (Naturvardsverket) and
357 the Research Council of Norway (NFR 286886).

16

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

= References

10 Borchers, David L and MG Efford (2008). “Spatially explicit maximum likelihood methods
360 for capture-recapture studies”. Biometrics 64.2, pp. 377-385.

31 Brooks, Steve, Andrew Gelman, Galin Jones, and Xiao-Li Meng (2011). Handbook of Markov
362 Chain Monte Carlo. en. bibtex: Brooks2011. CRC Press.

i3 de Valpine, Perry, Daniel Turek, Christopher J Paciorek, Clifford Anderson-Bergman, Dun-
364 can Temple Lang, and Rastislav Bodik (2017). “Programming with models: writing sta-
365 tistical algorithms for general model structures with NIMBLE”. J. Comput. Graph. Stat.
366 26.2, pp. 403-413.

w7 BEfford, Murray (2004). “Density estimation in live-trapping studies”. Oikos 106.3, pp. 598—
368 610.

w0 Efford, Murray G and Matthew R Schofield (2019). “A spatial open-population capture—
370 recapture model”. Biometrics.

s Ergon, T. and X. Lambin (2013). Data from: Separating mortality and emigration: Modelling
312 space use, dispersal and survival with robust-design spatial-capture-recapture data. Tech.
373 rep. Dryad Digital Repository. URL http://dx.doi.org/10.5061 /dryad.r17n5.

s Ergon, T., rnulf Borgan, C. N. Nater, and Y. Vindenes (2018). “The utility of mortality
375 hazard rates in population analyses”. Methods in Ecology and Evolution.

w6 Ergon, Torbjrn and Beth Gardner (2014). “Separating mortality and emigration: modelling
377 space use, dispersal and survival with robust-design spatial capturerecapture data”. en.
378 Methods in Ecology and Evolution 5.12, pp. 1327-1336.

so Gardner, Beth, Rahel Sollmann, N. Samba Kumar, Devcharan Jathanna, and K. Ullas
380 Karanth (2018). “State space and movement specification in open population spatial
381 capture-recapture models”. en. FEcology and Evolution 8.20, pp. 10336-10344.

32 Lunn, David, David Spiegelhalter, Andrew Thomas, and Nicky Best (2009). “The BUGS

383 project: Evolution, critique and future directions”. Statistics in Medicine 28.25.

17

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

;s Milleret, C, P Dupont, C Bonenfant, H Brseth, Flagstad, C Sutherland, and R Bischof
385 (2018a). Data from: A local evaluation of the individual state-space to scale up Bayesian
386 spatial capture recapture.

sz Milleret, Cyril, Pierre Dupont, Henrik Brseth, Jonas Kindberg, J. Andrew Royle, and Richard
388 Bischof (2018b). “Using partial aggregation in spatial capture recapture”. en. Methods
389 in Ecology and Evolution 9.8. Ed. by Nigel Yoccoz, pp. 1896-1907.

s00 Milleret, Cyril, Pierre Dupont, Christophe Bonenfant, Henrik Brgseth, Qystein Flagstad,
301 Chris Sutherland, and Richard Bischof (2019). “A local evaluation of the individual state-
302 space to scale up Bayesian spatial capture-recapture”. Ecology and Evolution 9.1, pp. 352—
303 363.

3¢ Plummer, Martyn (2003). “JAGS: A program for analysis of Bayesian graphical models using
395 Gibbs sampling”. Proceedings of the 3rd international workshop on distributed statistical
396 computing. Vol. 124. bibtex: Plummer2003. Vienna, p. 125.

37 Royle, J Andrew (2009). “Analysis of capture-recapture models with individual covariates
398 using data augmentation”. Biometrics 65.1, pp. 267-274.

1 Royle, J Andrew, Robert M Dorazio, and William A Link (2007). “Analysis of multinomial
400 models with unknown index using data augmentation”. Journal of Computational and
401 Graphical Statistics 16.1, pp. 67-85.

w2 Stan Development Team (2014). “Stan: A C++ Library for Probability and Sampling, Ver-
403 sion 2.5.0”.

w4 Turek, Daniel, Perry de Valpine, and Christopher J Paciorek (2016). “Efficient Markov chain
405 Monte Carlo sampling for hierarchical hidden Markov models”. Environmental and eco-
406 logical statistics 23.4, pp. 549-564.

w7 Turek, Daniel, Perry de Valpine, Christopher J Paciorek, and Clifford Anderson-Bergman

8 (2017). “Automated parameter blocking for efficient Markov chain Monte Carlo sam-

4

o

409 pling”. Bayesian Analysis 12.2, pp. 465-490.

18

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Parameter
N Do o
Nimblel 0.005 0.004 0.003
Nimble2 0.006 0.005 0.003
Nimble3d 0.284 0.247 0.192
Nimble4 0.390 0.394 0.362

Table 1: MCMC efficiency values for the Wolverine example, for all parameters and model
formulations. Results are averaged over three independent chains.

Parameter
®1 P2 5 B Ao A Ao K1 K2 01)
JAGS 0.23 0.05 0.11 0.003 0.002 0.02 0.03 0.002 0.004 0.002 0.003
Nimblel 2.21 0.99 0.74 0.033 0.017 0.16 0.21 0.013 0.065 0.010 0.050
Nimble2 4.49 1.09 1.55 0.054 0.034 0.28 0.25 0.032 0.097 0.022 0.091
Nimble3 5.70 1.43 2.24 0.096 0.062 0.39 0.28 0.055 0.162 0.048 0.140

Table 2: MCMC efficiency values for the Vole example, for all parameters and model formu-
lations. Results are averaged over five independent chains.

19

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

N pO sigma
0.4-
0.4- 0.4-
0.3-
303~ 03-
c
Q
Q
E 0.2
1) 0.2- 0.2-
=
O
=
0.1- 0.1- 0.1-
oo_—-—* 00_—-—_ 00_
1 1 1 1 1 1 1 1 1 1 1 1
Z Z Z Z P Z Z < Z Z Z Z
3 3 3 3 3 3 3 3 3 3 3 3
=X =X =X =X =X =X =X =X =X =X =X =X
[0} @ [0} @ [0} @ [0} @ [0} @ [0} [0}
[l N w S [l N w S [l N w)
MCMC

Figure 1: MCMC efficiency for the Wolverine example, for all parameters and model for-
mulations. Efficiency values are averaged over three independent chains, error bars showing

standard deviation.

20

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Minimum across parameters

0.3-

Efficiency
o
N

(=}
=
1

0.0-

TOIqUIN _

ZOIqUIN _

E9IqUIN _

Mean across parameters

0.4-
0.3-
0.2-
0.1-
0.0-

1 1 1 1 1
Z Z Z Z Z
3 3 3 3 3
=3 =3 =3 =3 =3
)) @ @)
IS = N w IS

MCMC

Figure 2: Minimum and mean MCMC efficiency among the three model parameters for the
Wolverine example. Values are averaged over three independent chains, error bars showing

standard deviation.

21

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

phil betal
2.5-
6-
2.0-
4- 1.5-
1.0-
2-
L] 0.5-_.
0- 1 1 1 1 0.0- 1 1 1 1
.z z z -~ £ £ £
& 2 2 2 & 2 2 2
o o @ o o o
[N w [N w
lambda0 lambda2
0.100 - 0.4- .
>
%)
% 0.075- 0.3- 0.06-
8
¥5 0.050- 0.2- 0.04-
=
0.025- 0.1- 0.02-
2
0.000- _T_ 1 1 1 0.0- * 1 1 0.00- 1 1 1 1
. Z2 Z Z .z Z .. Z2 Z Zz
& 2 2 2 & 2 2 & 2 2 2
o o} o o o 0} @ o o o I}
N W =N kN W
kappa2 sigma2
0.20- 0.15 -
0.15-
0.10-
0.10-
> ~ N
0.00-—"=— 0.00- ==
1 1 1 1
z z Z
© 3 3 3 o
«Q «Q
> 3T 5 & 2
= N w

MCMC
Figure 3: MCMUC efficiency for the Vole example, for all parameters and model formulations.

Efficiency values are averaged over five independent chains, error bars showing standard
deviation.

22

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Minimum across parameters Mean across parameters

0.06 -
0.9-
0.04-
0.6-
) i 0.3-
- 0.0- WENTEEEN
)

0.00-]
1

Efficiency

sBel
TSIqWIN _
Z3|qUWIN _
€9|qUIN _
sBel
TSIqWIN _
Z3|qUWIN _
E9|qUIN _

MCMC

Figure 4: Minimum and mean MCMC efficiency among the eleven model parameters for the
Vole example. Values are averaged over five independent chains, error bars showing standard

deviation.

23

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which

410

411

4

=

2

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

A Wolverine Example: Model Code

A.1 Vectorized Computations Code

dHabitat <- nimbleFunction(
run = function(x = double(0), sxy = double(l), lower = double(l),
upper = double(1), habitat = double(2), log = double()) {

if (sxy[1] < lower[1]) return(-Inf) # x-coordinates
if(sxy[1] > upper[1]) return(-Inf) # x-coordinates
if (sxy[2] < lower[2]) return(-Inf) # y-coordinates
if (sxy[2] > upper[2]) return(-Inf) # y-coordinates
returnType (double())
if (habitat [trunc(sxy[2])+1, trunc(sxy[1])+1] == 0) return(-Inf) else return(0)

dBernoulliVector <- nimbleFunction(
run = function(x = double(l), prob = double(l),
trials = double(1l), log = integer(0)) {
returnType (double(0))
logProb <- sum(dbinom(x, prob = prob, size = trials, log = TRUE))
return(logProb)

code <- nimbleCode ({
for(i in 1:n.individuals) {
sxy[i,1] ~ dunif(0, x.max)
sxy[i,2] ~ dunif (0, y.max)
ones[i] ~ dHabitat(sxy = sxyl[i,1:2], lower = lowerCoords[1:2],
upper = upperCoords[1:2], habitat = habitat.mx[1:y.max,1:x.max])
}
psi ~ dunif(0,1)
for (i in 1:n.individuals) {
z[i] ~ dbern(psi)
}
sigma ~ dunif (0, 50)
alpha <- -1 / (2 * sigma”2)
pO ~ dunif(0, 1)
for(i in 1:n.individuals) {
d2[i, 1:n.detectors] <- (sxyl[i,1] - detector.xy[l:n.detectors,1])"2 +
(sxy[i,2] - detector.xy[l:n.detectors,2])"2
pli, 1l:n.detectors] <- pO0 * exp(alpha * d2[i,l:n.detectors])
y[i, 1:n.detectors] ~ dBernoulliVector(prob = p[i,l:n.detectors]*=z[i],
trials = trials[l:n.detectors])

24

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

453 }
454 N <- sum(z[1:n.individuals])
55 })

25

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s A.2 Local Detector Evaluations and Sparse Observation Matrix

457 Code

48 dBernoulliVector2 <- nimbleFunction(

459 run = function(x = double(l), pZero = double(0),

460 sxy = double(1), sigma = double(0),

461 nbDetections = double(0), yDets = double(l),

462 detector.xy = double(2), trials = double(l),

463 detectorIndex = double(2), nDetectorsLESS = double(1),
464 ResizeFactor = double(0, default = 1),

465 maxNBDets = double(0), habitatID = double(2),

466 log = integer(0, default = 0)){

467 returnType (double (0))

468 nDetectors <- length(trials)

469 sxyID <- habitatID[trunc(sxy[2]/ResizeFactor)+1, trunc(sxy[l]/ResizeFactor)+1]
470 index <- detectorIndex[sxyID,1:nDetectorsLESS[sxyID]]

an n.detectors <- length(index)

an2 y <- nimNumeric(length = nDetectors, value = 0, init = TRUE)
a73 if (nbDetections > 0){

74 for(r in 1:nbDetections){

475 ylyDets[r]l] <- xI[r]

476 if (sum(yDets [r]==index)==0){

477 if (log == 0) return(0.0)

478 else return(-Inf)

479 }

480 3

481 }

482 alpha <- -1.0 / (2.0 * sigma * sigma)
483 logProb <- 0.0

484 count <- 1

485 index1 <- c(index,O0)

486 for(r in 1:nDetectors){

487 if (index1[count] == r){

488 d2 <- pow(detector.xy[r,1] - sxyl[1], 2) + pow(detector.xyl[r,2] - sxy[2], 2)
489 p <- pZero * exp(alpha * d2)

490 logProb <- logProb + dbinom(y[r], prob = p, size = trials[r], log = TRUE)
491 count <- count + 1

492 }

493 }

494 if (log)return(logProb)

405 return(exp(logProb))

496 1)

497

108 code <- nimbleCode({

499 for(i in 1:n.individuals) {

26

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

500 sxy[i,1] ~ dunif (0, x.max)

501 sxy[i,2] ~ dunif(0, y.max)

502 ones[i] ~ dHabitat(sxy = sxyl[i,1:2], lower = lowerCoords[1:2],

503 upper = upperCoords[1:2], habitat = habitat.mx[1:y.max,1:x.max])
504 }

505 psi ~ dunif(0,1)

506 for (i in 1:n.individuals) {

507 z[i] ~ dbern(psi)

508 }

500 sigma ~ dunif (0, 50)

510 pO ~ dunif (0, 1)

511 for(i in 1:n.individuals) {

512 y[i,1:n.detectors] ~

513 dBernoulliVector2(pZero = pO*z[i], sxy = sxyl[i,1:2], sigma = signma,
514 nbDetections[i], yDets = yDets[i,1:nMaxDetectors],
515 detector.xy = detector.xyl[l:n.detectors,1:2],

516 trials = trials[1l:n.detectors],

517 detectorIndex = detectorIndex[1:n.cells,1:maxNBDets],
518 nDetectorsLESS = nDetectorsLESS[1:n.cells],

519 ResizeFactor = ResizeFactor, maxNBDets = maxNBDets,
520 habitatID = habitatIDDet[1:y.maxDet,1:x.maxDet])

521 }

522 N <- sum(z[1:n.individuals])

523 F)

27

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

= A.3 Skip Local Calculations Code

525 dBernoulliVector3 <- nimbleFunction(

526 run = function(x = double(l), pZero = double(0),

527 sxy = double(1), sigma = double(0),

528 nbDetections = double(0), yDets = double(l),

529 detector.xy = double(2), trials = double(l),

530 detectorIndex = double(2), nDetectorsLESS = double(l),
531 ResizeFactor = double(0, default = 1),

532 maxNBDets = double(0), habitatID = double(2),

533 indicator = double(0, default = 1.0),

534 log = integer(0, default = 0)) {

535 returnType (double(0))
536 nDetectors <- length(trials)

537 if (indicator == 0){

538 if (nbDetections == 0){

539 if (log == 0) return(1.0)
540 else return(0.0)

sa1 } else {

542 if(log == 0) return(0.0)
543 else return(-Inf)

544 3

545 }

546 sxyID <- habitatID[trunc(sxy[2]/ResizeFactor)+1, trunc(sxy[1]/ResizeFactor)+1]
547 index <- detectorIndex[sxyID,1:nDetectorsLESS[sxyID]]
548 n.detectors <- length(index)

549 y <- nimNumeric(length = nDetectors, value = 0, init = TRUE)
550 if (nbDetections > 0){

551 for(r in 1:nbDetections){

552 y[yDets[r]] <- x[r]

553 if (sum(yDets [r]==index)==0){

554 if(log == 0) return(0.0)

555 else return(-Inf)

556 }

557 }

558 }

559 alpha <- -1.0 / (2.0 * sigma * sigma)
560 logProb <- 0.0

561 count <- 1

562 index1 <- c(index,0)

563 for(r in 1:nDetectors){

564 if (index1[count] == r){

565 d2 <- pow(detector.xyl[r,1] - sxy[1], 2) + pow(detector.xyl[r,2] - sxy[2], 2)
566 p <- pZero * exp(alpha * d2)

567 logProb <- logProb + dbinom(y[r], prob = p, size = trials[r], log = TRUE)
568 count <- count + 1

28

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

569 }

570 }

1 if (log)return(logProb)
572 return(exp(logProb))

5

J

573 })

574

55 code <- nimbleCode ({

576 for(i in 1:n.individuals) {

577 sxy[i,1] ~ dunif(0, x.max)

578 sxy[i,2] ~ dunif (0, y.max)

579 ones[i] ~ dHabitat(sxy = sxyl[i,1:2], lower = lowerCoords[1:2],

580 upper = upperCoords[1:2], habitat = habitat.mx[1l:y.max,1:x.max])
581 }

582 psi ~ dunif(0,1)

583 for (i in 1:n.individuals) {

584 z[i] ~ dbern(psi)

585 }

586 sigma ~ dunif (0, 50)

587 pO = dunif (0, 1)

588 for(i in 1:n.individuals) {

589 y[i, 1:nMaxDetectors] ~ dBernoulliVector3(pZero = p0O, sxy = sxyl[i,1:2],
590 sigma = sigma, nbDetections[i], yDets = yDets[i,l:nMaxDetectors],
591 detector.xy = detector.xy[l:n.detectors,1:2],

502 trials = trials[1:n.detectors],

593 detectorIndex = detectorIndex[1:n.cells,1:maxNBDets],

504 nDetectorsLESS = nDetectorsLESS[1:n.cells],

595 ResizeFactor = ResizeFactor, maxNBDets = maxNBDets,

506 habitatID = habitatIDDet[1:y.maxDet,1:x.maxDet],

507 indicator = z[i])

598 }

599 N <- sum(z[1:n.individuals])

600 J})

601

29

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

« B Vole Example: Model Code

o3 B.1 JAGS Code

604 code <- nimbleCode ({

605 for(sex in 1:2){

606 kappalsex] ~ dunif(0,50)

607 sigmalsex] ~ dunif(0.1,20)

608 }

600 for(sex in 1:2){

610 for(TOD in 1:2){

611 lambda[TOD, sex] <- lambda0O * pow(betal[l],(TOD-1)) * pow(betal2], (sex-1))
612 }

613 }

614 PL ~ dunif(0.01,0.99)

615 lambdaO <- -log(1-PL)

616 betal[1] ~ dunif(0.1,10)

617 betal[2] ~ dunif(0.1,10)

618 for(sex in 1:2){

619 Phi[sex] ~ dunif(0,1)

620 for(k in 1:(n.prim-1)){

621 philsex,k] <- pow(Phil[sex], dt[k])

622 }

623 }

624 for(sex in 1:2){

625 dmean[sex] ~ dunif(0,100)

626 dlambda[sex] <- 1/dmean[sex]

627 }

628 for(i in 1:N[1]){

629 z[i,first[i]] ~ dbern(1l)

630 S[i,1,first[i]] ~ dunif (xlow[i], xuppl[i]) # Prior for the first x coordinate
631 S[i,2,first[i]] ~ dunif(ylow[i], yuppl[i]) # Prior for the first y coordinate
632 g[i,first [i]1,1] <= O

633 for(r in 1:R){ # trap

634 D[i,r,first[i]] <- sqrt(pow(S[i,1,first[i]]-X[r,1],2) +

635 pow(S[i,2,first[i]]-X[r,2],2))

636 gli,first[i],r+1] <- exp(-pow(D[i,r,first[i]l]/sigmalgr[i]], kappalgrl[i]ll))
637 }

638 Gli,first[i]] <- sum(gl[i,first[i],1:(R+1)]) # Total trap exposure

639 for(j in 1:J[i,first[i]]){

640 P[i,j,first[i]] <- 1 - exp(-lambdaltod[first([i],j],gr[il]l*G[i,first[i]])
641 PPII[i,first[i],j] <- step(H[i,j,first[i]]-2) *

642 (gli,first[i],H[i,j,first[i]1]1] /

643 (G[i,first[i]l]+ 0.0001)) =*

644 P[i,j,first[i]l] +

30

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

(1-step(H[i,j,first[i]]1-2)) * (1-P[i,j,first[i]])
Ones[i,j,first[il] ~ dbern(PPII[i,first[il,j])

for(i in (N[1]+1):N[2]){

z[i,first[i]] ~ dbern(1l)
S[i,1,first[i]] ~ dunif(xlow[i], xuppl[i]) # Prior for the first x coordinate
S[i,2,first[i]] ~ dunif(ylow[i], yupp[il) # Prior for the first y coordinate
First primary session:
gli,first[i],1] <=0
for(r in 1:R){ # trap
D[i,r,first[i]] <- sqrt(pow(S[i,1,first[i]]-X[r,1],2) +
pow(S[i,2,first[i1]1-X[r,2],2))
gli,first[i],r+1] <- exp(-pow(D[i,r,first[i]]/sigmalgrl(il], kappalgrl(ill))
}
Gli,first[i]] <- sum(gl[i,first[i],1:(R+1)]) # Total trap exposure
for(j in 1:J[i,first[i]]){
P[i,j,first[i]] <- 1 - exp(-lambdaltod[firstl[i],jl,grl[il]*G[i,first[i]l])
PPII[i,first[i],j] <- step(H[i,j,first[i]]-2) =*
(gli,first[i],H[i,j,first[i]1]] /
(G[i,first[i]]+ 0.0001)) *
P[i,j,first[i]] +
(1-step(H[i,j,first[i1]1-2))*(1-P[i,j,first[i]])
Ones[i,j,first[il] ~ dbern(PPII[i,first[il,j])
}
for(k in (first[i]+1):K[i]){ # primary session
thetal[i,k-1] ~ dunif(-3.141593,3.141593) # Prior for dispersal direction
z[i,k] ~ dbern(Palivel[i,k-11)
Palive[i,k-1] <- z[i,k-1]*phi[gr[i],k-1] # Pr(alive in primary session k)
d[i,k-1] ~ dexp(dlambdalgr[i]])
Sli,1,k] <- S[i,1,k-1] + d[i,k-1]*cos(thetali,k-1])
S[i,2,k] <- S[i,2,k-1] + d[i,k-1]*sin(thetali,k-1])
gli,k,1] <=0
for(r in 1:R){ # trap
D[i,r,k] <- sqrt(pow(S[i,1,k]-X[r,1]1,2) + pow(S[i,2,k]-X[r,2]1,2))
gli,k,r+1] <- exp(-pow(D[i,r,k]/sigmalgr[il], kappalgrl[ill))
+
G[i,k] <- sum(gl[i,k,1:(R+1)]) # Total trap exposure
for(j in 1:J[1i,k]1){
Pli,j,k] <= (1 - exp(-lambdaltodl[k,j],gr[il]1*G[i,k]))*=z[i,k]
PPII[i,k,j] <- step(H[i,j,k]-2) *
(gli,k,H[i,j,k]1]1 /
(G[i,k] + 0.0001))*P[i,j,k] +
(1-step(H[i,j,k]-2))*(1-P[i,j,k])
Ones[i,j,k] ~ dbern(PPII[i,k,jl)

31

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

692 T
603)

32

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

o« B.2 Joint Sampling and Marginalization Code

605 dLikelihood <- nimbleFunction(

696 run = function(x = double(2), first = double(), last = double(),
697 J = double(1), lambda = double(l), tod = double(2),
698 g = double(2), G = double(l), z = double(l),

699 phi = double(l), log = double()) {

700 pAlive <- 1

701 pDead <- 0

702 lp <- 0

703 for(k in first:last) {

704 if(z[k] == 1) { # known to be alive

705 if(k > first) # survived

706 lp <- 1p + log(phil[k-1])

707 for(j in 1:J[k1) {

708 pNoCaptureGivenAlive <- exp(-lambda[tod[k,jl] * G[k])
709 if(x[j,k] == 1) { # not captured

710 lp <- 1p + log(pNoCaptureGivenAlive)

711 } else { # captured

712 lp <- 1p + log(l-pNoCaptureGivenAlive) +

713 log(glk, x[j,k1-11) - log(G[k])

714 }

715 }

716 } else { # could be dead or alive

717 pTheseNonSightings <- 1

718 for(j in 1:J[k]) {

719 pNoCaptureGivenAlive <- exp(-lambdaltod[k,jl] * G[k])
720 pTheseNonSightings <- pTheseNonSightings * pNoCaptureGivenAlive
721 }

722 pAlive_new <- phi[k-1] * pAlive

723 pDead_new <- (1-phi[k-1]) * pAlive + pDead

724 L <- pAlive_new * pTheseNonSightings + pDead_new

725 pAlive <- (pAlive_new * pTheseNonSightings) / L

726 pDead <- pDead_new / L

727 lp <- 1p + log(L)

728 }

729 }

730 returnType (double())

731 if (log) return(lp) else return(exp(lp))

732 }

733)

734
735 code <- nimbleCode ({

736 PL ~ dunif(0.01, 0.99)
737 lambdaO <- -log(1-PL)
738 for(sex in 1:2) {

33

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

756

757

758

759

760

761

762

763

764

765

767

768

769

770

771

772

o)

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

kappalsex] ~ dunif(0, 50)

sigmalsex] ~ dunif(0.1, 20)

betal[sex] ~ dunif(0.1, 10)

for(TOD in 1:2) {
lambda[TOD, sex] <- lambdaO * beta[1] (TOD-1) * betal[2] (sex-1)

}

Phi[sex] ~ dunif(0, 1)

for(k in 1:(nPrimary-1)) {
phil[sex, k] <- Phil[sex] dt[k]

}

dmean[sex] ~ dunif(0, 100)

dlambda[sex] <- 1/dmean[sex]

}
for(i in 1:nInd) {

Sli, 1, first[il] ~ dunif(xlow[i], xuppl[il)

S[i, 2, first[i]l] ~ dunif(ylow([il, yuppl[il)

for(k in first[i]l:last[i]) {
D[i, k, 1:R] <- sqrt((S[i, 1, k] - X[1:R, 1]1)"2 + (S[i, 2, k] - X[1:R, 2])72)
gli, k, 1:R] <- exp(-(D[i, k, 1:R]1/sigmalgr[il]) “kappalgr([ill)
G[i, k] <- sum(g[i, k, 1:R])

}

for(k in first[il:(Qast[i]l-1)) {
thetali, k] ~ dunif(-3.141593, 3.141593) # dispersal direction
d[i, k] ~ dexp(dlambdalgr[il])
S[i, 1, k+1] <- S[i, 1, k] + d[i, k] * cos(thetali, k])
S[i, 2, k+1] <- S[i, 2, k] + d[i, k] #* sin(thetal[i, k])

}

H[i, 1:nSecondary, 1:nPrimary] ~ dLikelihood(
first = first[i], last = last[i], J = J[i,1:nPrimary],
lambda = lambda[1:2,gr([i]], tod = tod[l:nPrimary,1:nSecondary],
g = gli,1l:nPrimary,1:R], G = G[i,l:nPrimary],
z = z[i,1:nPrimary], phi = phil[gr[i],1: (nPrimary-1)])

34

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which

773

74

775

776

T

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

B.3 Custom Dispersal Distribution Code

dDispersal <- nimbleFunction(

run = function(x = double(l), S = double(l), lam = double(), log = double()) {
dist <- sqrt(sum((x-S)"2))
lp <- dexp(dist, rate = lam, log = TRUE) - log(dist)
returnType (double())
if (log) return(lp) else return(exp(lp))

code <- nimbleCode({

D

PL ~ dunif(0.01, 0.99)
lambdaO <- -log(1-PL)
for(sex in 1:2) {
kappal[sex] ~ dunif(0, 50)
sigmalsex] ~ dunif(0.1, 20)
betal[sex] ~ dunif(0.1, 10)
for(TOD in 1:2) {
lambda[TOD, sex] <- lambdaO * beta[1] (TOD-1) * betal[2] (sex-1)
}
Phi[sex] ~ dunif(0, 1)
for(k in 1:(nPrimary-1)) {
phil[sex, k] <- Phil[sex] dt[k]
}
dmean[sex] ~ dunif (0, 100)
dlambda[sex] <- 1/dmean[sex]
}
for(i in 1:nInd) {
Sli, 1, first[il] ~ dunif(xlow[i], xupplil)
Sfi, 2, first[i]] ~ dunif(ylow([i], yupplil)
for(k in first[i]:last[i]) {
D[i, k, 1:R] <- sqrt((S[i, 1, k] - X[1:R, 11)"2 + (S[i, 2, k] - X[1:R, 2]1)"2)
gli, k, 1:R] <- exp(-(D[i, k, 1:R]/sigmalgr[ill) "kappalgr[ill)
Gli, k] <- sum(g[i, k, 1:R])
}
for(k in first[i]:(last[i]-1)) {
S[i, 1:2, k+1] ~ dDispersal(S[i, 1:2, k], dlambdalgr[i]])
}
H[i, 1:nSecondary, 1:nPrimary] ~ dLikelihood(
first = first[i], last = last[i]l, J = J[i,1:nPrimary],
lambda = lambda[1:2,gr([i]], tod = tod[l:nPrimary,1:nSecondary],
g = gli,1l:nPrimary,1:R], G = G[i,1:nPrimary],
z = z[i,1:nPrimary], phi = phil[gr[i],1: (nPrimary-1)])

35

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

s2s B.4 Local Trap Calculations Code

80 makeGrid <- function(xmin=0, ymin=0, xmax, ymax, resolution=1, buffer=0) {

it

820 makeVals <- function(min, max, buf, res) {

821 unique(c(rev(seq(min, min-buf, by = -res)), seq(min, max+buf, by = res)))
822 }

823 xvals <- makeVals(xmin, xmax, buffer, resolution)
824 yvals <- makeVals(ymin, ymax, buffer, resolution)
825 grid <- expand.grid(xvals, yvals)

826 colnames(grid) <- c(’x’, ’y’)

827 ## unique ids:

828 mult <- diff(range(grid$y/resolution)) + 1

829 ids <- grid$x/resolution * mult + grid$y/resolution
830 offset <- 1 - min(ids)

831 require(nimble)

832 makeIDdef <- substitute(

833 nimbleFunction(

834 run = function(xy = double(1)) {

35 id <- xy[1]/RES * MULT + xy[2]/RES + OFFSET
836 returnType (double())

837 return(id)

838 }

839) ’

840 list (RES = resolution,

841 MULT = mult,

842 OFFSET = offset))

843 makeID <- eval (makeIDdef)

844 ids2 <- apply(grid, 1, function(xy) makeID(xy))

845 sorted <- sort(ids2, index.return = TRUE)

846 gridReordered <- grid[sorted$ix,]

847 gridReordered$id <- sorted$x

848 return(list(grid = gridReordered, makeID = makeID))
sa9

850

51 xr <- range(constants$X[, 1])
g2 yr <- range(constants$X[, 2])
g3 buffer <- 40

g4 exposureRadius <- 40

gs5 resolution <- 7

gs6 makeGridReturn <- makeGrid(xmin=xr[1], xmax = xr[2],
857 ymin=yr[1], ymax = yr[2],
858 buffer = buffer,

850 resolution = resolution)

80 grid <- makeGridReturn$grid
gs1 makeID <- makeGridReturn$makeID

862

36

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

g3 findLocalTraps <- function(grid, traps, exposureRadius) {

864 trtrapsBool <- apply(grid, 1, function(row) {

865 apply (traps, 1, function(tp) {

866 sqrt (sum((row[1:2]-tp) "2)) <= exposureRadius

867 })

868 B

869 trapsBool <- t(trtrapsBool)

870 trapsInd <- apply(trapsBool, 1, which)

871 numsTraps <- sapply(trapsInd, length)

872 localTraps <- array(as.numeric(NA), c(dim(grid) [1], max(numsTraps)+1))
873 for(i in seq_along(trapsInd)) {

874 n <- numsTraps[i]

875 localTraps([i,1] <- n

876 if(n > 0) localTraps[i, 2:(n+1)] <- trapsInd[[i]l]
877 }

878 localTraps

879 }

880

ss1 ## n = localTraps[i,1] gives the number of local traps

g2 ## localTraps[i, 2:(n+1)] gives the indices of the local traps
83 localTraps <- findLocalTraps(grid, constants$X, exposureRadius)
884

85 getNumLocalTraps6 <- nimbleFunction(

836 run = function(idarg = double(), localTrapNumbers = double(1), LTDlarg = double()) {
887 if (idarg < 1) { return(0) }

888 if (idarg > LTDlarg) { return(0) }

889 n <- localTrapNumbers[idarg]

890 returnType (double())

891 return(n)

892 }

893)

894

g5 getLocalTrapIndices6 <- nimbleFunction(

896 run = function(MAXNUM = double(), localTraps = double(2),
897 n = double(), idarg = double()) {

898 indices <- numeric(MAXNUM, 0)

899 if(n > 0) {

900 indices[1:n] <- localTraps[idarg, 2:(n+1)]

901 }

902 returnType (double (1))

903 return(indices)

904 }

905)

906

907 calcLocalTrapDists6 <- nimbleFunction(

908 run = function(MAXNUM = double(), n = double(),

900 localTrapInd = double(l), S = double(1l), X = double(2)) {

37

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

910 Ds <- numeric(MAXNUM, 0)

011 if(n > 0) {

012 Ds[1:n] <- sqrt((S[1] - X[localTrapInd[l:n],1])"2 +
013 (S[2] - X[localTrapInd[1:n],2])"2)
914 }

915 returnType (double (1))

916 return(Ds)

917 }

918)

919
920 calcLocalTrapExposure6 <- nimbleFunction(

021 run = function(R = double(), n = double(), Ds = double(l),

0922 localTrapInd = double(l), sigma = double(), kappa = double()) {
923 g <- numeric(R, 0.00000000000001) ## small value

924 if(n > 0) {

025 gllocalTrapInd[1:n]] <- exp(-(Ds[1:n]/sigma) “kappa)

926 }

027 returnType (double (1))

928 return(g)

929 }

930)

931
922 code <- nimbleCode ({

933 PL ~ dunif(0.01, 0.99)

934 lambda0 <- -log(1-PL)

035 for(sex in 1:2) {

936 kappal[sex] ~ dunif(0, 50)

037 sigmal[sex] ~ dunif (0.1, 20)

038 betalsex] ~ dunif(0.1, 10)

939 for(TOD in 1:2) {

940 lambda[TOD, sex] <- lambdaO * beta[1] (TOD-1) * betal[2] (sex-1)
041 }

942 Phi[sex] ~ dunif(0, 1)

043 for(k in 1:(nPrimary-1)) {

944 philsex, k] <- Phil[sex]"dt[k]

945 }

946 dmean[sex] ~ dunif(0, 100)

047 dlambda[sex] <- 1/dmean[sex]

948 }

949 for(i in 1:nInd) {

950 S[i, 1, first[i]] ~ dunif(xlow[i], xupplil)

051 S[i, 2, first[i]l] ~ dunif(ylow([il, yuppl[il)

052 Sdiscrete[i, 1, first[i]] <- round(S[i, 1, first[i]l]/7) * 7 ## resolution
953 Sdiscrete[i, 2, first[i]] <- round(S[i, 2, first[ill/7) * 7 ## resolution
054 for(k in first[i]:last[i]) {

955 id[i, k] <- makeID(Sdiscretel[i,1:2,k])

056 nLocalTraps[i, k] <-

38

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.081182; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

057 getNumLocalTraps6(idarg=id[i,k], localTrapNumbers =

958 localTraps[1:LTD1,1], LTDlarg = LTD1)

959 localTrapIndices[i, k, l:maxTraps] <-

960 getLocalTrapIndices6(MAXNUM = maxTraps,

961 localTraps = localTraps[1:LTD1,1:LTD2],
962 n = nLocalTraps[i, k], idarg = id[i,k])
963 Ds[i, k, 1l:maxTraps] <-

964 calcLocalTrapDists6(MAXNUM = maxTraps, n = nLocalTraps[i,k],
965 localTrapInd = localTrapIndices[i,k,1:maxTraps],
966 S =8[i,1:2,k], X = X[1:R,1:2])

967 gli, k, 1:R] <- calcLocalTrapExposure6(

068 R = R, n = nlocalTraps[i,k], Ds = Ds[i,k,1:maxTraps],

960 localTrapInd = localTrapIndices[i,k,1:maxTraps],

970 sigma = sigmalgr[il], kappa = kappalgrl[ill)

071 G[i, k] <- sum(gli, k, 1:R])

972 }

073 for(k in first[i]:(last[i]-1)) {

074 S[i, 1:2, k+1] ~ dDispersal(S[i, 1:2, k], dlambda[gr([i]l])

975 Sdiscrete[i, 1:2, k+1] <- round(S[i, 1:2, k+1]/7) * 7

976 }

077 H[i, 1:nSecondary, 1:nPrimary] ~ dLikelihood(

078 first = first[i], last = last[i], J = J[i,1:nPrimary],

979 lambda = lambda[1:2,gr([i]], tod = tod[l:nPrimary,1:nSecondary],
980 g = gli,1l:nPrimary,1:R], G = G[i,1:nPrimary],

081 z = z[i,1:nPrimary], phi = phil[gr[i],1: (nPrimary-1)])

982 }

983 })

39

https://doi.org/10.1101/2020.05.07.081182
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Materials and Methods
	Wolverine Model
	Vectorized Computations
	Joint Sampling of AC Locations
	Local Detector Evaluations and Sparse Observation Matrix
	Skip Unnecessary Calculations

	Vole Robust-Design Model
	Joint Sampling and Marginalization
	Custom Dispersal Distribution
	Local Trap Calculations

	MCMC Efficiency

	Results
	Wolverine Model
	Vole Robust-Design Model

	Discussion
	Wolverine Example: Model Code
	Vectorized Computations Code
	Local Detector Evaluations and Sparse Observation Matrix Code
	Skip Local Calculations Code

	Vole Example: Model Code
	JAGS Code
	Joint Sampling and Marginalization Code
	Custom Dispersal Distribution Code
	Local Trap Calculations Code

