

1 Genome-wide identification and transcriptional analyses of MATE
2 transporter genes in root tips of wild *Cicer* spp. under aluminium stress
3 Xia Zhang^{1,*}, Brayden Weir^{2,*}, Hongru Wei³, Zhiwei Deng³, Xiaoqi Zhang^{2,4}, Yujuan Zhang², Xuexin Xu¹,
4 Changxing Zhao¹, Jens D. Berger⁵, Wendy Vance⁶, Richard Bell⁶, Yong Jia^{2,4,†}, Chengdao Li^{2,4,7,†}

5 ¹Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao
6 Agricultural University, Qingdao, Shandong, 266109, P.R. China.

7 ²State Agricultural Biotechnology Centre (SABC), College of Science, Health, Engineering and Education,
8 Murdoch University, WA, 6150, Australia.

9 ³College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, 266109, P.R. China.

10 ⁴Western Crop Genetic Alliance, Murdoch University, WA, 6150, Australia.

11 ⁵Agriculture and Food, CSIRO, Floreat, WA, 6014, Australia

12 ⁶Agriculture Discipline, College of Science, Health, Engineering and Education, Murdoch University, WA,
13 6150, Australia.

14 ⁷Department of Primary Industry and Regional Development, Government of Western Australia, South Perth,
15 WA, 6155, Australia.

16 *These authors contributed equally to the study.

17

18 [†]Corresponding Authors

19 Dr. Yong Jia

20 y.jia@murdoch.edu.au

21 Prof. Chengdao Li

22 c.li@murdoch.edu.au

23 Tel: +61 8 9360 7519

24 Western Crops Genetic Alliance

25 Murdoch University, Western Australia, 6150, Australia.

26 **Abstract**

27 Chickpea is an economically important legume crop with high nutritional value in human diets.

28 Aluminium-toxicity poses a significant challenge for the yield improvement of this increasingly

29 popular crop in acidic soils. The wild progenitors of chickpea may provide a more diverse gene pool

30 for Al-tolerance in chickpea breeding. However, the genetic basis of Al-tolerance in chickpea and its

31 wild relatives remains largely unknown. Here, we assessed the Al-tolerance of six selected wild

32 *Cicer* accessions by measuring the root elongation in solution culture under control (0 μ M Al³⁺) and

33 Al-treatment (30 μ M Al³⁺) conditions. Al-treatment significantly reduced the root elongation in all

34 target lines compared to the control condition after 2-day's growth. However, the relative

35 reduction of root elongation in different lines varied greatly: 3 lines still retained significant root

36 growth under Al-treatment, whilst another 2 lines displayed no root growth at all. We performed

37 genome-wide identification of multidrug and toxic compound extrusion (MATE) encoding genes in

38 the *Cicer* genome. A total of 56 annotated MATE genes were identified, which divided into 4 major

39 phylogeny groups (G1-4). Four homologues to lupin *LaMATE* (> 50% aa identity; named *CaMATE1*-

40 4) were clustered with previously characterised MATEs related to Al-tolerance in various other

41 plants. qRT-PCR showed that *CaMATE2* transcription in root tips was significantly up-regulated

42 upon Al-treatment in all target lines, whilst *CaMATE1* was up-regulated in all lines except Bari2_074

43 and Deste_064, which coincided with the lines displaying no root growth under Al-treatment.

44 Transcriptional profiling in five *Cicer* tissues revealed that *CaMATE1* is specifically transcribed in the

45 root tissue, further supporting its role in Al-detoxification in roots. This first identification of MATE-

46 encoding genes associated with Al-tolerance in *Cicer* paves the ways for future functional

47 characterization of MATE genes in *Cicer* spp., and to facilitate future design of gene-specific

48 markers for Al-tolerant line selection in chickpea breeding programs.

49 **Keywords:** Aluminium resistance, Chickpea, *Cicer arietinum*, *Cicer echinospermum*, *Cicer*
50 *reticulatum*, Multidrug and toxin efflux (MATE), qRT-PCR.

51

52 **Introduction**

53 Chickpea (*Cicer arietinum* L.) has become a valued grain legume worldwide, ranking second in area
54 and third in production after soybean and pea (FAO, 2017). Chickpea seed is rich in protein,
55 minerals, vitamins, and fibre, which provides many health benefits in diets ¹, thus playing a critical
56 role in human nutritional security. Over 60% of world chickpea production is from India, whilst
57 Australia, Canada, and Argentina have seen increasing chickpea production in recent years, and
58 have become leading chickpea exporters ². During the past two decades, the world production of
59 chickpea has increased steadily from ~7 million tons to ~14.5 million tons (FAO, 2019). However,
60 chickpea yield has regained relatively stagnant.

61 Aluminium (Al) toxicity has been recognized as one of the major soil constraints for crop
62 production. Around 30~40% of the arable soils in the world are acid soils, and the area and severity
63 continues to increase due to factors such as acid rain, intensive agriculture, and the continued
64 application of ammonium-based nitrogen fertilizers ³. The toxic Al³⁺ species significantly inhibits
65 root elongation, thereby impairing nutrient and water uptake, and causes enormous crop yield loss.
66 In chickpea, Al stress could cause inhibition of root growth, and possibly nodulation and nitrogen
67 fixation also ^{4,5}. In India ⁶ and Australia ⁷, both major chickpea producing countries, acidic soils
68 account for a large proportion of the arable land. Thus, improved Al tolerance within chickpea
69 cultivars would lead to higher crop yield on acid soils and the possibility of expanding chickpea
70 production on soils where Al toxicity currently hampers cultivation.

71 Plants have developed various mechanisms to alleviate Al toxicity under acidic soils. The major
72 mechanism is through the Al-activated release of organic acids from root tips ⁸. In barley, Al
73 tolerance is achieved by the Al-induced secretion of citrate from barley roots, which chelates the
74 toxic Al³⁺ in acidic soils ⁹. The secretion of citrate is facilitated by *HvAACT1* (Al-activated citrate
75 transporter) gene encoding an enzyme in the multidrug and toxic compound extrusion (MATE)
76 family ^{9,10}. MATE transporters occur widely in nature, transporting substrates such as organic acids,
77 plant hormones and secondary metabolites in both prokaryotes and eukaryotes ¹¹. Homologous
78 MATE proteins with similar citrate transport functions have been identified from wheat ¹², maize ¹³,
79 sorghum ¹⁴, rice ¹⁵, and *Arabidopsis* ¹⁶. In addition to the citrate transporter MATE, another Al-
80 activated malate transporter (ALMT) has also been reported in many plants and is associated with
81 the malate-mediated Al detoxification ^{17,18}. Genetic studies on the Al-tolerance mechanism in grain
82 legumes are still very limited. Several transcriptome analyses in root tips of legume plants indicated
83 that MATE encoding genes are transcriptionally responsive to Al-treatment, and may have a similar
84 Al-tolerance function ¹⁹⁻²¹.

85 In chickpea, the genetic basis of Al-tolerance remains obscure. Preliminary investigations have
86 indicated that acid tolerance variations are present across different genotypes ^{22,23}. Using two
87 genotypes of varying Al-tolerance, Singh et al. ²⁴ showed that Al-tolerance in chickpea may be
88 controlled by a single dominant gene. However, no candidate gene has been identified to date.
89 Furthermore, the current chickpea germplasm collection contains limited genetic variation related
90 to biotic and abiotic stressors ^{25,26}, which hinders the breeding progress for higher chickpea grain
91 yield. The wild progenitor of chickpea (*Cicer reticulatum*) and its close relative, *C. echinospermum*,
92 provide diverse gene pools for chickpea improvement that was recently widened by collection
93 throughout SE Anatolia, Turkey where sampling covered a wide range of locations, climates and soil
94 types ²⁷. Interestingly, these two wild relatives of chickpea are found in different soil types:

95 biologically derived limestone and sandstone soils for the former contrasting with geologically
96 derived basaltic soils for the latter ²⁷. Collection sites differ in terms of climate and soil properties:
97 *C. reticulatum* collection site soils are more fertile and more alkaline than those where *C.*
98 *echinospermum* was collected ²⁷. Most importantly, *C. reticulatum* and *C. echinospermum* have no
99 reproductive barrier with domesticated chickpea, therefore traits diversity in these wild *Cicer* spp.
100 can be readily introduced in chickpea breeding programs ²⁶.

101 In this study, we aim to explore the Al-tolerance variation within and between these two wild *Cicer*
102 species, and identify the potential candidate genes contributing to Al-tolerance. Selected wild *Cicer*
103 accessions were germinated and grown in a solution culture system under control and Al-treatment
104 conditions. Al-tolerance was tested based on root elongation measurements ²³. Genome-wide
105 survey and phylogeny analyses of the MATE gene family in chickpea were performed. qRT-PCR
106 experiments on two putative MATE candidate genes were carried out. This study is the first report
107 of MATE-encoding genes transcriptionally associated with Al-tolerance in wild *Cicer* root tips,
108 facilitating the future design of gene-specific markers for improved Al-tolerance in chickpea
109 breeding programs.

110 **Results**

111 **Effects of aluminium treatment on root growth**

112 The resistance to Al toxicity was assessed by measuring the root elongation in solution culture
113 under control (0 μ M Al³⁺) and Al treatment (30 μ M Al³⁺) conditions. We included six wild *Cicer*
114 accessions displaying varying degrees of acid tolerance from a previous preliminary screening test
115 ²⁸. Under control condition (**Figure 1A**), the absolute root lengths ranged from 25 mm to 60 mm
116 before and after 2-days (48 h) cultivation, reflecting the phenotypic variation among these chickpea
117 lines. In particular, lines Bari2_074 and Deste_064 have relatively short root length (~27 mm),

118 whilst the other four lines have longer root lengths (> 35mm). Nested ANOVA showed significant
119 differences both within and between species (**Supp. S1**). The highest root growth was observed in
120 Karab_062 and Kayat_064 (*C. echinospermum* and *C. reticulatum*, respectively), followed by
121 Sarik_073, CudiB_008B (both *C. reticulatum*) and Deste_064 (*C. echinospermum*). Significant 4-way
122 interactions (P<0.001) indicate growth differences among *Cicer* lines across the 2 Al treatments.
123 While 30 μ M Al³⁺ reduced root extension in almost all varieties, the roots of Karab_062, Kayat_064,
124 and Sarik_073 grow significantly longer over 2 days, whereas the remaining varieties are unable to
125 do this (**Figure. 1B**). *C. arietinum* PBA HatTrick and *C. reticulatum* Bari2_074 were the exception,
126 displaying no growth over time under both control and treatments (see **Supp. S1** for inter-line and
127 inter-species statistical assessments).

128 **Identification of candidate genes**

129 The MATE gene is known to encode a citrate transporter which secretes citrate that detoxifies the
130 free Al³⁺ in the rhizosphere in acidic soil. To identify the putative MATE transporter in the chickpea
131 genome, the predicted amino acid sequences of the *Cicer* genome (NCBI BioProject: PRJNA190909)
132 were searched using the MATE domain profile (Pfam ID: PF01554). A total of 56 unique peptide
133 sequences containing the MATE domain were identified (**Supp. S2**). Several homologous MATE
134 genes in lupin, soybean, Arabidopsis, barley and rice have been shown to play a critical role in Al
135 resistance. To identify the orthologous MATE genes in *Cicer*, the amino acid sequence of lupin
136 LaMATE (Uniprot ID: Q3T7F5) was used for the homology search against the *Cicer* genome. A total
137 of 4 putative MATE homologues XP_004499881.1 (CaMATE1, 66.37% identity), XP_004510955.1
138 (CaMATE2, 60.93%), XP_004486970.1 (CaMATE3, 55.22%) and XP_004516070.1 (CaMATE4,
139 50.68%) were identified. The gene annotation of the homology search hits can be found in **Table 1**.

140 **Phylogenetic analysis of MATE gene family**

141 To investigate the evolutionary relationship of the identified MATE genes with their MATE
142 homologues in the *Cicer* genome and other plants, a neighbour joining phylogeny was developed
143 (**Figure 2**). Out of the 56 MATE transporters identified, 2 partial proteins were excluded from the
144 phylogeny reconstruction. The developed phylogeny also included 31 previously studied MATE
145 homologues from different plant species. As shown in **Figure 2**, *Cicer* MATE proteins divided into 4
146 major phylogenetic groups G1-4. The target MATE proteins XP_004499881.1 (CaMATE1) and
147 XP_004486970.1 (CaMATE2) identified in the present study are present in group G4, which also
148 contained soybean GmFRD3b ²⁹, lupin LaMATE ³⁰, *Arabidopsis* AtFRD3 ³¹, and *Eucalyptus* EcMATE1 ³²
149 and the other characterised MATE genes related to aluminium resistance in monocot plants,
150 supporting the potential function of these two *Cicer* MATE genes in Al detoxification. Within group
151 G4, CaMATE1 and CaMATE2 were clustered with other legume MATE homologues, GmFRD3b and
152 LaMATE. Compared to CaMATE2, CaMATE1 seems to display a relatively closer relationship with
153 GmFRD3b. Another two *Cicer* MATEs XP_004486970.1 and XP_004516070.1 were present in a
154 separate subgroup with AtMATE and cabbage BoMATE. Interestingly, this subgroup tends to have a
155 closer relationship with the monocot orthologues than CaMATE1 and CaMATE2.

156 **Synteny and gene structural analyses**

157 Depending on the different genetic mechanisms, gene family expansion can be attributed to four
158 gene duplication types: whole genome duplication (WGD)/segmental duplication, tandem
159 duplication, proximal duplication and dispersed duplication. To investigate the evolutionary origin
160 of the *Cicer* MATE gene family, synteny and gene structural features were analysed based on the
161 developed phylogeny. As shown in **Figure 3**, a total of 6 collinear gene pairs and 11 tandem gene
162 pairs (covering 27 genes) were identified within the *Cicer* MATE family, suggesting these genes have
163 originated from WGD/segmental duplication and tandem duplication, respectively. These two types

164 of duplication account for almost half of the *Cicer* MATE genes, whilst the other genes were
165 classified as dispersed or proximal duplication, which include *CaMATE1-4*. Gene structural analyses
166 showed that G1 and G2 MATE genes generally have similar exon-intron profiles, suggesting these
167 two groups may have originated from a recent divergence event. In contrast, G3 and G4 displayed
168 distinct gene structural profiles from G1 and G2. In particular, *CaMATE1* and *CaMATE2* contained
169 12 exons, whilst *CaMATE3* and *CaMATE4* had 13 exons, which is consistent with their phylogeny
170 relationship.

171 **qRT-PCR analyses**

172 The MATE family genes encode transporter proteins that transport organic acid molecules, such as
173 citrate or malate, from root to soil, thus facilitating the chelation of the toxic Al ions. The most
174 active tissue in which the MATE genes are highly transcribed is the root tip ¹¹.

175 To validate the potential function of *Cicer* MATE genes in Al tolerance, the expression levels of the
176 MATE genes in root tips (1-2 cm) and their response to Al treatment were investigated. Two
177 representative MATE genes, *CaMATE1* and *CaMATE2* that are most closely related to the previously
178 characterized *AtFDR3* and *AtMATE*, were selected for qRT-PCR experiments. Under the control
179 condition (0 Al³⁺), the transcription level of *CaMATE1* varied greatly across the six wild *Cicer*
180 accessions, with line Deste_064 displaying the highest expression, followed by line Bari2_074, and
181 then by Line CudiB_008B (**Figure 4A**), whilst chickpea lines Kayat_064, Sarik_073 and Karab_062
182 demonstrated the lowest and similar expression of *CaMATE1*, which was less than a quarter of that
183 in line Deste_064. After applying the Al treatment, the transcription of *CaMATE1* increased
184 significantly in lines Kayat_064, Sarik_073 and Karab_062 by around ~3 times. Moderate increase
185 (~1.5 times) of *CaMATE1* expression was observed in line CudiB_008B. In contrast, the transcription
186 of *CaMATE1* under Al treatment decreased dramatically in line Deste_064 (~0.4 times), and

187 dropped slightly in line 59809. Notably, the downregulation of *CaMATE1* in lines Bari2_074 and
188 Deste_064 coincided with the relatively short root length observed for these two chickpea lines.
189 This also corresponds well with the observation that no root elongation was detected for these two
190 lines after 4 days cultivation under both conditions.
191 Similar to *CaMATE1*, the transcription of *CaMATE2* (**Figure 4B**) also differed greatly across different
192 *Cicer* accessions. Under the control condition, the highest *CaMATE2* expression was detected in
193 line Deste_064, followed by line CudiB_008B. However, the other lines had relatively low or barely
194 any transcription of *CaMATE2*. Compared to the control condition, the Al treatment led to
195 significant upregulation of *CaMATE2* in all *Cicer* lines studied. Under Al treatment, lines Deste_064,
196 Karab_062, CudiB_008B and Bari2_074 displayed abundant *CaMATE2* transcription, which was
197 approximately 3~5 times that in lines Kayat_064 and Sarik_073.

198 **Transcriptome analyses**

199 To further character the transcriptional profile of *Cicer* MATE genes, the transcriptional data of
200 MATE-encoding genes in 5 different tissues (shoot, root, mature leaf, flower bud and young pod)
201 were retrieved from the public database. As shown in **Figure 5**, 35 out of the 56 MATE genes in
202 *Cicer* genome were identified with available transcriptional data. Based on the phylogeny clustering
203 pattern, G1 and G4 genes tend to be expressed relatively higher in root tissues than G2 and G3,
204 thus highlighting their potential involvement in Al tolerance. In contrast, most of G3 genes are
205 barely transcribed in any of the 5 tissues studied, with the exception of Ca8_XP_004511641.1 which
206 was moderately expressed in root. In addition, several MATE genes displayed a clear tissue-specific
207 expression pattern, which include Ca2_XP_004491273.1 (G2) in young pod, Ca5_XP_004501069.1
208 (G3) in shoot, and Ca5_XP_004499881.1 (G4) in root. In particular, Ca5_XP_004499881.1,

209 corresponds to CaMATE1 in the present study. The root-specific expression of CaMATE1
210 corroborates its proposed role in Al tolerance.

211 **Discussion**

212 Our results showed that there was significant variation in Al-tolerance among the target wild *Cicer*
213 lines, thereby supporting the potential use of wild *Cicer* for Al-tolerance improvement in chickpea
214 breeding. Chickpea is susceptible to Al-stress ^{4,5}. To date, two studies have attempted to examine
215 the genotypic variations against Al-stress. The assessment of Al-tolerance in 35 and 24 cultivated
216 chickpea genotypes, respectively, have allowed the identification of relatively tolerant and sensitive
217 chickpea lines ^{23,24}. These Al-tolerant lines may be used for yield improvement in chickpea breeding.
218 However, compared to the other crops species, the genetic diversity of chickpea germplasm against
219 various other abiotic and biotic stresses is also relative narrow ^{26,33}, which hinders the progress on
220 chickpea breeding toward higher yield under unfavourable environmental conditions. The lack of
221 sufficient genetic diversity in chickpea, however, can be complemented by some of its wild
222 progenitors such as *C. reticulatum* and *Cicer echinospermum*, which displays no reproductive barrier
223 with cultivated chickpea ^{26,34}. Based on these observations, the current study attempted to evaluate
224 the Al-tolerance variation in these two species. Our study is the first reported evaluation of Al-
225 tolerance in wild *Cicer*.

226 The genetic basis of Al-tolerance in chickpea remains largely unknown. Based on the assessment of
227 Al-sensitivity in the progeny of two chickpea parental lines, Singh et al. ²⁴ determined that the Al-
228 tolerance variation in the two parental lines may be controlled by a single dominant gene.
229 However, the underlying candidate gene and its physiological mechanism were not identified. The
230 Al-activated MATE transporter facilitates the secretion of citrate from the root apex, which is the
231 major mechanism of Al-tolerance in many plants ⁸. The availability of the chickpea genomic data ³⁵

232 has enabled the genome-wide survey of putative MATE-encoding genes in the present study. Based
233 on the most recent chickpea genome annotation, we identified a total of 56 MATE homologues in
234 *Cicer*, which is close to the 71 reported for *Populus*³⁶ but significantly less than the 117 for soybean
235²¹. Phylogeny analysis suggested that the MATE gene family could be divided into four major
236 subclades, which is similar with the observation made in other species such as soybean²¹ and
237 *Populus*³⁶. In our phylogeny, two *Cicer* MATE homologues were clustered each with the previously
238 identified AtMATE and AtFRD3, respectively, which resembled the observation in *Populus*³⁶. In
239 contrast, the soybean reference genome contained 4 close homologues each for AtMATE and
240 AtFRD3²¹, which may result from its recent polyploidy.

241 Both *CaMATE1* and *CaMATE2*, representing the direct homologues to *AtFRD3*, were significantly
242 upregulated upon Al-treatment. This observation is similar with the transcriptional upregulation for
243 soybean *GmMATE75*²¹, barley *HvAACT1*¹⁰, and the *Populus* *PtrMATE1*, *PrtMATE2*, *PtrDXT2*, and
244 *PtrDXT27* upon Al-treatment³⁶. In barley, Al-tolerant varieties displayed significantly longer root
245 elongation than Al-sensitive lines, which is associated with higher *HvAACT1* transcription in the root
246 tips⁹. In this study, we found that the transcriptional level of *CaMATE1* and *CaMATE2* were
247 positively correlated to the genotypic variation in root elongation in wild *Cicer*. In particular,
248 transcriptome profiling suggested that the transcription of *CaMATE1* may be root-specific, further
249 supporting its role in Al-resistance. Thus, it would be intriguing for further study to verify if
250 *CaMATE1* and *CaMATE2* may correspond to the monogenic Al-tolerance locus identified by Singh et
251 al²⁴. In addition, future study can also be devoted to identify the genetic polymorphism of
252 *CaMATE1* and *CaMATE2* across a much larger collection of chickpea and wild *Cicer* germplasm.
253 Novel allele(s) associated with high Al-tolerance may be identified and used for chickpea breeding.

254 Generally, Al-tolerance in plants is a complex trait involving multiple gene families and pathways. In
255 addition to the MATE-encoding genes, candidate genes from other pathways may also contribute
256 to Al-tolerance in chickpea. For example, comprehensive transcriptome profiling in medicago and
257 soybean root tips have revealed that many genes related to oxidative stress, transcriptional
258 regulation, cell wall process, lignin deposition are also responsive to Al-treatment [19,20](#). Comparative
259 transcriptome study is also necessary to unravel other potential genetic mechanisms associated
260 with Al-tolerance in chickpea. Transgenic over-expression of ALMT homologues in medicago and
261 soybean have also been shown to increase Al-resistance [37,38](#). In *Arabidopsis*, AtSTOP1, a C2H2 zinc
262 finger transcription factor that regulates the expression of AtMATE and AtMLT1, is also involved in
263 Al-tolerance [39](#). The AtSTOP orthologue in rice, OsART1, has also been characterized to be related to
264 Al-tolerance [40](#). Recently, the effect of microRNAs on Al-tolerance in barley was tentatively
265 investigated, providing new insights into this complex biological process [41](#). Therefore, it is
266 necessary for future study to verify if a similar genetic basis for controlling Al-tolerance may be
267 present in chickpea or not. On another note, legume plants including chickpea can characteristically
268 form nodules in the root for N-fixation. Al in acidic soils may pose a constraint on nodule-formation
269 due to its lethal effect on rhizobia [42](#). Therefore, for the improvement in chickpea production in
270 acidic soil, attention should also be given to the rhizobia acidity tolerance. As an earlier study has
271 shown, most acid-tolerant chickpea mesorhizobia showed transcriptional induction of major
272 chaperone genes upon acid treatment, whilst the sensitive strains showed repression [43](#).

273 **Conclusions**

274 The wild progenitors of chickpea provide a diverse gene pool for Al-tolerance in chickpea breeding.

275 We assessed and verified the presence of significant Al-tolerance variation across 6 different wild

276 *Cicer* genotypes. A genome-wide survey identified a total of 56 putative MATE-encoding genes in

277 the chickpea genome. Results of phylogeny and transcriptional analyses revealed the positive role

278 of *CaMATE1* and *CaMATE2* in Al-resistance in *Cicer* roots, and support their potential use in future

279 chickpea breeding for yield improvement.

280 **Methods**

281 **Plant materials, hydroponic cultivation and tissue sampling**

282 A total of six wild *Cicer* lines, *C. reticulatum*: Bari2_074, CudiB_008B, Kayat_064, and Sarik_073; *C.*

283 *echinospermum*: Deste_064 and Karab_062, were obtained from the germplasm collected from

284 southeastern Anatolia, Turkey. Around 50 seeds for each line were used. Sterilised seeds (3%

285 sodium hypochlorite for 5 minutes, followed by rinsing 5 times with de-ionized water) were placed

286 on a petri-dish covered with wet paper towel to allow germination for 4 days.

287 On day 5, seedlings were transferred to 5-litre containers containing solution with constant

288 aeration. All seedlings were initially in the control condition. The complete nutrient solution at pH

289 4.2 contained (µM): $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$, 400; KNO_3 , 650; $\text{MgCl}_2 \cdot 6\text{H}_2\text{O}$, 250; $(\text{NH}_4)_2\text{SO}_4$, 10; NH_4NO_3 , 40;

290 H_3BO_3 , 23; $\text{MnCl}_2 \cdot 4\text{H}_2\text{O}$, 9; $\text{Na}_2\text{MoO}_4 \cdot 2\text{H}_2\text{O}$, 0.1; $\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}$, 0.8; $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$, 0.3; Na_2HPO_4 , 5. Iron

291 (20 µM) was supplied as Fe-EDTA prepared from equimolar amounts of $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$ and Na_2EDTA at

292 pH 4.2. On day 6 the root length was measured using a vernier caliper before returning seedlings to

293 the solution containers with either control (pH 4.27) or the Al-treatment solution (pH 4.25) which

294 contained 30 µMol Al^{3+} added as $\text{AlCl}_3 \cdot 6\text{H}_2\text{O}$.

295 After 48 hours in treatment solutions, the root length was measured again. The root tips (1-2 cm)
296 were sampled using a scalpel blade, snap-frozen in liquid nitrogen, and stored in -80 C° until RNA
297 extraction. Three biological replicates were included for each line, with each replicate comprising 5
298 seedlings.

299 **Sequence retrieval and primer design**

300 The amino acid sequence of lupin LaMATE was used to blastp against the NCBI chickpea genome
301 data (BioProject: PRJNA190909). The genomic DNA sequence and transcript sequence for the target
302 MATE genes were retrieved. qRT-PCR primers spanning the introns were designed using the
303 RealTime PCR Design Tool (Integrated DNA Technologies, US,
304 <https://sg.idtdna.com/scitools/Applications/RealTimePCR/>)

305 **Phylogeny development**

306 The predicted amino acid sequences for the chickpea genome were downloaded from the NCBI
307 database (BioProject: PRJNA190909). The MATE domain profile file (MatE.hmm) was downloaded
308 from the Pfam database (<https://pfam.xfam.org/>). The hmmscan program (<http://hmmer.org/>) was
309 used to identify the sequences containing the MATE domain. The amino acid sequences of
310 previously reported MATE proteins were retrieved from the Uniprot database
311 (<https://www.uniprot.org/>). A list of previously characterized MATEs was retrieved from a recent
312 study ³⁶. For phylogeny inference, amino acid sequence alignment was performed using MUSCLE (8
313 iterations) ⁴⁴. Phylogeny was developed using the Neighbour Joining (NJ) method implemented in
314 MEGA 7.0 ⁴⁵ with the p-distance substitution model. 1000 times bootstrap support was calculated
315 for the developed NJ tree. Tree annotation was performed using the FigTree tool at
316 <http://tree.bio.ed.ac.uk/software/figtree/> .

317 **Synteny and gene structural analyses**

318 Synteny and gene duplication pattern were analysed using MCScanX software [46](#). Chickpea genome
319 annotation data were downloaded from the NCBI database (BioProject: PRJNA190909). Intra- and
320 inter-species genome comparisons were performed using the standalone NCBI-BLAST-2.2.29 tool
321 with an E-value threshold of 1e-05, restricting the maximum hit number to 5. Collinear and tandem
322 gene pairs were displayed using the family_tree_plotter tool in MCScanX package [46](#). Gene structure
323 features were displayed using the GSDS 2.0 tool [47](#).

324 **RNA extraction and cDNA synthesis**

325 The frozen root tips samples were ground into a fine powder using a pestle and a mortar pre-
326 cooled in liquid nitrogen. RNA extraction was carried out using Trisure® (Bioline, Australia) by
327 following the manufacturer's instruction. ~100 mg of ground tissue was used for each extraction.
328 cDNA library construction was performed using SensiFAST™ cDNA Synthesis Kit (Bioline, Australia).

329 **RT-qPCR**

330 The RT-qPCR experiments were carried out using SensiFAST™ SYBR No-ROX Kit (Bioline, Australia).
331 Each reaction contains 5 µl SensiFAST mix, 4.2 µl cDNA template, 0.8 µl forward/reverse primers
332 (500 nM). The RT-PCR primers are forward: CCTGCAGTGCTTCTCTCTTT & reverse:
333 GCATACCCGGAAACTATGACA for CaMATE1 and forward: GGCTTCCTTCAAGCTCAATT & reverse:
334 GCAGGAGCACCAAATGATCTA for CaMATE2. RT-qPCR reaction was performed using the ViiA7 Real-
335 Time PCR System (Thermo Fisher, USA) in 384-well plates. The previously tested chickpea CaCAC
336 gene was used as a reference gene [48](#). Three replicates were included for each sample. Each sample
337 was run in three technical replicates. The transcription values were calculated using the
338 comparative Ct method ($2^{-\Delta Ct}$) [49](#).

339 **Transcriptional data mining**

340 The transcriptional data of MATE-encoding genes were retrieved from the chickpea transcriptome
341 database (CTDB) at <http://www.nipgr.ac.in/ctdb.html>. The obtained transcriptional data in RPKM
342 unit was normalized based on individual gene in different tissues. A separate un-rooted neighbour-
343 joining phylogeny was developed using MEGA7.0 ⁴⁵, which covers MATE genes with transcriptional
344 data available. The transcriptional heat-map data was plotted using the ggtree ⁵⁰ R package based
345 on the phylogeny clustering pattern.

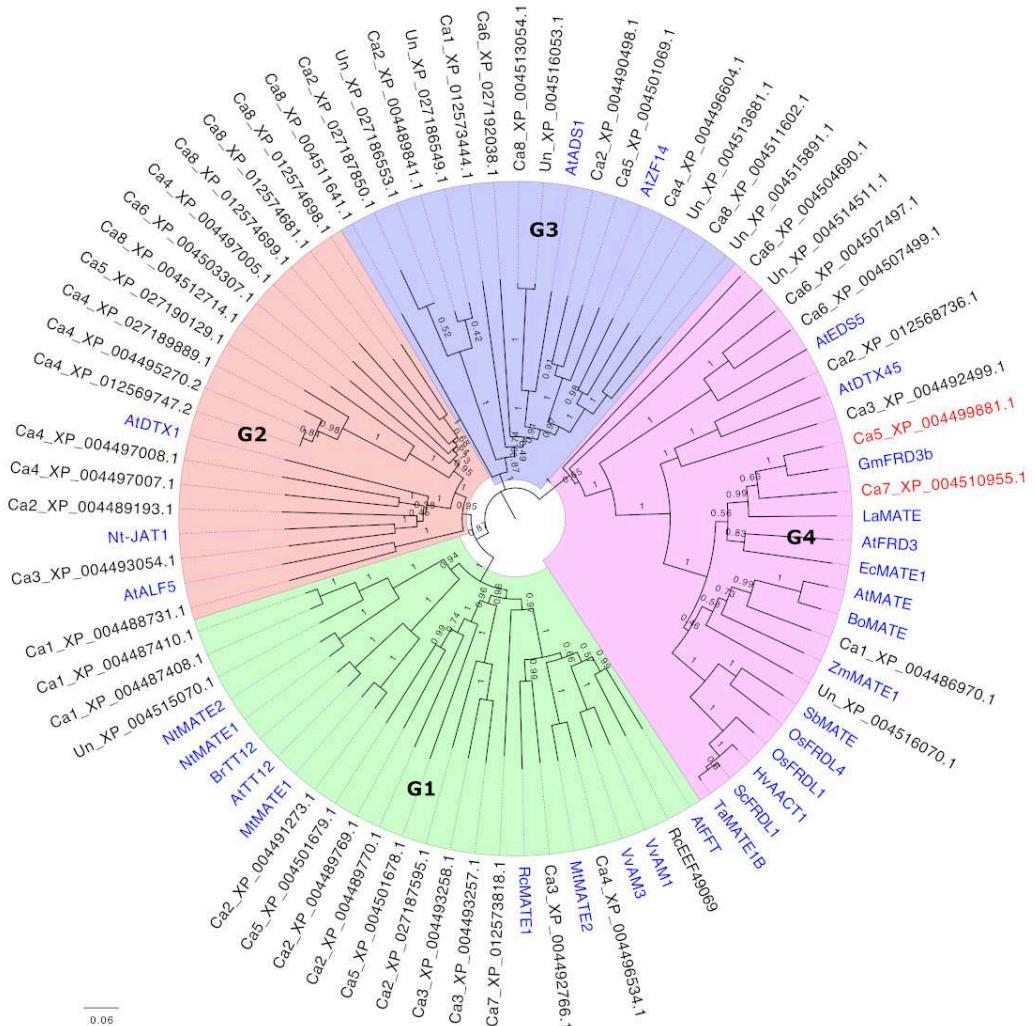
346 **Statistics analysis**

347 Linear regression and ANOVA routines in Genstat V20 (VSN International, Hemel Hempstead, UK) were used
348 to analyse the data, using residual plots to check for normality and identify outliers. Varieties were nested
349 within species, using AI treatment and time as factors, except in linear regression, where time was treated as
350 a variate.

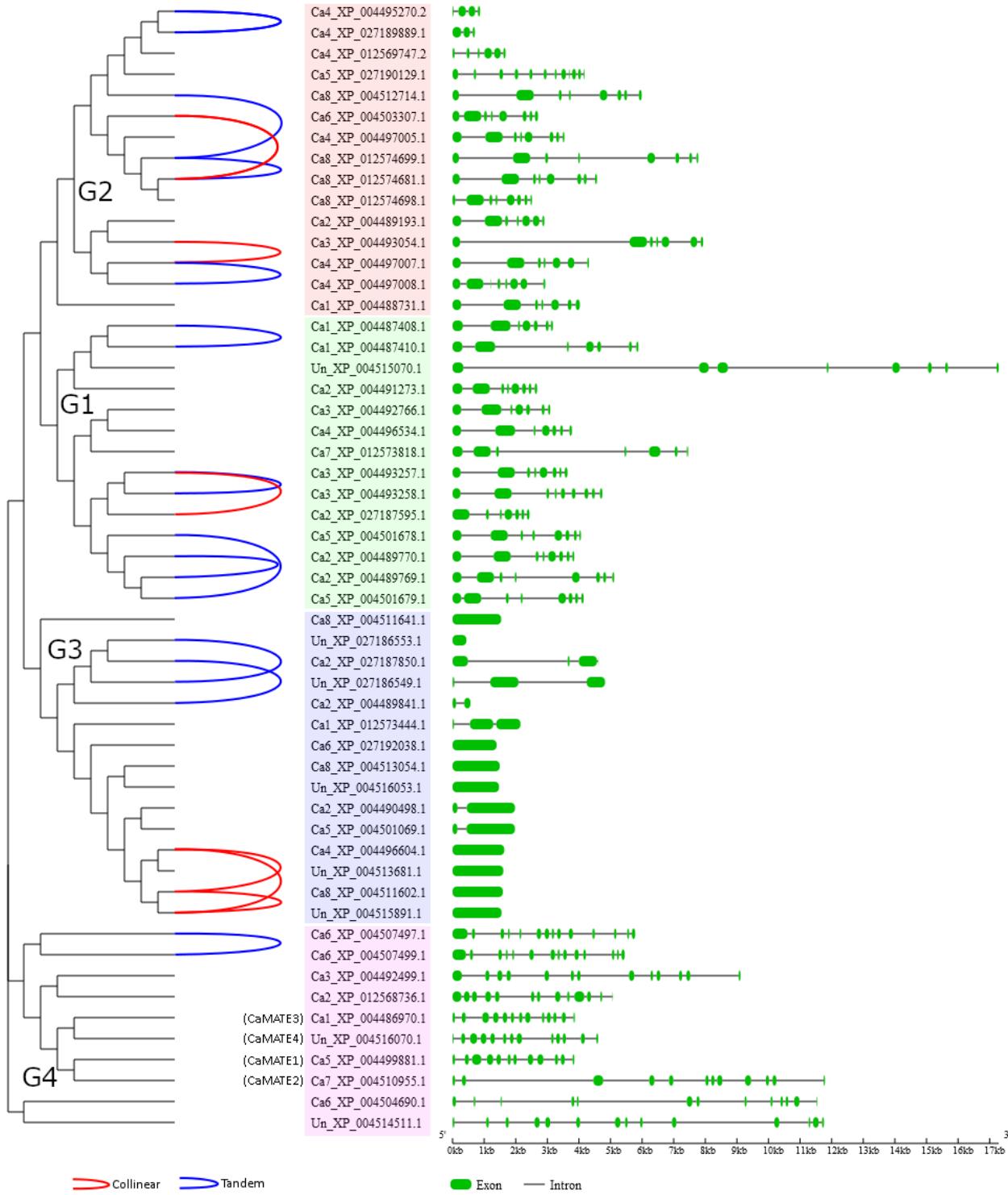

351 **Tables**

352 **Table 1. List of homologous MATE gene hits in chickpea.** Gene annotation was based on genome assembly
353 ASM33114v1.

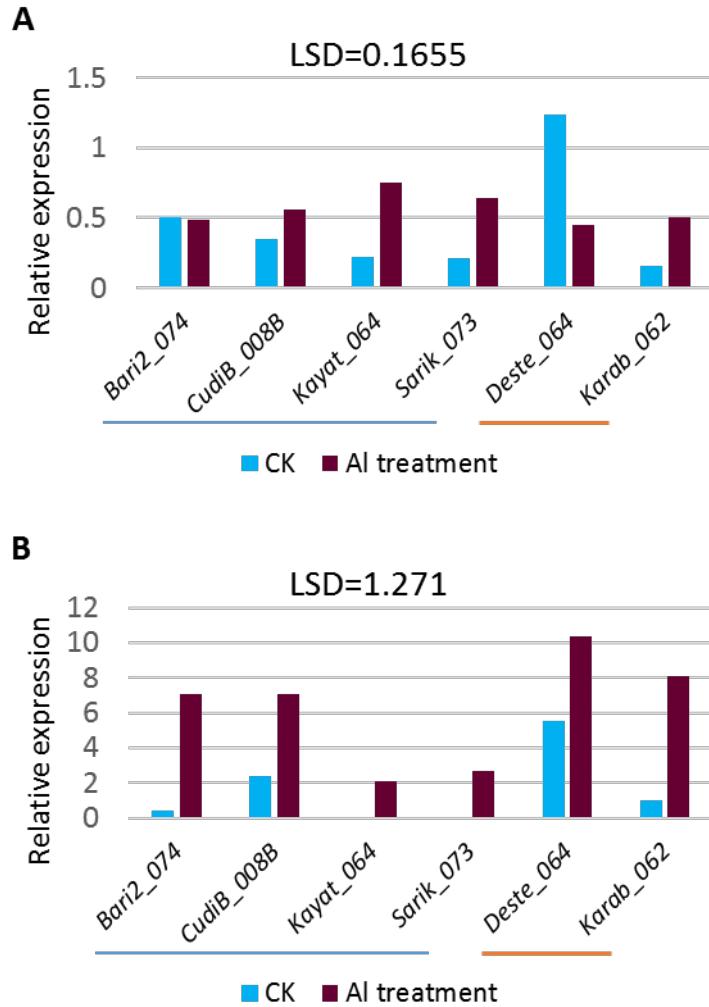
Gene ID	Chromosome	Location	Protein ID	Annotation	aa Identity with LaMATE
LOC101509308 (CaMATE1)	Ca5	NC_021164.1 (16522379..16529693)	XP_004499881.1	protein DETOXIFICATION 43-like; MATE family; TIGR00797	66.37%
LOC101514527 (CaMATE2)	Ca7	NC_021166.1 (39786461..39798690)	XP_004510955.1	protein DETOXIFICATION 43-like; MATE family; TIGR00797	60.93%
LOC101497782 (CaMATE3)	Ca1	NC_021160.1 (11155685..11160403)	XP_004486970.1	protein DETOXIFICATION 42-like; MATE family; TIGR00797	55.22%
LOC101509930 (CaMATE4)	unknown	NW_004516700.1 (143529..149043)	XP_004516070.1	protein DETOXIFICATION 42-like; MATE family; TIGR00797	50.68%


354

355 **Figures**


356

357 **Figure 1. Root growth under control and Al treatment conditions for different wild *Cicer* accessions.** Measurement of
358 root length of *Cicer* seedlings before (0 Day) and after (2 Day) hydroponic cultivation in **A**) Control (-Al) and **B**)
359 Aluminium treatment (+ Al) conditions. Al treatment contains 30 $\mu\text{Mol Al}^{3+}$; indicates *C. reticulatum* and
360 indicates *C. echinospermum*. Least significant difference (LSD) = 3.368 for the 4-way ANOVA within variety (var), species
361 (sp), Al-treatment (Al), and root growth (time). (see **Supp S1** for detailed statistics)

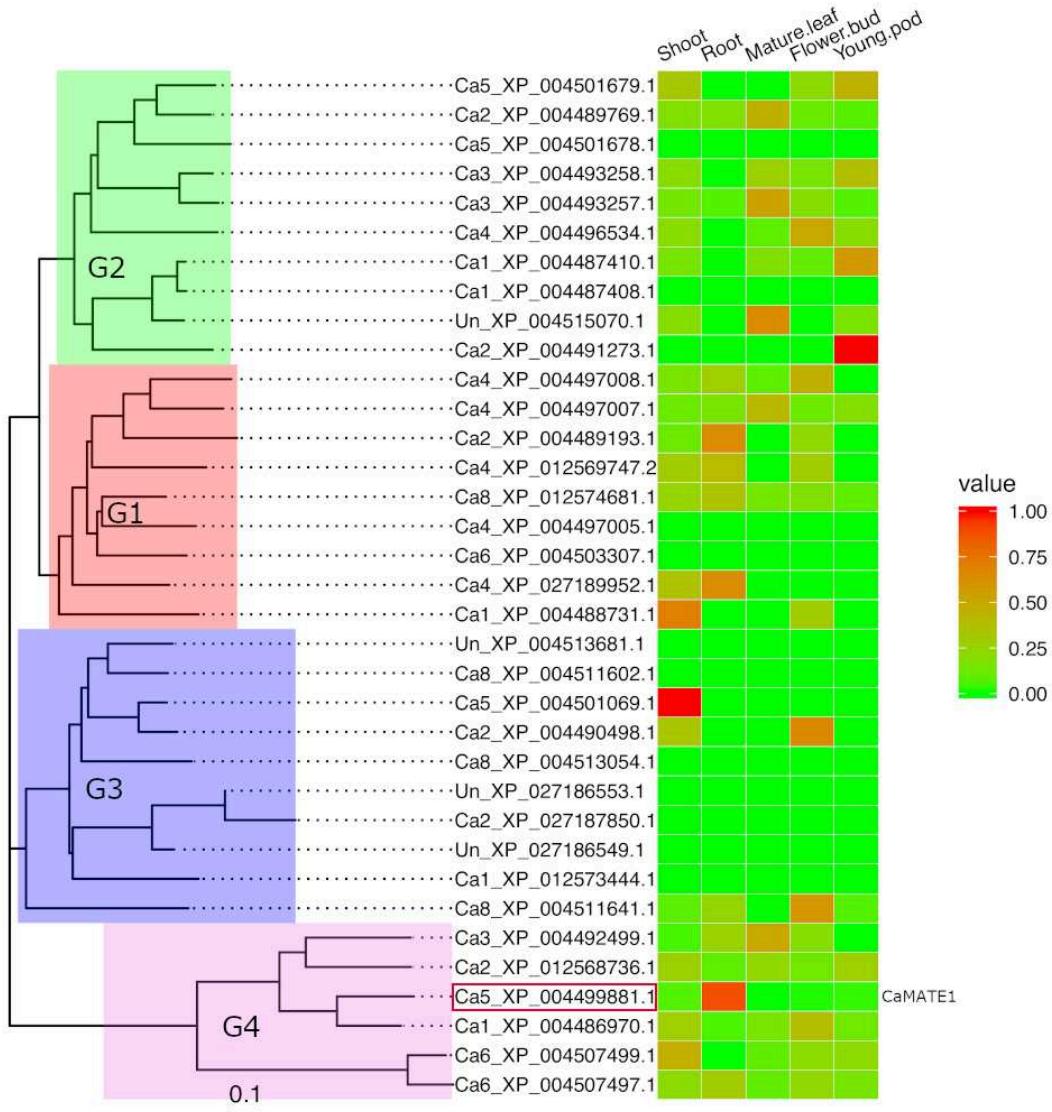

362

363 **Figure 2. Phylogeny of MATE homologous genes in chickpea and other plants.** The NJ phylogeny includes the chickpea
364 protein sequences containing the MatE (PF01540) domain (retrieved from NCBI database BioProject: PRJNA190909).
365 Previously characterised homologous MATE proteins were included as references (highlighted in blue). The target
366 MATE, CaMATE1 and CaMATE2, were in red. The Bootstrap support (1000 times iteration) was indicated above each
367 branch.

368

369 **Figure 3. Synteny and gene structural analyses of chickpea MATE family.** The synteny and gene structural features
370 were displayed based on the developed MATE phylogeny. On the left, identified collinear and tandem duplication gene
371 pairs were linked by red and blue lines, respectively. In the middle, phylogeny groups G1-G4 were highlighted in pink,
372 blue, light green, and brick red, respectively. On the right, exon and intron features were displayed in green rectangle
373 and black line, respectively.

374


375 **Figure 4. qRT-PCR analyses on *Cicer* MATE genes in root tips.** The relative transcription of *CaMATE1* (A) and *CaMATE2* (B) was determined in six *Cicer* lines Bari2_074, CudiB_008B, Kayat_064, Sarik_073, Deste_064 and Karab_062 after 2 days hydroponic cultivation. The previously determined *CaCAC* was used as the reference gene. indicates *C. reticulatum* and indicates *C. echinospermum*. LSD values of 3-way ANOVA within Al-treatment (Al), varieties (var) and species (sp) for *CaMATE1* and *CaMATE2* are 0.1655 and 1.271, respectively. (see **Supp S1** for detailed statistics)

376

377

378

379

380

381 **Figure 5. Transcriptional heat-map of *Cicer* MATE genes across different tissues.** Transcriptional data for MATE domain
382 containing genes in 5 different tissues (shoot, root, mature leaf, flower bud and young pod) were retrieved from
383 chickpea transcriptome database (CTDB) and normalized based on individual genes. The normalized data were plotted
384 in heatmap according to the clustering pattern (G1:green, G2:red, G3:blue, G4:pink) of an un-rooted neighbour-joining
385 tree. The position of CaMATE1 (Ca5_XP_004499881.1) was highlighted in the red box.

386

387 Acknowledgement and Funding

388 The authors would like to acknowledge the chickpea research community for making the genomic
389 and transcriptome data available to the public. The work was funded through GRDC project
390 UMU00044. Genetic material was made available through the collection program of GRDC project

391 CSP00185. Seeds were made available through SMTA with the Australian Grains Gene bank under
392 agreement with AARI (Izmir Genebank).

393 **Author contribution**

394 CL, RB & WV supervised the study. XZ, WV, HW & ZD performed hydroponic tests. BW, XZ, HW & ZD
395 did qRT-PCR experiments under YJ's supervision. JDB provided chickpea materials and data analysis.
396 XQZ, XX & CZ assisted laboratory experiments. YJ&YZ performed bioinformatics and data analyses.
397 YJ wrote the manuscript. JDB, RB, CL & WV provided valuable revisions. All authors have read the
398 manuscript.

399 **Conflict of interests**

400 The authors declared no conflict of interests.

401

402 **Supplementary materials**

403 **Supplementary file S1.** Inter-line and inter-species variance tests on the root growth of wild Cicer lines.

404 **Analysis of variance: root length**

405 Variate: Mean_RL

406	407	Source of variation	d.f.	(m.v.)	s.s.	m.s.	v.r.	F pr.
408	409	Rep stratum	2		1065.66	532.83	25.03	
410	411	Rep.*Units* stratum						
412	AI		1		1630.73	1630.73	76.61	<.001
413	Time		1		4450.37	4450.37	209.08	<.001
414	Sp		2		14026.71	7013.35	329.49	<.001
415	AI.Time		1		1119.06	1119.06	52.57	<.001
416	AI.Sp		2		1060.37	530.19	24.91	<.001
417	Time.Sp		2		477.30	238.65	11.21	<.001
418	Sp.Var		5		22847.01	4569.40	214.67	<.001
419	AI.Time.Sp		2		372.24	186.12	8.74	<.001
420	AI.Sp.Var		5		1037.71	207.54	9.75	<.001
421	Time.Sp.Var		5		2840.24	568.05	26.69	<.001
422	AI.Time.Sp.Var		5		940.48	188.10	8.84	<.001
423	Residual		62	(384)	1319.69	21.29		
424								
425	Total	95	(384)		11717.16			

426 AI (Aluminium treatment): 2 levels; 0 & 30 uMol

427 Sp (species): 3 levels; *C. arietinum*, *C. echinospermum*, *C. reticulatum*

428 Var (variety): 8 levels; PBA HatTrick (C. arie), Bari2_074, CudiA_103C, CudiB_008B, Kayat_064, Sarik_073 (C. reti),
429 Deste_064, Karab_062 (C. echii)

430 Time (days): 2 levels; 0, 2.

431

432 **Analysis of variance: gene expression**

433 Variate: Expression_level_CaMATE1

434	435	Source of variation	d.f.	(m.v.)	s.s.	m.s.	v.r.	F pr.
436	437	Rep stratum	2		0.085783	0.042892	4.51	
438	439	Rep.*Units* stratum						
440	Sp		1		0.035243	0.035243	3.71	0.068
441	AI		1		0.269901	0.269901	28.40	<.001
442	Sp.Var		4		0.470485	0.117621	12.38	<.001
443	Sp.AI		1		0.300549	0.300549	31.63	<.001
444	Sp.Var.AI		4		0.854938	0.213735	22.49	<.001
445	Residual		21	(1)	0.199557	0.009503		
446								
447	Total	34	(1)		1.978717			

449 Variate: Expression_level_CaMATE2

450	Source of variation	d.f.	(m.v.)	s.s.	m.s.	v.r.	F pr.
451	Rep stratum	2		6.1062	3.0531	5.45	
452	Rep.*Units* stratum						
453	Sp	1		120.8777	120.8777	215.73	<.001
454	Al	1		218.3669	218.3669	389.71	<.001
455	Sp.Var	4		79.3952	19.8488	35.42	<.001
456	Sp.Al	1		14.8304	14.8304	26.47	<.001
457	Sp.Var.Al	4		30.4263	7.6066	13.58	<.001
458	Residual	21	(1)	11.7670	0.5603		
459	Total	34	(1)	455.4124			
460							
461							
462							
463							

464 Al (Aluminium treatment): 2 levels; 0 & 30 uMol

465 Sp (species): 2 levels; *C. echinospermum*. *C. reticulatum*

466 Var (variety): 6 levels; Bari2_074, CudiB_008B, Kayat_064, Sarik_073 (*C. reti*), Deste_064, Karab_062 (*C. ech*)

467

Supplementary file S2. List of identified putative MATE encoding genes in chickpea.

Protein ID	Gene ID	Chr	Start	End	Strand
XP_004486970.1	LOC101497782	Ca1	11156189	11160059	+
XP_004487408.1	LOC101506667	Ca1	14022099	14025275	-
XP_004487410.1	LOC101507327	Ca1	14028317	14034199	-
XP_012573444.1	LOC101508596	Ca1	17930045	17932194	+
XP_004488731.1	LOC101496368	Ca1	41825183	41829212	-
XP_004489193.1	LOC101502073	Ca2	1657967	1660872	+
XP_027187595.1	LOC101495061	Ca2	5907697	5910130	-
XP_004489769.1	LOC101503133	Ca2	7678614	7683731	+
XP_004489770.1	LOC101503455	Ca2	7699482	7703334	+
XP_027187850.1	LOC113785478	Ca2	8425149	8429765	+
XP_004489841.1	LOC101500282	Ca2	8440064	8440631	+
XP_004490498.1	LOC101495941	Ca2	24037644	24039619	-
XP_004491273.1	LOC101513987	Ca2	33782028	33784704	+
XP_012568736.1	LOC101497360	Ca2	36396414	36401491	+
XP_004492499.1	LOC101505307	Ca3	20176048	20185161	+
XP_004492766.1	LOC101513768	Ca3	23326545	23329636	-
XP_004493054.1	LOC101498359	Ca3	25203613	25211545	-
XP_004493257.1	LOC101509490	Ca3	27417502	27421139	+
XP_004493258.1	LOC101509807	Ca3	27431809	27436550	+
XP_012569747.2	LOC101498383	Ca4	336802	338479	-
XP_004495270.2	LOC101498724	Ca4	347598	348469	-
XP_027189886.1	LOC113786338	Ca4	349135	350104	-
XP_027189889.1	LOC105851853	Ca4	367668	368375	-
XP_027189952.1	LOC113786368	Ca4	369084	370001	-
XP_004496534.1	LOC101514779	Ca4	12210225	12214002	+
XP_004496604.1	LOC101509286	Ca4	12821840	12823477	-
XP_004497005.1	LOC101500523	Ca4	15378577	15382117	-
XP_004497007.1	LOC101501055	Ca4	15386018	15390333	+
XP_004497008.1	LOC101501367	Ca4	15392608	15395544	+
XP_027190129.1	LOC101505782	Ca5	288578	292755	-
XP_004499881.1	LOC101509308	Ca5	16525537	16529392	+
XP_004501069.1	LOC101492659	Ca5	32893590	32895564	-
XP_004501678.1	LOC101494285	Ca5	37657645	37661708	+
XP_004501679.1	LOC101494597	Ca5	37664214	37668363	+
XP_004503307.1	LOC101506763	Ca6	2418208	2420913	-
XP_004504690.1	LOC101492232	Ca6	13938414	13949963	-
XP_027192038.1	LOC101511466	Ca6	37038724	37040118	-
XP_004507497.1	LOC101494100	Ca6	58728279	58734058	-
XP_004507499.1	LOC101494621	Ca6	58743260	58748708	-
XP_012573818.1	LOC101512584	Ca7	18527103	18534560	+
XP_004510955.1	LOC101514527	Ca7	39786668	39798457	-
XP_004511602.1	LOC101504565	Ca8	1920798	1922390	+

XP_004511641.1	LOC101488585	Ca8	2152196	2153734	+
XP_012574681.1	LOC101509900	Ca8	11064045	11068616	+
XP_012574699.1	LOC101501771	Ca8	11070181	11077959	+
XP_004512714.1	LOC101510554	Ca8	11084921	11090906	+
XP_012574698.1	LOC101503698	Ca8	11196748	11199263	-
XP_004513054.1	LOC101489496	Ca8	15856499	15857992	+
XP_004513681.1	LOC101501259	Un	15726	17333	-
XP_004514511.1	LOC101504040	Un	440047	451802	-
XP_004515070.1	LOC101494264	Un	14058	31344	+
XP_027186553.1	LOC113784536	Un	119199	119636	-
XP_027186549.1	LOC101507382	Un	138263	143089	-
XP_004515891.1	LOC101511223	Un	476974	478524	+
XP_004516053.1	LOC101500520	Un	2841	4310	-
XP_004516070.1	LOC101509930	Un	144146	148755	+

468

469

470 **References**

471

472 1 Wallace, T. C., Murray, R. & Zelman, K. M. The nutritional value and health benefits of
473 chickpeas and hummus. *Nutrients* **8**, doi:10.3390/nu8120766 (2016).

474 2 Merga, B. & Haji, J. Economic importance of chickpea: Production, value, and world
475 trade. *Cogent Food & Agriculture* **5**, 1615718 (2019).

476 3 Zheng, S. J. Crop production on acidic soils: overcoming aluminium toxicity and
477 phosphorus deficiency. *Ann Bot-London* **106**, 183-184, doi:10.1093/aob/mcq134
478 (2010).

479 4 Choudhury, S. & Sharma, P. Aluminum stress inhibits root growth and alters
480 physiological and metabolic responses in chickpea (*Cicer arietinum* L.). *Plant Physiol
481 Bioch* **85**, 63-70, doi:10.1016/j.plaphy.2014.10.012 (2014).

482 5 Singh, S., Verma, A. & Dubey, V. K. Effectivity of anti-oxidative enzymatic system on
483 diminishing the oxidative stress induced by aluminium in chickpea seedlings. *Brazilian
484 Journal of Plant Physiology* **24**, 47-54, doi:10.1590/S1677-04202012000100007
485 (2012).

486 6 Mandal, D. K., Mandal, C., Prasad, J. & Bhattacharyya, T. Acid soils in agro-ecological
487 sub-regions of India : a revisit. *Indian Journal of Fertilisers* **15**, 1156-1166 (2019).

488 7 de Caritat, P., Cooper, M. & Wilford, J. The pH of Australian soils: field results from a
489 national survey. *Soil Res* **49**, 173-182, doi:10.1071/Sr10121 (2011).

490 8 Bojorquez-Quintal, E., Escalante-Magana, C., Echevarria-Machado, I. & Martinez-
491 Estevez, M. Aluminum, a friend or foe of higher plants in acid soils. *Front Plant Sci* **8**,
492 doi:10.3389/fpls.2017.01767 (2017).

493 9 Fujii, M. *et al.* Acquisition of aluminium tolerance by modification of a single gene in
494 barley. *Nat Commun* **3**, doi:10.1038/ncomms1726 (2012).

495 10 Furukawa, J. *et al.* An aluminum-activated citrate transporter in barley. *Plant Cell
496 Physiol* **48**, 1081-1091, doi:10.1093/pcp/pcm091 (2007).

497 11 Takanashi, K., Shitan, N. & Yazaki, K. The multidrug and toxic compound extrusion
498 (MATE) family in plants. *Plant Biotechnol.* **31**, 417-430,
499 doi:10.5511/plantbiotechnology.14.0904a (2014).

500 12 Tovkach, A. *et al.* Transposon-mediated alteration of TaMATE1B expression in wheat
501 confers constitutive citrate efflux from root apices. *Plant Physiol* **161**, 880-892,
502 doi:10.1104/pp.112.207142 (2013).

503 13 Maron, L. G. *et al.* Two functionally distinct members of the MATE (multi-drug and
504 toxic compound extrusion) family of transporters potentially underlie two major
505 aluminum tolerance QTLs in maize. *Plant J* **61**, 728-740, doi:10.1111/j.1365-
506 313X.2009.04103.x (2010).

507 14 Magalhaes, J. V. *et al.* A gene in the multidrug and toxic compound extrusion (MATE)
508 family confers aluminum tolerance in sorghum. *Nat Genet* **39**, 1156-1161,
509 doi:10.1038/ng2074 (2007).

510 15 Yokosho, K., Yamaji, N., Ueno, D., Mitani, N. & Ma, J. F. OsFRDL1 is a citrate
511 transporter required for efficient translocation of iron in rice. *Plant Physiol* **149**, 297-
512 305, doi:10.1104/pp.108.128132 (2009).

513 16 Durrett, T. P., Gassmann, W. & Rogers, E. E. The FRD3-mediated efflux of citrate into
514 the root vasculature is necessary for efficient iron translocation. *Plant Physiol* **144**,
515 197-205, doi:10.1104/pp.107.097162 (2007).

516 17 Sasaki, T. *et al.* A wheat gene encoding an aluminum-activated malate transporter.
517 *Plant J* **37**, 645-653, doi:10.1111/j.1365-313X.2003.01991.x (2004).

518 18 Zhang, X., Long, Y., Huang, J. J. & Xia, J. X. Molecular mechanisms for coping with Al
519 toxicity in plants. *Int J Mol Sci* **20**, doi:10.3390/ijms20071551 (2019).

520 19 Chandran, D., Sharopova, N., VandenBosch, K. A., Garvin, D. F. & Samac, D. A.
521 Physiological and molecular characterization of aluminum resistance in *Medicago*
522 *truncatula*. *Bmc Plant Biol* **8**, doi:10.1186/1471-2229-8-89 (2008).

523 20 You, J. F. *et al.* Transcriptomic responses to aluminum stress in soybean roots.
524 *Genome* **54**, 923-933, doi:10.1139/G11-060 (2011).

525 21 Liu, J. G., Li, Y., Wang, W., Gai, J. Y. & Li, Y. Genome-wide analysis of MATE
526 transporters and expression patterns of a subgroup of MATE genes in response to
527 aluminum toxicity in soybean. *Bmc Genomics* **17**, doi:10.1186/s12864-016-2559-8
528 (2016).

529 22 Rai, R. Effects of soil acidity factors on interaction of chickpea (*Cicer arietinum* L)
530 genotypes and rhizobium strains - symbiotic N-fixation, grain quality and grain-yield in
531 acid soils. *Dev Plant Soil Sci* **45**, 619-631 (1991).

532 23 Manorma Sharma, M. T., Vinay Sharma and Bhumi Nath Tripathi. Genotypic variation
533 to aluminium sensitivity in chickpea depends on its ability to efficiently accumulate
534 nitrate *Advance in Agronomy and Plant Science* **1**, 1-12 (2015).

535 24 Singh, D. & Raje, R. S. Genetics of aluminium tolerance in chickpea (*Cicer arietinum*).
536 *Plant Breeding* **130**, 563-568, doi:10.1111/j.1439-0523.2011.01869.x (2011).

537 25 Berger, J. in *Ground breaking stuff. Proceedings 13th Australian Agronomy Conference*.
538 (eds N Turner, T Acuna, & R Johnson) 4 pp (The regional institute online publishing).

539 26 Singh, R., Sharma, P., Varshney, R. K., Sharma, S. K. & Singh, N. K. Chickpea
540 improvement: role of wild species and genetic markers. *Biotechnology and Genetic*
541 *Engineering* **25**, 267-313, doi:DOI 10.5661/bger-25-267 (2008).

542 27 von Wettberg, E. J. B. *et al.* Ecology and genomics of an important crop wild relative as
543 a prelude to agricultural innovation. *Nature Communications* **9**, 649,
544 doi:10.1038/s41467-018-02867-z (2018).

545 28 Vance, W. & Bell, R. *Acid-soil tolerance in chickpea may flow from wild relatives*
546 *collected in Turkey*, <<https://groundcover.grdc.com.au/story/6130478/wild-chickpea-relatives-may-hold-key-to-acid-soil-tolerance/>> (2019).

548 29 Rogers, E. E., Wu, X. L., Stacey, G. & Nguyen, H. T. Two MATE proteins play a role in
549 iron efficiency in soybean. *J Plant Physiol* **166**, 1453-1459,
550 doi:10.1016/j.jplph.2009.02.009 (2009).

551 30 Uhde-Stone, C., Liu, J. Q., Zinn, K. E., Allan, D. L. & Vance, C. P. Transgenic proteoid
552 roots of white lupin: a vehicle for characterizing and silencing root genes involved in
553 adaptation to P stress. *Plant J* **44**, 840-853, doi:10.1111/j.1365-313X.2005.02573.x
554 (2005).

555 31 Rogers, E. E. & Guerinot, M. L. FRD3, a member of the multidrug and toxin efflux
556 family, controls iron deficiency responses in Arabidopsis. *Plant Cell* **14**, 1787-1799,
557 doi:10.1105/tpc.001495 (2002).

558 32 Sawaki, Y. *et al.* Characterization of Al-responsive citrate excretion and citrate-
559 transporting MATEs in Eucalyptus camaldulensis. *Planta* **237**, 979-989,
560 doi:10.1007/s00425-012-1810-z (2013).

561 33 Berger, J., Abbo, S. & Turner, N. C. Ecogeography of annual wild Cicer species: The
562 poor state of the world collection. *Crop Sci* **43**, 1076-1090, doi:DOI
563 10.2135/cropsci2003.1076 (2003).

564 34 Pundir, R. P. S. & Van Der Maesen, L. J. G. Interspecific hybridization in Cicer.
565 *International Chickpea Newsletter* **8**, 4-5 (1983).

566 35 Varshney, R. K. *et al.* Draft genome sequence of chickpea (*Cicer arietinum*) provides a
567 resource for trait improvement. *Nat Biotechnol* **31**, 240-246, doi:10.1038/nbt.2491
568 (2013).

569 36 Li, N. N. *et al.* Genome-wide analysis of MATE transporters and molecular
570 characterization of aluminum resistance in *Populus*. *J Exp Bot* **68**, 5669-5683,
571 doi:10.1093/jxb/erx370 (2017).

572 37 Chen, Q. *et al.* Overexpression of MsALMT1, from the aluminum-sensitive *Medicago*
573 *sativa*, enhances malate exudation and aluminum resistance in tobacco. *Plant*
574 *Molecular Biology Reporter* **31**, 769-774, doi:10.1007/s11105-012-0543-2 (2013).

575 38 Liang, C. Y. *et al.* Low pH, aluminum, and phosphorus coordinately regulate malate
576 exudation through GmALMT1 to improve soybean adaptation to acid soils. *Plant*
577 *Physiol* **161**, 1347-1361, doi:10.1104/pp.112.208934 (2013).

578 39 Iuchi, S. *et al.* Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis
579 and coregulates a key gene in aluminum tolerance. *P Natl Acad Sci USA* **104**, 9900-
580 9905, doi:10.1073/pnas.0700117104 (2007).

581 40 Yamaji, N. *et al.* A Zinc Finger Transcription Factor ART1 Regulates Multiple Genes
582 Implicated in Aluminum Tolerance in Rice. *Plant Cell* **21**, 3339-3349,
583 doi:10.1105/tpc.109.070771 (2009).

584 41 Wu, L. Y. *et al.* Identification of microRNAs in response to aluminum stress in the roots
585 of Tibetan wild barley and cultivated barley. *Bmc Genomics* **19**, doi:ARTN
586 56010.1186/s12864-018-4953-x (2018).

587 42 Jaiswal, S. K., Naamala, J. & Dakora, F. D. Nature and mechanisms of aluminium
588 toxicity, tolerance and amelioration in symbiotic legumes and rhizobia. *Biol Fert Soils*
589 **54**, 309-318, doi:10.1007/s00374-018-1262-0 (2018).

590 43 Brigido, C. & Oliveira, S. Most acid-tolerant chickpea mesorhizobia show induction of
591 major chaperone genes upon acid shock. *Microb Ecol* **65**, 145-153,
592 doi:10.1007/s00248-012-0098-7 (2013).

593 44 Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high
594 throughput. *Nucleic Acids Res* **32**, 1792-1797, doi:10.1093/nar/gkh340 (2004).

595 45 Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis
596 version 7.0 for bigger datasets. *Mol Biol Evol* **33**, 1870-1874,
597 doi:10.1093/molbev/msw054 (2016).

598 46 Wang, Y. P. *et al.* MCScanX: a toolkit for detection and evolutionary analysis of gene
599 synteny and collinearity. *Nucleic Acids Res* **40**, e49, doi:10.1093/nar/gkr1293 (2012).

600 47 Hu, B. *et al.* GSDS 2.0: an upgraded gene feature visualization server. *Bioinformatics*
601 **31**, 1296-1297, doi:10.1093/bioinformatics/btu817 (2015).

602 48 Reddy, D. S. *et al.* Identification and Validation of Reference Genes and Their Impact
603 on Normalized Gene Expression Studies across Cultivated and Wild Cicer Species. *Plos
604 One* **11**, doi:10.1371/journal.pone.0148451 (2016).

605 49 Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C-T
606 method. *Nat Protoc* **3**, 1101-1108, doi:10.1038/nprot.2008.73 (2008).

607 50 Yu, G. C., Smith, D. K., Zhu, H. C., Guan, Y. & Lam, T. T. Y. GGTREE: an R package for
608 visualization and annotation of phylogenetic trees with their covariates and other
609 associated data. *Methods Ecol Evol* **8**, 28-36, doi:10.1111/2041-210x.12628 (2017).

610